JP5271022B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5271022B2
JP5271022B2 JP2008256802A JP2008256802A JP5271022B2 JP 5271022 B2 JP5271022 B2 JP 5271022B2 JP 2008256802 A JP2008256802 A JP 2008256802A JP 2008256802 A JP2008256802 A JP 2008256802A JP 5271022 B2 JP5271022 B2 JP 5271022B2
Authority
JP
Japan
Prior art keywords
layer
type
type gan
semiconductor device
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008256802A
Other languages
Japanese (ja)
Other versions
JP2010087374A (en
Inventor
大悟 菊田
哲生 成田
成雅 副島
雅裕 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008256802A priority Critical patent/JP5271022B2/en
Priority to PCT/IB2009/007033 priority patent/WO2010038150A1/en
Publication of JP2010087374A publication Critical patent/JP2010087374A/en
Application granted granted Critical
Publication of JP5271022B2 publication Critical patent/JP5271022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A p-type GaN layer (10) is laminated on an if -type GaN layer (6), an aperture (28) that penetrates the p-type GaN layer (10) is formed in the p-type GaN layer (10), and an n-type GaN layer (26) is formed in the aperture (28). A suspended current blocking region (8) is formed in a part of the n-type GaN layer (6). When a semiconductor device is switched OFF, a depletion layer extends from the suspended current blocking region (8) toward the n-type GaN layer (6), leading to a reduction in the potential of the n-type GaN layer (26) formed in the aperture (28) and a reduction in a potential difference between a front surface and a rear surface of a gate insulation film (20). As a result, a voltage resistance of the semiconductor device is improved. The suspended current blocking region (8) may be a p-type region and a region having a deep level.

Description

本発明は、III族窒化物系化合物半導体で形成した半導体装置に関する。   The present invention relates to a semiconductor device formed of a group III nitride compound semiconductor.

III族窒化物系化合物半導体で半導体装置を実現する開発がおこなわれており、その例が特許文献1に開示されている。
特許文献1に記載の半導体装置は、n型のIII族窒化物系化合物半導体で形成されている下層に、p型のIII族窒化物系化合物半導体で形成されている上層が積層された構造を備えている。p型の上層には、その上層を貫通するアパーチャーが形成されており、そのアパーチャーには、n型またはi型のIII族窒化物系化合物半導体が充填されている。
半導体装置がオンすると、アパーチャーを充填しているIII族窒化物系化合物半導体と、その下部に位置しているn型のIII族窒化物系化合物半導体を電流が流れる。電流は、アパーチャーを介して半導体層を縦方向に流れる。
特開2007-5764号公報
Developments for realizing semiconductor devices using Group III nitride compound semiconductors have been carried out, and an example thereof is disclosed in Patent Document 1.
The semiconductor device described in Patent Document 1 has a structure in which an upper layer formed of a p-type group III nitride compound semiconductor is stacked on a lower layer formed of an n-type group III nitride compound semiconductor. I have. An aperture penetrating the upper layer is formed in the p-type upper layer, and the aperture is filled with an n-type or i-type group III nitride compound semiconductor.
When the semiconductor device is turned on, a current flows through the group III nitride compound semiconductor filled with the aperture and the n-type group III nitride compound semiconductor located therebelow. Current flows in the semiconductor layer in the vertical direction through the aperture.
Japanese Patent Laid-Open No. 2007-5564

半導体装置のオフ時には、p型のIII族窒化物系化合物半導体から、アパーチャーを充填しているn型またはi型のIII族窒化物系化合物半導体と、下層を構成しているn型のIII族窒化物系化合物半導体に向けて空乏層が広がるはずである。アパーチャーに空乏層が広がれば、表面側電極と裏面側電極の間に高い電圧がかかっても、その空乏層で耐圧を確保できるはずである。ところが実際には、高い耐圧を確保することが難しい。   When the semiconductor device is turned off, the p-type group III nitride compound semiconductor, the n-type or i-type group III nitride compound semiconductor filling the aperture, and the n-type group III group constituting the lower layer The depletion layer should spread toward the nitride compound semiconductor. If the depletion layer spreads in the aperture, even if a high voltage is applied between the front-side electrode and the back-side electrode, the depletion layer should be able to secure a breakdown voltage. However, in practice, it is difficult to ensure a high breakdown voltage.

その原因を追究したところ、その原因は下記であろうと推定できるに至った。
(1)上記構造を製造する場合、n型のIII族窒化物系化合物半導体で形成されている下層に、p型のIII族窒化物系化合物半導体で形成されている上層が積層された積層構造を製造する。ついで、上層の表面の一部からエッチングして上層を貫通するアパーチャーを製造する。上層を貫通するアパーチャーを製造するために、上層の表面から上層の裏面に達するまでエッチングを続ける。すなわち、アパーチャーの底面にn型の下層が露出するまでエッチングを続ける。アパーチャーの底面に露出したn型の下層の表面もまたエッチングされる。
(2) アパーチャーの底面に露出したn型の下層の表面からn型またはi型のIII族窒化物系化合物半導体を結晶成長し、アパーチャーにn型またはi型のIII族窒化物系化合物半導体を充填する。
(3) アパーチャーの底面に露出したn型の下層の表面はエッチングされており、各種の損傷が生じており、強くn型化している。
After investigating the cause, it was possible to estimate that the cause would be as follows.
(1) When manufacturing the above structure, a laminated structure in which an upper layer formed of a p-type group III nitride compound semiconductor is stacked on a lower layer formed of an n-type group III nitride compound semiconductor Manufacturing. Next, an aperture penetrating the upper layer is manufactured by etching from a part of the surface of the upper layer. In order to manufacture an aperture penetrating the upper layer, etching is continued from the surface of the upper layer to the back surface of the upper layer. That is, the etching is continued until the n-type lower layer is exposed on the bottom surface of the aperture. The n-type underlying surface exposed at the bottom of the aperture is also etched.
(2) Crystal growth of an n-type or i-type group III nitride compound semiconductor from the surface of the n-type lower layer exposed on the bottom surface of the aperture, and an n-type or i-type group III nitride compound semiconductor to the aperture Fill.
(3) The surface of the n-type lower layer exposed on the bottom surface of the aperture is etched, causing various damages and becoming strongly n-type.

現状の技術では、アパーチャーを充填しているn型またはi型のIII族窒化物系化合物半導体と、その下方に位置しているn型のIII族窒化物系化合物半導体の間に、強くn型化した領域が形成されてしまう。この領域が形成されると、半導体装置のオフ時に、アパーチャーを充填しているIII族窒化物系化合物半導体に向けて空乏層が広く広がることができない。すなわち、現状の技術では、半導体装置のオフ時にアパーチャーを充填しているIII族窒化物系化合物半導体に向けて広く広がる空乏層によって耐圧を確保することができない。   In the current technology, an n-type or i-type group III nitride compound semiconductor that is filled with an aperture and an n-type group III nitride compound semiconductor located below the n-type group III nitride compound semiconductor are strongly n-type. As a result, a region is formed. When this region is formed, the depletion layer cannot spread widely toward the group III nitride compound semiconductor filled with the aperture when the semiconductor device is turned off. That is, with the current technology, the breakdown voltage cannot be ensured by the depletion layer that spreads widely toward the group III nitride compound semiconductor that is filled with the aperture when the semiconductor device is off.

