JP5287906B2 - Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor - Google Patents

Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor Download PDF

Info

Publication number
JP5287906B2
JP5287906B2 JP2011045689A JP2011045689A JP5287906B2 JP 5287906 B2 JP5287906 B2 JP 5287906B2 JP 2011045689 A JP2011045689 A JP 2011045689A JP 2011045689 A JP2011045689 A JP 2011045689A JP 5287906 B2 JP5287906 B2 JP 5287906B2
Authority
JP
Japan
Prior art keywords
metal plate
metal
infrared temperature
temperature sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011045689A
Other languages
Japanese (ja)
Other versions
JP2012181157A (en
Inventor
朋宏 片岡
伸一 和田
泉 黒瀬
正和 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2011045689A priority Critical patent/JP5287906B2/en
Priority to CN201180068503.7A priority patent/CN103403508B/en
Priority to PCT/JP2011/056258 priority patent/WO2012117568A1/en
Publication of JP2012181157A publication Critical patent/JP2012181157A/en
Application granted granted Critical
Publication of JP5287906B2 publication Critical patent/JP5287906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Description

本発明は、物体が発生する赤外線によって該物体の温度を検出する赤外線温度センサに関する。   The present invention relates to an infrared temperature sensor that detects the temperature of an object using infrared rays generated by the object.

近年の電子機器においては、周囲環境を検出し、その検出結果を運転制御に利用することが行われている。例えば、エアコンにおいては、人の存在を検知し、人の存在する場所を狙って温度制御するといった運転制御が行われている。このような運転制御においては、周囲環境を検出するためのセンサ装置が用いられ、上記のようなエアコンでは物体からの輻射熱によって非接触で物体温度を検知する赤外線温度センサが用いられる。   In recent electronic devices, the surrounding environment is detected and the detection result is used for operation control. For example, in an air conditioner, operation control is performed in which the presence of a person is detected and temperature control is performed targeting a place where the person exists. In such operation control, a sensor device for detecting the surrounding environment is used, and in the air conditioner as described above, an infrared temperature sensor that detects an object temperature in a non-contact manner by radiant heat from the object is used.

従来の赤外線温度センサとして、金属ステムにセンサ素子と回路部を搭載した構成が良く知られている(例えば特許文献1)。金属ステムを用いた赤外線温度センサの構成を図7に示す。   As a conventional infrared temperature sensor, a configuration in which a sensor element and a circuit unit are mounted on a metal stem is well known (for example, Patent Document 1). The configuration of an infrared temperature sensor using a metal stem is shown in FIG.

図7に示す赤外線温度センサは、金属ステム101上にセンサ素子102および該センサ素子102の検知信号を増幅して出力するための回路部(図示せず)とを搭載している。また、金属ステム101には、これを貫通する電極棒103が設けられており、上記回路部と実装基板との接続は電極棒103を介して行われるようになっている。さらに、金属ステム101におけるセンサ素子102および回路部の搭載面は金属キャップ104によって覆われている。金属キャップ104には赤外線を通すための窓が設けられており、該窓には赤外線の透過率の高いガラスや透明樹脂からなるフィルタ105が取り付けられている。   The infrared temperature sensor shown in FIG. 7 includes a sensor element 102 and a circuit unit (not shown) for amplifying and outputting a detection signal of the sensor element 102 on a metal stem 101. Further, the metal stem 101 is provided with an electrode rod 103 penetrating therethrough, and the circuit portion and the mounting substrate are connected via the electrode rod 103. Further, the mounting surface of the sensor element 102 and the circuit unit in the metal stem 101 is covered with a metal cap 104. The metal cap 104 is provided with a window for transmitting infrared rays, and a filter 105 made of glass or transparent resin having high infrared transmittance is attached to the window.

上記赤外線温度センサにおいて、金属ステム101を用いている最大の理由は、内部熱による誤差対策である。すなわち、センサ素子102は、フィルタ105を透過する赤外線のみならず、センサ内部の輻射熱による赤外線をも受光する。この時、センサ内部の温度がセンサ素子102と同じであれば、センサ内部温度の影響は相殺されて誤差を生じさせない。一方、センサ内部の温度がセンサ素子102と異なっていれば、センサ内部の温度が誤差としてのってしまい、測定対象物の温度を正確に検知できなくなる。   In the infrared temperature sensor, the greatest reason for using the metal stem 101 is to counter errors due to internal heat. That is, the sensor element 102 receives not only infrared rays that pass through the filter 105 but also infrared rays due to radiant heat inside the sensor. At this time, if the temperature inside the sensor is the same as that of the sensor element 102, the influence of the temperature inside the sensor is canceled and no error occurs. On the other hand, if the temperature inside the sensor is different from the sensor element 102, the temperature inside the sensor will be an error, and the temperature of the measurement object cannot be detected accurately.

このため、従来の赤外線温度センサでは、熱伝導性の高い金属ステムと金属キャップとを用いたパッケージ構造とし、センサ内部の温度が均一となるようにしている。   For this reason, the conventional infrared temperature sensor has a package structure using a metal stem and a metal cap having high thermal conductivity so that the temperature inside the sensor is uniform.

また、金属ステムを用いない構造の赤外線温度センサが、例えば特許文献2に開示されている。金属ステムを用いない赤外線温度センサの構成を図8に示す。   An infrared temperature sensor having a structure that does not use a metal stem is disclosed in Patent Document 2, for example. FIG. 8 shows the configuration of an infrared temperature sensor that does not use a metal stem.

図8に示す赤外線温度センサは、支持基板201上にセンサチップ202を直接搭載し、支持基板201の配線とセンサチップ202とをワイヤ接続する構成となっている。また、上記赤外線温度センサにおいても、センサチップ202は金属キャップ203によって覆われている。   The infrared temperature sensor shown in FIG. 8 has a configuration in which a sensor chip 202 is directly mounted on a support substrate 201 and the wiring of the support substrate 201 and the sensor chip 202 are connected by wire. Also in the infrared temperature sensor, the sensor chip 202 is covered with a metal cap 203.

