JP5272097B2 - 燃焼器尾筒の設計方法 - Google Patents

燃焼器尾筒の設計方法 Download PDF

Info

Publication number
JP5272097B2
JP5272097B2 JP2012138894A JP2012138894A JP5272097B2 JP 5272097 B2 JP5272097 B2 JP 5272097B2 JP 2012138894 A JP2012138894 A JP 2012138894A JP 2012138894 A JP2012138894 A JP 2012138894A JP 5272097 B2 JP5272097 B2 JP 5272097B2
Authority
JP
Japan
Prior art keywords
combustor
transition piece
tail pipe
outlet
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012138894A
Other languages
English (en)
Other versions
JP2012180843A (ja
Inventor
聡介 中村
智志 瀧口
宜彦 本山
泰希 木下
嘉和 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012138894A priority Critical patent/JP5272097B2/ja
Publication of JP2012180843A publication Critical patent/JP2012180843A/ja
Application granted granted Critical
Publication of JP5272097B2 publication Critical patent/JP5272097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タービン燃焼器における燃焼器尾筒の形状を最適化する、燃焼器尾筒の設計方法に関するものである。
ガスタービンは、圧縮機と燃焼器とタービンとにより構成されている。圧縮機は、空気取入口から取り込まれた空気を圧縮させることで高温・高圧の圧縮空気とする。燃焼器は、圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガスとする。タービンは、ケーシング内の排気通路に複数のタービン静翼およびタービン動翼が交互に配設されて構成されており、この排気通路に供給された燃焼ガスによりタービン動翼が駆動されることで、例えば、発電機に連結されたロータを回転駆動する。そして、タービンを駆動した燃焼ガスは、タービン下流のディフューザにより静圧に変換されてから大気に放出される。
このようなガスタービンにおいて、タービンは、第1段タービン静翼から燃焼器の燃焼ガスが供給される。燃焼ガス通路は、第1段タービン静翼をロータの軸心を中心とした円周に沿って配置するために円環状に形成されている。一方、燃焼器は、燃焼ガスをタービンに供給する態様でロータの軸心を中心とした円周に沿って複数配置されている。この燃焼器は、自身の中心線がロータの軸心に平行となるように配置されて、燃焼ガスをタービンに向けて真っ直ぐ噴出することが理想的である。しかし、ガスタービンの車室内部の構造の制約から、燃焼器の中心線をロータの軸心に対して傾けて(少なくとも30度)、径方向外側から径方向内側に斜めに燃焼ガスを噴出するように配置されている。この燃焼器では、圧縮空気を取り込み、この圧縮空気に燃料ノズルから燃料を供給し燃焼させて高温高圧の燃焼ガスを生成する。
燃焼器は、尾筒を有している。尾筒は、燃料ノズル直後の尾筒入口からタービンの第1段静翼に繋がる尾筒出口へ、燃料ノズルから噴出された燃焼ガスを導くものである。また、尾筒は、尾筒入口が円形断面形状に形成され、尾筒出口が第1段タービン静翼に燃焼ガスを供給するために第1段タービン静翼燃焼ガス通路の円環状を燃焼器の数で分割した弧形断面形状に形成されている。すなわち、尾筒は、尾筒入口から尾筒出口に至り断面形状が変形している。さらに、尾筒は、燃焼ガスの流れを安定させるため、尾筒入口から尾筒出口に至り絞りが必要である(例えば、特許文献1参照)。
特開2006−242559号公報