アパーチャーが形成されているp型のIII族窒化物系化合物半導体層の上には、半導体装置の特性に合わせて種々の半導体構造が作られる。特許文献1の技術では、III族窒化物系化合物半導体で形成されている表面側下層と、その表面側下層よりもバンドギャップが広いIII族窒化物系化合物半導体で形成されている表面側上層が積層されているヘテロ構造を形成することによって、HEMTを実現している。そのほかに、MOSFET構造を実現することもできる。   Various semiconductor structures are formed on the p-type group III nitride compound semiconductor layer in which the aperture is formed, in accordance with the characteristics of the semiconductor device. In the technique of Patent Document 1, a surface side lower layer formed of a group III nitride compound semiconductor and a surface side upper layer formed of a group III nitride compound semiconductor having a wider band gap than the surface side lower layer are provided. HEMT is realized by forming stacked heterostructures. In addition, a MOSFET structure can be realized.

半導体装置のオフ時にアパーチャーに向けて広く広がる空乏層によって耐圧を確保することができなければ、p型のIII族窒化物系化合物半導体層の上部に形成されている半導体構造に高い電圧がかかってしまう。この結果、例えばゲート絶縁層の表面と裏面の間に高い電圧がかかってゲート絶縁層が損傷する結果が生じる。
本発明は、アパーチャーが形成されているIII族窒化物系化合物半導体層を有する半導体装置の耐圧を向上することを目的に開発されたものである。
If the breakdown voltage cannot be secured by the depletion layer that spreads widely toward the aperture when the semiconductor device is off, a high voltage is applied to the semiconductor structure formed on the p-type group III nitride compound semiconductor layer. End up. As a result, for example, a high voltage is applied between the front and back surfaces of the gate insulating layer, resulting in damage to the gate insulating layer.
The present invention was developed for the purpose of improving the breakdown voltage of a semiconductor device having a group III nitride compound semiconductor layer in which an aperture is formed.

本発明の半導体装置は、n型のIII族窒化物系化合物半導体で形成されている下層に、p型のIII族窒化物系化合物半導体で形成されている上層が積層されている積層構造を備えている。上層には、上層を貫通するアパーチャーが形成されており、そのアパーチャーには、n型またはi型のIII族窒化物系化合物半導体が充填されている。
本発明の半導体装置は、n型の下層の一部に、浮遊電流ブロック領域が形成されていることを特徴とする。その浮遊電流ブロック領域は、伝導帯と価電子帯の中間値よりも価電子帯側の深い準位を持っている。
The semiconductor device of the present invention has a stacked structure in which an upper layer formed of a p-type group III nitride compound semiconductor is stacked on a lower layer formed of an n-type group III nitride compound semiconductor. ing. An aperture penetrating the upper layer is formed in the upper layer, and the aperture is filled with an n-type or i-type group III nitride compound semiconductor.
The semiconductor device of the present invention is characterized in that a floating current block region is formed in a part of an n-type lower layer. The floating current block region has a deeper level on the valence band side than the intermediate value between the conduction band and the valence band.

n型の下層の一部に浮遊電流ブロック領域が形成されていると、浮遊電流ブロック領域からn型の下層に向けて空乏層が伸びる。この結果、アパーチャーを充填しているn型またはi型のIII族窒化物系化合物半導体にかかる電圧が減少し、p型のIII族窒化物系化合物半導体層の上部に形成されている半導体構造に高い電圧がかからないようになる。
n型の下層の一部に浮遊電流ブロック領域が形成されていると、半導体装置の耐圧能力が向上する。
When the floating current block region is formed in a part of the n-type lower layer, the depletion layer extends from the floating current block region toward the n-type lower layer. As a result, the voltage applied to the n-type or i-type group III nitride compound semiconductor filling the aperture is reduced, and the semiconductor structure formed on the p-type group III nitride compound semiconductor layer is reduced. High voltage is not applied.
When the floating current block region is formed in a part of the n-type lower layer, the withstand voltage capability of the semiconductor device is improved.

p型のIII族窒化物系化合物半導体層の上部に形成されている半導体構造は制約されない。例えば、III族窒化物系化合物半導体で形成されている表面側下層に、その表面側下層よりもバンドギャップが広いIII族窒化物系化合物半導体で形成されている表面側上層が積層されているヘテロ構造が形成されていてもよい。p型の上層の上にヘテロ構造が形成されている場合でも、n型の下層の一部に浮遊電流ブロック領域を形成することによって、半導体装置の耐圧能力が向上する。   The semiconductor structure formed on the p-type group III nitride compound semiconductor layer is not limited. For example, a heterojunction in which a surface-side lower layer formed of a group III nitride compound semiconductor is laminated with a surface-side upper layer formed of a group III nitride compound semiconductor having a wider band gap than the surface-side lower layer. A structure may be formed. Even when the heterostructure is formed on the p-type upper layer, the withstand voltage capability of the semiconductor device is improved by forming the floating current block region in a part of the n-type lower layer.

あるいは、III族窒化物系化合物半導体で形成されている表面側層と、その表面側層の表面を覆っているゲート絶縁層と、そのゲート絶縁層の表面に形成されているゲート電極で構成されているFET構造が形成されていてもよい。p型の上層の上にFET構造が形成されている場合でも、n型の下層の一部に浮遊電流ブロック領域を形成することによって、半導体装置の耐圧能力が向上する。   Alternatively, it is composed of a surface side layer formed of a group III nitride compound semiconductor, a gate insulating layer covering the surface of the surface side layer, and a gate electrode formed on the surface of the gate insulating layer. An FET structure may be formed. Even when the FET structure is formed on the p-type upper layer, the withstand voltage capability of the semiconductor device is improved by forming the floating current block region in a part of the n-type lower layer.

半導体基板を平面視した状態における浮遊電流ブロック領域の形成範囲は、特に制約されるものではないが、浮遊電流ブロック領域の形成範囲と、アパーチャーの形成範囲が重複することが好ましい。
この場合、アパーチャーを充填しているn型のIII族窒化物系化合物半導体にかかる電圧が顕著に低下し、半導体装置の耐圧能力が効果的に向上する。
The formation range of the floating current block region in a state in which the semiconductor substrate is viewed in plan is not particularly limited, but it is preferable that the formation range of the floating current block region and the formation range of the aperture overlap.
In this case, the voltage applied to the n-type group III nitride compound semiconductor filled with the aperture is significantly reduced, and the withstand voltage capability of the semiconductor device is effectively improved.

浮遊電流ブロック領域の形成範囲が、アパーチャーの形成範囲よりも広く広がっていることが好ましい。この場合、浮遊電流ブロック領域の形成範囲とアパーチャーの形成範囲の間にずれが生じても、アパーチャーの形成範囲を浮遊電流ブロック領域で覆っておく関係が確保される。製造時の位置精度に関する要求が緩和される。   It is preferable that the formation range of the floating current block region is wider than the formation range of the aperture. In this case, even if a deviation occurs between the formation range of the floating current block region and the formation range of the aperture, the relationship in which the formation range of the aperture is covered with the floating current block region is ensured. The demand for positional accuracy during manufacturing is relaxed.

n型の下層の一部に存在している半導体が、伝導帯と価電子帯の中間値よりも価電子帯側の深い準位を持っていれば、その深い準位を持っている半導体が、電流が流れることを阻止する。 If the semiconductor that exists in a part of the n-type lower layer has a deep level on the valence band side than the intermediate value between the conduction band and the valence band, the semiconductor having the deep level is , it prevents the current from flowing.