特開平6−137935号公報(1994年5月20日公開)JP-A-6-137935 (published on May 20, 1994) 特表2007−503586号公報(2007年2月22日公表)Special Table 2007-503586 (published February 22, 2007)

しかしながら、上述のような従来技術は、以下の問題を有する。   However, the prior art as described above has the following problems.

まず、金属ステムを用いる構造では、金属ステム自体の部材費が高い。金属ステムは、センサ信号をパッケージ外部に取り出すための電極棒を有しており、この電極棒は低融点ガラス等を用いてステム本体と絶縁されるため、構造が複雑であり部材費が高くなる。また、金属ステムの実装は、実装基板のスルーホールの金属棒を差し込んで、人手によって半田付けするといった工程が必要となり、組立加工費も高くなる。   First, in the structure using a metal stem, the member cost of the metal stem itself is high. The metal stem has an electrode bar for taking out a sensor signal to the outside of the package, and this electrode bar is insulated from the main body of the stem using low-melting glass or the like, so that the structure is complicated and the member cost is high. . In addition, the mounting of the metal stem requires a process of inserting the metal rod of the through hole of the mounting board and soldering it manually, which increases the assembly processing cost.

一方、金属ステムを用いない構造では、支持基板の基材を一般的な樹脂基材とした場合、熱伝導性が悪いことから、センサチップとのキャップとの間に温度差が生じやすい。このため、周辺温度が変化した場合などには、パッケージ内側の放射赤外線によってセンサ出力が変動するといった問題が生じる。   On the other hand, in a structure that does not use a metal stem, when the base material of the support substrate is a general resin base material, a thermal difference is likely to occur between the sensor chip and the cap because the thermal conductivity is poor. For this reason, when ambient temperature changes etc., the problem that a sensor output fluctuates by the radiant infrared rays inside a package arises.

また、金属ステムを用いない構造では、支持基板の基材を熱伝導性の良いセラミック基材にして、上記問題を解消することができる。しかしながらこの場合には、セラミック基板の価格が非常に高くなり、コスト面で不利となる。   Moreover, in the structure which does not use a metal stem, the said problem can be eliminated by making the base material of a support substrate into a ceramic base material with good heat conductivity. However, in this case, the price of the ceramic substrate becomes very high, which is disadvantageous in terms of cost.

本願発明は、上記の課題に鑑みてなされたものであり、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and is low in material cost and assembly processing cost, and is resistant to fluctuations in output to environmental temperature changes comparable to the conventional structure using a metal stem. It aims at providing the infrared temperature sensor which has this.

上記の課題を解決するために、本発明の赤外線温度センサは、実装基板と、上記実装基板上に実装される金属板と、上記金属板上に搭載される赤外線を受信検知するセンサチップと、上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されていることを特徴としている。   In order to solve the above problems, an infrared temperature sensor of the present invention includes a mounting substrate, a metal plate mounted on the mounting substrate, a sensor chip that receives and detects infrared rays mounted on the metal plate, A circuit unit that amplifies a detection signal of the sensor chip mounted on the metal plate; and a metal cap that is placed on the metal plate and covers the sensor chip and the circuit unit. Is provided with an opening, and the electrode on the mounting substrate and the circuit portion are wire-connected through the opening.

上記の構成によれば、上記センサチップおよび上記回路部は上記金属板上に搭載され、さらにその上から金属キャップがかぶせられる。すなわち、上記センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記金属板および上記金属キャップを熱伝導性が高いため、上記パッケージはセンサ内部の温度を均一に保つ機能を有し、環境温度変化へ対する高い出力変動耐性を持たせることができる。   According to said structure, the said sensor chip and the said circuit part are mounted on the said metal plate, and also a metal cap is covered from it. That is, the sensor has a structure in which the sensor chip and the circuit unit are accommodated in a package including the metal plate and the metal cap. Since the metal plate and the metal cap have high thermal conductivity, the package has a function of keeping the temperature inside the sensor uniform, and can have high output fluctuation resistance against environmental temperature changes.

また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。   The metal plate is provided with an opening, and the electrode on the mounting substrate and the circuit part are wire-connected through the opening. For such wire bonding between the mounting substrate and the circuit portion, a normal COB (Chip On Board) mounting technology can be applied. Therefore, the assembly processing cost is significantly higher than the conventional technology for mounting a sensor using a metal stem. Reduction is possible.

また、上記赤外線温度センサでは、上記金属板は上記実装基板上のGND電位に接続されており、上記金属キャップは上記金属板に電気的に接続されている構成とすることができる。   In the infrared temperature sensor, the metal plate may be connected to a GND potential on the mounting substrate, and the metal cap may be electrically connected to the metal plate.

上記の構成によれば、上記金属板および上記金属キャップからなるパッケージに、電波ノイズを遮断するシールド効果を持たせることができる。   According to said structure, the shield effect which interrupts | emits radio noise can be given to the package which consists of the said metal plate and the said metal cap.

また、上記赤外線温度センサでは、上記金属板は上記実装基板に対して半田付けにて実装されており、上記実装基板に形成される半田付け用ランドは、実装される上記金属板の4隅または4辺に対応する箇所と、金属板の中央に対応する箇所とに設けられている構成とすることができる。   In the infrared temperature sensor, the metal plate is mounted on the mounting substrate by soldering, and the soldering lands formed on the mounting substrate have four corners of the metal plate to be mounted or It can be set as the structure provided in the location corresponding to 4 sides, and the location corresponding to the center of a metal plate.

上記の構成によれば、上記金属板の4隅または4辺に対応する箇所に設けられた半田付け用ランドによって金属板を位置ずれなく強固に実装することができる。金属板の中央に対応する箇所に設けられるランドによって、上記金属板と上記実装基板との間に隙間が生じて上記金属板に撓みが生じることを防ぐことができる。   According to said structure, a metal plate can be firmly mounted without position shift with the soldering land provided in the location corresponding to four corners or four sides of the said metal plate. A land provided at a location corresponding to the center of the metal plate can prevent the metal plate from being bent due to a gap between the metal plate and the mounting substrate.