近年では、ガスタービンの高温化と共に、出力および効率を向上するため、ガスタービンの下流に蒸気発生装置および蒸気タービンを組み合わせたコンバインドサイクルが知られている。このようなコンバインドサイクルにおいてコンバインド効率(熱効率)の向上を図るには、タービンに繋がる燃焼器の尾筒出口での冷却の交換熱量を削減することが好ましい。すなわち、燃焼器を冷却するための熱量は、熱交換を行った蒸気によって回収されるが、冷却される熱量を始めから削減できればコンバインド効率は向上する。そこで、燃焼器における尾筒の全体的な壁面流速を低減し、かつ局所的な流速の増減を防ぎ、熱伝達率を下げて交換熱量を削減させることが望まれている。
本発明は、上記に鑑みてなされたものであって、燃焼器尾筒の形状を最適化して、コンバインド効率を向上することのできる燃焼器尾筒の設計方法を提供することを目的とする。
上記の目的を達成するために、本発明の燃焼器尾筒の設計方法では、ガスタービンのロータの軸心に対し、燃焼器の中心線の角度を設定する工程と、次に、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至る絞り比を設定する工程と、次に、前記尾筒入口の断面積を維持する態様で前記尾筒入口の径方向内側端から前記中心線と平行な直線を下流側に延ばすと共に、前記尾筒出口の径方向内側端から前記軸心と平行な直線を上流側に延ばし、これら各直線を円弧で繋いで径方向内側外形線をなす工程と、次に、前記尾筒入口の断面積が維持された筒状の下流側での径方向外側端から前記尾筒出口の径方向外側端に至り滑らかに繋いで径方向外側外形線をなす工程と、次に、筒状の下流側から前記尾筒出口に至り、前記径方向内側外形線および前記径方向外側外形線に従い断面積を単調に減少させる工程とを含むことを特徴とする。
この燃焼器尾筒の設計方法は、尾筒入口から尾筒出口に至る断面形状の変形、および絞りを含む形状が最適化された燃焼器尾筒を形成できる。
本発明によれば、燃焼器尾筒の尾筒入口から尾筒出口に至る断面形状の変形、および絞りを最適化しつつコンバインド効率を向上できる。
図1は、本発明の実施例に係るガスタービンの概略構成図である。 図2は、ガスタービンにおける燃焼器の概略構成図である。 図3は、燃焼器における尾筒の内形の概略図である。 図4は、尾筒の絞り比を示す図である。 図5は、翼高さ比Hin/Houtに対する燃焼器尾筒の交換熱量を示す図である。 図6は、燃焼器尾筒の設計方法を示す概念図である。 図7は、燃焼器尾筒の設計方法を示す概念図である。 図8は、燃焼器尾筒の設計方法を示す概念図である。 図9は、燃焼器尾筒の内壁面近傍の流速を示す図である。
図1は、本発明の実施例に係るガスタービンの概略構成図、図2は、ガスタービンにおける燃焼器の概略構成図、図3は、燃焼器における尾筒の内形の概略図、図4は、尾筒の絞り比を示す図である。
ガスタービンは、図1に示すように、圧縮機1と燃焼器2とタービン3とにより構成されている。また、圧縮機1、燃焼器2およびタービン3の中心部には、ロータ4が貫通して配置されている。圧縮機1、燃焼器2およびタービン3は、ロータ4の軸心Rに沿い、空気または燃焼ガスの流れの上流側から下流側に向かって順に並設されている。なお、以下の説明において、軸方向とは軸心Rに平行な方向をいい、周方向とは軸心Rを中心とした周り方向をいい、径方向とは軸心Rに直交する方向をいう。また、径方向内側とは軸心Rに対して接近する側であり、径方向外側とは軸心Rに対して離隔する側である。
圧縮機1は、空気を圧縮して圧縮空気とするものである。圧縮機1は、空気を取り込む空気取入口11を有した圧縮機ケーシング12の内部の空気通路に、圧縮機静翼13および圧縮機動翼14が設けられている。圧縮機静翼13は、圧縮機ケーシング12側に取り付けられて周方向に複数並設されている。また、圧縮機動翼14は、ロータ4側に取り付けられて周方向に複数並設されている。これら圧縮機静翼13と圧縮機動翼14とは、軸方向で交互に複数設けられている。
燃焼器2は、圧縮機1で圧縮された圧縮空気に対して燃料を供給することで、高温・高圧の燃焼ガスを生成するものである。燃焼器2は、圧縮空気と燃料を混合して燃焼させる内筒21と、内筒21から燃焼ガスをタービン3に導く尾筒22と、内筒21の外周を覆い、圧縮機1からの圧縮空気を内筒21に導く外筒23とを有している。この燃焼器2は、燃焼器ケーシング24に対し周方向に複数(例えば16個)並設されている。また、燃焼器2は、ガスタービンの車室内部の構造の制約から、燃焼器2の中心線Sをロータ4の軸心Rに対して傾けて(少なくとも30度)、径方向外側から径方向内側に斜めに燃焼ガスを噴出するように配置されている。