本発明によると、n型のIII族窒化物系化合物半導体で形成されている下層に、p型のIII族窒化物系化合物半導体で形成されている上層が積層されている積層構造を備えているとともに、p型の上層を貫通するアパーチャーが形成されている型式の半導体装置の耐圧能力を向上させることができる。   According to the present invention, a laminated structure in which an upper layer formed of a p-type group III nitride compound semiconductor is stacked on a lower layer formed of an n-type group III nitride compound semiconductor is provided. At the same time, it is possible to improve the withstand voltage capability of the type semiconductor device in which the aperture penetrating the p-type upper layer is formed.

本発明を実施する場合、III族窒化物系化合物半導体にGaNを用いることができる。それよりもバンドギャップが広いIII族窒化物系化合物半導体にはAlGaNを用いることができる。
浮遊電流ブロック領域を製造するためには、n型のGaN下層の形成処理を途中で停止し、Al,Mg,C,Ze,Feなどの不純物を取り込みながらGaNをエピタキシャル成長する方法を実施してGaNによって形成されている電流ブロック層を形成する。次にGaNで形成されている電流ブロック層の一部を残してエッチングして除去する。その後にn型のGaN下層の形成処理を再開する。それによってn型のGaN下層のなかに、周囲から隔離(絶縁)されており、電圧が周囲の電圧によって変動する電流ブロック領域が形成される。すなわち、浮遊電流ブロック領域が形成される。
あるいは、n型のGaN下層の形成処理を途中で停止し、その一部の領域にAl,Mg,C,Ze,Feなどの不純物をイオン注入し、その後にn型のGaN下層の形成処理を再開する。それによってn型のGaN下層のなかに、電圧が周囲の電圧によって変動する浮遊電流ブロック領域を形成する。
In practicing the present invention, GaN can be used for the group III nitride compound semiconductor. AlGaN can be used for a group III nitride compound semiconductor having a wider band gap.
In order to manufacture the floating current block region, the formation process of the n-type GaN lower layer is stopped halfway, and a method of epitaxially growing GaN while incorporating impurities such as Al, Mg, C, Ze, Fe, etc. The current blocking layer formed by is formed. Next, etching is performed while leaving a part of the current blocking layer formed of GaN. Thereafter, the formation process of the n-type GaN lower layer is resumed. As a result, a current blocking region is formed in the n-type GaN lower layer, which is isolated (insulated) from the surroundings and whose voltage varies depending on the surrounding voltage. That is, a floating current block region is formed.
Alternatively, the n-type GaN lower layer forming process is stopped halfway, and impurities such as Al, Mg, C, Ze, Fe, etc. are ion-implanted into a part of the region, and then the n-type GaN lower layer forming process is performed. Resume. As a result, a floating current block region in which the voltage varies depending on the surrounding voltage is formed in the n-type GaN lower layer.

(第1実施例)
図1は、第1実施例の半導体装置30の断面図を示している。第1実施例の半導体装置は、GaNとAlGaNのヘテロ接合を利用するHEMTであり、ソース電極14とドレイン電極2が表裏両面に別れて形成されている。縦型の半導体装置である。
(First embodiment)
FIG. 1 shows a cross-sectional view of the semiconductor device 30 of the first embodiment. The semiconductor device of the first embodiment is a HEMT that uses a heterojunction of GaN and AlGaN, and the source electrode 14 and the drain electrode 2 are formed separately on the front and back surfaces. This is a vertical semiconductor device.

裏面側から順に、ドレイン電極2、n型のGaN層4、n型のGaN層6、アパーチャー28が形成されているp型のGaN層10、i型のGaN層24、AlGaN層22、ゲート絶縁層20、ゲート電極18が積層されている。アパーチャー28には、GaN層26が充填されている。GaN層26は、i型のGaN層24と同一工程で製造されており、i型のGaNが結晶成長する条件で製造している。しかしながら、アパーチャー内のように周囲を壁面で囲まれた部位では、壁面で囲まれていない平面上で結晶成長する場合に比して、結晶成長時に不純物が取り込まれやすい。そのために、アパーチャー28内に成長するGaN層26は、リアクタ内の残留不純物によって、高濃度のn型になりやすい。n型のGaN層4はドレインコンタクト層として機能し、n型のGaN層6はドリフト層として機能する。 In order from the back surface side, the drain electrode 2, the n + -type GaN layer 4, the n -type GaN layer 6, the p-type GaN layer 10 in which the aperture 28 is formed, the i-type GaN layer 24, the AlGaN layer 22, A gate insulating layer 20 and a gate electrode 18 are stacked. The aperture 28 is filled with a GaN layer 26. The GaN layer 26 is manufactured in the same process as the i-type GaN layer 24, and is manufactured under the condition that the i-type GaN grows. However, in a portion surrounded by a wall surface as in the aperture, impurities are more easily taken in during crystal growth than in the case of crystal growth on a plane not surrounded by the wall surface. For this reason, the GaN layer 26 grown in the aperture 28 tends to be a high concentration n-type due to residual impurities in the reactor. The n + -type GaN layer 4 functions as a drain contact layer, and the n -type GaN layer 6 functions as a drift layer.

アパーチャー28を挟む両サイドに、p型のGaN領域12が形成されている。p型のGaN領域12は、p型のGaN層10の一部に形成されている。p型のGaN層12は、pコンタクト領域12として機能する。
アパーチャー28を挟む両サイドに、n型のGaN領域16が形成されている。n型のGaN領域16は、i型のGaN層24とAlGaN層22に接している。n型のGaN領域16は、ソースコンタクト領域16として機能する。
アパーチャー28を挟む両サイドに、ソース電極14が形成されている。ソース電極14は、ソースコンタクト領域16とpコンタクト領域12に接している。
P + -type GaN regions 12 are formed on both sides sandwiching the aperture 28. The p + -type GaN region 12 is formed in a part of the p-type GaN layer 10. The p + -type GaN layer 12 functions as the p contact region 12.
N + -type GaN regions 16 are formed on both sides sandwiching the aperture 28. The n + -type GaN region 16 is in contact with the i-type GaN layer 24 and the AlGaN layer 22. The n + -type GaN region 16 functions as the source contact region 16.
The source electrode 14 is formed on both sides sandwiching the aperture 28. Source electrode 14 is in contact with source contact region 16 and p contact region 12.

型のGaN層6の中に、浮遊電流ブロック領域8が埋め込まれている。浮遊電流ブロック領域8は、半導体装置30を平面視したときに、アパーチャー28とオーバラップする範囲に形成されている。正確にいうと、浮遊電流ブロック領域8は、アパーチャー28とオーバラップする範囲を超えて広がっており、浮遊電流ブロック領域8の形成範囲が意図するものからずれても、アパーチャー28とオーバラップする範囲には必ず浮遊電流ブロック領域8が存在する関係を満たしている。 A floating current blocking region 8 is embedded in the n -type GaN layer 6. The floating current block region 8 is formed in a range that overlaps the aperture 28 when the semiconductor device 30 is viewed in plan. To be exact, the floating current block region 8 extends beyond the range overlapping with the aperture 28, and even if the formation range of the floating current block region 8 deviates from the intended range, the range overlapping with the aperture 28 is obtained. Always satisfy the relationship in which the floating current block region 8 exists.