また、上記赤外線温度センサでは、上記金属板は、半田付け性を確保するための表面コーティングが施されている構成とすることができる。これにより、半田付け実装の信頼性を上げることができる。   In the infrared temperature sensor, the metal plate may be provided with a surface coating for ensuring solderability. Thereby, the reliability of solder mounting can be raised.

また、上記赤外線温度センサでは、上記金属板には、上記金属キャップを位置決めするためのキャップ位置決め用突起が設けられている構成とすることができる。これにより、上記金属キャップを上記金属板に実装する際、容易に精度良く位置決めできる。   In the infrared temperature sensor, the metal plate may be provided with a cap positioning protrusion for positioning the metal cap. Thereby, when mounting the said metal cap on the said metal plate, it can position easily with sufficient precision.

また、上記赤外線温度センサでは、上記金属キャップの内側には、樹脂製の内側キャップが設けられている構成とすることができる。   In the infrared temperature sensor, a resin inner cap may be provided inside the metal cap.

上記構成によれば、外部環境温度の変化に追随してセンサ内温度が急激に変化することを回避でき、センサの環境温度変化への出力変動耐性を向上させることができる。   According to the above configuration, it is possible to avoid a rapid change in the temperature inside the sensor following the change in the external environment temperature, and it is possible to improve the output fluctuation resistance to the change in the ambient temperature of the sensor.

また、上記赤外線温度センサでは、上記金属キャップの上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、上記窓部の直下には上記窓部を通過する赤外線をセンサチップ上に集光するレンズが配置されており、上記内側キャップは、上記レンズをはめ込むための窪み部を有している構成とすることができる。   In the infrared temperature sensor, a window for taking infrared light into the sensor is provided on the upper surface of the metal cap, and infrared light passing through the window is directly below the window on the sensor chip. A lens for condensing light is disposed on the inner cap, and the inner cap has a recess for fitting the lens.

上記の構成によれば、上記レンズをはめ込むための窪み部を上記内側キャップに設けることで、レンズの焦点をセンサチップ上に合わせるための位置合わせが容易となる。   According to said structure, the hollow part for fitting the said lens is provided in the said inner cap, The position alignment for adjusting the focus of a lens on a sensor chip becomes easy.

また、上記赤外線温度センサでは、上記レンズの周辺部は上記金属キャップに接触または近接して配置されており、上記レンズと上記金属キャップとの隙間は接着剤が充填されている構成とすることができる。これにより、上記金属キャップと上記レンズとの間の熱伝導性を向上させ、センサ内温度の均一化を図ることができる。   In the infrared temperature sensor, the periphery of the lens is disposed in contact with or close to the metal cap, and the gap between the lens and the metal cap is filled with an adhesive. it can. Thereby, the thermal conductivity between the metal cap and the lens can be improved, and the temperature in the sensor can be made uniform.

また、本発明の赤外線温度センサの製造方法は、実装基板上に、開口部が設けられた金属板を実装する工程と、上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していることを特徴としている。   The method for manufacturing an infrared temperature sensor of the present invention includes a step of mounting a metal plate provided with an opening on a mounting substrate, a sensor chip for receiving and detecting infrared light on the metal plate, and the sensor chip. Mounting a circuit unit for amplifying the detection signal of the sensor, a step of wire-connecting the electrode on the mounting substrate and the circuit unit through an opening of the metal plate, and the sensor chip on the metal plate And packaging with a metal cap covering the circuit portion.

上記の構成によれば、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを製造できる。   According to the above configuration, it is possible to manufacture an infrared temperature sensor that is low in member cost and assembly processing cost, and has an output fluctuation resistance to an environmental temperature change comparable to that of a conventional structure using a metal stem.

本発明の赤外線温度センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記パッケージは、高い熱導電性を有するため、センサ内部の温度を均一に保つ機能を有する。このため、上記赤外線温度センサは、環境温度変化へ対する高い出力変動耐性を有する、といった効果を奏する。   The infrared temperature sensor of the present invention has a structure in which the sensor chip and the circuit unit are accommodated in a package including the metal plate and the metal cap. Since the package has high thermal conductivity, it has a function of keeping the temperature inside the sensor uniform. For this reason, the infrared temperature sensor has an effect of having high output fluctuation resistance against environmental temperature changes.

また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB実装技術が適用できる。このため、上記赤外線温度センサは、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる、といった効果を奏する。   The metal plate is provided with an opening, and the electrode on the mounting substrate and the circuit part are wire-connected through the opening. For such wire bonding between the mounting substrate and the circuit unit, a normal COB mounting technique can be applied. For this reason, the infrared temperature sensor has an effect that the cost of assembling can be significantly reduced as compared with the conventional technique in which a sensor using a metal stem is mounted.

本発明の一実施形態を示すものであり、赤外線温度センサの構成を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view illustrating a configuration of an infrared temperature sensor according to an embodiment of the present invention. 図1の赤外線温度センサで用いられる金属板の形状を示す斜視図である。It is a perspective view which shows the shape of the metal plate used with the infrared temperature sensor of FIG. 図1の赤外線温度センサにおける金属板の実装方法を示す斜視図である。It is a perspective view which shows the mounting method of the metal plate in the infrared temperature sensor of FIG. 図1の赤外線温度センサにおける金属キャップとレンズとの封止構造を示す断面図である。It is sectional drawing which shows the sealing structure of the metal cap and lens in the infrared temperature sensor of FIG. 図1の赤外線温度センサにおける金属キャップの実装方法を示す斜視図である。It is a perspective view which shows the mounting method of the metal cap in the infrared temperature sensor of FIG. 赤外線温度センサにおける環境温度変化への出力変動耐性を示すグラフである。It is a graph which shows the output fluctuation tolerance to the environmental temperature change in an infrared temperature sensor. 従来の赤外線温度センサの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional infrared temperature sensor. 従来の赤外線温度センサの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional infrared temperature sensor.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。図1は、本実施の形態に係る赤外線温度センサの構成を示す斜視図である。図1では、赤外線温度センサの内部構造が分かるように一部を断面としている。本実施の形態にかかる赤外線温度センサは、周囲環境を検出し、その検出結果を運転制御に利用する電子機器(エアコン等)において利用できる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a configuration of an infrared temperature sensor according to the present embodiment. In FIG. 1, a part of the infrared temperature sensor is shown in cross section so that the internal structure of the infrared temperature sensor can be seen. The infrared temperature sensor according to the present embodiment can be used in an electronic device (such as an air conditioner) that detects the surrounding environment and uses the detection result for operation control.