また、燃焼器2には、図2に示すように、主に燃料を供給する燃料ノズル251,252が設けられている。燃料ノズル251は、内筒21の中央に1本設けられたパイロットノズルである。また、燃料ノズル252は、内筒21内でパイロットノズル251の周囲で周方向に複数(例えば8個)隣接して設けられたメインノズルである。このメインノズル252の周囲には、メインノズル252を覆うバーナー筒252bが設けられている。
この燃焼器2では、図2に示すように、高温・高圧の圧縮空気の空気流が外筒23の内部に流れ込み、この圧縮空気が内筒21の内部に流れ込む。内筒21内では、圧縮空気がメインノズル252から噴射された燃料と混合され、バーナー筒252bにて予混合気の旋回流となって尾筒22内に流れ込む。また、圧縮空気は、パイロットノズル251から噴射された燃料と混合され、図示しない点火装置により点火されて燃焼し、燃焼ガスとなって尾筒22内に噴出する。このとき、パイロットノズル251から噴射した燃料による拡散火炎により、各メインノズル252のバーナー筒252bからの予混合気の燃焼を安定させるための保炎を行う。
タービン3は、燃焼器2で燃焼された燃焼ガスにより回転動力を生じるものである。タービン3は、燃焼ガスが送り込まれるタービンケーシング31の内部の排気通路にタービン静翼32およびタービン動翼33が設けられている。タービン静翼32は、タービンケーシング31側に取り付けられて周方向に複数並設されている。また、タービン動翼33は、ロータ4の軸心Rを中心とした円盤状のディスクの外周に固定されて周方向に複数並設されている。これらタービン静翼32とタービン動翼33とは、軸方向で交互に複数設けられている。また、タービンケーシング31の下流側には、タービン3に連続するディフューザ部34aを内部に有した排気室34が設けられている。
ロータ4は、圧縮機1側の端部が軸受部41により支持され、排気室34側の端部が軸受部42により支持されて、軸心Rを中心として回転自在に設けられている。そして、ロータ4の排気室34側の端部には、発電機(図示せず)の駆動軸が連結されている。
このようなガスタービンは、圧縮機1の空気取入口11から取り込まれた空気が、複数の圧縮機静翼13と圧縮機動翼14とを通過して圧縮されることで高温・高圧の圧縮空気となる。この圧縮空気に対し、燃焼器2から燃料が供給されることで高温・高圧の燃焼ガスが生成される。そして、この燃焼ガスがタービン3のタービン静翼32とタービン動翼33とを通過することでロータ4が回転駆動され、このロータ4に連結された発電機に回転動力を付与することで発電を行う。そして、ロータ4を回転駆動した後の燃焼ガスは、排気室34内のディフューザ部34aで静圧に変換されてから大気に放出される。
上述したガスタービンにおいて、図2および図3に示すように、燃焼器2の尾筒22は、筒状に形成され、一方の開口である尾筒入口221が内筒21に接続され、他方の開口である尾筒出口222がタービン3における排気通路の入口である第1段タービン静翼321に接続されている。尾筒入口221が接続される内筒21は、円筒形状に形成されている。このため、尾筒入口221は円形断面形状に形成されている(図3参照)。また、尾筒出口222が接続される第1段タービン静翼321は、翼部322と、該翼部322を径方向で挟むように支持する内側シュラウド351および外側シュラウド352とから構成されている。内側シュラウド351は、第1段タービン静翼321の径方向内側壁をなし、外側シュラウド352は、第1段タービン静翼321の径方向外側壁をなす。そして、第1段タービン静翼321の周方向の配置に従って燃焼ガスの通路が円環状に形成されている。また、上述したように燃焼器2は、周方向に複数並設されている。このため、尾筒出口222は、第1段タービン静翼321に対応する円環状を燃焼器2の数で分割した弧形断面形状であって、言い換えると扇形から円弧部を切り取った略四辺形断面形状に形成されている(図3参照)。すなわち、尾筒22は、尾筒入口221から尾筒出口222に至り断面形状が変形している。この尾筒出口222が接続される第1段タービン静翼321は、その円環状の円周がタービン3の空力的形状によりに決められている。このため、尾筒出口222の断面形状は、第1段タービン静翼321に対応する円環状を燃焼器2の数で分割した弧形の寸法が決められている。