半導体装置30は、ドレイン電極2を直流電源の高電位側に接続し、ソース電極14を接地して用いる。
ゲート電極18に正電圧を印加しない状態では、p型のGaN層10とi型のGaN層24の界面からi型のGaN層24に向けて空乏層が広がる。その空乏層は、i型のGaN層24とAlGaN層22のヘテロ接合界面にも広がる。ゲート電極18に正電圧を印加しないと、i型のGaN層24とAlGaN層22のヘテロ接合界面にキャリアが存在せず、ドレイン電極2からソース電極14に電流が流れない。半導体装置30は、ノーマリオフの特性を備えている。
The semiconductor device 30 is used with the drain electrode 2 connected to the high potential side of the DC power supply and the source electrode 14 grounded.
In a state where no positive voltage is applied to the gate electrode 18, a depletion layer spreads from the interface between the p-type GaN layer 10 and the i-type GaN layer 24 toward the i-type GaN layer 24. The depletion layer also extends to the heterojunction interface between the i-type GaN layer 24 and the AlGaN layer 22. Unless a positive voltage is applied to the gate electrode 18, carriers do not exist at the heterojunction interface between the i-type GaN layer 24 and the AlGaN layer 22, and no current flows from the drain electrode 2 to the source electrode 14. The semiconductor device 30 has normally-off characteristics.

ゲート電極18に正電圧を印加すると、i型のGaN層24とAlGaN層22のヘテロ接合界面に広がっていた空乏層が消失する。すると、i型のGaN層24とAlGaN層22のヘテロ接合界面に生じる量子井戸によって、その接合界面に2次元の電子ガスが発生する。電子がi型のGaN層24とAlGaN層22のヘテロ接合界面を高速に移動する状態となる。ソース電極14から供給された電子は、i型のGaN層24とAlGaN層22のヘテロ接合界面を高速に移動し、アパーチャー28の上部の位置において、i型のGaN層24を縦方向に流れ、アパーチャー28を充填しているGaN層26を縦に流れ、n型のGaN層6を縦に流れ、n型のGaN層4を縦に流れてドレイン電極2に至る。ゲート電極18に正電圧を印加すると、ドレイン電極2からソース電極14に電流が流れる。 When a positive voltage is applied to the gate electrode 18, the depletion layer spreading at the heterojunction interface between the i-type GaN layer 24 and the AlGaN layer 22 disappears. Then, a two-dimensional electron gas is generated at the junction interface by the quantum well generated at the heterojunction interface between the i-type GaN layer 24 and the AlGaN layer 22. The electrons move at a high speed through the heterojunction interface between the i-type GaN layer 24 and the AlGaN layer 22. Electrons supplied from the source electrode 14 move at a high speed through the heterojunction interface between the i-type GaN layer 24 and the AlGaN layer 22, and flow in the i-type GaN layer 24 in the vertical direction at a position above the aperture 28. The GaN layer 26 filled with the aperture 28 flows vertically, the n -type GaN layer 6 flows vertically, the n + -type GaN layer 4 flows vertically and reaches the drain electrode 2. When a positive voltage is applied to the gate electrode 18, a current flows from the drain electrode 2 to the source electrode 14.

電子がn型のGaN層6を縦に流れるときに、アパーチャー28の直下には浮遊電流ブロック領域8が存在するので、電子は、浮遊電流ブロック領域8を迂回しながら、n型のGaN層6を縦に流れる。電子が浮遊電流ブロック領域8を迂回して流れることによって半導体装置30のオン抵抗は若干増加するが、特段の問題はない。 When electrons flow vertically through the n -type GaN layer 6, the floating current blocking region 8 exists immediately below the aperture 28, so that the electrons bypass the floating current blocking region 8 and bypass the n -type GaN. Flows vertically through layer 6. Although the on-resistance of the semiconductor device 30 slightly increases as electrons flow around the floating current block region 8, there is no particular problem.

ゲート電極18に正電圧を印加しない状態では、ドレイン電極2に高電位が印加され、ソース電極14が接地されている。n型のGaN層4は低抵抗であり、n型のGaN層4のほぼ全域がドレイン電極2の高電位に等しくなる。p型のGaN層10も低抵抗であり、ソース電極14が接地されているので、p型のGaN層10のほぼ全域が接地電圧に維持される。その一方において、i型のGaN層24とAlGaN層22は高抵抗なので、ソース電極14が接地されていても、その全域が接地電位となるわけでない。特に、アパーチャー28の上部に位置する範囲のi型のGaN層24とAlGaN層22は、ソース電極14から離れているので、接地電位とならない。 In a state where no positive voltage is applied to the gate electrode 18, a high potential is applied to the drain electrode 2, and the source electrode 14 is grounded. The n + -type GaN layer 4 has a low resistance, and almost the entire area of the n + -type GaN layer 4 is equal to the high potential of the drain electrode 2. The p-type GaN layer 10 also has a low resistance, and since the source electrode 14 is grounded, almost the entire area of the p-type GaN layer 10 is maintained at the ground voltage. On the other hand, since the i-type GaN layer 24 and the AlGaN layer 22 have high resistance, even if the source electrode 14 is grounded, the entire region does not become the ground potential. In particular, since the i-type GaN layer 24 and the AlGaN layer 22 in the range located above the aperture 28 are separated from the source electrode 14, they are not at ground potential.

このとき、浮遊電流ブロック領域8が存在しないと、アパーチャー28を充填しているGaN層26が高電位となり、アパーチャー28の上部に位置しているi型のGaN層24とAlGaN層22の電位が上昇してしまう。図2は、図1のIIに示す範囲の等電位線aの分布を示す。ただし、浮遊電流ブロック領域8が存在しない場合を図示している。アパーチャー28を充填しているGaN層26、アパーチャー28の上部に位置している範囲のi型のGaN層24とAlGaN層22のいずれも高電圧となり、ゲート絶縁層20の表面と裏面の間に大きな電圧差が印加されることが分る。ゲート絶縁層20は、ゲート電極18に正電圧を印加して半導体装置30をオンする際の閾値電圧を低くしたいことから、薄くする必要がある。薄いゲート絶縁層20の表面と裏面の間に大きな電圧差が印加されと、ゲート絶縁層20が破壊されてしまう。浮遊電流ブロック領域8が存在しない半導体装置30では、耐圧能力が低い。耐圧能力を上げようとすると、ゲート絶縁層20を厚くする必要があり、半導体装置30をオンする際の閾値電圧が上がってしまう。   At this time, if the floating current block region 8 does not exist, the GaN layer 26 filled with the aperture 28 becomes a high potential, and the potentials of the i-type GaN layer 24 and the AlGaN layer 22 located above the aperture 28 are increased. It will rise. FIG. 2 shows the distribution of equipotential lines a in the range indicated by II in FIG. However, the case where the floating current block region 8 does not exist is illustrated. Both the GaN layer 26 filled with the aperture 28 and the i-type GaN layer 24 and the AlGaN layer 22 in the range located above the aperture 28 are at a high voltage, and between the front and back surfaces of the gate insulating layer 20. It can be seen that a large voltage difference is applied. The gate insulating layer 20 needs to be thin because it is desired to reduce the threshold voltage when the semiconductor device 30 is turned on by applying a positive voltage to the gate electrode 18. When a large voltage difference is applied between the front and back surfaces of the thin gate insulating layer 20, the gate insulating layer 20 is destroyed. In the semiconductor device 30 in which the floating current block region 8 does not exist, the withstand voltage capability is low. In order to increase the withstand voltage capability, it is necessary to increase the thickness of the gate insulating layer 20, and the threshold voltage when the semiconductor device 30 is turned on increases.