図1に示す赤外線温度センサは、積層基板1、金属板2、センサチップ3、ASIC(Application Specific Integrated Circuit)4、金属キャップ5、内側キャップ6、およびレンズ7を備えて構成されている。積層基板1は、センサチップ3およびASIC4を実装するための実装基板であり、所定形状にパターニングされた配線層を有している。センサチップ3は赤外線を受信検知する素子であり、ASIC4はセンサチップ3の検知信号を増幅して出力するための回路部である。   The infrared temperature sensor shown in FIG. 1 includes a laminated substrate 1, a metal plate 2, a sensor chip 3, an ASIC (Application Specific Integrated Circuit) 4, a metal cap 5, an inner cap 6, and a lens 7. The multilayer substrate 1 is a mounting substrate for mounting the sensor chip 3 and the ASIC 4, and has a wiring layer patterned in a predetermined shape. The sensor chip 3 is an element that receives and detects infrared rays, and the ASIC 4 is a circuit unit that amplifies and outputs the detection signal of the sensor chip 3.

積層基板1上には金属板2が取り付けられ、センサチップ3およびASIC4は金属板2上に搭載される。また、金属板2には、積層基板1とASIC4とをワイヤ接続するための開口部21が設けられている。本実施の形態における金属板2の形状を図2に示す。   A metal plate 2 is attached on the laminated substrate 1, and the sensor chip 3 and the ASIC 4 are mounted on the metal plate 2. The metal plate 2 is provided with an opening 21 for wire connection between the laminated substrate 1 and the ASIC 4. The shape of the metal plate 2 in the present embodiment is shown in FIG.

センサチップ3およびASIC4上には、金属キャップ5、内側キャップ6、およびレンズ7からなる構造がかぶせられている。レンズ7は内側キャップ6の上面に形成された窪み部に嵌めこまれ、さらにその上から金属キャップ5がかぶせられる。金属キャップ5は、内側キャップ6およびレンズ7をその内側に完全に収容し、その下端は金属板2に接している。また、金属キャップ5の上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、レンズ7は該窓部の直下に配置される。   A structure composed of a metal cap 5, an inner cap 6 and a lens 7 is placed on the sensor chip 3 and the ASIC 4. The lens 7 is fitted into a recess formed on the upper surface of the inner cap 6, and the metal cap 5 is placed thereon. The metal cap 5 completely accommodates the inner cap 6 and the lens 7 inside thereof, and the lower end thereof is in contact with the metal plate 2. In addition, a window portion for taking in infrared rays into the sensor is provided on the upper surface of the metal cap 5, and the lens 7 is disposed immediately below the window portion.

レンズ7は、金属キャップ5の窓部を通過する赤外線をセンサチップ3上に集光する。これによって、上記赤外線温度センサは効率のよい赤外線検知が可能となる。   The lens 7 collects infrared rays that pass through the window portion of the metal cap 5 on the sensor chip 3. As a result, the infrared temperature sensor can efficiently detect infrared rays.

また、金属板2と金属キャップ5との隙間およびレンズ7と金属キャップ5との隙間、は接着剤にて封止され、センサ内部が密閉されるようになっている。これはもちろん、センサ内部が密閉されていなければ、空気の出入りによってセンサ内部の温度維持が困難になるためである。但し、金属キャップ5の窓部に取り付けられる赤外線透過部材は、必ずしもレンズである必要は無く、上記集光機能を必要としなければガラス板や透明樹脂板等であっても良い。   The gap between the metal plate 2 and the metal cap 5 and the gap between the lens 7 and the metal cap 5 are sealed with an adhesive so that the inside of the sensor is sealed. Of course, this is because if the inside of the sensor is not sealed, it is difficult to maintain the temperature inside the sensor due to the entry and exit of air. However, the infrared transmitting member attached to the window portion of the metal cap 5 does not necessarily need to be a lens, and may be a glass plate, a transparent resin plate, or the like if the light condensing function is not required.

上記構成の赤外線温度センサでは、金属板2と金属キャップ5とによるパッケージ構造が形成され、このパッケージ内部にセンサチップ3、ASIC4が配置される。このため、金属ステムを用いる従来構造のセンサと同程度に、センサ内温度を均一に保つことが可能となる。すなわち、従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供することができる。   In the infrared temperature sensor having the above configuration, a package structure including the metal plate 2 and the metal cap 5 is formed, and the sensor chip 3 and the ASIC 4 are disposed inside the package. For this reason, it becomes possible to keep the temperature in the sensor uniform to the same extent as a sensor having a conventional structure using a metal stem. That is, it is possible to provide an infrared temperature sensor having an output fluctuation resistance to an environmental temperature change comparable to the conventional structure.

金属板2の材質は特に限定されないが、特に熱伝導性が良好な、鉄、銅、アルミ等を好適に用いることができる。また、金属板2は、さび防止と、後述する半田付け性を確保するため、表面コーティング(例えばニッケルメッキ)が施されていても良い。   Although the material of the metal plate 2 is not specifically limited, Iron, copper, aluminum, etc. with especially favorable heat conductivity can be used suitably. Further, the metal plate 2 may be subjected to surface coating (for example, nickel plating) in order to prevent rust and ensure solderability described later.

