JP5268965B2 - Mold cooling structure and manufacturing method thereof - Google Patents

Mold cooling structure and manufacturing method thereof Download PDF

Info

Publication number
JP5268965B2
JP5268965B2 JP2010036204A JP2010036204A JP5268965B2 JP 5268965 B2 JP5268965 B2 JP 5268965B2 JP 2010036204 A JP2010036204 A JP 2010036204A JP 2010036204 A JP2010036204 A JP 2010036204A JP 5268965 B2 JP5268965 B2 JP 5268965B2
Authority
JP
Japan
Prior art keywords
inner cylinder
mold
cooling structure
heat transfer
cooling hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010036204A
Other languages
Japanese (ja)
Other versions
JP2011167751A (en
Inventor
雅道 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2010036204A priority Critical patent/JP5268965B2/en
Publication of JP2011167751A publication Critical patent/JP2011167751A/en
Application granted granted Critical
Publication of JP5268965B2 publication Critical patent/JP5268965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform uniform cooling in the periphery of a die cooling hole. <P>SOLUTION: The die cooling structure 1 includes: an inner cylinder 4 that is arranged in a cooling hole 3 formed in a die 2; a plurality of heat transfer grains (metallic balls 8) that are evenly arranged in the entire gap 6 formed between the outer surface of the tip end 41 of the inner cylinder 4 and the inner surface of the cooling hole 3 and that are in contact with both the surfaces; and a joint member 5 that is connected to the inner cylinder 4 and that supplies a coolant into the inner cylinder 4. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、冷媒によって金型を冷却する金型冷却構造に関する。   The present invention relates to a mold cooling structure for cooling a mold with a refrigerant.

鋳造用金型の中には、金型表面温度を均一にするために、金型の背面からキャビティ面近傍まで延びる冷却穴を形成し、この冷却穴に冷媒(例えば、水)を供給する冷却構造を採用したものがある。   In the casting mold, in order to make the mold surface temperature uniform, a cooling hole extending from the back of the mold to the vicinity of the cavity surface is formed, and cooling (for example, water) is supplied to the cooling hole. Some have adopted a structure.

かかる冷却構成では、冷却穴の底部近傍の金型肉厚を薄くして冷却能力を高めているため、当該部位から金型にクラックが入りやすくなっている。金型にクラックが入ると、クラックを通じて冷媒がキャビティ内に入り込んで蒸発し、製品欠陥(ガス欠陥)の原因となりうる。   In such a cooling configuration, since the mold thickness near the bottom of the cooling hole is reduced to increase the cooling capacity, cracks are likely to enter the mold from the portion. When a crack enters the mold, the refrigerant enters the cavity through the crack and evaporates, which may cause a product defect (gas defect).

そこで、特許文献1に開示される金型冷却構造では、冷却穴に金属製の内筒体を圧入し、この内筒体の内部に冷媒を供給することで、金型にクラックが入った場合であっても冷媒がキャビティ内に入り込まないようにしている。   Therefore, in the mold cooling structure disclosed in Patent Document 1, when a metal inner cylinder is press-fitted into the cooling hole and a coolant is supplied to the inside of the inner cylinder, the mold is cracked. Even so, the refrigerant is prevented from entering the cavity.

特開平9−29416号公報JP-A-9-29416

しかしながら、特許文献1に記載の冷却構造においては、内筒体の外表面と冷却穴の内表面とを密着させるのが難しく、両表面の間に密着しない部位が生じると、当該部位を中心として冷却が十分に行われなくなり、金型表面温度の局所的な上昇を招く。   However, in the cooling structure described in Patent Document 1, it is difficult to closely contact the outer surface of the inner cylinder and the inner surface of the cooling hole. Cooling is not sufficiently performed, causing a local rise in the mold surface temperature.

本発明は、このような技術的課題を鑑みてなされたもので、金型の冷却穴周辺の冷却が一様に行われるようにすることを目的とする。   The present invention has been made in view of such technical problems, and it is an object of the present invention to uniformly cool the periphery of a cooling hole of a mold.

本発明のある態様によれば、金型冷却構造であって、金型に形成される冷却穴内に配置される内筒体と、前記内筒体の先端部の外表面と前記冷却穴の内表面の間に形成される隙間全体に一様に配置され、かつ、前記両表面に接触する複数の伝熱粒体と、前記内筒体に連結され、前記内筒体内に冷媒を供給する継手部材と、を備えたことを特徴とする金型冷却構造が提供される。   According to an aspect of the present invention, there is provided a mold cooling structure, an inner cylinder disposed in a cooling hole formed in the mold, an outer surface of a tip portion of the inner cylinder, and an inner part of the cooling hole A plurality of heat transfer particles that are uniformly disposed in the entire gap formed between the surfaces and are in contact with the two surfaces, and a joint that is connected to the inner cylinder and supplies the refrigerant into the inner cylinder. And a mold cooling structure including the member.