ここで、第1段タービン静翼321は、内側シュラウド351と外側シュラウド352との間の下流側径方向寸法がタービン3の空力的形状によって決められている。本実施例では、第1段タービン静翼321の下流側開口の径方向寸法(下流側翼高さ)Houtを空力的に決められた寸法とし、内側シュラウド351および外側シュラウド352の上流側端部の径方向寸法(上流側翼高さ)Hinを尾筒出口222の径方向寸法(a)と同一の寸法となるように合わせてある。具体的には、内側シュラウド351は、ロータ4の軸心Rと平行(製造上の誤差を含む)に配置され、その上流側端と尾筒出口222の径方向内側端とがロータ4の軸方向に接するように配置されている。また、外側シュラウド352は、その上流側端と尾筒出口222の径方向外側端とがロータ4の軸方向に接するように配置され、かつ上流側開口の径方向寸法(上流側翼高さ)Hinが下流側開口の径方向寸法(下流側翼高さ)Houtよりも大きく、下流側開口から上流側開口が漸次広がるようにロータ4の軸心Rに対して斜めに配置されている。
また、燃焼器2の尾筒22は、燃焼ガスの流れを安定させるため、尾筒入口221から尾筒出口222に至り断面積が減少するように絞りが形成されている。より好ましくは、尾筒入口221の断面積Dinに対する尾筒出口222の断面積Doutの絞り比Dout/Din=0.9である。すなわち、尾筒入口221の断面積(直径(b))が決められると、絞り比により尾筒出口222の断面積(径方向寸法(a))が決まる。なお、図4に実線で示すように、尾筒入口221の直径(b)の範囲を設定し、絞り比が0.9となる尾筒出口222の断面積Doutでの径方向寸法(a)に対し、内側シュラウド351および外側シュラウド352の上流側端部の径方向寸法Hinと第1段タービン静翼321の下流側開口の径方向寸法Houtとの比を翼高さ比Hin/Houtとし、この最小値をX=1.18とする。そして、図4に破線で示すように、第1段タービン静翼321のHin/Houtの最小値X=1.18において、尾筒入口221の直径(b)が最大寸法とした場合の絞り比は、0.79となる。そこで、尾筒入口221の直径(b)の範囲内で、第1段タービン静翼321のHin/Houtの最小値X=1.18を基準とした好ましい絞り比として、0.79≦Dout/Din≦0.9の範囲が得られる。
かかる燃焼器接続構造およびガスタービンでは、燃焼器2について、尾筒出口222の径方向寸法(a)が、尾筒入口221の直径(b)に対する絞り比を、0.79≦Dout/Din≦0.9の範囲として最適化されている。このため、燃焼ガスの壁面流速が低減されるので、尾筒出口222部分の交換熱量を削減でき、コンバインド効率を向上できる。
さらに、かかる燃焼器接続構造およびガスタービンでは、タービン3の第1段タービン静翼321について、内側シュラウド351をロータ4の軸心Rと平行に配置してその上流側端部と尾筒出口222の径方向内側端とがロータ4の軸方向に接するように配置し、かつ外側シュラウド352の上流側端部と尾筒出口222の径方向外側端とがロータ4の軸方向に接するようにロータ4の軸心Rに対して斜めに配置してある。このため、図2に示すように燃焼器2の中心線Sを軸心Rに対して斜めに配置した構成において、尾筒22から第1段タービン静翼321への燃焼ガスの流速の増減がないため、交換熱量を低減でき、コンバインド効率の向上を図れる。
これらを、図5を用いて説明する。図5は、翼高さ比Hin/Houtに対する燃焼器尾筒の交換熱量の比率を示す図である。図5に示すように、外側シュラウド352をロータ4の軸心Rに対して斜めに配置していない場合、つまりHin/Hout=1を基準とした場合に対し、Hin/Houtの比が大きくなるほど、交換熱量が低減されることがわかる。
図6〜図8は、尾筒の設計方法を示す概念図、図9は、尾筒の内壁面近傍での流速を示す図である。なお、図6〜図9では、尾筒22の内形を示している。
尾筒22の設計方法では、図6に示すように、先ず、ガスタービンにおけるロータ4の軸心Rに対し、燃焼器2の中心線Sの角度を設定する。ここでは、軸心Rに対して中心線Sの角度を30度に設定する。なお、図6に示す軸心Rは、軸心Rに平行な基準線を示している。また、燃焼器2の尾筒入口221の直径は、上述した所定範囲内から予め設定されている。これにより、尾筒入口221の径方向内側端Aおよび径方向外側端Bが決まる。
