JP5286898B2 - Microwave processing equipment - Google Patents

Microwave processing equipment Download PDF

Info

Publication number
JP5286898B2
JP5286898B2 JP2008099894A JP2008099894A JP5286898B2 JP 5286898 B2 JP5286898 B2 JP 5286898B2 JP 2008099894 A JP2008099894 A JP 2008099894A JP 2008099894 A JP2008099894 A JP 2008099894A JP 5286898 B2 JP5286898 B2 JP 5286898B2
Authority
JP
Japan
Prior art keywords
unit
power
oscillation
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008099894A
Other languages
Japanese (ja)
Other versions
JP2009252564A (en
Inventor
健治 安井
等隆 信江
義治 大森
誠 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008099894A priority Critical patent/JP5286898B2/en
Publication of JP2009252564A publication Critical patent/JP2009252564A/en
Application granted granted Critical
Publication of JP5286898B2 publication Critical patent/JP5286898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は、半導体素子を用いて構成したマイクロ波発生部を備えたマイクロ波処理装置に関するものである。   The present invention relates to a microwave processing apparatus including a microwave generation unit configured using a semiconductor element.

従来より、マイクロ波発生装置として一般的に用いられるマグネトロンに代えて、半導体素子を用いたマイクロ波発生装置が提案されてきた。半導体素子を用いたマイクロ波発生装置によれば、小型でかつ安価な構成でマイクロ波の周波数を容易に調整することができる。このように、半導体素子を用いたマイクロ波発生装置を備える高周波加熱装置が特許文献1に記載されている。   Conventionally, microwave generators using semiconductor elements have been proposed in place of magnetrons generally used as microwave generators. According to the microwave generator using the semiconductor element, the frequency of the microwave can be easily adjusted with a small and inexpensive configuration. As described above, Patent Document 1 discloses a high-frequency heating device including a microwave generator using a semiconductor element.

特許文献1の高周波加熱装置においては、所定の周波数帯域でマイクロ波の周波数が掃引され、反射電力が最小値を示すときのマイクロ波の周波数が記憶される。そして、記憶された周波数のマイクロ波が加熱室内のアンテナから放射され、対象物が加熱される。これにより、電力変換効率が向上する。
特開昭56−096486号公報
In the high-frequency heating device of Patent Document 1, the microwave frequency is swept in a predetermined frequency band, and the microwave frequency when the reflected power shows the minimum value is stored. And the microwave of the memorize | stored frequency is radiated | emitted from the antenna in a heating chamber, and a target object is heated. Thereby, power conversion efficiency improves.
JP-A-56-096486

半導体素子は放熱部材が接触した状態で用いられる。反射電力により半導体素子が発熱した場合、放熱部材により放熱が行われる。   The semiconductor element is used in a state where the heat dissipation member is in contact. When the semiconductor element generates heat due to the reflected power, heat dissipation is performed by the heat dissipation member.

しかしながら、マイクロ波の周波数が掃引される際に非常に大きい反射電力が発生すると、その反射電力により発生する熱が放熱部材の放熱能力を超える場合がある。この場合、半導体素子が破損するおそれがある。また、被加熱物を加熱する過程において被加熱物を含む加熱室のインピーダンスは被加熱物の温度によって大きな変化を伴うため、加熱前後における反射電力の発生状況は大きな差異を持つことが容易に推測され、加熱前の周波数特性に基づいて加熱する周波数を選択すると加熱中の効率を高く維持することができないという課題がある。   However, when a very large reflected power is generated when the microwave frequency is swept, the heat generated by the reflected power may exceed the heat dissipation capability of the heat dissipation member. In this case, the semiconductor element may be damaged. In addition, the impedance of the heating chamber containing the object to be heated is greatly changed depending on the temperature of the object to be heated in the process of heating the object to be heated. However, if the frequency to be heated is selected based on the frequency characteristics before heating, there is a problem that the efficiency during heating cannot be maintained high.

本発明の目的は、電力変換効率を向上させるとともに、反射電力によるマイクロ波発生装置の破損を防止できるマイクロ波処理装置を提供することである。   An object of the present invention is to provide a microwave processing apparatus capable of improving power conversion efficiency and preventing damage to the microwave generation apparatus due to reflected power.

前記従来の課題を解決するために、本発明のマイクロ波処理装置は、被加熱物を収容する加熱室と、発振部と、前記発振部の出力を複数に分配して出力する電力分配部と、前記電力分配部の出力をそれぞれ電力増幅する複数の電力増幅部と、前記電力増幅部の出力を前記加熱室に供給する複数の給電部と、前記給電部から前記電力増幅部に反射する電力を検出する電力検出部と、前記発振部の発振周波数と前記電力増幅部を制御する制御部とを備え、前記給電部は前記加熱室を構成する壁面に配置するとともに、前記電力検出部の検
出する反射電力が所定の値を超えると一時加熱動作を中断し、前記電力増幅部の出力電力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に加熱動作を再開するとともに、前記電力分配部の出力に各々位相可変部を設け、前記位相可変部によって前記給電部から放射されるマイクロ波の位相を制御するとともに、前記電力検出部によって検出される反射電力が所定の値を超えない範囲で前記位相可変部によって前記マイクロ波の位相を制御し、前記位相可変部が位相を可変する可変幅が所定の値よりも小さくなると前記発振部の出力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に前記発振部の出力を所定値に復帰させ加熱動作を再開する構成としたものである。
In order to solve the above-described conventional problems, a microwave processing apparatus of the present invention includes a heating chamber that accommodates an object to be heated, an oscillation unit, and a power distribution unit that distributes and outputs the output of the oscillation unit to a plurality of units. A plurality of power amplifying units each for amplifying the output of the power distribution unit, a plurality of power feeding units for supplying the output of the power amplifying unit to the heating chamber, and power reflected from the power feeding unit to the power amplifying unit And a control unit that controls the oscillation frequency of the oscillating unit and the power amplifying unit, and the power feeding unit is disposed on a wall surface that constitutes the heating chamber, and the detection of the power detecting unit When the reflected power exceeds a predetermined value, the temporary heating operation is interrupted, the output power of the power amplification unit is reduced, the oscillation frequency of the oscillation unit is swept for a predetermined period, and the reflected power detected by the power detection unit is To the lowest frequency As to resume the heating operation after each phase variable part is provided, wherein to control the phases of microwaves emitted from the feeding unit by the phase variable parts, detected by the power detector to the output of the power distribution unit The phase of the microwave is controlled by the phase variable unit within a range where the reflected power does not exceed a predetermined value, and when the variable width by which the phase variable unit varies the phase becomes smaller than a predetermined value, The output is reduced, the oscillation frequency of the oscillation unit is swept for a predetermined period, and the output of the oscillation unit is returned to a predetermined value after the reflected power detected by the power detection unit is minimized, and the heating operation is resumed. It is a configuration.