また、本発明の別の態様によれば、金型冷却構造の製造方法であって、内筒体の先端部の外表面全体に複数の伝熱粒体を一様に付着させる工程と、前記複数の伝熱粒体が付着した前記内筒体を金型に形成される冷却穴に挿入し、前記冷却穴内に前記内筒体を配置する工程と、前記内筒体内に冷媒を供給する継手部材を前記内筒体に連結する工程と、を含むことを特徴とする金型冷却構造の製造方法が提供される。   Further, according to another aspect of the present invention, there is provided a method for manufacturing a mold cooling structure, wherein a plurality of heat transfer particles are uniformly attached to the entire outer surface of the tip of the inner cylinder, A step of inserting the inner cylinder body to which a plurality of heat transfer particles are attached into a cooling hole formed in a mold and disposing the inner cylinder body in the cooling hole, and a joint for supplying a refrigerant into the inner cylinder body And a step of connecting a member to the inner cylinder. A method for manufacturing a mold cooling structure is provided.

上記態様によれば、内筒体の先端部の外表面と冷却穴の内表面の間に形成される隙間全体に、複数の伝熱粒体が一様に配置される。これにより、金型から内筒体、さらには内筒体内を流れる冷媒への熱の移動が一様に行われ、金型の温度が局所的に上昇するのを防止することができる。   According to the above aspect, the plurality of heat transfer granules are uniformly arranged in the entire gap formed between the outer surface of the tip portion of the inner cylinder and the inner surface of the cooling hole. Accordingly, the heat is uniformly transferred from the mold to the inner cylinder, and further to the refrigerant flowing through the inner cylinder, and the temperature of the mold can be prevented from rising locally.

本発明の実施形態に係る金型冷却構造の構成図である。It is a block diagram of the metal mold | die cooling structure which concerns on embodiment of this invention. 本発明の実施形態に係る金型冷却構造の製造工程を示したフローチャートである。It is the flowchart which showed the manufacturing process of the metal mold | die cooling structure which concerns on embodiment of this invention. 金型冷却構造の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of a metal mold | die cooling structure. 金型冷却構造の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of a metal mold | die cooling structure. 図4のA部の拡大図である。It is an enlarged view of the A section of FIG. 金型冷却構造の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of a metal mold | die cooling structure. 図6のB部の拡大図である。It is an enlarged view of the B section of FIG.

以下、添付図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明の実施形態に係る金型冷却構造1を示しており、金型2は、例えば、アルミダイカストで用いられるダイカスト金型である。   FIG. 1 shows a mold cooling structure 1 according to an embodiment of the present invention, and a mold 2 is a die-casting mold used in aluminum die casting, for example.

金型冷却構造1は、金型2に形成される冷却穴3と、冷却穴3内に配置される内筒体4と、内筒体4に連結されて内筒体4内に冷媒を連続的に供給する継手部材5とを備える。この例では、冷媒として水が用いられるが、オイルを冷媒として用いることも可能である。   The mold cooling structure 1 includes a cooling hole 3 formed in the mold 2, an inner cylinder 4 disposed in the cooling hole 3, and a continuous refrigerant in the inner cylinder 4 connected to the inner cylinder 4. And a joint member 5 to be supplied. In this example, water is used as the refrigerant, but oil can also be used as the refrigerant.

各構成について説明すると、冷却穴3は、金型2の背面からキャビティ面(金型2によって画成されるキャビティに露出する表面)に向けて、キャビティ面近傍まで延びる穴である。冷却穴3の底部は半球形になっており、開放端側は他の部位よりも形が大きな拡径部31となっている。   Explaining each configuration, the cooling hole 3 is a hole extending from the back surface of the mold 2 toward the cavity surface (surface exposed to the cavity defined by the mold 2) to the vicinity of the cavity surface. The bottom of the cooling hole 3 has a hemispherical shape, and the open end side is a diameter-expanded portion 31 having a larger shape than other portions.