図3は、図2と同じ図であるが、浮遊電流ブロック領域8が形成されている場合を示す。この場合、等電位線bが浮遊電流ブロック領域8の下にまわり込み、アパーチャー28を充填しているGaN層26と、アパーチャー28の上部に位置している範囲のi型のGaN層24とAlGaN層22の電位が低下する。浮遊電流ブロック領域8を形成すると、ゲート絶縁層20の表面と裏面の間に大きな電圧差が印加されるのを防止できる。浮遊電流ブロック領域8を形成すると、半導体装置30の耐圧能力が改善される。ゲート絶縁層20を厚くする必要がなく、半導体装置30をオンする際の閾値電圧が上昇してしまうことがない。   FIG. 3 is the same view as FIG. 2, but shows a case where the floating current block region 8 is formed. In this case, the equipotential line b wraps under the floating current block region 8, the GaN layer 26 filling the aperture 28, the i-type GaN layer 24 in the range located above the aperture 28, and the AlGaN The potential of the layer 22 decreases. When the floating current block region 8 is formed, it is possible to prevent a large voltage difference from being applied between the front surface and the back surface of the gate insulating layer 20. When the floating current block region 8 is formed, the withstand voltage capability of the semiconductor device 30 is improved. It is not necessary to increase the thickness of the gate insulating layer 20, and the threshold voltage when the semiconductor device 30 is turned on does not increase.

図4から図10は、半導体装置30の製造工程を示す。図4は、n型のGaN層4となる基板を用意し、n型のGaN層4の上面にMOCVD法によってn型のGaN層6を結晶成長し、n型のGaN層6の上面に浮遊電流ブロック層8aを結晶成長した段階を示す。n型のGaN層6の厚みは10μmであり、不純物濃度は2×1016cm−3である。この段階の浮遊電流ブロック層8aはパターニングされておらず、一様に広がっている。
浮遊電流ブロック層8aは、Al,C,Feなどの不純物を取り込みながら、GaN層を結晶成長することで形成する。Al,C,Feなどの不純物を取り込みながらGaN層を結晶成長すると、伝導体と価電子帯の中間値よりも価電子帯側に準位を持つ深い準位が形成され、その深い準位が電子をトラップして電流が流れるのをブロックする。実際には、価電子帯から0.2〜1.7evだけ禁制帯域に入り込んだ準位が形成される。深い準位の密度が1018〜20cm−3となる程度の量の不純物を添加する。浮遊電流ブロック層8aは、約500nmの厚みに形成する。
MgまたはZnなどの不純物を取り込みながら、GaN層を結晶成長することで浮遊電流ブロック層8a形成してもよい。この場合は、p型のGaN層が結晶成長する。p型のGaN層も浮遊電流ブロック層8aとして機能する。
4 to 10 show the manufacturing process of the semiconductor device 30. FIG. 4, providing a substrate comprising an n + -type GaN layer 4, n by the MOCVD method on the upper surface of the GaN layer 4 of n + -type - -type GaN layers 6 crystal growth, n - -type GaN layer 6 A stage in which the floating current blocking layer 8a is crystal-grown on the upper surface of FIG. The n -type GaN layer 6 has a thickness of 10 μm and an impurity concentration of 2 × 10 16 cm −3 . The floating current blocking layer 8a at this stage is not patterned and spreads uniformly.
The floating current blocking layer 8a is formed by crystal growth of a GaN layer while taking in impurities such as Al, C, and Fe. When a GaN layer is grown while incorporating impurities such as Al, C, and Fe, a deep level having a level closer to the valence band side than the intermediate value between the conductor and the valence band is formed. Blocks current flow by trapping electrons. In practice, a level is formed that enters the forbidden band by 0.2 to 1.7 ev from the valence band. An impurity is added in such an amount that the deep level density is 10 18 to 20 cm −3 . The floating current blocking layer 8a is formed to a thickness of about 500 nm.
The floating current blocking layer 8a may be formed by crystal growth of the GaN layer while taking in impurities such as Mg or Zn. In this case, the p-type GaN layer grows. The p-type GaN layer also functions as the floating current blocking layer 8a.

図5は、GaN結晶で形成されている浮遊電流ブロック層8aの上面の全域にSiOのマスク層32を形成し、後で浮遊電流ブロック領域8を形成する範囲のマスク層32を残存し、それ以外の範囲のマスク層32をフォトリソグラフィーとエッチングによって除去した状態を示す。
図6は、局所的に残存したマスク層32をマスクにして塩素系プラズマエッチングを実施し、マスク層32から露出している範囲の浮遊電流ブロック層8aを除去した状態を示す。この段階で、浮遊電流ブロック領域8が形成される。
図7は、マスク層32を除去した状態を示す。
図8は、n型のGaN層6とGaN結晶で形成されている浮遊電流ブロック領域8の上面に、n型のGaN層6を再び結晶成長し、ついでp型のGaN層10を結晶成長した段階を示す。浮遊電流ブロック領域8の上面に、厚さ2μmのn型のGaN層6を結晶成長する。n型のGaN層6の不純物濃度は、2×1016cm−3程度とする。p型のGaN層10の厚みは0.5μmとし、不純物濃度は、1019cm−3程度とする。この段階のp型のGaN層10にはアパーチャー28が形成されておらず、一様に広がっている。
図9は、p型のGaN層10の上面の全域にSiOのマスク層34を形成し、フォトリソグラフィーとエッチングによって、後でアパーチャー28を形成する範囲のマスク層34を除去した状態を示す。
図10は、局所的に残存したマスク層34をマスクにしてドライエッチング(塩素系プラズマエッチング)を実施し、マスク層34から露出している範囲のp型のGaN層10を除去した状態を示す。この段階で、p型のGaN層10にアパーチャー28が形成される。この段階では、アパーチャー28の底面に露出するn型のGaN層6の表面もエッチングされ、各種の損傷が生じる。また強くn型化する。図10の状態が得られた後に、マスク層34を除去する。
FIG. 5 shows that the mask layer 32 of SiO 2 is formed over the entire upper surface of the floating current block layer 8a formed of GaN crystal, and the mask layer 32 in the range where the floating current block region 8 is formed later remains. A state in which the mask layer 32 in the other range is removed by photolithography and etching is shown.
FIG. 6 shows a state in which chlorine plasma etching is performed using the mask layer 32 that remains locally as a mask, and the floating current blocking layer 8a in a range exposed from the mask layer 32 is removed. At this stage, the floating current block region 8 is formed.
FIG. 7 shows a state where the mask layer 32 is removed.
8, n - the upper surface of the type GaN layer 6 and the floating are formed in the GaN crystal current blocking region 8, n - type of crystal growth again GaN layer 6, and then the GaN layer 10 of p-type crystals Indicates the stage of growth. On the upper surface of the floating current block region 8, an n -type GaN layer 6 having a thickness of 2 μm is crystal-grown. The impurity concentration of the n -type GaN layer 6 is about 2 × 10 16 cm −3 . The p-type GaN layer 10 has a thickness of 0.5 μm and an impurity concentration of about 10 19 cm −3 . The apertures 28 are not formed in the p-type GaN layer 10 at this stage, and are spread uniformly.
FIG. 9 shows a state in which a mask layer 34 of SiO 2 is formed over the entire upper surface of the p-type GaN layer 10 and the mask layer 34 in a range where the aperture 28 is later formed is removed by photolithography and etching.
FIG. 10 shows a state where dry etching (chlorine plasma etching) is performed using the locally remaining mask layer 34 as a mask, and the p-type GaN layer 10 in a range exposed from the mask layer 34 is removed. . At this stage, the aperture 28 is formed in the p-type GaN layer 10. At this stage, the surface of the n -type GaN layer 6 exposed on the bottom surface of the aperture 28 is also etched, causing various damages. In addition, it is strongly n-type. After the state of FIG. 10 is obtained, the mask layer 34 is removed.