これによって、制御部は電力切換部を制御することによって対となる給電部を任意に構成できるため給電部が加熱室内に放射するマイクロ波を効率よく被加熱物に吸収させることができ、またマイクロ波放射を異なる複数の給電部から行うことで異なる方向から被加熱物に直接的にマイクロ波を入射させることができ、電力切換部によって給電部の対を切換えることによって被加熱物へのマイクロ波の照射状況を変化させることができるので、さまざまな形状・種類・量の異なる被加熱物を所望の状態に加熱することができる。   As a result, the control unit can arbitrarily configure the pair of power feeding units by controlling the power switching unit, so that the microwave to be radiated by the power feeding unit into the heating chamber can be efficiently absorbed by the object to be heated. Microwave radiation can be directly incident on the object to be heated from different directions by performing wave radiation from different power supply units. Microwaves to the object to be heated can be switched by switching the pair of power supply units by the power switching unit. Therefore, it is possible to heat an object to be heated having various shapes, types, and amounts to a desired state.

本発明のマイクロ波処理装置は、加熱中に電力検出部によって検出される反射電力が所定の値を超えるといったん加熱動作を中断し、電力増幅部の出力を小さくして周波数を掃引し反射電力が小さくなる周波数を選択して、再度新たに選択した周波数で加熱動作を再開することで、被加熱物の温度変化によって被加熱物を含む加熱室のインピーダンスが大きく変化しても常に反射電力が小さい状態で加熱動作ができるので、さまざまな形状・種類・量の異なる被加熱物を効率よく所望の状態に加熱するマイクロ波処理装置を提供することができる。   The microwave processing apparatus of the present invention interrupts the heating operation once the reflected power detected by the power detection unit exceeds a predetermined value during heating, sweeps the frequency by reducing the output of the power amplification unit, and reflects the reflected power. By selecting a frequency that reduces the frequency and restarting the heating operation at the newly selected frequency again, the reflected power always remains even if the impedance of the heating chamber containing the object to be heated changes greatly due to the temperature change of the object to be heated. Since the heating operation can be performed in a small state, it is possible to provide a microwave processing apparatus that efficiently heats an object to be heated of various shapes, types, and amounts to a desired state.

第1の発明は、被加熱物を収容する加熱室と、発振部と、前記発振部の出力を複数に分配して出力する電力分配部と、前記電力分配部の出力をそれぞれ電力増幅する複数の電力増幅部と、前記電力増幅部の出力を前記加熱室に供給する複数の給電部と、前記給電部から前記電力増幅部に反射する電力を検出する電力検出部と、前記発振部の発振周波数と前記電力増幅部を制御する制御部とを備え、前記給電部は前記加熱室を構成する壁面に配置するとともに、前記電力検出部の検出する反射電力が所定の値を超えると一時加熱動作を中断し、前記電力増幅部の出力電力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に加熱動作を再開するとともに、前記電力分配部の出力に各々位相可変部を設け、前記位相可変部によって前記給電部から放射されるマイクロ波の位相を制御するとともに、前記電力検出部によって検出される反射電力が所定の値を超えない範囲で前記位相可変部によって前記マイクロ波の位相を制御し、前記位相可変部が位相を可変する可変幅が所定の値よりも小さくなると前記発振部の出力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に前記発振部の出力を所定値に復帰させ加熱動作を再開する構成とすることにより、多様な被加熱物の形状・種類・量に対して常に反射電力が少ない状態で加熱することができ、かつ、加熱中に被加熱物を含む給電部から見たインピーダンスが大きく変化しても再度加熱周波数を設定する動作をすることにより被加熱物を所望の状態に効率よく加熱することができるとともに位相可変部によって発生するマイクロ波の位相を変化させることで、加熱室内でマイクロ波が集中する位置を変化させることができ被加熱物を全体的に加熱ムラが少ない状態に加熱することができる。 1st invention is the heating chamber which accommodates a to-be-heated object, the oscillation part, the electric power distribution part which distributes and outputs the output of the said oscillation part to multiple, and the plurality which each carries out electric power amplification of the output of the said electric power distribution part A power amplifying unit, a plurality of power feeding units that supply the output of the power amplifying unit to the heating chamber, a power detection unit that detects power reflected from the power feeding unit to the power amplifying unit, and an oscillation of the oscillation unit A control unit that controls the frequency and the power amplification unit, and the power feeding unit is disposed on a wall surface constituting the heating chamber, and a temporary heating operation is performed when the reflected power detected by the power detection unit exceeds a predetermined value , The output power of the power amplification unit is reduced, the oscillation frequency of the oscillation unit is swept for a predetermined period, and the heating operation is resumed after the reflected power detected by the power detection unit is reduced to a minimum frequency. The power distribution In the range in which the phase variable unit is provided in each of the outputs, the phase variable unit controls the phase of the microwave radiated from the power feeding unit, and the reflected power detected by the power detection unit does not exceed a predetermined value. The phase of the microwave is controlled by the phase variable unit, and the output of the oscillating unit is reduced to reduce the oscillation frequency of the oscillating unit to a predetermined interval when a variable width by which the phase variable unit varies the phase becomes smaller than a predetermined value. By sweeping and setting the output of the oscillating unit to a predetermined value after the frequency at which the reflected power detected by the power detection unit is minimized, the heating operation is resumed, thereby allowing various shapes of the object to be heated.・ Although it can be heated with a small amount of reflected power with respect to the type and amount, it can be reapplied even if the impedance seen from the power supply part including the object to be heated changes greatly during heating. By changing the phases of microwaves generated by the phase variable parts it is possible to efficiently heat the object to be heated to a desired state by the operation of setting the frequency, position the microwave is concentrated in the heating chamber The object to be heated can be heated to a state where there is little unevenness in heating as a whole .