また、内側キャップ6は樹脂にて形成されている。内側キャップ6を設ける主な目的は、外部温度の変化に追随してセンサ内温度が急激に変化することを避けるためである。上述したように、センサ内温度が不均一であると検出誤差が生じるため、上記赤外線温度センサでは、金属板2と金属キャップ5とによるパッケージ構造によってセンサ内温度を均一に保つようになっている。しかしながら、パッケージにおける熱伝導性を向上させるのみでは、外部温度が急減に変化した場合、センサ内温度も急激に変化する。センサ内温度に関しては、このような急激な温度が生じることも好ましくない。このため、上記赤外線温度センサでは、樹脂にて形成された内側キャップ6を設け、外部温度の変化を緩和して、センサ内温度の急激な変化を避けるようにしている。   The inner cap 6 is made of resin. The main purpose of providing the inner cap 6 is to avoid a sudden change in the temperature in the sensor following the change in the external temperature. As described above, since the detection error occurs when the temperature inside the sensor is not uniform, the infrared temperature sensor keeps the temperature inside the sensor uniform by the package structure of the metal plate 2 and the metal cap 5. . However, if only the thermal conductivity in the package is improved, when the external temperature changes rapidly, the temperature in the sensor also changes abruptly. Regarding the temperature in the sensor, it is not preferable that such a rapid temperature occurs. For this reason, in the infrared temperature sensor, an inner cap 6 made of resin is provided to mitigate the change in the external temperature and avoid a sudden change in the sensor internal temperature.

続いて、上記赤外線温度センサの組立手順を説明する。最初に、積層基板1上に金属板2を半田付けにて実装する。この半田付け工程では、間にクリーム半田を介在させた状態で金属板2を積層基板1上に載置し、リフローによって加熱するといった、電子部品の実装技術における一般的な半田付け方法が使用可能である。   Then, the assembly procedure of the said infrared temperature sensor is demonstrated. First, the metal plate 2 is mounted on the multilayer substrate 1 by soldering. In this soldering process, it is possible to use a general soldering method in the mounting technology of electronic components, such as placing the metal plate 2 on the multilayer substrate 1 with cream solder interposed therebetween and heating by reflow. It is.

このように、半田付けによって積層基板1上に金属板2を実装するため、積層基板1には半田付け用ランドが予め形成されている(図3参照)。半田付け用ランドは、少なくとも、金属板2の中心から上下左右に均等な位置で金属板2のエッジにかかる4箇所に対応して設けられる。半田付け用ランドは、実装される金属板2の4隅または4辺に対応する箇所に設けられていても良い。また、金属板2のほぼ中央に対応する箇所にも、半田付け用ランドを形成することが好ましい。これは、金属板2の中央部付近で金属板2と積層基板1との間に隙間が生じて、金属板2に撓みが生じることを防ぐためである。金属板2の中央に対応する箇所のランドは、1箇所であっても複数箇所であっても良い。   Thus, in order to mount the metal plate 2 on the multilayer substrate 1 by soldering, soldering lands are formed in advance on the multilayer substrate 1 (see FIG. 3). The soldering lands are provided in correspondence with at least four positions that extend from the center of the metal plate 2 to the edge of the metal plate 2 at equal positions vertically and horizontally. The soldering lands may be provided at locations corresponding to the four corners or four sides of the metal plate 2 to be mounted. Moreover, it is preferable to form a soldering land at a location corresponding to the substantially center of the metal plate 2. This is to prevent the metal plate 2 from being bent due to a gap between the metal plate 2 and the laminated substrate 1 near the center of the metal plate 2. A land corresponding to the center of the metal plate 2 may be one place or a plurality of places.

続いて、金属板2上にセンサチップ3、ASIC4が搭載される。センサチップ3、ASIC4は、金属板2上に接着剤によって実装することができる。その後、ワイヤボンディングによって配線接続(センサチップ3とASIC4との接続、およびASIC4と積層基板1との接続)がなされる。上述したように、金属板2には、積層基板1とASIC4とをワイヤ接続するための開口部21が設けられている。つまり、金属板2が積層基板1に実装されている状態で、積層基板1側の接続用パッド(電極)は、開口部21の領域に配置されている。このため、開口部21を通じて積層基板1とASIC4とのワイヤボンディングが可能となる。このような積層基板1とASIC4とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。   Subsequently, the sensor chip 3 and the ASIC 4 are mounted on the metal plate 2. The sensor chip 3 and the ASIC 4 can be mounted on the metal plate 2 with an adhesive. Thereafter, wiring connection (connection between the sensor chip 3 and the ASIC 4 and connection between the ASIC 4 and the multilayer substrate 1) is performed by wire bonding. As described above, the metal plate 2 is provided with the opening 21 for wire connection between the multilayer substrate 1 and the ASIC 4. That is, in the state where the metal plate 2 is mounted on the multilayer substrate 1, the connection pads (electrodes) on the multilayer substrate 1 side are arranged in the region of the opening 21. Therefore, wire bonding between the laminated substrate 1 and the ASIC 4 can be performed through the opening 21. The wire bonding between the multilayer substrate 1 and the ASIC 4 can be performed by using an ordinary COB (Chip On Board) mounting technique. Therefore, the assembly cost can be greatly reduced as compared with the conventional technique for mounting a sensor using a metal stem. Is possible.

金属キャップ5、内側キャップ6、およびレンズ7については、積層基板1への実装前に、これら部材の組み立てが行われる。まず、内側キャップ6の上面に形成された窪み部にレンズ7が嵌めこまれ、さらにその上から金属キャップ5がかぶせられる。レンズ7はその焦点がセンサチップ上に来るように精度良く位置あわせして組み込む必要があるが、レンズ7をはめ込むための窪み部を内側キャップ6に設けることで、この位置合わせが容易となる。   The metal cap 5, the inner cap 6, and the lens 7 are assembled before mounting on the laminated substrate 1. First, the lens 7 is fitted into a recess formed on the upper surface of the inner cap 6, and the metal cap 5 is placed thereon. The lens 7 needs to be accurately aligned so that its focal point comes on the sensor chip, but this positioning is facilitated by providing the inner cap 6 with a recess for fitting the lens 7.