図11は、p型のGaN層10の表面と、アパーチャー28の底面に露出するn型のGaN層6の表面に、i型のGaN層26,24を結晶成長し、i型のGaN層24の表面にAlGaN層22を結晶成長した段階を示す。i型のGaN層24が結晶成長する条件で結晶成長しても、アパーチャー28内に形成されるGaN層26はn型となる。本実施例では、浮遊電流ブロック領域8を利用するので、アパーチャー28内に形成されるGaN層26がn型となっても、耐圧が低下することがない。i型のGaN層26,24の代わりにn型のGaN層26,24を結晶成長してもよい。あるいはp型のGaN層26,24を結晶成長してもよい。ただしp型を利用する場合には、p型のGaNs層10よりも低濃度とする。
結晶成長の条件によっては、アパーチャー28内に形成されるGaN層26をi型とすることができる。その場合でも、n型のGaN層6とi型のGaN層26の界面に強くn型化した領域が発生し、その領域が半導体装置の耐圧を低下させる。本実施例では、浮遊電流ブロック領域8を利用するので、強くn型化した領域が形成されても、耐圧が低下することがない。
図12は、AlGaN層22とi型のGaN層24を選択的にエッチングしてp型のGaN層10とi型のGaN層24の表面の一部を露出し、pコンタクト領域12とソースコンタクト領域16を形成し、ゲート絶縁層20、ゲート電極18、ソース電極14、ドレイン電極2を形成した段階を示す。以上によって、半導体装置30が製造される。
FIG. 11 shows i-type GaN layers 26, 24 grown on the surface of the p-type GaN layer 10 and the surface of the n -type GaN layer 6 exposed on the bottom surface of the aperture 28. The stage in which the AlGaN layer 22 is crystal-grown on the surface of 24 is shown. Even if the i-type GaN layer 24 is crystal-grown under crystal growth conditions, the GaN layer 26 formed in the aperture 28 is n-type. In this embodiment, since the floating current block region 8 is used, the breakdown voltage does not decrease even if the GaN layer 26 formed in the aperture 28 is n-type. Instead of the i-type GaN layers 26 and 24, the n-type GaN layers 26 and 24 may be crystal-grown. Alternatively, the p-type GaN layers 26 and 24 may be crystal-grown. However, when p-type is used, the concentration is lower than that of the p-type GaN layer 10.
Depending on the crystal growth conditions, the GaN layer 26 formed in the aperture 28 can be i-type. Even in that case, a strongly n-type region is generated at the interface between the n -type GaN layer 6 and the i-type GaN layer 26, and this region reduces the breakdown voltage of the semiconductor device. In this embodiment, since the floating current block region 8 is used, the withstand voltage does not decrease even if a strongly n-type region is formed.
In FIG. 12, the AlGaN layer 22 and the i-type GaN layer 24 are selectively etched to expose part of the surfaces of the p-type GaN layer 10 and the i-type GaN layer 24, and the p-contact region 12 and the source contact are exposed. A stage where the region 16 is formed and the gate insulating layer 20, the gate electrode 18, the source electrode 14, and the drain electrode 2 are formed is shown. Thus, the semiconductor device 30 is manufactured.

(製造方法の第2実施例)
図13から図21に製造方法の第2実施例を示す。
図13は、n型のGaN層4となる基板を用意し、n型のGaN層4の上面にn型のGaN層6を結晶成長した段階を示す。
図14は、n型のGaN層6の上面の全域にSiOのマスク層36を形成し、後で浮遊電流ブロック領域8を形成する範囲のマスク層36をフォトリソグラフィーとエッチングによって除去した状態を示す。
図15は、局所的に残存したマスク層36をマスクにしてAl,C,Fe,Mg,Znなどの不純物をイオン注入した段階を示す。Al,C,Fe,Mg,Znなどの不純物をイオン注入すると、伝導体と価電子帯の中間値よりも価電子帯側に準位を持つ深い準位が形成され、電子をトラップして電流が流れるのをブロックする。実際には、価電子帯よりも0.2〜1.7evだけ禁制帯域に入り込んだ準位が形成される。深い準位が1018〜20cm−3の密度が得られる程度に不純物を添加する。浮遊電流ブロック領域8は、約500nmの厚みに形成する。
(Second Example of Manufacturing Method)
13 to 21 show a second embodiment of the manufacturing method.
FIG. 13 shows a stage in which a substrate to be the n + -type GaN layer 4 is prepared and an n -type GaN layer 6 is crystal-grown on the upper surface of the n + -type GaN layer 4.
FIG. 14 shows a state in which a mask layer 36 of SiO 2 is formed over the entire upper surface of the n -type GaN layer 6 and the mask layer 36 in a range where a floating current blocking region 8 is formed later is removed by photolithography and etching. Indicates.
FIG. 15 shows a stage in which impurities such as Al, C, Fe, Mg, Zn are ion-implanted using the mask layer 36 that remains locally as a mask. When an impurity such as Al, C, Fe, Mg, Zn is ion-implanted, a deep level having a level closer to the valence band side than the intermediate value between the conductor and the valence band is formed, trapping electrons and Block the flow. In practice, a level is formed that enters the forbidden band by 0.2 to 1.7 ev from the valence band. Impurities are added to such an extent that a deep level of 10 18 to 20 cm −3 can be obtained. The floating current block region 8 is formed to a thickness of about 500 nm.