第2の発明は、特に第1の発明の発振部を少なくとも2つ以上有するとともに、各々の電力検出部において検出される反射電力が所定の値を超えると、その電力検出部に接続される発振部の出力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に前記発振部の出力を所定値に復帰させ加熱動作を再開する構成とすることにより、多様な被加熱物の形状・種類・量に対して常に反射電力が少ない状態で加熱することができ、かつ、加熱中に被加熱物を含む給電部から見たインピーダンスが大きく変化しても再度加熱周波数を設定する動作をすることにより被加熱物を所望の状態に効率よく加熱することができるとともに、周波数再設定時において、反射電力が所定値を超えていない発振部は加熱動作を継続するため、加熱時間が長くなることを防止することができる。   In particular, the second invention has at least two or more oscillation units of the first invention, and if the reflected power detected in each power detection unit exceeds a predetermined value, the oscillation connected to the power detection unit The output of the oscillation unit is reduced to sweep the oscillation frequency of the oscillation unit for a predetermined period, and after the reflected power detected by the power detection unit is set to a frequency that minimizes, the output of the oscillation unit is returned to a predetermined value to perform a heating operation. By resuming the configuration, it is possible to always heat with a small amount of reflected power for various shapes, types, and quantities of the object to be heated, as viewed from the power supply unit that includes the object to be heated during heating. Even if the impedance changes greatly, the heating frequency can be set to the desired state efficiently by setting the heating frequency again, and when the frequency is reset, the reflected power is a predetermined value. The oscillation unit does not exceed to continue the heating operation, it is possible to prevent the heating time becomes longer.

第3の発明は、特に第2の発明の電力検出部に周波数検出手段を設け、前記電力検出部によって検出される反射電力を周波数成分ごとに検出する構成とすることにより、周波数再設定時において加熱動作を継続している発振部によって電力検出部に反射電力として検出される成分と周波数再設定動作を行っている発振部によって検出される反射電力を分離してインピーダンス特性を測定し、反射電力が少ない周波数を最適に設定することができる。   In the third aspect of the invention, the frequency detector is provided in the power detector of the second invention, and the reflected power detected by the power detector is detected for each frequency component. The impedance characteristics are measured by separating the component detected as reflected power in the power detection unit by the oscillation unit that continues the heating operation and the reflected power detected by the oscillation unit that is performing the frequency resetting operation. Can be optimally set.

第4の発明は、特に第2ないし第3の発明の発振部の出力を減じて前記発振部の発振周波数を掃引する際、所定出力で動作している発振部の発振周波数と一致しないように周波数挿引する構成とすることにより、周波数再設定時において加熱動作を継続している発振部によって電力検出部に反射電力として検出される成分と周波数再設定動作を行っている発振部によって検出される反射電力を分離してインピーダンス特性を測定し、反射電力が少ない周波数を最適に設定することができる。   In the fourth aspect of the invention, particularly when the oscillation frequency of the oscillation unit is swept by reducing the output of the oscillation unit of the second to third inventions, the oscillation frequency of the oscillation unit operating at a predetermined output is not matched. By adopting a frequency insertion configuration, the component detected as reflected power in the power detection unit by the oscillation unit that continues the heating operation at the time of frequency resetting and the oscillation unit that performs the frequency resetting operation are detected. It is possible to measure the impedance characteristics by separating the reflected power, and optimally set the frequency with less reflected power.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施形態におけるマイクロ波処理装置の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a microwave processing apparatus according to the first embodiment of the present invention.

図1において、マイクロ波発生部は半導体素子を用いて構成した発振部2a,2b、発振部2a,2bの出力を2分配する電力分配部3a,3bと、電力分配部3a,3bそれぞれの出力を増幅する半導体素子を用いて構成した電力増幅部5a〜5dと、電力増幅部5a〜5dによって増幅されたマイクロ波出力を加熱室10内に放射する給電部8a〜8dと、電力分配部3a,3bと電力増幅部5a〜5dを接続するマイクロ波伝送路に挿入され入出力に任意の位相差を発生させる位相可変部4a〜4dと、電力増幅部5a〜5dと給電部8a〜8dを接続するマイクロ波伝送路に挿入され給電部8a〜8dから反射する電力を検出する電力検出部6a〜6dと、電力検出部6a〜6dと、電力検出部6a〜6dによって検出される反射電力に応じて発振部2a,2bの発振周波数と位相可変部4a〜4dの位相量および電力切換部7を制御する制御部12とで構成している。   In FIG. 1, the microwave generation unit includes oscillation units 2a and 2b configured using semiconductor elements, power distribution units 3a and 3b that distribute the outputs of the oscillation units 2a and 2b, and outputs of the power distribution units 3a and 3b. Power amplifying units 5a to 5d configured using semiconductor elements that amplify the power, power feeding units 8a to 8d that radiate the microwave output amplified by the power amplifying units 5a to 5d into the heating chamber 10, and a power distribution unit 3a , 3b and phase variable units 4a to 4d inserted in a microwave transmission path connecting the power amplifying units 5a to 5d and generating an arbitrary phase difference between input and output, power amplifying units 5a to 5d and power feeding units 8a to 8d Power detectors 6a to 6d that detect power reflected from the power feeding units 8a to 8d inserted in the connected microwave transmission path, power detectors 6a to 6d, and reflected power detected by the power detectors 6a to 6d And it is constituted by a control unit 12 for controlling the oscillating unit 2a, the phase amount and the power switching unit 7 oscillation frequency and the phase variable parts 4a~4d of 2b according to.