内筒体4は、先端が半球殻形の先端部41、先端部41に接続し先端部41と同一の内径及び先端部41よりも大きな外径を有する胴部42、胴部42に接続し胴部42よりも大きな外径を有する基部43を有する。先端部41と胴部42の間には、それらの外径の違いから段部44(図5)が周方向に形成され、これによって、内筒体4の先端部41の外表面と冷却穴3の内表面の間に段部44の高さに対応した隙間6が形成される。内筒体4の基部43の外径は冷却穴3の拡径部31の内径と略等しく、また、内筒体4の内表面には、継手部材5の連結部54が螺合される雌ねじ部が形成される。内筒体4の材質としては、熱伝達性、防錆性に優れた金属、例えば、ステンレス、銅合金が用いられる。   The inner cylinder 4 is connected to a tip part 41 having a hemispherical shell shape and a barrel part 42 having a same inner diameter as the tip part 41 and a larger outer diameter than the tip part 41. A base portion 43 having an outer diameter larger than that of the body portion 42 is provided. A stepped portion 44 (FIG. 5) is formed in the circumferential direction between the distal end portion 41 and the body portion 42 due to the difference in the outer diameters thereof, whereby the outer surface of the distal end portion 41 of the inner cylindrical body 4 and the cooling hole are formed. A gap 6 corresponding to the height of the stepped portion 44 is formed between the inner surfaces of the three. The outer diameter of the base portion 43 of the inner cylinder 4 is substantially equal to the inner diameter of the enlarged diameter portion 31 of the cooling hole 3, and a female screw into which the connecting portion 54 of the joint member 5 is screwed onto the inner surface of the inner cylinder 4. Part is formed. As the material of the inner cylinder 4, a metal excellent in heat transfer and rust prevention, for example, stainless steel or copper alloy is used.

内筒体4の先端部41の外表面と冷却穴3の内表面の間に形成される隙間6には、複数の伝熱粒体としての金属ボール8が全体にわたって一様に配置される。「一様」とは、隙間6における金属ボール8の分布が隙間6全体としてみて偏りがないという意味であり、金属ボール8が等間隔で配置されることや、隙間なく配置されることを要求するものではない。金属ボール8は径が隙間6と同等又は隙間6よりも若干小さい球形であるが、先端部41の外表面及び冷却穴3の内表面の法線方向に若干塑性変形した状態で隙間6に配置され(図7)、これにより金属ボール8と両表面は面接触する。   In the gap 6 formed between the outer surface of the distal end portion 41 of the inner cylinder 4 and the inner surface of the cooling hole 3, a plurality of metal balls 8 as heat transfer granules are uniformly disposed throughout. “Uniform” means that the distribution of the metal balls 8 in the gap 6 is not biased as the entire gap 6, and the metal balls 8 are required to be arranged at equal intervals or without any gap. Not what you want. The metal ball 8 has a spherical shape whose diameter is the same as or slightly smaller than the gap 6, but is disposed in the gap 6 in a state of being slightly plastically deformed in the normal direction of the outer surface of the tip 41 and the inner surface of the cooling hole 3. Thus, the metal ball 8 and both surfaces are in surface contact with each other (FIG. 7).

塑性変形前の金属ボール8の直径は、例えば1mmであり、塑性変形による潰し代は0.1〜0.2mm程度である。金属ボール8の材質としては、熱伝達性に優れ、塑性変形しやすい金属、例えば、銅が用いられる。   The diameter of the metal ball 8 before plastic deformation is, for example, 1 mm, and the crushing allowance due to plastic deformation is about 0.1 to 0.2 mm. As a material of the metal ball 8, a metal that is excellent in heat transfer and easily plastically deformed, for example, copper is used.

また、各金属ボール8の間に形成される微小隙間には、金型2と内筒体の間での熱伝達性を向上させるために、サーモグリス9が封入されている(図7参照)。サーモグリス9は熱伝達グリスとも呼ばれ、銅、アルミ等の金属粉末を混合したグリスである。   Moreover, in order to improve heat transferability between the mold 2 and the inner cylindrical body, thermo grease 9 is sealed in the minute gaps formed between the metal balls 8 (see FIG. 7). . The thermo grease 9 is also called heat transfer grease and is a grease in which metal powder such as copper and aluminum is mixed.

継手部材5は、継手本体51から延びる入口コネクタ52及び出口コネクタ53、継手本体51下側から下方に延び、かつ、外周に雄ねじ部が形成される連結部54、連結部54下面から内筒体4内部に向けて延びる通水管55、連結部54下面に開口する排出口56を備える。入口コネクタ52と通水管55、出口コネクタ53と排出口56はそれぞれ継手本体51内に形成される流路(不図示)により接続されている。   The joint member 5 includes an inlet connector 52 and an outlet connector 53 that extend from the joint body 51, a connecting portion 54 that extends downward from the lower side of the joint body 51, and has an external thread formed on the outer periphery, and an inner cylindrical body from the lower surface of the connecting portion 54 4 is provided with a water passage 55 extending toward the inside, and a discharge port 56 opened on the lower surface of the connecting portion 54. The inlet connector 52 and the water flow pipe 55, and the outlet connector 53 and the discharge port 56 are connected by flow paths (not shown) formed in the joint body 51, respectively.