次に、尾筒入口221の断面積Dinに対し、尾筒出口222の断面積Doutを、上述の0.79≦Dout/Din≦0.9の範囲内から設定する。ここでは、より好ましい絞り比としてDout/Din=0.9とする。尾筒出口222は、上述したように第1段タービン静翼321に対応する円環状を燃焼器2の数で分割した弧形の寸法が決まっているから、断面積Doutが決まれば径方向寸法も決まる。また、尾筒出口222の径方向内側端Cは、第1段タービン静翼321の径方向内側壁(内側シュラウド351)に対し、軸心Rに平行な位置にある。このため、尾筒出口222は、その径方向外側端Dが決められる。さらに、尾筒22での燃焼ガスの滞留時間、すなわち尾筒22の内部体積を最大とするため、尾筒入口221からの円筒形状を最大限に確保し、絞り部分の長さを極力短くする。そこで、図6に示すように、尾筒入口221の径方向内側端Aから中心線Sと平行な第1仮想直線223を下流側に延ばすとともに、尾筒出口222の径方向内側端Cから軸心Rと平行な第2仮想直線224を上流側に延ばす。そして、上述したように、第1段タービン静翼321の下流側開口の径方向寸法(Hout)を空力的に決められた寸法とし、内側シュラウド351および外側シュラウド352の上流側端部の径方向寸法(Hin)を尾筒出口222の径方向寸法(a)に同一の寸法となるように、第1段タービン静翼321の径方向外側壁(外側シュラウド352)を尾筒出口222の径方向外側端Dに向けてロータ4の軸心Rに対して斜めに配置する。
次に、図7に示すように、第1仮想直線223と第2仮想直線224とを繋ぐ。具体的には、尾筒入口221からの円筒形状を最大限に確保し、かつ尾筒22の径方向内側縁が内側に膨らまないように、第1仮想直線223および第2仮想直線224に接する極力半径の大きい円弧R1を設ける。これにより、尾筒入口221の径方向内側端Aと尾筒出口222の径方向内側端Cとが第1仮想直線223、第2仮想直線224および円弧R1で繋がり、尾筒22の径方向内側外形線が決まる。さらに、尾筒22の円筒形状の下流側での径方向内側端Eおよび径方向外側端Fが決まる。
次に、図8に示すように、円筒形状の径方向外側端Fと尾筒出口222の径方向外側端Dとを繋ぐ。具体的には、尾筒入口221の径方向外側端Bから径方向外側端Fに至る直線と、径方向外側端Dに至る第1段タービン静翼321の斜めの径方向外側壁(外側シュラウド352)とを、2つの円弧、もしくは2つの円弧および直線により滑らかに繋ぐ。すなわち、径方向外側端Fにおいて、その内側に径方向外側端Bから径方向外側端Fに至る直線を接線とする円弧R2を、径方向外側端Fから点Gに至り設ける。そして、この円弧R2に繋がる直線225を点Gから下流側に延ばす。さらに、第1段タービン静翼321の斜めの径方向外側壁(外側シュラウド352)の直線226を径方向外側端Dから下流側に延ばす。さらにまた、直線225の点Hと直線226の点Jとを繋ぐ円弧R3を設ける。これにより、円筒形状の径方向外側端Fと尾筒出口222の径方向外側端Dとが滑らかに繋がり、尾筒22の径方向外側外形線が決まる。
最後に、尾筒入口221から径方向内側端Eおよび径方向外側端Fに至り円筒形状とし、この円筒形状を尾筒出口222の径方向内側端Cおよび径方向外側端Dに至り、径方向内側外形線および径方向外側外形線に基づいて断面積を単調に減少させる。
なお、上記尾筒22の製造にあっては、例えば軸方向に4分割し、これらをそれぞれプレス加工し、後に溶接で接合して尾筒22が形成される。
かかる燃焼器2の尾筒22では、図9に示すように、径方向外側外形線および径方向内側外形線での内壁面近傍での流速を見た場合、本実施例の尾筒22(実線で示す)では、尾筒入口221から尾筒出口222に至る流速が、尾筒出口222で最大となり、それ以前ではこの最大値を越えないように、抑えられつつ絞り比に対応して単調に安定して増加していることが分かる。これに対し、断面積が単調に減少していない比較例(破線で示す)では、尾筒入口221から尾筒出口222に至る流速が速く、しかも不安定な変化をあらわしており、尾筒出口222以前で最大となっている。
このように、本実施例の燃焼器尾筒およびガスタービンでは、尾筒入口221から尾筒出口222に至る断面積の変化が最適化されたことで、燃焼ガスの壁面流速を低減されるので、尾筒出口222部分の交換熱量を削減でき、コンバインド効率を向上できる。また、燃焼器尾筒の設計方法では、コンバインド効率を向上できる最適な尾筒22の形状が得られる。
1 圧縮機
2 燃焼器
21 内筒
22 尾筒
221 尾筒入口
222 尾筒出口
23 外筒
24 燃焼器ケーシング
251 パイロットノズル
252 メインノズル
252b バーナー筒
3 タービン
31 タービンケーシング
32 タービン静翼
321 第1段タービン静翼
322 翼部
33 タービン動翼
351 内側シュラウド
352 外側シュラウド
4 ロータ
Din 尾筒入口の断面積
Dout 尾筒出口の断面積
Dout/Din 絞り比
Hin 内側シュラウドおよび外側シュラウドの上流側端部の径方向寸法(上流側翼高さ)
Hout 第1段タービン静翼の下流側開口の径方向寸法(下流側翼高さ)
Hin/Hout 径方向寸法比(翼高さ比)
R ロータの軸心
S 燃焼器の中心線