また、本発明のマイクロ波処理装置は、被加熱物を収納する略直方体構造からなる加熱室10を有し、加熱室10は金属材料からなる左壁面、右壁面、底壁面、上壁面、奥壁面および被加熱物11を収納するために開閉する開閉扉(図示していない)と、被加熱物11を載置する載置台から構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。そして、マイクロ波発生部の出力が伝送されそのマイクロ波を加熱室10内に放射供給する給電部8a〜8dが加熱室10を構成する壁面に配置されている。本実施の形態では位相差を制御する際に制御的に対となる給電部を対向構成の左壁面と右壁面の略中央にそれぞれ給電部8aと給電部8bとを配置し、加熱室10の上壁面と底面の略中央に
それぞれ給電部8cと給電部8dとを配置した構成を示している。この給電部の配置は本実施の形態に拘束されるものではなくいずれかの壁面に複数の給電部を設けてもよいし、対向面ではない例えば右壁面と底壁面のような隣接する組合せで対となる給電部を構成してもかまわない。
In addition, the microwave processing apparatus of the present invention has a heating chamber 10 having a substantially rectangular parallelepiped structure that accommodates an object to be heated. An opening / closing door (not shown) that opens and closes to store the wall surface and the object to be heated 11 and a mounting table on which the object to be heated 11 is placed are configured to confine the supplied microwave inside. ing. The power supply units 8 a to 8 d that transmit the output of the microwave generation unit and radiate the microwave into the heating chamber 10 are arranged on the wall surface of the heating chamber 10. In the present embodiment, when the phase difference is controlled, a power supply unit that is paired in a control manner is arranged with the power supply unit 8a and the power supply unit 8b at substantially the center of the left wall surface and the right wall surface of the opposing configuration, respectively. The structure which has arrange | positioned the electric power feeding part 8c and the electric power feeding part 8d in the approximate center of the upper wall surface and the bottom face, respectively is shown. The arrangement of the power supply unit is not limited to the present embodiment, and a plurality of power supply units may be provided on any wall surface, or may be an adjacent combination such as a right wall surface and a bottom wall surface that are not opposed surfaces. You may comprise the electric power feeding part used as a pair.

電力増幅部5a〜5dは、低誘電損失材料から構成した誘電体基板の片面に形成した導電体パターンにて回路を構成し、各増幅部の増幅素子である半導体素子を良好に動作させるべく各半導体素子の入力側と出力側にそれぞれ整合回路を配している。   Each of the power amplifying units 5a to 5d constitutes a circuit with a conductor pattern formed on one side of a dielectric substrate made of a low dielectric loss material, and each of the power amplifying units 5a to 5d is configured to operate the semiconductor element which is an amplifying element of each amplifying unit. Matching circuits are arranged on the input side and output side of the semiconductor element, respectively.

各々の機能ブロックを接続するマイクロ波伝送路は、誘電体基板の片面に設けた導電体パターンによって特性インピーダンスが略50Ωの伝送回路を形成している。   The microwave transmission path connecting each functional block forms a transmission circuit having a characteristic impedance of about 50Ω by a conductor pattern provided on one side of the dielectric substrate.

電力分配部3aおよび電力分配部3bは、例えばウィルキンソン型分配器のような出力間に位相差を生じない同相分配器であってもよいし、ブランチライン型やラットレース型のような出力間に位相差を生じる分配器であってもかまわない。この電力分配部3a,3bによって各々の出力には発振部2a,2bから入力されたマイクロ波電力の略1/2の電力が伝送される。   The power distribution unit 3a and the power distribution unit 3b may be in-phase distributors that do not cause a phase difference between outputs such as a Wilkinson distributor, or between outputs such as a branch line type or a rat race type. A distributor that generates a phase difference may be used. The power distribution units 3a and 3b transmit substantially half of the microwave power input from the oscillation units 2a and 2b to the respective outputs.

また、位相可変部4a〜4dは、印加電圧に応じて容量が変化する容量可変素子を用いて構成し、各々の位相可変範囲は、0度から略180度の範囲としている。これによって位相可変部4a〜4dより出力されるマイクロ波電力の位相差は0度から±180度の範囲を制御することができる。   Further, the phase variable sections 4a to 4d are configured by using variable capacitance elements whose capacitance changes according to the applied voltage, and each phase variable range is a range from 0 degrees to about 180 degrees. As a result, the phase difference of the microwave power output from the phase varying units 4a to 4d can be controlled in the range of 0 degrees to ± 180 degrees.

また、電力検出部6a〜6dは、加熱室8側から電力増幅部5a〜5d側にそれぞれ伝送するいわゆる反射波の電力を抽出するものであり、電力結合度をたとえば約40dBとし、反射電力の約1/10000の電力量を抽出する。この電力信号はそれぞれ、検波ダイオード(図示していない)で整流化し、コンデンサ(図示していない)で平滑処理し、その出力信号を制御部12に入力させている。   The power detection units 6a to 6d extract the power of so-called reflected waves that are transmitted from the heating chamber 8 side to the power amplification units 5a to 5d side. The power coupling degree is, for example, about 40 dB, About 1/10000 of the amount of power is extracted. The power signals are rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and the output signal is input to the control unit 12.

制御部12は、使用者が直接入力する被加熱物の加熱条件あるいは加熱中に被加熱物の加熱状態から得られる加熱情報と電力検知部6a〜6dよりの検知情報に基づいて、マイクロ波発生部の構成要素である発振部2aおよび発振部2bと電力増幅部5a〜5dのそれぞれに供給する駆動電力の制御や位相可変部4a〜4dに供給する電圧を制御し、加熱室10内に収納された被加熱物を最適に加熱する。   The control unit 12 generates microwaves based on the heating information directly input by the user or the heating information obtained from the heating state of the heated object during heating and the detection information from the power detection units 6a to 6d. The drive power supplied to each of the oscillator 2a and the oscillator 2b and the power amplifiers 5a to 5d, which are constituent elements of the unit, and the voltage supplied to the phase variable parts 4a to 4d are controlled and stored in the heating chamber 10 The heated object to be heated is optimally heated.

また、マイクロ波発生部には主に電力増幅部5a〜5dに備えた半導体素子の発熱を放熱させる放熱手段(図示していない)を配する。   In addition, a heat radiating means (not shown) for dissipating heat generated by the semiconductor elements provided in the power amplifiers 5a to 5d is mainly disposed in the microwave generation unit.