入口コネクタ52から継手本体51内に流入する水は、継手本体51内の流路、通水管55を通って内筒体4内に供給され、内筒体4、金属ボール8及びサーモグリス9を介して金型2の熱を吸収する。金型2の冷却に供され温度が上昇した水は、内筒体4と通水管55の間に形成される流路、排出口56、継手本体51内の流路を通って、出口コネクタ53から外部へと排出される。   The water flowing into the joint body 51 from the inlet connector 52 is supplied into the inner cylinder body 4 through the flow path in the joint body 51 and the water pipe 55, and the inner cylinder body 4, the metal ball 8 and the thermo grease 9 are supplied. The heat | fever of the metal mold | die 2 is absorbed through. Water whose temperature has been increased due to cooling of the mold 2 passes through a flow path formed between the inner cylinder 4 and the water flow pipe 55, a discharge port 56, and a flow path in the joint main body 51, and then the outlet connector 53. Discharged from the outside.

次に、上記金型冷却構造1の製造方法について説明する。   Next, a method for manufacturing the mold cooling structure 1 will be described.

上記金型冷却構造1は図2に示されるS1〜S6の工程を経て製造される。以下、各工程について説明する。   The mold cooling structure 1 is manufactured through steps S1 to S6 shown in FIG. Hereinafter, each step will be described.

S1では、作業者は、内筒体4を用意する。図3(a)は用意される内筒体4を示している。   In S <b> 1, the worker prepares the inner cylinder 4. FIG. 3A shows the prepared inner cylinder 4.

S2では、作業者は、内筒体4の先端部41をサーモグリスで満たした容器内に先端部41を浸し、先端部41の外表面全体にサーモグリス9を塗布する。図3(b)は、先端部41にサーモグリス9を塗布した状態の内筒体4を示している。   In S <b> 2, the operator immerses the tip 41 in a container in which the tip 41 of the inner cylinder 4 is filled with thermogrease, and applies the thermogrease 9 to the entire outer surface of the tip 41. FIG. 3B shows the inner cylindrical body 4 in a state where the thermogrease 9 is applied to the distal end portion 41.

S3では、作業者は、内筒体4の先端部41を多数の金属ボール8で満たした容器内に挿入し、サーモグリス9の粘性を利用して先端部41の外表面全体に金属ボール8を一様に付着させる。図3(c)は、先端部41に金属ボール8を付着させた状態の内筒体4を示している。   In S <b> 3, the operator inserts the tip 41 of the inner cylinder 4 into a container filled with many metal balls 8, and uses the viscosity of the thermogrease 9 to apply the metal balls 8 to the entire outer surface of the tip 41. To adhere uniformly. FIG. 3C shows the inner cylindrical body 4 in a state where the metal ball 8 is attached to the distal end portion 41.

S4では、作業者は、先端部41に金属ボール8を付着させた内筒体4を、金型2の冷却穴3に挿入する(図4)。挿入時、金属ボール8が冷却穴3の内壁と接触すると、金属ボール8には挿入方向と逆向きの摩擦力が作用するが、内筒体4の外表面に形成される段部44(図5)により基部43側への金属ボール8の移動が制限されるため、金属ボール8は内筒体4と共に冷却穴3の底部へと送り込まれる。これにより、内筒体4の先端部41の外表面と冷却穴3の内表面の間に形成される隙間6には、全体にわたって金属ボール8が一様に偏りなく配置される。   In S4, the operator inserts the inner cylindrical body 4 with the metal ball 8 attached to the tip 41 into the cooling hole 3 of the mold 2 (FIG. 4). When the metal ball 8 comes into contact with the inner wall of the cooling hole 3 at the time of insertion, a friction force acting in the direction opposite to the insertion direction acts on the metal ball 8, but the step portion 44 formed on the outer surface of the inner cylinder 4 (see FIG. 5) restricts the movement of the metal ball 8 toward the base 43 side, so that the metal ball 8 is fed together with the inner cylinder 4 to the bottom of the cooling hole 3. As a result, the metal balls 8 are uniformly disposed in the gap 6 formed between the outer surface of the tip 41 of the inner cylinder 4 and the inner surface of the cooling hole 3 without any bias.