Claims (1)

  1. ガスタービンのロータの軸心に対し、燃焼器の中心線の角度を設定する工程と、
    次に、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至る絞り比を設定する工程と、
    次に、前記尾筒入口の断面積を維持する態様で前記尾筒入口の径方向内側端から前記中心線と平行な直線を下流側に延ばすと共に、前記尾筒出口の径方向内側端から前記軸心と平行な直線を上流側に延ばし、これら各直線を円弧で繋いで径方向内側外形線をなす工程と、
    次に、前記尾筒入口の断面積が維持された筒状の下流側での径方向外側端から前記尾筒出口の径方向外側端に至り滑らかに繋いで径方向外側外形線をなす工程と、
    次に、筒状の下流側から前記尾筒出口に至り、前記径方向内側外形線および前記径方向外側外形線に従い断面積を単調に減少させる工程と
    を含むことを特徴とする燃焼器尾筒の設計方法。
JP2012138894A 2012-06-20 2012-06-20 燃焼器尾筒の設計方法 Active JP5272097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138894A JP5272097B2 (ja) 2012-06-20 2012-06-20 燃焼器尾筒の設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138894A JP5272097B2 (ja) 2012-06-20 2012-06-20 燃焼器尾筒の設計方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008256531A Division JP2010085052A (ja) 2008-10-01 2008-10-01 燃焼器尾筒およびその設計方法ならびにガスタービン