以上のように構成されたマイクロ波処理装置について、以下その動作、作用を説明する。   About the microwave processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず被加熱物を加熱室10に収納し、その加熱条件を操作部(図示していない)から入力し、加熱開始キーを押す。加熱開始信号を受けた制御部12の制御出力信号によりマイクロ波発生部が動作を開始する。制御部12は、駆動電源(図示していない)を動作させて発振部2aおよび2bに電力を供給する。この時、発振部2a,2bの初期の発振周波数は、たとえば2400MHzに設定する電圧信号を供給し、発振が開始する。   First, an object to be heated is stored in the heating chamber 10, the heating condition is input from an operation unit (not shown), and a heating start key is pressed. The microwave generator starts to operate according to the control output signal of the controller 12 that has received the heating start signal. The control unit 12 operates a drive power supply (not shown) to supply power to the oscillation units 2a and 2b. At this time, the initial oscillation frequency of the oscillation units 2a and 2b is supplied with a voltage signal set to 2400 MHz, for example, and oscillation starts.

発振部2a,2bを動作させると、その出力は電力分配部3a、3bにて各々略1/2分配され、4つのマイクロ波電力信号となる。以降、駆動電源を制御して電力増幅部5a〜5dを動作させる。   When the oscillating units 2a and 2b are operated, their outputs are distributed approximately ½ each by the power distributing units 3a and 3b, resulting in four microwave power signals. Thereafter, the drive power supply is controlled to operate the power amplifying units 5a to 5d.

そしてそれぞれのマイクロ波電力信号は並列動作する電力増幅部5a〜5d、電力検知部6a〜6dを経て給電部8a〜8dにそれぞれ出力され加熱室10内に放射される。このときの各電力増幅部はそれぞれ100W未満、たとえば50Wのマイクロ波電力を出力する。   The microwave power signals are output to the power feeding units 8 a to 8 d through the power amplification units 5 a to 5 d and the power detection units 6 a to 6 d that operate in parallel, and are radiated into the heating chamber 10. Each power amplification unit at this time outputs microwave power of less than 100 W, for example, 50 W.

加熱室10内に供給されるマイクロ波電力が被加熱物に100%吸収されると加熱室10からの反射電力は0Wになるが、被加熱物の種類・形状・量が被加熱物を含む加熱室10の電気的特性を決定し、マイクロ波発生部の出力インピーダンスと加熱室10のインピーダンスとに基づいて、加熱室10側からマイクロ波発生部側に伝送する反射電力が生じる。   When 100% of the microwave power supplied into the heating chamber 10 is absorbed by the object to be heated, the reflected power from the heating chamber 10 becomes 0 W, but the type, shape, and amount of the object to be heated include the object to be heated. The electrical characteristics of the heating chamber 10 are determined, and the reflected power transmitted from the heating chamber 10 side to the microwave generating portion side is generated based on the output impedance of the microwave generating portion and the impedance of the heating chamber 10.

電力検出部6a〜6dは、マイクロ波発生部側に伝送する反射電力を検出し、その反射電力量に比例した信号を検出するものであり、その検出信号を受けた制御部12は、反射電力が極小値となる発振周波数および位相差の選択を行う。この周波数、位相差の選択に対して、制御部12は、位相可変部4a〜4dによって生じる位相差を0度の状態で発振部2aおよび発振部2bの発振周波数を初期の2400MHzから例えば1MHzピッチで高い周波数側に変化させ、周波数可変範囲の上限である2500MHzに到達する。   The power detection units 6a to 6d detect the reflected power transmitted to the microwave generation unit and detect a signal proportional to the amount of reflected power. The control unit 12 that receives the detection signal receives the reflected power. Select the oscillation frequency and phase difference at which becomes the minimum value. In response to the selection of the frequency and the phase difference, the control unit 12 changes the oscillation frequency of the oscillation unit 2a and the oscillation unit 2b from the initial 2400 MHz to, for example, 1 MHz with the phase difference generated by the phase variable units 4a to 4d being 0 degrees. To reach the higher frequency side and reach 2500 MHz which is the upper limit of the frequency variable range.

この操作を行うことで制御部12は発振部2a,2bの発振周波数に対する反射電力の配列を得ることができる。制御部12はこの反射電力が最も小さくなる発振部2a,2bの条件で制御するとともに発振出力を入力された加熱条件に対応した出力が得られるように制御する。これにより、各増幅部5a〜5dはそれぞれ所定のマイクロ波電力を出力する。そして、それぞれの出力は給電部8a〜8dに伝送され加熱室10内に放射される。   By performing this operation, the control unit 12 can obtain an array of reflected power with respect to the oscillation frequencies of the oscillation units 2a and 2b. The controller 12 controls the conditions of the oscillators 2a and 2b where the reflected power is minimized, and controls the oscillation output so that an output corresponding to the input heating condition is obtained. Thereby, each amplification part 5a-5d outputs predetermined microwave electric power, respectively. Each output is transmitted to the power feeding units 8 a to 8 d and radiated into the heating chamber 10.

位相可変部4a〜4dは加熱開始から所定の変化量で時々刻々その位相を変化させる。位相可変部4a〜4dによって位相を変化させることによって加熱室10内で給電部8a〜8dが放射するマイクロ波が干渉する位置を変化させることができるので加熱室10内に載置された被加熱物11の位置に応じて干渉位置を制御することで被加熱物11を均等もしくは局部的に加熱することができる。   The phase varying units 4a to 4d change the phase every moment with a predetermined change amount from the start of heating. By changing the phase by the phase variable parts 4a to 4d, the position where the microwaves radiated from the power feeding parts 8a to 8d interfere in the heating chamber 10 can be changed, so that the object to be heated placed in the heating chamber 10 can be changed. By controlling the interference position according to the position of the object 11, the object to be heated 11 can be heated evenly or locally.

このように動作することで様々な形状・大きさ・量の異なる被加熱物に対しても反射電力が最も小さくなる条件で加熱を開始することができ、電力増幅部5a〜5dに備えられた半導体素子が反射電力によって過剰に発熱することを防止でき熱的な破壊を回避することができる。   By operating in this way, it is possible to start heating under the condition that the reflected power is the smallest even for heated objects having various shapes, sizes, and amounts, and the power amplifiers 5a to 5d are provided. It is possible to prevent the semiconductor element from excessively generating heat due to the reflected power and to avoid thermal destruction.