S5では、作業者は、内筒体4の開口から治具10を挿入し、治具10をハンマーで打ち込むことで、内筒体4を冷却穴3に軽圧入する(図6)。治具10は、内筒体4の内径よりも若干径が大きな球体10aを先端に有しており、これが内筒体4内に押し込まれることで、内筒体4の径が拡大されるとともに内筒体4全体が冷却穴3の底部に向けて押し込まれる。   In S5, the operator inserts the jig 10 through the opening of the inner cylinder 4 and strikes the jig 10 with a hammer to lightly press the inner cylinder 4 into the cooling hole 3 (FIG. 6). The jig 10 has a spherical body 10a whose diameter is slightly larger than the inner diameter of the inner cylinder 4 at the tip, and when this is pushed into the inner cylinder 4, the diameter of the inner cylinder 4 is increased. The entire inner cylinder 4 is pushed toward the bottom of the cooling hole 3.

これにより、内筒体4の先端部41では、先端部41の外表面と冷却穴3の内表面の間に形成される隙間6が狭くなり、この隙間6に配置されていた金属ボール8は両表面の法線方向に塑性変形して潰れ、両表面と面接触する。そして、金属ボール8と共に先端部41の外表面に付着していたサーモグリス9は、金属ボール8の間に形成される微小隙間に封入される(図7)。金属ボール8が隙間6全体に一様に配置されていることから、それらの間に封入されるサーモグリス9も隙間6全体に一様に配置される。また、内筒体4の胴部42では、胴部42の外表面と冷却穴3の内表面との間の隙間がほぼなくなり、内筒体4が冷却穴3内に安定的に配置、保持される。   Thereby, in the front-end | tip part 41 of the inner cylinder 4, the clearance gap 6 formed between the outer surface of the front-end | tip part 41 and the inner surface of the cooling hole 3 becomes narrow, and the metal ball 8 arrange | positioned in this clearance gap 6 becomes Both surfaces are plastically deformed and crushed, and are in surface contact with both surfaces. And the thermogrease 9 adhering to the outer surface of the front-end | tip part 41 with the metal ball 8 is enclosed by the micro clearance gap formed between the metal balls 8 (FIG. 7). Since the metal balls 8 are arranged uniformly over the entire gap 6, the thermo grease 9 enclosed between them is also arranged uniformly over the entire gap 6. Further, in the body portion 42 of the inner cylinder body 4, there is almost no gap between the outer surface of the body portion 42 and the inner surface of the cooling hole 3, and the inner cylinder body 4 is stably disposed and held in the cooling hole 3. Is done.

S6では、作業者は、内筒体4の基部43に継手部材5の連結部54を螺合させ、これによって図1に示される金型冷却構造1を得る。   In S <b> 6, the worker screws the connecting portion 54 of the joint member 5 into the base portion 43 of the inner cylinder 4, thereby obtaining the mold cooling structure 1 shown in FIG. 1.

なお、この例では全ての工程を作業者が行っているが、一部又は全部の工程を機械により行うことも可能である。   In this example, the operator performs all the steps, but some or all of the steps can be performed by a machine.

次に、上記金型冷却構造1を採用したことによる作用効果について説明する。   Next, the effect by having employ | adopted the said mold cooling structure 1 is demonstrated.

上記金型冷却構造1によれば、内筒体4の先端部41の外表面と冷却穴3の内表面の間に形成される隙間6全体に、複数の伝熱粒体としての金属ボール8が一様に配置される。これにより、金型2から内筒体4、さらには内筒体4内を流れる水への熱の移動が金属ボール8を介して一様に行われ、金型2の温度が局所的に上昇するのを防止することができる(請求項1、6に対応する効果)。   According to the mold cooling structure 1, the metal balls 8 as a plurality of heat transfer granules are formed in the entire gap 6 formed between the outer surface of the tip 41 of the inner cylinder 4 and the inner surface of the cooling hole 3. Are arranged uniformly. Thereby, the heat transfer from the mold 2 to the inner cylinder 4 and further to the water flowing in the inner cylinder 4 is uniformly performed through the metal balls 8, and the temperature of the mold 2 is locally increased. (Effects corresponding to claims 1 and 6).