図16は、マスク層36を除去した状態を示す。
図17は、一部に浮遊電流ブロック領域8が形成されているn型のGaN層6の上面に、n型のGaN層6を再び結晶成長し、ついでp型のGaN層10を結晶成長した段階を示す。浮遊電流ブロック領域8の上面に、厚さ2μmのn型のGaN層6を結晶成長する。n型のGaN層6の不純物濃度は、2×1016cm−3程度とする。p型のGaN層10の厚みは0.5μmとし、不純物濃度は、1019cm−3程度とする。この段階のp型のGaN層10にはアパーチャー28が形成されておらず、一様に広がっている。
図18〜21は、図9〜12に同じであり、重複記載を省略する。
FIG. 16 shows a state where the mask layer 36 is removed.
17, n floating current blocking region 8 in a part are formed - on the upper surface of the GaN layer 6 of the mold, n - type of crystal growth again GaN layer 6, and then the GaN layer 10 of p-type crystals Indicates the stage of growth. On the upper surface of the floating current block region 8, an n -type GaN layer 6 having a thickness of 2 μm is crystal-grown. The impurity concentration of the n -type GaN layer 6 is about 2 × 10 16 cm −3 . The p-type GaN layer 10 has a thickness of 0.5 μm and an impurity concentration of about 10 19 cm −3 . The apertures 28 are not formed in the p-type GaN layer 10 at this stage, and are spread uniformly.
18 to 21 are the same as FIGS. 9 to 12 and redundant description is omitted.

(第2実施例の半導体装置)
図22は、第2実施例の半導体装置40を示す。この実施例では、n型のGaN結晶で形成されているドリフト層6内に、浮遊電流ブロック領域8bが分散して配置されている。この場合、隣接する浮遊電流ブロック8b同士の間隔が、半導体装置40のオフ時に浮遊電流ブロック8aからn型のドリフト層6に向けて伸びる空乏層同士がコンタクトする長さに管理されている。この場合、アパーチャー28の下方に、浮遊電流ブロック領域8bが形成されていない範囲があってもよい。
(第3実施例の半導体装置)
図23は、第3実施例の半導体装置50を示す。この実施例では、浮遊電流ブロック8cが2層に分かれて分散配置されている。浮遊電流ブロック領域が3層以上に分かれて分散配置されていてもよい。
(Semiconductor device of the second embodiment)
FIG. 22 shows a semiconductor device 40 of the second embodiment. In this embodiment, floating current blocking regions 8b are distributed and arranged in the drift layer 6 formed of n type GaN crystal. In this case, the interval between the adjacent floating current blocks 8b is managed so as to contact the depletion layers extending from the floating current block 8a toward the n-type drift layer 6 when the semiconductor device 40 is turned off. In this case, there may be a range below the aperture 28 where the floating current block region 8b is not formed.
(Semiconductor device of the third embodiment)
FIG. 23 shows a semiconductor device 50 of the third embodiment. In this embodiment, the floating current block 8c is distributed in two layers. The floating current block region may be divided and arranged in three or more layers.

(第4実施例の半導体装置)
図24は、第4実施例の半導体装置60を示す。この実施例では、AlGaN層22が存在しない。i型のGaN層24の上に直接にゲート絶縁層20が形成されており、その表面にゲート電極18が形成されている。
AlGaN層22が存在しない半導体装置60は、MOSFETとして動作する。この場合も浮遊電流ブロック領域8によって耐圧能力が向上する。
(Semiconductor device of the fourth embodiment)
FIG. 24 shows a semiconductor device 60 of the fourth embodiment. In this embodiment, the AlGaN layer 22 does not exist. A gate insulating layer 20 is formed directly on the i-type GaN layer 24, and a gate electrode 18 is formed on the surface thereof.
The semiconductor device 60 without the AlGaN layer 22 operates as a MOSFET. Also in this case, the withstand voltage capability is improved by the floating current block region 8.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

第1実施例の半導体装置の縦断面図を示す。1 is a longitudinal sectional view of a semiconductor device according to a first embodiment. 浮遊電流ブロック領域が形成されていない半導体装置の等電位線の分布を示す。2 shows a distribution of equipotential lines of a semiconductor device in which a floating current block region is not formed. 浮遊電流ブロック領域が形成されている半導体装置の等電位線の分布を示す。2 shows a distribution of equipotential lines of a semiconductor device in which a floating current block region is formed. 第1実施例の半導体装置の製造工程の一部を実施した状態の断面を示す。The cross section of the state which implemented a part of manufacturing process of the semiconductor device of the 1st example is shown. 図4に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 5 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 4. 図5に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 6 shows a cross-section in a state where a part of the manufacturing process is further performed following FIG. 5. 図6に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 7 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 6. 図7に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 8 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 図8に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 9 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 8. 図9に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 10 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 9. 図10に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 10 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 図11に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 12 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 第1実施例の半導体装置の別の製造工程を示す図であり、製造工程の一部を実施した状態の断面を示す。It is a figure which shows another manufacturing process of the semiconductor device of 1st Example, and shows the cross section of the state which implemented a part of manufacturing process. 図13に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 14 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 図14に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 15 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 図15に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 16 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 図16に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 17 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 16. 図17に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 18 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 図18に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 19 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 図19に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 19 shows a cross section in a state where a part of the manufacturing process is further performed following FIG. 図20に続いて製造工程の一部をさらに実施した状態の断面を示す。FIG. 21 shows a cross section in a state where a part of the manufacturing process is further carried out following FIG. 第2実施例の半導体装置の断面図を示す。Sectional drawing of the semiconductor device of 2nd Example is shown. 第3実施例の半導体装置の断面図を示す。Sectional drawing of the semiconductor device of 3rd Example is shown. 第4実施例の半導体装置の断面図を示す。Sectional drawing of the semiconductor device of 4th Example is shown.

符号の説明Explanation of symbols

2:ドレイン電極
4:ドレインコンタクト層(n型GaN層)
6:ドリフト層(n型GaN層)
8:浮遊電流ブロック領域(深い準位を持つGaN領域またはp型のGaN領域)
10:p型GaN層
12:p型コンタクト領域
14:ソース電極
16:ソースコンタクト領域
18:ゲート電極
20:ゲート絶縁層
22:AlGaN層
24:i型のGaN層
26:アパーチャーを充填しているGaN層
28:アパーチャー
30:半導体装置
32,34,36:マスク
40,50,60:半導体装置
2: Drain electrode 4: Drain contact layer (n + type GaN layer)
6: Drift layer (n - type GaN layer)
8: Floating current block region (a GaN region having a deep level or a p-type GaN region)
10: p-type GaN layer 12: p-type contact region 14: source electrode 16: source contact region 18: gate electrode 20: gate insulating layer 22: AlGaN layer 24: i-type GaN layer 26: GaN filled with an aperture Layer 28: Aperture 30: Semiconductor devices 32, 34, 36: Masks 40, 50, 60: Semiconductor device