レンズ7の周辺部は金属キャップ5に接触または近接して配置されており、金属キャップ5とレンズ7との隙間は接着剤にて封止される。この時、接着剤は、金属キャップ5とレンズ7との隙間の略全体を充填することが好ましい(図4参照)。これは、密閉性を高めるだけでなく、金属キャップ5とレンズ7との間の熱伝導性を向上させる意味がある。   The peripheral portion of the lens 7 is disposed in contact with or close to the metal cap 5, and the gap between the metal cap 5 and the lens 7 is sealed with an adhesive. At this time, the adhesive preferably fills substantially the entire gap between the metal cap 5 and the lens 7 (see FIG. 4). This not only enhances the sealing performance, but also improves the thermal conductivity between the metal cap 5 and the lens 7.

金属キャップ5、内側キャップ6、およびレンズ7の組立物は、センサチップ3およびASIC4の実装がすんだ積層基板1の金属板2上にかぶせられ、センサがパッケージングされる。この時、金属キャップ5と金属板2とは接着剤にて封止され、赤外線温度センサの内部が密閉される。上記組立物の実装を容易にするため、金属板2には、キャップ位置決め用突起22を設けても良い(図5参照)。キャップ位置決め用突起22は、金属板2の4隅または4辺に設けられていることが好ましい。これにより、金属キャップ5を金属板2に実装する際、容易に精度良く位置決めできる。   The assembly of the metal cap 5, the inner cap 6 and the lens 7 is placed on the metal plate 2 of the laminated substrate 1 where the mounting of the sensor chip 3 and the ASIC 4 is completed, and the sensor is packaged. At this time, the metal cap 5 and the metal plate 2 are sealed with an adhesive, and the inside of the infrared temperature sensor is sealed. In order to facilitate mounting of the assembly, the metal plate 2 may be provided with cap positioning protrusions 22 (see FIG. 5). The cap positioning protrusions 22 are preferably provided at four corners or four sides of the metal plate 2. Thereby, when mounting the metal cap 5 on the metal plate 2, it can be positioned easily and accurately.

本実施の形態に係る赤外線温度センサにおける環境温度変化への出力変動耐性を図6に示す。図6は、センサの周囲温度を25℃から35℃に上昇させた場合(温度変動に要した時間は約100s)の出力温度の変動をしめすグラフであり、横軸に時間、縦軸にセンサ出力温度誤差を示している。また、図6では、本実施の形態のセンサ以外に、比較例1,2におけるセンサの測定結果を示している。ここで、比較例1は、特許文献1の従来構造に対応するものであり、金属ステムを介して実装基板上にセンサチップが搭載された構造である。また、比較例2は、本発明と同様に、金属板を介して実装基板上にセンサチップが搭載されているが、レンズと金属キャップとの間が樹脂充填されておらず隙間が生じている構造である。   FIG. 6 shows output fluctuation tolerance to environmental temperature changes in the infrared temperature sensor according to the present embodiment. FIG. 6 is a graph showing the fluctuation of the output temperature when the ambient temperature of the sensor is raised from 25 ° C. to 35 ° C. (the time required for the temperature fluctuation is about 100 s), with the horizontal axis representing time and the vertical axis representing sensor. Output temperature error is shown. FIG. 6 shows the measurement results of the sensors in Comparative Examples 1 and 2 in addition to the sensor of the present embodiment. Here, Comparative Example 1 corresponds to the conventional structure of Patent Document 1, and is a structure in which a sensor chip is mounted on a mounting substrate via a metal stem. In Comparative Example 2, as in the present invention, the sensor chip is mounted on the mounting substrate via the metal plate, but the gap between the lens and the metal cap is not filled with resin. Structure.

まず、本実施の形態に係るセンサは、周囲温度の急減な変化にも関わらず、出力温度の誤差はほぼ±0.5℃以内であり、また、周囲温度の変化後に発生する誤差の戻りも早い。一方、比較例1のセンサでは、最大誤差が0.8℃近くあり、温度変化開始後300s程度の時間が経過するまで、0.5℃以上の誤差が発生している。これより、本実施の形態に係るセンサは、金属ステムを用いない安価な構造であるに関わらず、金属ステムを用いた従来センサと同程度かそれ以上の環境温度変化への出力変動耐性を有していることが分かる。   First, in the sensor according to the present embodiment, the error in the output temperature is within about ± 0.5 ° C. despite the sudden change in the ambient temperature, and the error that occurs after the change in the ambient temperature is also returned. fast. On the other hand, in the sensor of Comparative Example 1, the maximum error is close to 0.8 ° C., and an error of 0.5 ° C. or more occurs until a time of about 300 s elapses after the temperature change starts. As a result, the sensor according to the present embodiment has an output fluctuation resistance to environmental temperature changes equivalent to or higher than that of a conventional sensor using a metal stem, regardless of an inexpensive structure that does not use a metal stem. You can see that

また、比較例2のセンサでは、2.0℃に近い最大誤差が発生しており、誤差が0.5℃程度に収束するまで700s程度の時間を有している。これより、実装基板とセンサチップとの間に金属板を介して放熱性を高めても、センサ内の密閉性がなければ出力変動耐性を有さないことが分かる。   Further, in the sensor of Comparative Example 2, a maximum error close to 2.0 ° C. occurs, and it takes about 700 s until the error converges to about 0.5 ° C. From this, it can be seen that even if the heat dissipation is increased through a metal plate between the mounting substrate and the sensor chip, the sensor does not have the output fluctuation resistance if there is no airtightness in the sensor.