図3は加熱動作中における制御的に対となっている位相可変部4a,4bの位相差および発振部2の発振周波数の制御例を示すフローチャート図である。別の対である位相可変部4c,4dも同様の制御をするためここでは代表して一方の対である位相可変部4a,4bの制御フローについて説明する。はじめにある周波数fで発振部2が発振している状態でΔf(例えば0.1MHz)発振周波数をずらした状態に制御(ステップ102)し、そのときの反射電力を計測する(ステップ103)。制御部12はこの反射電力と前回(発振周波数を変化させる前に)計測した反射電力を比較し、反射電力が減少していればΔfをそのままの値とし(ステップ106)、反射電力が増加していればΔfの符号を逆にする(ステップ108)。この操作によって発振周波数の変化に対して反射電力が常に減少する方向で制御することができる。   FIG. 3 is a flowchart showing a control example of the phase difference between the phase variable sections 4a and 4b and the oscillation frequency of the oscillating section 2 that are paired in control during the heating operation. Since the other phase variable units 4c and 4d perform the same control, the control flow of the phase variable units 4a and 4b as one pair will be representatively described here. First, Δf (for example, 0.1 MHz) is controlled so that the oscillation frequency is shifted while the oscillation unit 2 is oscillating at a certain frequency f (step 102), and the reflected power at that time is measured (step 103). The control unit 12 compares this reflected power with the reflected power measured last time (before changing the oscillation frequency), and if the reflected power is reduced, Δf is left as it is (step 106), and the reflected power increases. If so, the sign of Δf is reversed (step 108). By this operation, the reflected power can be controlled to always decrease with respect to the change of the oscillation frequency.

しかしながら上記のような動作を継続していても加熱動作の進行によって被加熱物11の温度が上昇してくると、被加熱物11の周波数特性が初期に計測した特性と加熱途中の特性に大きな差を生じる可能性がある。特に冷凍されていた被加熱物11が融解したり、
温度上昇によって被加熱物11から水蒸気を発生させたりし始めるとその周波数特性には大きな変化を生じることが予想される。この場合、初期に測定した周波数近傍とは離れた周波数で反射電力がより小さくなる可能性がある。
However, if the temperature of the object to be heated 11 rises due to the progress of the heating operation even if the above operation is continued, the frequency characteristic of the object to be heated 11 is greatly different from the characteristic measured in the initial stage and the characteristic during the heating. Can make a difference. In particular, the object to be heated 11 that has been frozen melts,
When water vapor starts to be generated from the object to be heated 11 due to temperature rise, it is expected that the frequency characteristics will change greatly. In this case, the reflected power may be smaller at a frequency away from the vicinity of the frequency measured in the initial stage.

本実施の形態では反射電力が所定の値を超えて大きくなると、一旦加熱動作を中断し、発振部2a,2bの出力を減じて周波数の選択動作を再度行い、加熱途中での被加熱物11の周波数特性を測定することで、加熱途中の被加熱物11の周波数特性に対応した加熱周波数を選択する。このように動作することによって加熱動作の進行によって周波数特性が大きく変化しても、反射電力を低く抑えて効率的な加熱ができ、また、反射電力が少ない状態で動作を継続できるため電力増幅部5a〜5dに備えられた半導体素子の熱損失をすくなくすることができ、高い信頼性を得ることが可能となる。   In the present embodiment, when the reflected power increases beyond a predetermined value, the heating operation is temporarily stopped, the outputs of the oscillation units 2a and 2b are reduced, the frequency selection operation is performed again, and the object to be heated 11 in the middle of heating. By measuring the frequency characteristics, a heating frequency corresponding to the frequency characteristics of the object to be heated 11 during heating is selected. By operating in this way, even if the frequency characteristics change greatly due to the progress of the heating operation, the reflected power can be kept low and efficient heating can be achieved, and the operation can be continued in a state where the reflected power is low. The heat loss of the semiconductor elements provided in 5a to 5d can be eliminated, and high reliability can be obtained.

また、上記では発振部2a,2bをともに加熱動作停止させる説明をしたが、反射電力が大きくなった一方の発振部のみを加熱中断し、周波数の再選択動作をさせても同様の効果を発揮できる。このとき、電力検出部6a〜6dは検出される反射電力の周波数とその周波数における反射電力値をそれぞれ別々に検出できるよう構成しておくと周波数再設定時における反射電力の小さい周波数の選択が容易になる。図3は一方の発振部たとえば2aは通常加熱状態の出力を維持し、他方の発振部2bが加熱中に周波数再選択の動作になった状態を想定している。このとき周波数再選択動作を行っている発振部2bにつながっている給電部8c、8dから放射されるマイクロ波は通常加熱動作時よりも小さい値となるが、電力検出部6c,6dで検出される反射電力としては8a,8bから放出されるマイクロ波が給電部8cあるいは給電部8dへ到達することによっても検出される。   In the above description, the heating operation of both the oscillation units 2a and 2b is stopped. However, the same effect can be obtained even when only one oscillation unit whose reflected power is increased is interrupted and the frequency is reselected. it can. At this time, if the power detection units 6a to 6d are configured so that the frequency of the reflected power to be detected and the value of the reflected power at that frequency can be detected separately, it is easy to select a frequency with a small reflected power at the time of frequency resetting. become. FIG. 3 assumes a state in which one oscillating unit, for example, 2a maintains the output of the normal heating state, and the other oscillating unit 2b is in a frequency reselection operation during heating. At this time, the microwaves radiated from the power supply units 8c and 8d connected to the oscillation unit 2b performing the frequency reselection operation have a smaller value than that in the normal heating operation, but are detected by the power detection units 6c and 6d. The reflected power is also detected when the microwaves emitted from 8a and 8b reach the power supply unit 8c or the power supply unit 8d.

給電部8a,8bからは通常加熱動作中のマイクロ波が放出されているため給電部8a,8bから給電部8c,8dへ到達するマイクロ波も自ずと大きくなることが予想される。このため、周波数と反射電力値を分離せずに検出すると図3(b)のように大きな値が常に検出され、周波数に対する反射電力の変化量が検出しづらくなるが、周波数と反射電力値を分離して検出することによって図3(a)のように反射電力の周波数特性にメリハリをつけることができ、反射電力が極小値あるいは最小値を示す周波数を検出することが容易になる。   Since the microwaves during the normal heating operation are emitted from the power supply units 8a and 8b, it is expected that the microwaves that reach the power supply units 8c and 8d from the power supply units 8a and 8b naturally increase. Therefore, if the frequency and the reflected power value are detected without being separated, a large value is always detected as shown in FIG. 3B, and it is difficult to detect the amount of change in the reflected power with respect to the frequency. By detecting separately, the frequency characteristic of the reflected power can be sharpened as shown in FIG. 3A, and it becomes easy to detect the frequency at which the reflected power shows the minimum value or the minimum value.

また、位相可変部4a,4bは加熱動作中に一定の変化幅ΔΦでその位相差を時々刻々変化させていく(ステップ101)。この位相可変部4a,4bによって生じる位相差Φによって加熱室10内でのマイクロ波の干渉位置が変化するため被加熱物11を均等もしくは局部的に加熱することができる。   Further, the phase variable sections 4a and 4b change the phase difference from time to time with a constant change width ΔΦ during the heating operation (step 101). Since the microwave interference position in the heating chamber 10 is changed by the phase difference Φ generated by the phase variable portions 4a and 4b, the object to be heated 11 can be heated evenly or locally.

このように制御することで、加熱動作中においても電力検出部6a,6bは加熱室10からの反射電力を検出できるので、制御部12がこれを判断し、発振周波数および位相差を時々刻々微調整し常に反射電力が低い状態を維持できるのでさらに半導体素子の発熱を低く抑えることが可能となり、加熱効率を高く維持できるので短時間での加熱を図ることができる。あるいは、許容する反射電力を所定の値に定めその許容する反射電力の範囲において制御部12は時間的に位相可変部4a,4bの位相差と発振部2の発振周波数を変化させることもできる。このような動作をすることで加熱室10内でのマイクロ波の伝播状態を時間的に変化させることができるので、被加熱物の局所加熱を解消し、加熱の均一化を図ることも可能である。   By controlling in this way, the power detection units 6a and 6b can detect the reflected power from the heating chamber 10 even during the heating operation, so the control unit 12 determines this, and the oscillation frequency and phase difference are minutely measured every moment. Since the state where the reflected power is always kept low can be adjusted, the heat generation of the semiconductor element can be further suppressed, and the heating efficiency can be maintained high, so that heating in a short time can be achieved. Alternatively, the allowable reflected power is set to a predetermined value, and the control unit 12 can temporally change the phase difference between the phase variable units 4a and 4b and the oscillation frequency of the oscillating unit 2 within the allowable reflected power range. By performing such an operation, the propagation state of the microwave in the heating chamber 10 can be changed with time, so that local heating of the object to be heated can be eliminated and the heating can be made uniform. is there.

なお、上記の説明では、位相可変部4a,4bを2つ挿入した例で説明したが、電力分配部3aのいずれかの出力にのみ挿入し、その位相変化幅を0度から360度となるように構成することもできる。   In the above description, an example in which two phase variable units 4a and 4b are inserted has been described. However, the phase change width is set to 0 degrees to 360 degrees by inserting only one of the outputs of the power distribution section 3a. It can also be configured as follows.

以上のように、本発明に係るマイクロ波処理装置は、複数の給電部を有しマイクロ波を放射する給電部を切換制御したり、動作中の給電部間のマイクロ波の位相差を変化させる装置を提供できるので、電子レンジで代表されるような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。   As described above, the microwave processing apparatus according to the present invention switches and controls the power supply unit that has a plurality of power supply units and radiates microwaves, or changes the phase difference of the microwaves between the power supply units in operation. Since the apparatus can be provided, the present invention can be applied to uses such as a heating apparatus using dielectric heating as represented by a microwave oven, a garbage disposal machine, or a microwave power source of a plasma power source as a semiconductor manufacturing apparatus.

本発明の実施の形態1におけるマイクロ波処理装置の構成図Configuration diagram of microwave processing apparatus according to Embodiment 1 of the present invention 同マイクロ波処理装置の制御例を示すフローチャートFlow chart showing a control example of the microwave processing apparatus 同マイクロ波処理装置の電力検出部の周波数特性を示す図(a)、周波数と反射電力値を分離して検出した場合の周波数特性を示すグラフ(b)、周波数と反射電力値を分離せずに検出した場合の周波数特性を示すグラフThe figure (a) which shows the frequency characteristic of the electric power detection part of the same microwave processing apparatus, the graph (b) which shows the frequency characteristic at the time of detecting separately a frequency and a reflected power value, and not separating a frequency and a reflected power value Graph showing frequency characteristics when detected in

2a、2b 発振部
3a、3b 電力分配部
4a〜4d 位相可変部
5a〜5d 電力増幅部
6a〜6d 電力検出部
8a〜8d 給電部
10 加熱室
11 被加熱物
12 制御部
2a, 2b Oscillator 3a, 3b Power distribution unit 4a-4d Phase variable unit 5a-5d Power amplification unit 6a-6d Power detection unit 8a-8d Power feeding unit 10 Heating chamber 11 Object to be heated 12 Control unit

Claims (4)

被加熱物を収容する加熱室と、発振部と、前記発振部の出力を複数に分配して出力する電力分配部と、前記電力分配部の出力をそれぞれ電力増幅する複数の電力増幅部と、前記電力増幅部の出力を前記加熱室に供給する複数の給電部と、前記給電部から前記電力増幅部に反射する電力を検出する電力検出部と、前記発振部の発振周波数と前記電力増幅部を制御する制御部とを備え、
前記給電部は前記加熱室を構成する壁面に配置するとともに、前記電力検出部の検出する反射電力が所定の値を超えると一時加熱動作を中断し、前記電力増幅部の出力電力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に加熱動作を再開するとともに、
前記電力分配部の出力に各々位相可変部を設け、前記位相可変部によって前記給電部から放射されるマイクロ波の位相を制御するとともに、前記電力検出部によって検出される反射電力が所定の値を超えない範囲で前記位相可変部によって前記マイクロ波の位相を制御し、
前記位相可変部が位相を可変する可変幅が所定の値よりも小さくなると前記発振部の出力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に前記発振部の出力を所定値に復帰させ加熱動作を再開する構成としたマイクロ波処理装置。
A heating chamber that houses an object to be heated; an oscillation unit; a power distribution unit that distributes and outputs the output of the oscillation unit; and a plurality of power amplification units that respectively amplify the output of the power distribution unit; A plurality of power supply units that supply the output of the power amplification unit to the heating chamber, a power detection unit that detects power reflected from the power supply unit to the power amplification unit, an oscillation frequency of the oscillation unit, and the power amplification unit And a control unit for controlling
The power feeding unit is disposed on a wall surface constituting the heating chamber, and when the reflected power detected by the power detection unit exceeds a predetermined value, the temporary heating operation is interrupted, and the output power of the power amplification unit is reduced to reduce the power Sweeping the oscillation frequency of the oscillating unit for a predetermined interval, and restarting the heating operation after setting the reflected power detected by the power detection unit to a minimum ,
A phase variable unit is provided at each output of the power distribution unit, the phase variable unit controls the phase of the microwave radiated from the power feeding unit, and the reflected power detected by the power detection unit has a predetermined value. The phase of the microwave is controlled by the phase variable unit within a range not exceeding,
When the variable width by which the phase variable unit varies the phase becomes smaller than a predetermined value, the output of the oscillating unit is reduced to sweep the oscillation frequency of the oscillating unit for a predetermined period, and the reflected power detected by the power detecting unit is A microwave processing apparatus configured to resume the heating operation by returning the output of the oscillation unit to a predetermined value after setting the frequency to a minimum .
少なくとも2つ以上の発振部を有するとともに、各々の電力検出部において検出される反射電力が所定の値を超えると、その電力検出部に接続される発振部の出力を減じて前記発振部の発振周波数を所定区間掃引し、前記電力検出部によって検出される反射電力が最小となる周波数にした後に前記発振部の出力を所定値に復帰させ加熱動作を再開する構成とした請求項1に記載のマイクロ波処理装置。 When the reflected power detected by each of the power detection units exceeds a predetermined value, the output of the oscillation unit connected to the power detection unit is reduced to reduce the oscillation of the oscillation unit. 2. The configuration according to claim 1, wherein the frequency is swept for a predetermined interval, and the heating operation is resumed by returning the output of the oscillation unit to a predetermined value after setting the reflected power detected by the power detection unit to a minimum frequency. Microwave processing device. 電力検出部に周波数検出手段を設け、前記電力検出部によって検出される反射電力を周波数成分ごとに検出する構成とした請求項2に記載のマイクロ波処理装置。 The microwave processing apparatus according to claim 2, wherein a frequency detection unit is provided in the power detection unit, and the reflected power detected by the power detection unit is detected for each frequency component. 発振部の出力を減じて前記発振部の発振周波数を掃引する際、所定出力で動作している発振部の発振周波数と一致しないように周波数挿引する構成とした請求項2または3に記載
のマイクロ波処理装置。
4. The structure according to claim 2 or 3, wherein when the output of the oscillation unit is reduced to sweep the oscillation frequency of the oscillation unit, the frequency is inserted so as not to coincide with the oscillation frequency of the oscillation unit operating at a predetermined output. Microwave processing device.
JP2008099894A 2008-04-08 2008-04-08 Microwave processing equipment Active JP5286898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099894A JP5286898B2 (en) 2008-04-08 2008-04-08 Microwave processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099894A JP5286898B2 (en) 2008-04-08 2008-04-08 Microwave processing equipment

Publications (2)

Publication Number Publication Date
JP2009252564A JP2009252564A (en) 2009-10-29
JP5286898B2 true JP5286898B2 (en) 2013-09-11

Family

ID=41313078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099894A Active JP5286898B2 (en) 2008-04-08 2008-04-08 Microwave processing equipment

Country Status (1)

Country Link
JP (1) JP5286898B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467341B2 (en) * 2009-11-10 2014-04-09 パナソニック株式会社 Microwave processing equipment
KR101584397B1 (en) * 2009-11-10 2016-01-11 고지 엘티디. Device and method for heating using rf energy
WO2021166562A1 (en) * 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 High frequency processing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134491A (en) * 1980-03-26 1981-10-21 Hitachi Netsu Kigu Kk High frequency heater
JP2522199B2 (en) * 1994-04-20 1996-08-07 日本電気株式会社 Power amplifier
JP4619468B2 (en) * 1999-03-25 2011-01-26 株式会社東芝 Plasma processing method, plasma processing apparatus, and plasma monitoring apparatus
JP2000357583A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Microwave oven
KR100581518B1 (en) * 2004-06-17 2006-05-22 삼성전자주식회사 Device for the non-invasive measurement of blood glucose concentration by millimeter waves and method thereof
JP4935188B2 (en) * 2006-05-25 2012-05-23 パナソニック株式会社 Microwave equipment
JP5064924B2 (en) * 2006-08-08 2012-10-31 パナソニック株式会社 Microwave processing equipment

Also Published As

Publication number Publication date
JP2009252564A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5142364B2 (en) Microwave processing equipment
JP5286905B2 (en) Microwave processing equipment
JP5167678B2 (en) Microwave processing equipment
JP5262250B2 (en) Microwave processing equipment
JP5400885B2 (en) Microwave heating device
JP4935188B2 (en) Microwave equipment
WO2010134307A1 (en) Microwave heating device and microwave heating method
JP5104048B2 (en) Microwave processing equipment
JP2009252346A5 (en)
JP5169371B2 (en) Microwave processing equipment
JP2008108491A (en) Microwave treatment device
JP5127038B2 (en) High frequency processing equipment
JP5195255B2 (en) Microwave heating device
JP2014049276A (en) Microwave processing device
JP5286898B2 (en) Microwave processing equipment
JP4839994B2 (en) Microwave equipment
JP2010092795A (en) Microwave processor
JP5217993B2 (en) Microwave processing equipment
JP2009181728A (en) Microwave processing device
US11419190B2 (en) RF heating apparatus with re-radiators
JP5286899B2 (en) Microwave processing equipment
JP2008146966A (en) Microwave generation device and microwave heating apparatus
JP5195008B2 (en) Microwave heating device
JP5444734B2 (en) Microwave processing equipment
JP2010140839A (en) Microwave processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5286898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151