金型2のメンテナンス、例えば、クラックの補修のために内筒体4を取り外す必要がある場合であっても、内筒体4は冷却穴3に挿入(上記実施形態では軽圧入)されているだけなので、内筒体4を引っ張るだけで容易に取り外すことができる。   Even when the inner cylinder 4 needs to be removed for maintenance of the mold 2, for example, for repairing a crack, the inner cylinder 4 is inserted into the cooling hole 3 (light press-fitting in the above embodiment). Therefore, it can be easily removed simply by pulling the inner cylinder 4.

また、金属ボール8は、内筒体4の先端部41の外表面及び冷却穴3の内表面と面接触するので、金型2と金属ボール8の間の熱伝達、金属ボール8と内筒体4の間の熱伝達が良好に行われ、金型2と内筒体4の間で優れた熱伝達性を実現することができる(請求項2に対応する効果)。   Further, since the metal ball 8 is in surface contact with the outer surface of the tip portion 41 of the inner cylinder 4 and the inner surface of the cooling hole 3, heat transfer between the mold 2 and the metal ball 8, the metal ball 8 and the inner cylinder. Heat transfer between the bodies 4 is performed well, and excellent heat transfer properties can be realized between the mold 2 and the inner cylinder 4 (effect corresponding to claim 2).

また、金属ボール8の間に形成される微小な隙間にサーモグリス9が封入される。これにより、金属ボール8が接触しない部位においてもサーモグリス9を介して熱伝達が行われるので、熱伝達性をより一層高めることができる(請求項3、4に対応する効果)。なお、封入される流体としてはサーモグリス9が好適であるが、これに限らず、少なくとも空気よりも熱伝達率の高い流体であればよい。   Further, thermo grease 9 is enclosed in a minute gap formed between the metal balls 8. Thereby, since heat transfer is performed via the thermogrease 9 even in a portion where the metal ball 8 does not contact, the heat transfer performance can be further enhanced (effect corresponding to claims 3 and 4). Thermoglyce 9 is suitable as the fluid to be sealed, but is not limited to this, and any fluid that has a heat transfer coefficient higher than that of air may be used.

また、内筒体4の外表面には金属ボール8の基部43側への移動を規制する段部44が形成される。これにより、内筒体4を冷却穴3に挿入する際の金属ボール8の偏りや脱落を防止し、内筒体4の先端部41の外表面と冷却穴3の内表面の間に形成される隙間6全体に金属ボール8を一様に配置することができる(請求項5に対応する効果)。   Further, a step portion 44 that restricts the movement of the metal ball 8 toward the base portion 43 is formed on the outer surface of the inner cylindrical body 4. This prevents the metal ball 8 from being biased or dropped off when the inner cylinder 4 is inserted into the cooling hole 3, and is formed between the outer surface of the tip 41 of the inner cylinder 4 and the inner surface of the cooling hole 3. The metal balls 8 can be uniformly arranged in the entire gap 6 (effect corresponding to claim 5).

また、上記金型冷却構造1の製造は、内筒体4の先端部41に金属ボール8を一様に付着させ、これを冷却穴3に挿入することで行われる。これにより、上記金型冷却構造1を容易に製造することが可能である(請求項6に対応する効果)。   The mold cooling structure 1 is manufactured by uniformly attaching the metal ball 8 to the tip 41 of the inner cylinder 4 and inserting the metal ball 8 into the cooling hole 3. Thereby, it is possible to easily manufacture the mold cooling structure 1 (effect corresponding to claim 6).

また、金属ボール8を付着させた内筒体4を挿入し内筒体4の先端部41の外表面と冷却穴3の内表面の間に形成される隙間6を縮小して金属ボール8を塑性変形させる。これにより、金属ボール8と内筒体4の先端部41の外表面、冷却穴3の内表面との面接触を容易に実現することができる(請求項7に対応する効果)。   Also, the inner cylinder 4 with the metal ball 8 attached is inserted, and the gap 6 formed between the outer surface of the tip 41 of the inner cylinder 4 and the inner surface of the cooling hole 3 is reduced to reduce the metal ball 8. Plastically deform. Thereby, the surface contact between the metal ball 8 and the outer surface of the tip portion 41 of the inner cylinder 4 and the inner surface of the cooling hole 3 can be easily realized (effect corresponding to claim 7).

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above. However, the above embodiment is merely one example of application of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

例えば、本発明は、アルミダイカストに用いられる金型に限らず、冷却を要する金型全般に適用可能である。   For example, the present invention is not limited to a mold used for aluminum die casting, but can be applied to all molds that require cooling.