本発明の赤外線温度センサにおいては、金属板2は積層基板1上のGND電位に接続され、かつ、金属板2と金属キャップ5とを導電性接着剤にて電気的に接続する構成とすることが好ましい。センサチップ3およびASIC4は電波ノイズの影響を受けやすいセンシティブなデバイスであるが、上記構成とすることで、金属板2および金属キャップ5からなるパッケージに電波ノイズを遮断するシールド効果をもたせることができる。また、上記構成は、積層基板1上の半田付け用ランドの少なくとも一つを、GND電位供給配線と接続しておけば容易に実現できる。   In the infrared temperature sensor of the present invention, the metal plate 2 is connected to the GND potential on the laminated substrate 1, and the metal plate 2 and the metal cap 5 are electrically connected by a conductive adhesive. Is preferred. The sensor chip 3 and the ASIC 4 are sensitive devices that are easily affected by radio wave noise. However, with the above-described configuration, the package including the metal plate 2 and the metal cap 5 can have a shielding effect for blocking radio wave noise. . Further, the above configuration can be easily realized by connecting at least one of the soldering lands on the multilayer substrate 1 to the GND potential supply wiring.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、周囲環境を検出し、その検出結果を運転制御に利用する電子機器(エアコン等)に利用することができる。   The present invention can be used for an electronic device (such as an air conditioner) that detects the surrounding environment and uses the detection result for operation control.

1 積層基板(実装基板)
2 金属板
3 センサチップ
4 ASIC(回路部)
5 金属キャップ
6 内側キャップ
7 レンズ
21 開口部
22 キャップ位置決め用突起
1 Laminated board (mounting board)
2 Metal plate 3 Sensor chip 4 ASIC (circuit part)
5 Metal cap 6 Inner cap 7 Lens 21 Opening 22 Cap positioning protrusion

Claims (8)

実装基板と、
上記実装基板上に実装される金属板と、
上記金属板上に搭載される赤外線を受信検知するセンサチップと、
上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、
上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、
上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されていると共に、
上記金属板は上記実装基板上のGND電位に接続されており、
上記金属キャップは上記金属板に電気的に接続されていると共に、
上記金属板は上記実装基板に対して半田付けにて実装されており、
上記実装基板に形成される半田付け用ランドは、実装される上記金属板の4隅または4辺に対応する箇所と、金属板の中央に対応する箇所とに設けられていることを特徴とする赤外線温度センサ。
A mounting board;
A metal plate mounted on the mounting substrate;
A sensor chip that receives and detects infrared rays mounted on the metal plate;
A circuit unit for amplifying a detection signal of the sensor chip mounted on the metal plate;
A metal cap that covers the metal plate and covers the sensor chip and the circuit unit;
The metal plate is provided with an opening, and the electrode on the mounting substrate and the circuit part are wire-connected through the opening ,
The metal plate is connected to the GND potential on the mounting substrate,
The metal cap is electrically connected to the metal plate,
The metal plate is mounted on the mounting board by soldering,
The soldering lands formed on the mounting board are provided at locations corresponding to four corners or four sides of the metal plate to be mounted and locations corresponding to the center of the metal plate. Infrared temperature sensor.
上記金属板は、半田付け性を確保するための表面コーティングが施されていることを特徴とする請求項に記載の赤外線温度センサ。 2. The infrared temperature sensor according to claim 1 , wherein the metal plate is provided with a surface coating for ensuring solderability. 上記金属板には、上記金属キャップを位置決めするためのキャップ位置決め用突起が設けられていることを特徴とする請求項1又は2に記載の赤外線温度センサ。 The aforementioned metal plate, infrared temperature sensor according to claim 1 or 2, characterized in that the cap positioning protrusion for positioning the metal cap is provided. 上記金属キャップの内側には、樹脂製の内側キャップが設けられていることを特徴とする請求項1からのいずれか一項に記載の赤外線温度センサ。 The infrared temperature sensor according to any one of claims 1 to 3 , wherein an inner cap made of resin is provided inside the metal cap. 上記金属キャップの上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、上記窓部の直下には上記窓部を通過する赤外線をセンサチップ上に集光するレンズが配置されており、
上記内側キャップは、上記レンズをはめ込むための窪み部を有していることを特徴とする請求項に記載の赤外線温度センサ。
On the upper surface of the metal cap, a window portion for taking in infrared rays into the sensor is provided, and a lens for condensing the infrared rays passing through the window portion on the sensor chip is disposed immediately below the window portion. And
The infrared temperature sensor according to claim 4 , wherein the inner cap has a depression for fitting the lens.
上記レンズの周辺部は上記金属キャップに接触または近接して配置されており、上記レンズと上記金属キャップとの隙間は接着剤が充填されていることを特徴とする請求項に記載の赤外線温度センサ。 6. The infrared temperature according to claim 5 , wherein a peripheral portion of the lens is disposed in contact with or close to the metal cap, and a gap between the lens and the metal cap is filled with an adhesive. Sensor. 請求項1からのいずれか一項に記載の赤外線温度センサを搭載したことを特徴とする電子機器。 An electronic apparatus comprising the infrared temperature sensor according to any one of claims 1 to 6 . 請求項1から6のいずれか一項に記載の赤外線温度センサを製造するための赤外線温度センサの製造方法であって、
実装基板上に、開口部が設けられた金属板を実装する工程と、
上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、
上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、
上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していることを特徴とする赤外線温度センサの製造方法。
An infrared temperature sensor manufacturing method for manufacturing the infrared temperature sensor according to any one of claims 1 to 6,
Mounting a metal plate provided with an opening on a mounting substrate;
On the metal plate, a step of mounting a sensor chip that receives and detects infrared rays and a circuit unit that amplifies the detection signal of the sensor chip;
Wire-connecting the electrode on the mounting substrate and the circuit portion through the opening of the metal plate;
And a step of covering the metal plate with a metal cap that covers the sensor chip and the circuit part, and packaging the infrared chip.
JP2011045689A 2011-03-02 2011-03-02 Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor Active JP5287906B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011045689A JP5287906B2 (en) 2011-03-02 2011-03-02 Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor
CN201180068503.7A CN103403508B (en) 2011-03-02 2011-03-16 The manufacture method of infrared temperature sensor, electronic equipment and infrared temperature sensor
PCT/JP2011/056258 WO2012117568A1 (en) 2011-03-02 2011-03-16 Infrared temperature sensor, electronic apparatus, and method for manufacturing infrared temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045689A JP5287906B2 (en) 2011-03-02 2011-03-02 Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012238100A Division JP5333641B2 (en) 2012-10-29 2012-10-29 Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor

Publications (2)

Publication Number Publication Date
JP2012181157A JP2012181157A (en) 2012-09-20
JP5287906B2 true JP5287906B2 (en) 2013-09-11

Family

ID=46757525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045689A Active JP5287906B2 (en) 2011-03-02 2011-03-02 Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor

Country Status (3)

Country Link
JP (1) JP5287906B2 (en)
CN (1) CN103403508B (en)
WO (1) WO2012117568A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132584A (en) * 2014-01-15 2015-07-23 オムロン株式会社 Cap unit for infrared detectors, and infrared detector
JP2015132573A (en) * 2014-01-15 2015-07-23 オムロン株式会社 infrared sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333641B2 (en) * 2012-10-29 2013-11-06 オムロン株式会社 Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor
JP6469353B2 (en) * 2014-03-31 2019-02-13 旭化成エレクトロニクス株式会社 Infrared sensor
WO2016152222A1 (en) * 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor and device using infrared temperature sensor
CN109416277A (en) * 2016-07-04 2019-03-01 株式会社堀场制作所 Infrared detector and radiation thermometer
WO2018178281A1 (en) * 2017-03-30 2018-10-04 Agc Glass Europe Glass for autonomous car
WO2020240739A1 (en) * 2019-05-29 2020-12-03 三菱電機株式会社 To-can optical module
EP3929575B1 (en) 2020-06-22 2023-09-27 Sensirion AG Sensor device for determining heat transfer parameters of a fluid
US20230288261A1 (en) * 2020-08-19 2023-09-14 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor
CN214471356U (en) * 2021-02-05 2021-10-22 芯海科技(深圳)股份有限公司 Infrared temperature sensor and electronic device
CN115655478B (en) * 2022-12-23 2023-03-21 苏州森斯缔夫传感科技有限公司 Infrared sensor, temperature fluctuation resistance method and temperature measuring instrument

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202630A (en) * 1988-02-08 1989-08-15 Nippon Ceramic Kk Infrared ray detector
JPH01242928A (en) * 1988-03-24 1989-09-27 Nippon Ceramic Kk Pyroelectric type infrared array sensor
JPH02140427U (en) * 1989-04-26 1990-11-26
JPH0635924U (en) * 1992-10-09 1994-05-13 ティーディーケイ株式会社 Infrared detector
JP2738523B2 (en) * 1995-11-07 1998-04-08 云辰電子開發股▲分▼有限公司 Pyroelectric infrared detector with frequency transfer function
JP2000036715A (en) * 1998-07-17 2000-02-02 Toyo Commun Equip Co Ltd Piezoelectric oscillator and production thereof
JP2002296108A (en) * 2001-03-30 2002-10-09 Ihi Aerospace Co Ltd Light detecting element and light transmitting member fixing structure
US7157709B2 (en) * 2002-06-25 2007-01-02 Matsushita Electric Works, Ltd. Infrared sensor package
JP4370757B2 (en) * 2002-06-25 2009-11-25 パナソニック電工株式会社 Infrared detector
KR100492575B1 (en) * 2002-08-17 2005-06-03 엘지전자 주식회사 Thermopile infrared sensor with narrow visual field
GB2392555A (en) * 2002-09-02 2004-03-03 Qinetiq Ltd Hermetic packaging
DE10321639A1 (en) * 2003-05-13 2004-12-02 Heimann Sensor Gmbh Infrared sensor with optimized use of space
EP1884754B1 (en) * 2005-05-11 2015-11-04 Murata Manufacturing Co., Ltd. Infrared sensor
JP4664763B2 (en) * 2005-07-21 2011-04-06 株式会社東芝 Temperature detector and high frequency heater
JP2010225761A (en) * 2009-03-23 2010-10-07 Hitachi Kokusai Electric Inc Member for holding electronic component, and printed board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132584A (en) * 2014-01-15 2015-07-23 オムロン株式会社 Cap unit for infrared detectors, and infrared detector
JP2015132573A (en) * 2014-01-15 2015-07-23 オムロン株式会社 infrared sensor

Also Published As

Publication number Publication date
JP2012181157A (en) 2012-09-20
CN103403508B (en) 2016-11-09
WO2012117568A1 (en) 2012-09-07
CN103403508A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5287906B2 (en) Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor
JP5946520B2 (en) Optoelectronic device and method of manufacturing optoelectronic device
US8814426B2 (en) Infrared sensor
JP4335851B2 (en) Gas sensor module for spectroscopically measuring gas concentration
KR20120089342A (en) Infrared sensor module
JP5451957B2 (en) Infrared detector
WO2015199228A1 (en) Force detector
JP5333641B2 (en) Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor
CN104811889B (en) Assembling method of MEMS microphone packaging device
JP4989139B2 (en) Infrared detector
WO2012063915A1 (en) Infrared sensor module and method of manufacturing same
JP5206484B2 (en) Temperature sensor
JP5706217B2 (en) Infrared sensor
JP5558893B2 (en) Optical device manufacturing method
CN104776912B (en) The lid and infrared detector of infrared detector
JP2010054250A (en) Infrared detector
WO2018168673A1 (en) Infrared sensor
WO2018092795A1 (en) Infrared sensor
JPWO2006112122A1 (en) Infrared sensor
JP6194799B2 (en) Infrared sensor
US20150216068A1 (en) Sensor package and method of manufacturing the same
JP2015200558A (en) infrared sensor
JP2016090377A (en) Infrared ray sensor
JP2008147502A (en) Photoelectric sensor
JP5908627B2 (en) Optical sensor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250