Claims (7)

n型のIII族窒化物系化合物半導体で形成されている下層に、p型のIII族窒化物系化合物半導体で形成されている上層が積層されており、
その上層を貫通するアパーチャーが形成されており、
そのアパーチャーにn型またはi型のIII族窒化物系化合物半導体が充填されており、
前記下層の一部に、伝導帯と価電子帯の中間値よりも価電子帯側の深い準位を持っている浮遊電流ブロック領域が形成されていることを特徴とする半導体装置。
An upper layer formed of a p-type group III nitride compound semiconductor is stacked on a lower layer formed of an n-type group III nitride compound semiconductor,
An aperture that penetrates the upper layer is formed,
The aperture is filled with an n-type or i-type group III nitride compound semiconductor,
A semiconductor device, wherein a floating current block region having a deeper level on the valence band side than an intermediate value between a conduction band and a valence band is formed in a part of the lower layer.
III族窒化物系化合物半導体で形成されている表面側下層の表面に、その表面側下層よりもバンドギャップが広いIII族窒化物系化合物半導体で形成されている表面側上層が積層されているヘテロ構造が、前記上層の上に形成されていることを特徴とする請求項1の半導体装置。   A heterojunction in which a surface-side upper layer formed of a group III nitride compound semiconductor having a wider band gap than the surface-side lower layer is laminated on the surface of the surface-side lower layer formed of the group III nitride compound semiconductor The semiconductor device according to claim 1, wherein a structure is formed on the upper layer. III族窒化物系化合物半導体で形成されている表面側層と、その表面側層の表面を覆っているゲート絶縁層と、そのゲート絶縁層の表面に形成されているゲート電極で構成されているFET構造が、前記上層の上に形成されていることを特徴とする請求項1の半導体装置。   It is composed of a surface side layer formed of a group III nitride compound semiconductor, a gate insulating layer covering the surface of the surface side layer, and a gate electrode formed on the surface of the gate insulating layer. 2. The semiconductor device according to claim 1, wherein an FET structure is formed on the upper layer. 半導体基板を平面視した状態において、前記浮遊電流ブロック領域の形成範囲と、前記アパーチャーの形成範囲が重複することを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   4. The semiconductor device according to claim 1, wherein a formation range of the floating current block region and a formation range of the aperture overlap in a state in which the semiconductor substrate is viewed in plan. 5. 半導体基板を平面視した状態において、前記浮遊電流ブロック領域の形成範囲が、前記アパーチャーの形成範囲よりも広く広がっていることを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   4. The semiconductor device according to claim 1, wherein a formation range of the floating current block region is wider than a formation range of the aperture in a state in which the semiconductor substrate is viewed in plan. 5. . 前記浮遊電流ブロック領域が、前記下層内に分散して配置されていることを特徴とする請求項1から5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the floating current block regions are distributed in the lower layer . 前記浮遊電流ブロック領域が、前記下層内に多層に分かれて分散配置されていることを特徴とする請求項1から5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the floating current block region is distributed in multiple layers in the lower layer .
JP2008256802A 2008-10-01 2008-10-01 Semiconductor device Active JP5271022B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008256802A JP5271022B2 (en) 2008-10-01 2008-10-01 Semiconductor device
PCT/IB2009/007033 WO2010038150A1 (en) 2008-10-01 2009-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256802A JP5271022B2 (en) 2008-10-01 2008-10-01 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010087374A JP2010087374A (en) 2010-04-15
JP5271022B2 true JP5271022B2 (en) 2013-08-21

Family

ID=41549874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256802A Active JP5271022B2 (en) 2008-10-01 2008-10-01 Semiconductor device

Country Status (2)

Country Link
JP (1) JP5271022B2 (en)
WO (1) WO2010038150A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720000B2 (en) 2011-02-23 2015-05-20 パナソニックIpマネジメント株式会社 Nitride semiconductor device
JP5687520B2 (en) * 2011-02-25 2015-03-18 トヨタ自動車株式会社 Semiconductor device including p-type group III nitride semiconductor layer
JP2014520405A (en) * 2011-06-20 2014-08-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Current aperture vertical electron transistor
FR2998709B1 (en) * 2012-11-26 2015-01-16 Commissariat Energie Atomique METHOD FOR MANUFACTURING A NORMALLY BLOCKED TYPE HETEROJUNCTION TRANSISTOR
CN103151392A (en) * 2013-02-07 2013-06-12 电子科技大学 Vertical gallium nitride-based heterojunction field effect transistor with p type gallium nitride buried layer
FR3005202B1 (en) * 2013-04-30 2016-10-14 Commissariat Energie Atomique METHOD FOR FORMING AN IMPLANTED AREA FOR A NORMALLY BLOCKED TYPE HETEROJUNCTION TRANSISTOR
FR3011981B1 (en) * 2013-10-11 2018-03-02 Centre National De La Recherche Scientifique - Cnrs - HETEROJUNCTION-BASED HEMT TRANSISTOR
JP6560117B2 (en) * 2015-12-25 2019-08-14 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2018046247A (en) 2016-09-16 2018-03-22 株式会社東芝 Semiconductor device
CN109037327A (en) * 2018-07-18 2018-12-18 大连理工大学 A kind of longitudinal gate structure power device and preparation method thereof with local current barrier layer
CN111063739A (en) * 2019-12-10 2020-04-24 西安电子科技大学 Based on SiO2Aluminum nitride CAVET device of current blocking layer and manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035294C (en) * 1993-10-29 1997-06-25 电子科技大学 Withstand voltage layer with special shaped doped island for semiconductor device
SE9704149D0 (en) * 1997-11-13 1997-11-13 Abb Research Ltd A semiconductor device of SiC and a transistor of SiC having an insulated gate
DE19803424C1 (en) * 1998-01-29 1999-06-02 Siemens Ag Semiconductor insulator structure with reduced field strength at surface, esp. for component technology silicon carbide
JP3994703B2 (en) * 2001-08-29 2007-10-24 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP4955292B2 (en) * 2006-03-31 2012-06-20 株式会社豊田中央研究所 Semiconductor device

Also Published As

Publication number Publication date
WO2010038150A1 (en) 2010-04-08
JP2010087374A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5271022B2 (en) Semiconductor device
JP6817559B2 (en) Semiconductor device
JP6174874B2 (en) Semiconductor device
US9685549B2 (en) Nitride semiconductor device and method for manufacturing same
US8664696B2 (en) Nitride semiconductor device
JP5954831B2 (en) Manufacturing method of semiconductor device
JP2008053448A (en) Mis-type field effect transistor and manufacturing method thereof
WO2013073127A1 (en) Semiconductor device and method for manufacturing same
US20220209001A1 (en) Nitride semiconductor device and method for manufacturing same
KR20140011791A (en) High electron mobility transistor and method of manufacturing the same
WO2020158394A1 (en) Nitride semiconductor device
JP2009060049A (en) Nitride compound semiconductor device
CN114270532B (en) Semiconductor device and method for manufacturing the same
WO2015045833A1 (en) Semiconductor device and method for manufacturing same
US20220165875A1 (en) Nitride semiconductor apparatus
CN114080691A (en) Nitride-based semiconductor device and method for manufacturing the same
KR20140115585A (en) Multiple field plate transistor and manufacturing method thereof
JP5000159B2 (en) Field effect transistor
JP2007115861A (en) Hetero junction transistor
CN114207840B (en) Nitride-based semiconductor device and method for manufacturing the same
WO2021149599A1 (en) Method for manufacturing nitride semiconductor device and nitride semiconductor device
JP5687520B2 (en) Semiconductor device including p-type group III nitride semiconductor layer
JP5638225B2 (en) Heterojunction field effect transistor and manufacturing method thereof
WO2019003363A1 (en) Semiconductor device and production method therefor
WO2023219046A1 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5271022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250