また、内筒体4の先端部41の外表面と冷却穴3の内表面の間に形成される隙間6に配置される伝熱粒体として金属ボール8を用いたが、伝熱粒体の形状は球形に限らず、凸レンズ形、まゆ形、半球形等であってもよい。   Moreover, although the metal balls 8 were used as the heat transfer granules disposed in the gap 6 formed between the outer surface of the tip portion 41 of the inner cylinder 4 and the inner surface of the cooling hole 3, The shape is not limited to a spherical shape, and may be a convex lens shape, an eyebrows shape, a hemispherical shape, or the like.

また、内筒体4の先端部41に金属ボール8を付着させる方法として、サーモグリス9の粘性を利用する方法を説明したが、接着剤、磁石等で付着させてもよい。   In addition, as a method of attaching the metal ball 8 to the distal end portion 41 of the inner cylinder 4, the method using the viscosity of the thermogrease 9 has been described. However, the metal ball 8 may be attached using an adhesive, a magnet, or the like.

1 金型冷却構造
2 金型
3 冷却穴
4 内筒体
41 先端部
43 基部
44 段部
5 継手部材
6 隙間
8 金属ボール(伝熱粒体)
9 サーモグリス
DESCRIPTION OF SYMBOLS 1 Mold cooling structure 2 Mold 3 Cooling hole 4 Inner cylinder 41 Tip part 43 Base part 44 Step part 5 Joint member 6 Crevice 8 Metal ball (heat-transfer granule)
9 Thermo grease

Claims (7)

金型冷却構造であって、
金型に形成される冷却穴内に配置される内筒体と、
前記内筒体の先端部の外表面と前記冷却穴の内表面の間に形成される隙間全体に一様に配置され、かつ、前記両表面に接触する複数の伝熱粒体と、
前記内筒体に連結され、前記内筒体内に冷媒を供給する継手部材と、
を備えたことを特徴とする金型冷却構造。
Mold cooling structure,
An inner cylinder disposed in a cooling hole formed in the mold,
A plurality of heat transfer particles that are uniformly disposed in the entire gap formed between the outer surface of the tip of the inner cylinder and the inner surface of the cooling hole, and that are in contact with both surfaces;
A joint member connected to the inner cylinder and supplying a refrigerant into the inner cylinder;
A mold cooling structure characterized by comprising:
請求項1に記載の金型冷却構造であって、
前記複数の伝熱粒体が前記両表面と面接触する、
ことを特徴とする金型冷却構造。
The mold cooling structure according to claim 1,
The plurality of heat transfer particles are in surface contact with both surfaces;
A mold cooling structure characterized by that.
請求項1または2に記載の金型冷却構造であって、
前記複数の伝熱粒体の間に形成される隙間に空気よりも熱伝達率の高い流体が封入されている、
ことを特徴とする金型冷却構造。
The mold cooling structure according to claim 1 or 2,
A fluid having a higher heat transfer coefficient than air is enclosed in a gap formed between the plurality of heat transfer granules,
A mold cooling structure characterized by that.
請求項3に記載の金型冷却構造であって、
前記流体がサーモグリスである、
ことを特徴とする金型冷却構造。
The mold cooling structure according to claim 3,
The fluid is a thermoglyce;
A mold cooling structure characterized by that.
請求項1から4のいずれか一つに記載の金型冷却構造であって、
前記複数の伝熱粒体の前記内筒体の基部側への移動を規制する段部が前記内筒体の外表面に形成されている、
ことを特徴とする金型冷却構造。
The mold cooling structure according to any one of claims 1 to 4,
A step portion for restricting movement of the plurality of heat transfer particles to the base side of the inner cylinder is formed on the outer surface of the inner cylinder.
A mold cooling structure characterized by that.
金型冷却構造の製造方法であって、
内筒体の先端部の外表面全体に複数の伝熱粒体を一様に付着させる工程と、
前記複数の伝熱粒体が付着した前記内筒体を金型に形成される冷却穴に挿入し、前記冷却穴内に前記内筒体を配置する工程と、
前記内筒体内に冷媒を供給する継手部材を前記内筒体に連結する工程と、
を含むことを特徴とする金型冷却構造の製造方法。
A method of manufacturing a mold cooling structure,
A step of uniformly attaching a plurality of heat transfer particles to the entire outer surface of the tip of the inner cylinder,
Inserting the inner cylinder to which the plurality of heat transfer particles are attached into a cooling hole formed in a mold, and disposing the inner cylinder in the cooling hole;
Connecting a joint member for supplying a refrigerant into the inner cylinder to the inner cylinder;
The manufacturing method of the metal mold | die cooling structure characterized by including this.
請求項6に記載の金型冷却構造の製造方法であって、
前記内筒体を塑性変形させて前記内筒体の前記先端部の外表面と前記冷却穴の内表面の間に形成される隙間を縮小し、これによって前記複数の伝熱粒体を塑性変形させる工程、
を含むことを特徴とする金型冷却構造の製造方法。
It is a manufacturing method of the metallic mold cooling structure according to claim 6,
The inner cylinder is plastically deformed to reduce the gap formed between the outer surface of the tip of the inner cylinder and the inner surface of the cooling hole, thereby plastically deforming the plurality of heat transfer granules. The process of
The manufacturing method of the metal mold | die cooling structure characterized by including this.
JP2010036204A 2010-02-22 2010-02-22 Mold cooling structure and manufacturing method thereof Expired - Fee Related JP5268965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036204A JP5268965B2 (en) 2010-02-22 2010-02-22 Mold cooling structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036204A JP5268965B2 (en) 2010-02-22 2010-02-22 Mold cooling structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011167751A JP2011167751A (en) 2011-09-01
JP5268965B2 true JP5268965B2 (en) 2013-08-21