Publications (2)

Publication Number Publication Date
JP2012180843A JP2012180843A (ja) 2012-09-20
JP5272097B2 true JP5272097B2 (ja) 2013-08-28

Family

ID=47012221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138894A Active JP5272097B2 (ja) 2012-06-20 2012-06-20 燃焼器尾筒の設計方法

Country Status (1)

Country Link
JP (1) JP5272097B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130038B1 (ja) * 2016-08-17 2017-05-17 三菱日立パワーシステムズ株式会社 筒状部材の製造方法及び製造支援装置
CN114776461B (zh) * 2022-03-25 2023-04-07 中国民用航空飞行学院 一种用于航空发动机的s弯喷管及其设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111132A (ja) * 1985-11-08 1987-05-22 Hitachi Ltd ガスタ−ビン燃焼器尾筒冷却構造
JPH0663648B2 (ja) * 1986-12-05 1994-08-22 株式会社日立製作所 ガスタ−ビン燃焼器
JPH03113211A (ja) * 1989-09-28 1991-05-14 Toshiba Corp ガスタービン燃焼器尾筒
JP2871573B2 (ja) * 1996-01-12 1999-03-17 三菱重工業株式会社 ガスタービン燃焼器の尾筒
JP2001349544A (ja) * 2000-06-06 2001-12-21 Hitachi Ltd ガスタービン設備及びその燃焼器におけるトランジションピースの額縁構造

Also Published As

Publication number Publication date
JP2012180843A (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
US8448451B2 (en) Height ratios for a transition piece of a combustor
KR102126882B1 (ko) 노즐 어셈블리, 연소기 및 이를 포함하는 가스터빈
JP2013527421A (ja) ガス・タービン・エンジンで使用するための静翼なしタービンを備えた接線方向燃焼器
JP6134732B2 (ja) マルチゾーン燃焼器
JP2006105138A (ja) ガスタービンエンジンを組み立てるための方法及び装置
KR20140127291A (ko) 배기가스 확산기와 지지 핀들을 구비한 가스터빈
US20210190320A1 (en) Turbine engine assembly including a rotating detonation combustor
JP2016539276A (ja) 遠心圧縮機の湾曲した拡散流路部
US10378361B2 (en) Gas turbine blade
JP2010133621A (ja) ガスタービン燃焼器
JP6692847B2 (ja) ガスタービン燃焼器及びこれを備えたガスタービン機関
JP5272097B2 (ja) 燃焼器尾筒の設計方法
US20180179950A1 (en) Turbine engine assembly including a rotating detonation combustor
KR102651451B1 (ko) 가스터빈 연소기 및 이를 구비한 가스터빈
JP5173720B2 (ja) 燃焼器接続構造およびガスタービン
JP6194120B2 (ja) ガスタービン
JP2006052910A (ja) 燃焼器尾筒とタービン入口との連通構造
JP2014234729A (ja) 遠心圧縮機及びガスタービンエンジン
US20200309377A1 (en) Combustor nozzle enhancing spatial uniformity of pre-mixture and gas turbine having same
CN110168205B (zh) 燃气涡轮发动机
CN111108327B (zh) 燃气轮机的燃烧筒、燃烧器以及燃气轮机
JP5111604B2 (ja) ガスタービン装置並びにその制御方法
US10995668B2 (en) Turbine vane, turbine, and gas turbine including the same
KR20190046117A (ko) 가스 터빈
JP6734584B2 (ja) ガスタービンエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R151 Written notification of patent or utility model registration

Ref document number: 5272097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350