Family

ID=44682407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036204A Expired - Fee Related JP5268965B2 (en) 2010-02-22 2010-02-22 Mold cooling structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5268965B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5755212B2 (en) * 2012-11-16 2015-07-29 リョービ株式会社 Die casting mold and die casting method
JP6124298B2 (en) * 2013-08-20 2017-05-10 株式会社明和製作所 Mold cooling structure
JP6351319B2 (en) * 2014-03-18 2018-07-04 ジヤトコ株式会社 Mold cooling structure and manufacturing method thereof
JP6170265B1 (en) * 2016-08-22 2017-07-26 有限会社豊岡製作所 Bottomed cooling pipe structure for cooling structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182865A (en) * 1985-02-08 1986-08-15 Hitachi Ltd Cooling water circulating joint for metallic mold
JPH01178358A (en) * 1988-01-05 1989-07-14 Daido Steel Co Ltd Device for cooling metallic mold
JPH0641955U (en) * 1992-11-18 1994-06-03 日本軽金属株式会社 Mold cooling device
JPH11156520A (en) * 1997-11-28 1999-06-15 Nissan Motor Co Ltd Die cooling structure
JP2000210940A (en) * 1999-01-25 2000-08-02 Hitachi Metals Ltd Mold cooling structure and mold cooling method
JP3481524B2 (en) * 1999-10-14 2003-12-22 トヨタ自動車株式会社 Mold cooling structure and its manufacturing method
JP5384302B2 (en) * 2009-11-13 2014-01-08 株式会社スグロ鉄工 Cooling unit
JP2011131240A (en) * 2009-12-24 2011-07-07 Tokyo Seimitsu Kogyo Kk Nesting pin and die

Also Published As

Publication number Publication date
JP2011167751A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5268965B2 (en) Mold cooling structure and manufacturing method thereof
JP4650067B2 (en) Manufacturing method of mold cooling structure
US10155264B2 (en) Water-communicating mechanism
US20140008031A1 (en) Temperature control device, casting die and method for producing a cast component
JP4518012B2 (en) Mold cooling structure and cooling method
JP5412386B2 (en) Thin-walled bottomed cylindrical metal member and manufacturing method thereof
JP2021081178A (en) Method for manufacturing cooling device using heat pipe
CN106904365B (en) Container with accessory
JP2011127138A (en) Method for producing cylinder-shaped sputtering target
JP5593241B2 (en) Mold cooling structure and manufacturing method thereof
KR20080093721A (en) Forging metal mold having for coling pathway
KR100872587B1 (en) Manufacturing thereof for oil cooler of automatic transmission
CN100445683C (en) Heat pipe heat radiator
CN105492180A (en) Method and unit for producing a mechanical part by sintering a powder metal material
JP6576997B2 (en) Cooling pipe and mold cooling mechanism
JP6170265B1 (en) Bottomed cooling pipe structure for cooling structure
JP6917292B2 (en) Forging equipment
Tang et al. Experimental and FEM study on sinking of miniature inner grooved copper tube
JP5993554B2 (en) Double tube and manufacturing method thereof
JP2004141901A (en) Method for manufacturing forged product having two mutually confrontal parallel surfaces, and forged product
US8646178B2 (en) Heat exchanger fabrication with improved thermal exchange efficiency
JP6217846B2 (en) Thermal spraying method and thermal spraying apparatus
JP2005349424A (en) Molding die
CN219169577U (en) Mould point cooling structure for repairing water leakage
CN102355965A (en) Moulded casing with added piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Ref document number: 5268965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees