JP5268963B2 - Pressure measuring system and pressure measuring method - Google Patents

Pressure measuring system and pressure measuring method Download PDF

Info

Publication number
JP5268963B2
JP5268963B2 JP2010028068A JP2010028068A JP5268963B2 JP 5268963 B2 JP5268963 B2 JP 5268963B2 JP 2010028068 A JP2010028068 A JP 2010028068A JP 2010028068 A JP2010028068 A JP 2010028068A JP 5268963 B2 JP5268963 B2 JP 5268963B2
Authority
JP
Japan
Prior art keywords
pressure
wavelength band
fluorescence
light
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010028068A
Other languages
Japanese (ja)
Other versions
JP2011163982A (en
Inventor
静一郎 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010028068A priority Critical patent/JP5268963B2/en
Publication of JP2011163982A publication Critical patent/JP2011163982A/en
Application granted granted Critical
Publication of JP5268963B2 publication Critical patent/JP5268963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure measuring system capable of easily measuring a differential pressure. <P>SOLUTION: The pressure measuring system includes at least one phosphor 2 emitting fluorescence of a first wavelength band and fluorescence of a second wavelength band different from the first wavelength band; a first pressure receiving element 3 receiving a first pressure P<SB>O1</SB>and applying a first modulation to at least the fluorescence of the first wavelength band; a second pressure receiving element 4 receiving a second pressure P<SB>O2</SB>and applying a second modulation to at least the fluorescence of the second wavelength band; an attenuation characteristics measuring section 301 measuring attenuation characteristics of combined light of the fluorescence of the first wavelength band applied with the first modulation and the fluorescence of the second wavelength band applied with the second modulation; and a differential pressure calculating section 302 calculating the differential pressure &Delta;P between the first and second pressures on the basis of the attenuation characteristics. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は測定技術に係り、圧力測定システム及び圧力測定方法に関する。   The present invention relates to a measurement technique, and relates to a pressure measurement system and a pressure measurement method.

石油プラント等を制御する場合、石油プラント内の異なる位置における流体の差圧を測定することが必要な場合がある。従来、差圧の測定位置に2個のファブリペロ干渉計を配置し、圧力によって生じる2個のファブリペロ干渉計のそれぞれの内部での光路差の変化を検出する方法が提案されている(例えば、特許文献1、2参照。)。   When controlling an oil plant or the like, it may be necessary to measure the differential pressure of the fluid at different locations within the oil plant. 2. Description of the Related Art Conventionally, a method has been proposed in which two Fabry-Perot interferometers are arranged at a differential pressure measurement position and a change in optical path difference in each of the two Fabry-Perot interferometers caused by pressure is detected (for example, a patent) References 1 and 2).

特開2003−166890号公報JP 2003-166890 A 特開2007−085943号公報JP 2007-059443 A

しかし、光路差の変化を読み取るためには、干渉縞の位置の同定に高度な信号処理が必要になる場合がある。そこで、本発明は、差圧を簡易に測定可能な圧力測定システム及び圧力測定方法を提供することを目的の一つとする。   However, in order to read the change in the optical path difference, advanced signal processing may be required to identify the position of the interference fringes. Accordingly, an object of the present invention is to provide a pressure measurement system and a pressure measurement method that can easily measure a differential pressure.

本発明の態様は、(a)第1の波長帯域の蛍光及び第1の波長帯域とは異なる第2の波長帯域の蛍光を発する少なくとも一つの蛍光体と、(b)第1の圧力を受け、少なくとも第1の波長帯域の蛍光に第1の変調を与える第1の受圧素子と、(c)第2の圧力を受け、少なくとも第2の波長帯域の蛍光に第2の変調を与える第2の受圧素子と、(d)第1の変調を与えられた第1の波長帯域の蛍光及び第2の変調を与えられた第2の波長帯域の蛍光の結合光の減衰特性を測定する減衰特性測定部と、(e)減衰特性に基づいて、第1及び第2の圧力の差圧を算出する差圧算出部と、を備える圧力測定システムであることを要旨とする。   Aspects of the present invention include: (a) at least one phosphor that emits fluorescence in a first wavelength band and fluorescence in a second wavelength band different from the first wavelength band; and (b) receives a first pressure. A first pressure-receiving element that applies a first modulation to the fluorescence in at least the first wavelength band; and (c) a second pressure that receives the second pressure and applies the second modulation to the fluorescence in at least the second wavelength band. And (d) an attenuation characteristic for measuring the attenuation characteristics of the combined light of the fluorescence in the first wavelength band given the first modulation and the fluorescence in the second wavelength band given the second modulation. The gist of the present invention is a pressure measurement system including a measurement unit and (e) a differential pressure calculation unit that calculates a differential pressure between the first and second pressures based on a damping characteristic.

本発明の他の態様は、(a)第1の波長帯域の蛍光及び第1の波長帯域とは異なる第2の波長帯域の蛍光を発することと、(b)少なくとも第1の波長帯域の蛍光に、第1の圧力に依存する第1の変調を与えることと、(c)少なくとも第2の波長帯域の蛍光に、第2の圧力に依存する第2の変調を与えることと、(d)第1の変調を与えられた第1の波長帯域の蛍光及び第2の変調を与えられた第2の波長帯域の蛍光の結合光の減衰特性を測定することと、(e)減衰特性に基づいて、第1及び第2の圧力の差圧を算出することと、を含む圧力測定方法であることを要旨とする。   Another aspect of the present invention includes (a) emitting fluorescence in a first wavelength band and fluorescence in a second wavelength band different from the first wavelength band, and (b) fluorescence in at least the first wavelength band. Providing a first modulation depending on the first pressure, (c) applying a second modulation depending on the second pressure to at least the second wavelength band of fluorescence, (d) Measuring the attenuation characteristics of the combined light of the fluorescence in the first wavelength band given the first modulation and the fluorescence in the second wavelength band given the second modulation; and (e) based on the attenuation characteristics Thus, the gist of the present invention is to calculate a differential pressure between the first and second pressures.

本発明のさらに他の態様は、(a)光を発する発光素子と、(b)第1の圧力を受け、光に第1の変調を与える第1の受圧素子と、(c)第2の圧力を受け、光に第2の変調を与える第2の受圧素子と、(d)第1の変調を与えられた光を照射され、少なくとも第1の波長帯域の蛍光を発する第1の蛍光体と、(e)第2の変調を与えられた光を照射され、第1の波長帯域とは異なる少なくとも第2の波長帯域の蛍光を発する第2の蛍光体と、(f)第1の波長帯域の蛍光及び第2の波長帯域の蛍光の結合光の減衰特性を測定する減衰特性測定部と、(g)減衰特性に基づいて、第1及び第2の圧力の差圧を算出する差圧算出部と、を備える圧力測定システムであることを要旨とする。   Still another aspect of the present invention includes: (a) a light emitting element that emits light; (b) a first pressure receiving element that receives a first pressure and applies a first modulation to the light; and (c) a second A second pressure-receiving element that receives pressure and applies second modulation to the light; and (d) a first phosphor that emits fluorescence of at least the first wavelength band when irradiated with the light that has been given the first modulation. And (e) a second phosphor that is irradiated with light having a second modulation and emits fluorescence in at least a second wavelength band different from the first wavelength band, and (f) a first wavelength. An attenuation characteristic measurement unit that measures the attenuation characteristics of the combined light of the fluorescence in the band and the fluorescence in the second wavelength band; and (g) a differential pressure that calculates the differential pressure between the first and second pressures based on the attenuation characteristic. A gist of the invention is a pressure measurement system including a calculation unit.

本発明のさらに他の態様は、(a)光を発することと、(b)光に、第1の圧力に依存する第1の変調を与えることと、(c)光に、第2の圧力に依存する第2の変調を与えることと、(d)第1の変調を与えられた光によって、少なくとも第1の波長帯域の蛍光を励起することと、(e)第2の変調を与えられた光によって、第1の波長帯域とは異なる少なくとも第2の波長帯域の蛍光を励起することと、(f)第1の波長帯域の蛍光及び第2の波長帯域の蛍光の結合光の減衰特性を測定することと、(g)減衰特性に基づいて、第1及び第2の圧力の差圧を算出することと、を含む圧力測定方法であることを要旨とする。   Still another aspect of the present invention provides: (a) emitting light; (b) providing light with a first modulation that depends on a first pressure; and (c) applying a second pressure to the light. A second modulation that depends on: (d) excitation of fluorescence of at least a first wavelength band by light provided with the first modulation; and (e) a second modulation. Excitation of at least a second wavelength band fluorescence different from the first wavelength band by the reflected light; and (f) attenuation characteristics of the combined light of the first wavelength band fluorescence and the second wavelength band fluorescence. And (g) calculating a differential pressure between the first and second pressures based on the damping characteristic.

本発明によれば、差圧を簡易に測定可能な圧力測定システム及び圧力測定方法を提供可能である。   According to the present invention, it is possible to provide a pressure measuring system and a pressure measuring method capable of easily measuring a differential pressure.

本発明の第1の実施の形態に係る圧力測定システムの模式図である。1 is a schematic diagram of a pressure measurement system according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る圧力測定システムの一部の拡大模式図である。It is a one part expansion schematic diagram of the pressure measurement system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第1の受圧素子の上面図である。It is a top view of the 1st pressure receiving element concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る第1の受圧素子のIV−IV方向から見た第1の断面図である。It is the 1st sectional view seen from the IV-IV direction of the 1st pressure sensing element concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る第1の受圧素子のIV−IV方向から見た第2の断面図である。It is the 2nd sectional view seen from the IV-IV direction of the 1st pressure sensing element concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る第1の受圧素子のIV−IV方向から見た第3の断面図である。It is the 3rd sectional view seen from the IV-IV direction of the 1st pressure sensing element concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る感圧膜に関する第1のグラフである。It is a 1st graph regarding the pressure-sensitive film which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る感圧膜に関する第2のグラフである。It is a 2nd graph regarding the pressure-sensitive film which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る蛍光の分光スペクトルの第1のグラフである。It is a 1st graph of the spectrum of the fluorescence which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る蛍光の分光スペクトルの第2のグラフである。It is a 2nd graph of the spectrum of the fluorescence which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る蛍光の分光スペクトルの第3のグラフである。It is a 3rd graph of the spectrum of the fluorescence which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る蛍光強度の時間変化の例を示すグラフである。It is a graph which shows the example of the time change of the fluorescence intensity which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る圧力測定方法のフローチャートである。It is a flowchart of the pressure measuring method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の第1の変形例に係る蛍光寿命と、光量比と、の関係を示すグラフである。It is a graph which shows the relationship between the fluorescence lifetime which concerns on the 1st modification of the 1st Embodiment of this invention, and a light quantity ratio. 本発明の第1の実施の形態の第2の変形例に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第2の変形例に係る第1の受圧素子の模式図である。It is a schematic diagram of the 1st pressure receiving element which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る励起光及び蛍光の分光スペクトルのグラフである。It is a graph of the spectrum of excitation light and fluorescence according to the second embodiment of the present invention. 本発明の第2の実施の形態に係る変調を与えられた励起光と、圧力と、の関係を示すグラフである。It is a graph which shows the relationship between the excitation light given the modulation | alteration which concerns on the 2nd Embodiment of this invention, and a pressure. 本発明の第3の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る蛍光体の蛍光強度の雰囲気温度に依存する減衰特性の例を示すグラフである。It is a graph which shows the example of the attenuation characteristic depending on the atmospheric temperature of the fluorescence intensity of the fluorescent substance concerning the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る圧力測定方法のフローチャートである。It is a flowchart of the pressure measuring method which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 6th Embodiment of this invention. 本発明の第6の実施の形態に係る圧力測定方法のフローチャートである。It is a flowchart of the pressure measuring method which concerns on the 6th Embodiment of this invention. 本発明の第7の実施の形態に係る圧力測定システムの第1の模式図である。It is a 1st schematic diagram of the pressure measurement system which concerns on the 7th Embodiment of this invention. 本発明の第7の実施の形態に係る圧力測定システムの第2の模式図である。It is a 2nd schematic diagram of the pressure measurement system which concerns on the 7th Embodiment of this invention. 本発明の第8の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 8th Embodiment of this invention. 本発明の第9の実施の形態に係る圧力測定システムの模式図である。It is a schematic diagram of the pressure measurement system which concerns on the 9th Embodiment of this invention. 本発明のその他の実施の形態に係る蛍光強度の時間変化の例を示すグラフである。It is a graph which shows the example of the time change of the fluorescence intensity which concerns on other embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る光学式圧力測定システムは、図1に示すように、蛍光を発する蛍光体2と、第1の圧力PO1を受け、蛍光に第1の変調を与える第1の受圧素子3と、第2の圧力PO2を受け、蛍光に第2の変調を与える第2の受圧素子4と、第1の変調を与えられた蛍光の第1の波長帯域を透過させる第1の波長フィルタ5と、第2の変調を与えられた蛍光の第1の波長帯域とは異なる第2の波長帯域を透過させる第2の波長フィルタ6と、第1及び第2の波長フィルタを透過した蛍光の結合光の減衰特性を測定する減衰特性測定部301と、減衰特性に基づいて、第1及び第2の圧力PO1,PO2の差圧ΔPを算出する差圧算出部302と、を備える。なお、第1の波長帯域と、第2の波長帯域とは、互いに異なる波長帯域であるが、部分的に重なっていてもよい。
(First embodiment)
As shown in FIG. 1, the optical pressure measurement system according to the first embodiment receives a fluorescent substance 2 that emits fluorescence and a first pressure P O1 and applies a first modulation to the fluorescence. The pressure receiving element 3, the second pressure receiving element 4 that receives the second pressure P O2 and applies the second modulation to the fluorescence, and the first that transmits the first wavelength band of the fluorescence given the first modulation. The second wavelength filter 6 that transmits the second wavelength band different from the first wavelength band of the fluorescence given the second modulation, and the first and second wavelength filters. An attenuation characteristic measurement unit 301 that measures the attenuation characteristic of the combined fluorescent light, a differential pressure calculation unit 302 that calculates a differential pressure ΔP between the first and second pressures P O1 and P O2 based on the attenuation characteristic, Is provided. Note that the first wavelength band and the second wavelength band are mutually different wavelength bands, but may be partially overlapped.

圧力測定システムは、蛍光体2に励起光を照射する発光素子1をさらに備える。発光素子1には、発光ダイオード(LED:Light Emitting Diode)及び半導体レーザ(LD:Laser Diode)等の半導体発光素子が使用可能である。より具体的には、発光素子1には、AlGaInPをチップ材料とする四元素系発光素子、及びInGaNをチップ材料とする三元素系発光素子が使用可能である。例えば、発光素子1には、通電制御部90が接続される。通電制御部90は、発光素子1を点滅するように通電(ON/OFF)を制御し、発光素子1から蛍光体2の励起光を断続的に放射させる。   The pressure measurement system further includes a light emitting element 1 that irradiates the phosphor 2 with excitation light. For the light emitting element 1, a semiconductor light emitting element such as a light emitting diode (LED) and a semiconductor laser (LD) can be used. More specifically, the light-emitting element 1 can be a four-element light-emitting element using AlGaInP as a chip material and a three-element light-emitting element using InGaN as a chip material. For example, an energization control unit 90 is connected to the light emitting element 1. The energization control unit 90 controls energization (ON / OFF) so as to blink the light emitting element 1, and intermittently emits excitation light of the phosphor 2 from the light emitting element 1.

蛍光体2は、蛍光物質、又は遷移金属がドープされた蛍光物質からなる。遷移金属がドープされた蛍光物質としては、ルビー等のCr3+系材料、Mn2+系材料、Mn4+系材料、及びFe2+系材料が使用可能である。あるいは、蛍光体2は、ユウロピウム(Eu)がドープされたアルミン酸ストロンチウム(SrAl24系)、アレクサンドライト(BeAl24の変種)、クロム・ドープ・イットリウム・アルミニウム・ガーネット(Cr4+:YAG)、チタニウム・ドープ・サファイア(Ti:Sapphire)、クロム添加フッ化リチウム・ストロンチウム・アルミニウム(Cr:LiSAF)、又はイッテルビウム・ドープ・イットリウム・アルミニウム(Yb:YAG)等からなるが、これらに限定されない。なお、蛍光体2は、保持部材等に格納されていてもよい。 The phosphor 2 is made of a fluorescent material or a fluorescent material doped with a transition metal. As the fluorescent material doped with the transition metal, Cr 3+ material such as ruby, Mn 2+ material, Mn 4+ material, and Fe 2+ material can be used. Alternatively, the phosphor 2 is composed of strontium aluminate (SrAl 2 O 4 series) doped with europium (Eu), Alexandrite (variant of BeAl 2 O 4 ), chromium-doped yttrium aluminum garnet (Cr 4+). : YAG), titanium-doped sapphire (Ti: Sapphire), chromium-doped lithium fluoride / strontium / aluminum (Cr: LiSAF), or ytterbium-doped yttrium / aluminum (Yb: YAG). It is not limited. The phosphor 2 may be stored in a holding member or the like.

蛍光体2が発した第1の波長帯域及び第2の波長帯域を含む蛍光は、光導波路11及び光導波路21を介して、第1の受圧素子3及び第2の受圧素子4にそれぞれ伝搬される。なお、図2に示すように、蛍光体2と、光導波路11及び光導波路21の端部と、の間に、蛍光体2が発した蛍光を光導波路11及び光導波路21の端部に集光するレンズ31を配置してもよい。光導波路11,21の材料としては、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))等のプラスチック、石英、及び多成分ガラス等が使用可能である。また、光導波路11,21は、コア及びクラッドを含む光ファイバと、光ファイバを覆う保護管と、を備えていてもよい。ただし、光が伝搬可能であれば、光導波路11,21はこれらに限定されない。   Fluorescence including the first wavelength band and the second wavelength band emitted from the phosphor 2 is propagated to the first pressure receiving element 3 and the second pressure receiving element 4 via the optical waveguide 11 and the optical waveguide 21, respectively. The As shown in FIG. 2, the fluorescence emitted from the phosphor 2 is collected between the phosphor 2 and the ends of the optical waveguide 11 and the optical waveguide 21 at the ends of the optical waveguide 11 and the optical waveguide 21. A lens 31 that emits light may be disposed. As materials for the optical waveguides 11 and 21, plastics such as polymethyl methacrylate resin (PMMA: Poly (methymethacrylate)), quartz, and multicomponent glass can be used. The optical waveguides 11 and 21 may include an optical fiber including a core and a cladding, and a protective tube that covers the optical fiber. However, the optical waveguides 11 and 21 are not limited to these as long as light can propagate.

図1に示す第1の受圧素子3で第1の変調を与えられた蛍光は、光導波路12で第1の波長フィルタ5に伝搬される。また、第2の受圧素子4で第2の変調を与えられた蛍光は、光導波路22で第2の波長フィルタ6に伝搬される。ここで、第1の受圧素子3は、図3及びIV−IV方向からの断面図である図4に示すように、光導波路11及び光導波路12が挿入されるホルダ60を備える。第1の受圧素子3はさらに、外部からの第1の圧力PO1を受ける感圧膜50と、感圧膜50の光導波路11,12の端部と対向する表面に配置され、光導波路11の端部から放射された蛍光を反射する反射膜27と、光導波路11,12の端部及び反射膜27の間隔を規定する筐体43と、を備える。反射膜27の材料としては、例えば金(Au)等が使用可能である。 The fluorescence that has been subjected to the first modulation by the first pressure receiving element 3 shown in FIG. 1 is propagated to the first wavelength filter 5 by the optical waveguide 12. Further, the fluorescence that has been subjected to the second modulation by the second pressure receiving element 4 is propagated to the second wavelength filter 6 by the optical waveguide 22. Here, the first pressure receiving element 3 includes the optical waveguide 11 and the holder 60 into which the optical waveguide 12 is inserted, as shown in FIG. 3 and FIG. 4 which is a cross-sectional view from the IV-IV direction. The first pressure-receiving element 3 is further disposed on the pressure-sensitive film 50 that receives the first external pressure P O1 , and on the surface of the pressure-sensitive film 50 that faces the ends of the optical waveguides 11 and 12. A reflection film 27 that reflects the fluorescence emitted from the end of the optical waveguide 11 and a housing 43 that defines the distance between the ends of the optical waveguides 11 and 12 and the reflection film 27. As the material of the reflective film 27, for example, gold (Au) or the like can be used.

ホルダ60には、感圧膜50、筐体43、及びホルダ60で囲まれた領域の内圧PI1を調節するための通気孔160が設けられている。通気孔160の開閉は、開放弁70で制御される。また、感圧膜50の外部には、表出する感圧膜50の図3に示した半径aを規定する基底部40が配置されている。図4に示す光導波路11の端部から放射された蛍光は、反射膜27の表面で反射されて、光導波路12に入射する。 The holder 60 is provided with a pressure-sensitive film 50, a housing 43, and a vent hole 160 for adjusting the internal pressure P I1 in a region surrounded by the holder 60. The opening and closing of the vent hole 160 is controlled by the release valve 70. Further, a base portion 40 that defines the radius a shown in FIG. 3 of the pressure sensitive film 50 to be exposed is disposed outside the pressure sensitive film 50. The fluorescence emitted from the end of the optical waveguide 11 shown in FIG. 4 is reflected by the surface of the reflective film 27 and enters the optical waveguide 12.

ここで、第1の受圧素子3の感圧膜50は、内圧PI1と、外部からの第1の圧力PO1と、が等しい「定常状態」では撓みは生じない。しかし図5に示すように、内圧PI1と比較して外部からの第1の圧力PO1が大きくなったとき、感圧膜50は内部方向に撓む。反射膜27の裏面に感圧膜50が配置されているため、感圧膜50にあわせて反射膜27も撓む。このとき、定常状態と比較して、光導波路11,12の端部と、反射膜27と、の間隔が狭まる。そのため、反射膜27の表面で反射されて、光導波路12に入射する蛍光の光強度が、定常状態と比較して、強くなる。 Here, the pressure-sensitive film 50 of the first pressure receiving element 3 does not bend in the “steady state” in which the internal pressure P I1 is equal to the first pressure P O1 from the outside. However, as shown in FIG. 5, when the first external pressure P O1 becomes larger than the internal pressure P I1 , the pressure-sensitive film 50 bends inward. Since the pressure sensitive film 50 is disposed on the back surface of the reflective film 27, the reflective film 27 is also bent along with the pressure sensitive film 50. At this time, the distance between the end portions of the optical waveguides 11 and 12 and the reflective film 27 is narrower than in the steady state. Therefore, the light intensity of the fluorescence reflected by the surface of the reflective film 27 and entering the optical waveguide 12 becomes stronger than in the steady state.

また図6に示すように、内圧PI1と比較して外部からの第1の圧力PO1が小さくなったときは、感圧膜50は外部方向に撓む。このとき、定常状態と比較して、光導波路11,12の端部と、反射膜27と、の間隔が広まる。そのため、反射膜27の表面で反射されて、光導波路12に入射する蛍光の光強度が、定常状態と比較して、弱くなる。このように、第1の受圧素子3は、第1の圧力PO1に応じて、光導波路11から光導波路12に伝播する第1の波長帯域及び第2の波長帯域を含む蛍光の光強度を変調する。 Further, as shown in FIG. 6, when the first external pressure P O1 becomes smaller than the internal pressure P I1 , the pressure sensitive film 50 bends outward. At this time, the distance between the end portions of the optical waveguides 11 and 12 and the reflective film 27 is wider than in the steady state. Therefore, the light intensity of the fluorescence reflected by the surface of the reflection film 27 and entering the optical waveguide 12 becomes weaker than that in the steady state. Thus, the first pressure receiving element 3 has the fluorescence light intensity including the first wavelength band and the second wavelength band propagating from the optical waveguide 11 to the optical waveguide 12 in accordance with the first pressure P O1. Modulate.

図5に示すように外部から第1の圧力PO1が加わったときの感圧膜50の撓みw1は、感圧膜50が図3に示すように半径aを有する場合、下記(1)式で表される。
w 1 = (PO1 - PI1)× (a2 - r2)2 / (64 ×Z) ・・・(1)
ここでr(r:0≦r≦a)は感圧膜50の中心位置Mから測定位置までの距離である。Zは下記(2)式で与えられる。
Z = Y ×t3 / [12 × (1 - υ2)] ・・・(2)
(2)式において、Yは感圧膜50のヤング率、tは感圧膜50の厚さ、υは感圧膜50のポアッソン比である。
As shown in FIG. 5, the deflection w 1 of the pressure-sensitive film 50 when the first pressure P O1 is applied from the outside is as follows when the pressure-sensitive film 50 has a radius a as shown in FIG. It is expressed by an expression.
w 1 = (P O1 -P I1 ) × (a 2 -r 2 ) 2 / (64 × Z) (1)
Here, r (r: 0 ≦ r ≦ a) is a distance from the center position M of the pressure sensitive film 50 to the measurement position. Z is given by the following equation (2).
Z = Y × t 3 / [12 × (1-υ 2 )] (2)
In the equation (2), Y is the Young's modulus of the pressure-sensitive film 50, t is the thickness of the pressure-sensitive film 50, and υ is the Poisson's ratio of the pressure-sensitive film 50.

図4乃至図6に示した感圧膜50の厚さtが50μmの場合における外部からの第1の圧力PO1と、撓みw1と、の関係をプロットしたグラフが図7である。図7においては、図3に示した感圧膜50の半径aが0.01mm、0.10mm、及び1.00mmの場合のそれぞれについてプロットされている。また感圧膜50の厚さtが1μmの場合における外部からの第1の圧力PO1と、撓みw1と、の関係をプロットしたグラフが図8である。図8においては、感圧膜50の半径aが0.01mm、0.10mm、及び1.00mmの場合のそれぞれについてプロットされている。図7及び図8に示すように、感圧膜50の半径a及び厚さtを適宜選択することにより、外部からの第1の圧力PO1に対する第1の受圧素子3の圧力感度を調整することが可能である。 FIG. 7 is a graph plotting the relationship between the first external pressure P O1 and the deflection w 1 when the thickness t of the pressure-sensitive film 50 shown in FIGS. 4 to 6 is 50 μm. In FIG. 7, plots are made for the cases where the radius a of the pressure-sensitive film 50 illustrated in FIG. 3 is 0.01 mm, 0.10 mm, and 1.00 mm. FIG. 8 is a graph plotting the relationship between the first external pressure P O1 and the deflection w 1 when the thickness t of the pressure-sensitive film 50 is 1 μm. In FIG. 8, plots are made for each of cases where the radius a of the pressure-sensitive film 50 is 0.01 mm, 0.10 mm, and 1.00 mm. As shown in FIGS. 7 and 8, the pressure sensitivity of the first pressure-receiving element 3 with respect to the first pressure P O1 from the outside is adjusted by appropriately selecting the radius a and the thickness t of the pressure-sensitive film 50. It is possible.

図1に示す第2の受圧素子4は、第2の圧力PO2に応じて、光導波路21から光導波路22に伝播する第1の波長帯域及び第2の波長帯域を含む蛍光の光強度を変調する。第2の受圧素子4の構成要素は、図3乃至図6に示した第1の受圧素子3の構成要素と同様であるので、説明は省略する。 The second pressure receiving element 4 shown in FIG. 1 has the fluorescence light intensity including the first wavelength band and the second wavelength band propagating from the optical waveguide 21 to the optical waveguide 22 according to the second pressure P O2. Modulate. The constituent elements of the second pressure receiving element 4 are the same as those of the first pressure receiving element 3 shown in FIGS.

図1に示す蛍光体2がルビー等からなる場合、第1の波長フィルタ5は、例えば図9に示すように、700nm未満の第1の波長帯域の第1の変調を与えられた蛍光を透過させ、第2の波長帯域の第1の変調を与えられた蛍光を遮光する。また、第2の波長フィルタ6は、700nm以上の第2の波長帯域の第2の変調を与えられた蛍光を透過させ、第1の波長帯域の第2の変調を与えられた蛍光を遮光する。例えば、第1の波長帯域と、第2の波長帯域とは、その重心波長が互いに異なっている。ここで、「重心波長」とは、スペクトル領域において、重心となる波長を指す。あるいは、第1の波長帯域と、第2の波長帯域とは、それぞれの積算光量が等しくなるよう、設定してもよい。この場合、第1の波長帯域と、第2の波長帯域とは、それぞれの帯域幅が異なっていてもよい。また、重心波長は互いに異なっていても、同じであってもよい。なお、図9は、下記(3)式に示すように、第1の圧力PO1と、第2の圧力PO2と、の差圧ΔPが無い場合を示している。
PO1=PO2 ・・・(3)
When the phosphor 2 shown in FIG. 1 is made of ruby or the like, the first wavelength filter 5 transmits the fluorescence given the first modulation in the first wavelength band of less than 700 nm, for example, as shown in FIG. Then, the fluorescence given the first modulation in the second wavelength band is shielded. In addition, the second wavelength filter 6 transmits the fluorescence given the second modulation in the second wavelength band of 700 nm or more, and shields the fluorescence given the second modulation in the first wavelength band. . For example, the center wavelength is different between the first wavelength band and the second wavelength band. Here, the “centroid wavelength” refers to a wavelength that becomes the center of gravity in the spectral region. Alternatively, the first wavelength band and the second wavelength band may be set so that the respective integrated light amounts are equal. In this case, the first wavelength band and the second wavelength band may have different bandwidths. The center-of-gravity wavelengths may be different from each other or the same. FIG. 9 shows a case where there is no differential pressure ΔP between the first pressure P O1 and the second pressure P O2 as shown in the following equation (3).
P O1 = P O2 (3)

ここで、下記(4)式に示すように、第1の圧力PO1に対して第2の圧力PO2が大きくなると、差圧ΔPが無い場合と比較して、第1の受圧素子3から光導波路12に伝播する蛍光の光量に対する第2の受圧素子4から光導波路22に伝播する蛍光の光量の光量比が大きくなる。そのため、図10に示すように、差圧ΔPが無い場合と比較して、第1の波長フィルタ5を透過する蛍光の光量に対する第2の波長フィルタ6を透過する蛍光の光量の光量比が大きくなる。
PO1<PO2 ・・・(4)
Here, as shown in the following equation (4), when the second pressure P O2 increases with respect to the first pressure P O1 , the first pressure receiving element 3 is compared with the case where there is no differential pressure ΔP. The ratio of the amount of fluorescent light propagating from the second pressure-receiving element 4 to the optical waveguide 22 with respect to the amount of fluorescent light propagating in the optical waveguide 12 is increased. Therefore, as shown in FIG. 10, the light amount ratio of the light amount of the fluorescence transmitted through the second wavelength filter 6 to the light amount of the fluorescence transmitted through the first wavelength filter 5 is larger than the case where there is no differential pressure ΔP. Become.
P O1 <P O2 (4)

また、下記(5)式に示すように、第1の圧力PO1に対して第2の圧力PO2が小さくなると、差圧ΔPが無い場合と比較して、第1の受圧素子3から光導波路12に伝播する蛍光の光量に対する第2の受圧素子4から光導波路22に伝播する蛍光の光量の光量比が小さくなる。そのため、図11に示すように、差圧ΔPが無い場合と比較して、第1の波長フィルタ5を透過する蛍光の光量に対する第2の波長フィルタ6を透過する蛍光の光量の光量比が小さくなる。
PO1>PO2 ・・・(5)
なお、図9乃至図11では波長700nmで第1の波長帯域と第2の波長帯域とを分ける例を示したが、第1の波長帯域と第2の波長帯域との境界となる波長はこれに限定されない。例えば、蛍光体2を構成する蛍光物質がルビー以外である場合、蛍光スペクトルに応じて、第1の波長帯域と第2の波長帯域との境界となる波長を設定してもよい。
Further, as shown in the following formula (5), when the second pressure P O2 becomes smaller than the first pressure P O1 , light is transmitted from the first pressure receiving element 3 as compared with the case where there is no differential pressure ΔP. The ratio of the amount of fluorescent light propagating from the second pressure-receiving element 4 to the optical waveguide 22 with respect to the amount of fluorescent light propagating in the waveguide 12 is reduced. Therefore, as shown in FIG. 11, the light amount ratio of the light amount of the fluorescence transmitted through the second wavelength filter 6 to the light amount of the fluorescence transmitted through the first wavelength filter 5 is small as compared with the case where there is no differential pressure ΔP. Become.
P O1 > P O2 ... (5)
9 to 11 show an example in which the first wavelength band and the second wavelength band are separated at a wavelength of 700 nm, the wavelength that is the boundary between the first wavelength band and the second wavelength band is this. It is not limited to. For example, when the fluorescent substance constituting the phosphor 2 is other than ruby, a wavelength that becomes a boundary between the first wavelength band and the second wavelength band may be set according to the fluorescence spectrum.

図1に示す第1の波長フィルタ5を透過した蛍光と、第2の波長フィルタ6を透過した蛍光と、は重ねあわされ、結合光として受光素子7に受光される。受光素子7には、フォトダイオード等が使用可能である。受光素子7には、受光素子7の出力信号を増幅する処理部8が接続されている。処理部8には、中央演算処理装置(CPU)300が接続されている。減衰特性測定部301は、CPU300に含まれる。減衰特性測定部301は、発光素子1が消灯した瞬間又は直後から受光素子7で測定される蛍光の蛍光強度の時間変化を観測し、蛍光寿命τ等の蛍光の減衰特性の測定値を取得する。なお、図12に示すように、発光素子1が消灯した瞬間又は直後と比較して、蛍光強度が1/eに低下するまでに要する時間が、蛍光寿命τとして定義される。なお、eは自然対数である。   The fluorescence transmitted through the first wavelength filter 5 shown in FIG. 1 and the fluorescence transmitted through the second wavelength filter 6 are superimposed and received by the light receiving element 7 as coupled light. As the light receiving element 7, a photodiode or the like can be used. A processing unit 8 that amplifies the output signal of the light receiving element 7 is connected to the light receiving element 7. A central processing unit (CPU) 300 is connected to the processing unit 8. The attenuation characteristic measurement unit 301 is included in the CPU 300. The attenuation characteristic measuring unit 301 observes a temporal change in the fluorescence intensity of the fluorescence measured by the light receiving element 7 from the moment when the light emitting element 1 is extinguished or immediately after, and acquires a measured value of the fluorescence attenuation characteristic such as the fluorescence lifetime τ. . As shown in FIG. 12, the time required for the fluorescence intensity to drop to 1 / e as compared to the moment when the light emitting element 1 is extinguished or immediately after is turned off is defined as the fluorescence lifetime τ. Note that e is a natural logarithm.

ここで、蛍光寿命τは、波長が短いほど長くなり、波長が長いほど短くなる傾向にある。そのため、図1に示す第1の波長フィルタ5を透過する蛍光の光量に対する第2の波長フィルタ6を透過する蛍光の光量の光量比が大きくなると、受光素子7が受光する結合光の蛍光寿命τは短くなる傾向にある。したがって、受光素子7が受光する結合光の蛍光寿命τが短くなった場合、差圧ΔPが無い場合と比較して、第1の圧力PO1に対して第2の圧力PO2が相対的に大きくなっている。 Here, the fluorescence lifetime τ tends to be longer as the wavelength is shorter and shorter as the wavelength is longer. Therefore, when the ratio of the amount of fluorescent light transmitted through the second wavelength filter 6 to the amount of fluorescent light transmitted through the first wavelength filter 5 shown in FIG. 1 increases, the fluorescence lifetime τ of the combined light received by the light receiving element 7. Tend to be shorter. Therefore, when the fluorescence lifetime τ of the combined light received by the light receiving element 7 is shortened, the second pressure P O2 is relatively relative to the first pressure P O1 as compared to the case where there is no differential pressure ΔP. It is getting bigger.

また、第1の波長フィルタ5を透過する蛍光の光量に対する第2の波長フィルタ6を透過する蛍光の光量の光量比が小さくなると、受光素子7が受光する結合光の蛍光寿命τは長くなる傾向にある。したがって、受光素子7が受光する結合光の蛍光寿命τが長くなった場合、差圧ΔPが無い場合と比較して、第1の圧力PO1に対して第2の圧力PO2が相対的に小さくなっている。 Further, when the ratio of the amount of fluorescent light transmitted through the second wavelength filter 6 to the amount of fluorescent light transmitted through the first wavelength filter 5 decreases, the fluorescence lifetime τ of the combined light received by the light receiving element 7 tends to increase. It is in. Accordingly, when the fluorescence lifetime τ of the coupled light received by the light receiving element 7 is increased, the second pressure P O2 is relatively set with respect to the first pressure P O1 as compared with the case where there is no differential pressure ΔP. It is getting smaller.

以上説明したように、蛍光寿命τ等の蛍光の減衰特性と、第1及び第2の圧力PO1,PO2の差圧ΔPと、は相関関係を有する。差圧算出部302は、蛍光の減衰特性及び差圧ΔPの予め取得された相関関係と、蛍光の減衰特性の測定値と、に基づいて、第1及び第2の圧力PO1,PO2の差圧ΔPの測定値を算出する。CPU300には、関係記憶部401を含むデータ記憶装置400が接続されている。関係記憶部401は、差圧算出部302によって利用される、蛍光寿命τ等の蛍光の減衰特性と、第1及び第2の圧力PO1,PO2の差圧ΔPと、の予め取得された相関関係を保存する。なお、相関関係は、関数で表現されていてもよいし、表形式で表現されていてもよい。 As described above, the fluorescence decay characteristics such as the fluorescence lifetime τ and the differential pressure ΔP between the first and second pressures P O1 and P O2 have a correlation. The differential pressure calculation unit 302 calculates the first and second pressures P O1 and P O2 based on the correlation acquired in advance between the fluorescence attenuation characteristic and the differential pressure ΔP and the measured value of the fluorescence attenuation characteristic. A measured value of the differential pressure ΔP is calculated. A data storage device 400 including a relationship storage unit 401 is connected to the CPU 300. The relationship storage unit 401 obtains in advance the fluorescence attenuation characteristics such as the fluorescence lifetime τ and the differential pressure ΔP between the first and second pressures P O1 and P O2 , which are used by the differential pressure calculation unit 302. Save the correlation. The correlation may be expressed as a function or may be expressed in a table format.

CPU300には、入力装置321、出力装置322、プログラム記憶装置323、及び一時記憶装置324がさらに接続されている。入力装置321としては、スイッチ及びキーボード等が使用可能である。出力装置322としては、光インジケータ、デジタルインジケータ、及び液晶表示装置等が使用可能である。出力装置322は、差圧算出部302で算出された第1の圧力PO1と、第2の圧力PO2と、の差圧ΔPの測定値を出力する。プログラム記憶装置323は、CPU300に接続された装置間のデータ送受信等をCPU300に実行させるためのプログラムを保存している。一時記憶装置324は、CPU300の演算過程でのデータを一時的に保存する。 An input device 321, an output device 322, a program storage device 323, and a temporary storage device 324 are further connected to the CPU 300. As the input device 321, a switch, a keyboard, and the like can be used. As the output device 322, an optical indicator, a digital indicator, a liquid crystal display device, or the like can be used. The output device 322 outputs the measured value of the differential pressure ΔP between the first pressure P O1 calculated by the differential pressure calculation unit 302 and the second pressure P O2 . The program storage device 323 stores a program for causing the CPU 300 to execute data transmission / reception between devices connected to the CPU 300. The temporary storage device 324 temporarily stores data in the calculation process of the CPU 300.

次に図13に示すフローチャートを用いて第1の実施の形態に係る圧力測定方法について説明する。
(a)ステップS101で、図1に示す通電制御部90から発光素子1に通電し、発光素子1から蛍光体2に励起光を照射させる。励起光を照射された蛍光体2は、蛍光を発する。ステップS211で、蛍光体2が発した蛍光の一部が光導波路11で第1の受圧素子3に伝搬される。また、ステップS221で、蛍光体2が発した蛍光の一部が光導波路21で第2の受圧素子4に伝搬される。
Next, the pressure measurement method according to the first embodiment will be described using the flowchart shown in FIG.
(A) In step S101, the light emitting element 1 is energized from the energization control unit 90 shown in FIG. 1, and the phosphor 2 is irradiated with excitation light from the light emitting element 1. The phosphor 2 irradiated with the excitation light emits fluorescence. In step S <b> 211, a part of the fluorescence emitted from the phosphor 2 is propagated to the first pressure receiving element 3 through the optical waveguide 11. In step S <b> 221, a part of the fluorescence emitted from the phosphor 2 is propagated to the second pressure receiving element 4 through the optical waveguide 21.

(b)ステップS212で、第1の受圧素子3は、第1の圧力PO1に応じて、蛍光の光強度に第1の変調を与える。また、ステップS222で、第2の受圧素子4は、第2の圧力PO2に応じて、蛍光の光強度に第2の変調を与える。その後、ステップS213で、第1の変調を与えられた蛍光は、光導波路12で第1の波長フィルタ5に伝搬され、第1の波長フィルタ5を透過する。また、ステップS223で、第2の変調を与えられた蛍光は、光導波路22で第2の波長フィルタ6に伝搬され、第2の波長フィルタ6を透過する。 (B) In step S212, the first pressure receiving element 3 applies the first modulation to the light intensity of the fluorescence according to the first pressure P O1 . In step S222, the second pressure receiving element 4 applies the second modulation to the light intensity of the fluorescence according to the second pressure PO2 . Thereafter, in step S 213, the fluorescence given the first modulation is propagated to the first wavelength filter 5 through the optical waveguide 12 and passes through the first wavelength filter 5. In step S223, the fluorescence that has been subjected to the second modulation is propagated to the second wavelength filter 6 through the optical waveguide 22 and passes through the second wavelength filter 6.

(c)ステップS301で、第1の波長フィルタ5を透過した第1の波長帯域の蛍光と、第2の波長フィルタ6を透過した第2の波長帯域の蛍光と、を結合し、結合光を受光素子7で受光する。受光素子7で受光した結合光の蛍光強度は、処理部8を経て、CPU300の減衰特性測定部301に伝送される。ステップS302で、通電制御部90から発光素子1への通電を切断し、発光素子1を消灯する。減衰特性測定部301は、発光素子1を消灯した瞬間又は直後からの結合光の蛍光強度の時間変化を観測し、結合光の蛍光寿命τ等の減衰特性の測定値を取得する。減衰特性測定部301は、取得した減衰特性の測定値を、差圧算出部302に伝送する。   (C) In step S301, the first wavelength band fluorescence transmitted through the first wavelength filter 5 and the second wavelength band fluorescence transmitted through the second wavelength filter 6 are combined, and the combined light is Light is received by the light receiving element 7. The fluorescence intensity of the combined light received by the light receiving element 7 is transmitted to the attenuation characteristic measuring unit 301 of the CPU 300 through the processing unit 8. In step S302, the energization from the energization control unit 90 to the light emitting element 1 is cut off, and the light emitting element 1 is turned off. The attenuation characteristic measurement unit 301 observes a temporal change in the fluorescence intensity of the combined light from the moment when the light emitting element 1 is turned off or immediately after, and acquires a measurement value of the attenuation characteristic such as the fluorescence lifetime τ of the combined light. The attenuation characteristic measurement unit 301 transmits the acquired measurement value of the attenuation characteristic to the differential pressure calculation unit 302.

(d)ステップS303で、差圧算出部302は、関係記憶部401から、蛍光の減衰特性と、第1及び第2の圧力PO1,PO2の差圧ΔPと、の予め取得された相関関係を読み出す。さらに差圧算出部302は、読み出した相関関係と、減衰特性の測定値と、に基づいて、第1の圧力PO1と、第2の圧力PO2と、の差圧ΔPの測定値を算出する。その後、差圧算出部302は、算出した差圧ΔPの測定値を出力装置322に表示させ、第1の実施の形態に係る圧力測定方法を終了する。 (D) In step S303, the differential pressure calculation unit 302 obtains, in advance, the correlation obtained from the relationship storage unit 401 between the fluorescence attenuation characteristics and the differential pressures ΔP of the first and second pressures P O1 and P O2. Read relationship. Further, the differential pressure calculation unit 302 calculates a measured value of the differential pressure ΔP between the first pressure P O1 and the second pressure P O2 based on the read correlation and the measured value of the attenuation characteristic. To do. Thereafter, the differential pressure calculation unit 302 displays the calculated measurement value of the differential pressure ΔP on the output device 322, and ends the pressure measurement method according to the first embodiment.

以上説明した第1の実施の形態に係る圧力測定システム及び圧力測定方法によれば、蛍光寿命τ等の蛍光の減衰特性に基づいて、第1の圧力PO1と、第2の圧力PO2と、の差圧ΔPを、簡易かつ正確に算出することが可能となる。 According to the pressure measurement system and the pressure measurement method according to the first embodiment described above, the first pressure P O1 , the second pressure P O2, and the like based on the fluorescence decay characteristics such as the fluorescence lifetime τ. The differential pressure ΔP can be calculated easily and accurately.

(第1の実施の形態の第1の変形例)
受光素子7で受光される蛍光の減衰特性と、第1の波長フィルタ5を透過した蛍光の光量に対する第2の波長フィルタ6を透過した蛍光の光量の光量比と、は、図14に示すように、相関関係を有する。第1の実施の形態において、差圧算出部302は、蛍光の減衰特性及び差圧ΔPの予め取得された相関関係と、蛍光の減衰特性の測定値と、に基づいて、第1及び第2の圧力PO1,PO2の差圧ΔPの測定値を算出する例を示した。これに対し、差圧算出部302は、蛍光の減衰特性及び光量比の予め取得された相関関係と、蛍光の減衰特性の測定値と、に基づいて、第1の波長フィルタ5を透過した蛍光の光量に対する第2の波長フィルタ6を透過した蛍光の光量の光量比の測定値を算出してもよい。
(First modification of the first embodiment)
FIG. 14 shows the attenuation characteristics of fluorescence received by the light receiving element 7 and the ratio of the amount of fluorescent light transmitted through the second wavelength filter 6 to the amount of fluorescent light transmitted through the first wavelength filter 5 as shown in FIG. Have a correlation. In the first embodiment, the differential pressure calculation unit 302 uses the first and second values based on the previously acquired correlation between the fluorescence attenuation characteristic and the differential pressure ΔP and the measured value of the fluorescence attenuation characteristic. An example is shown in which the measured value of the differential pressure ΔP between the pressures P O1 and P O2 is calculated. On the other hand, the differential pressure calculation unit 302 transmits the fluorescence transmitted through the first wavelength filter 5 based on the correlation acquired in advance between the fluorescence attenuation characteristic and the light amount ratio and the measured value of the fluorescence attenuation characteristic. A measured value of the light amount ratio of the light amount of the fluorescence transmitted through the second wavelength filter 6 to the light amount of may be calculated.

この場合、光量比と、差圧ΔPと、は相関関係を有するため、差圧算出部302は、光量比及び差圧ΔPの予め取得された相関関係と、光量比の測定値と、に基づいて、第1及び第2の圧力PO1,PO2の差圧ΔPの測定値を算出する。なお、図14においては、受光素子7で受光される蛍光の減衰特性と、第1の波長フィルタ5を透過した蛍光の光量に対する第2の波長フィルタ6を透過した蛍光の光量の光量比と、の相関関係を示した。これに対し、受光素子7で受光される蛍光の減衰特性と、第2の波長フィルタ6を透過した蛍光の光量に対する第1の波長フィルタ5を透過した蛍光の光量の光量比と、も相関関係を有する。したがって、本開示において、「光量比」とは、第1の波長フィルタ5を透過した蛍光の光量に対する第2の波長フィルタ6を透過した蛍光の光量の光量比と、第2の波長フィルタ6を透過した蛍光の光量に対する第1の波長フィルタ5を透過した蛍光の光量の光量比と、のいずれであってもよい。 In this case, since the light quantity ratio and the differential pressure ΔP have a correlation, the differential pressure calculation unit 302 is based on the correlation acquired in advance between the light quantity ratio and the differential pressure ΔP and the measured value of the light quantity ratio. Thus, a measured value of the differential pressure ΔP between the first and second pressures P O1 and P O2 is calculated. In FIG. 14, the attenuation characteristic of the fluorescence received by the light receiving element 7, the ratio of the amount of fluorescence transmitted through the second wavelength filter 6 to the amount of fluorescence transmitted through the first wavelength filter 5, and The correlation was shown. On the other hand, the attenuation characteristic of the fluorescence received by the light receiving element 7 is also correlated with the light quantity ratio of the fluorescence light quantity transmitted through the first wavelength filter 5 to the fluorescence light quantity transmitted through the second wavelength filter 6. Have Therefore, in the present disclosure, the “light quantity ratio” means the ratio of the quantity of fluorescent light transmitted through the second wavelength filter 6 to the quantity of fluorescent light transmitted through the first wavelength filter 5 and the second wavelength filter 6. The ratio may be any of the ratio of the amount of fluorescent light transmitted through the first wavelength filter 5 to the amount of transmitted fluorescent light.

(第1の実施の形態の第2の変形例)
図1においては、それぞれ光反射型の第1の受圧素子3及び第2の受圧素子4を示した。これに対し、図15に示すように、それぞれ光透過型の第1の受圧素子83及び第2の受圧素子84を使用してもよい。光透過型の第1の受圧素子83は、例えば図16に示すように、光導波路11及び光導波路12の間に挿入された回折素子127と、回折素子127を保持する筺体143と、外部からの第1の圧力PO1を受ける感圧膜150と、を備える。
(Second modification of the first embodiment)
In FIG. 1, a light reflection type first pressure receiving element 3 and a second pressure receiving element 4 are shown. On the other hand, as shown in FIG. 15, a light transmission type first pressure receiving element 83 and a second pressure receiving element 84 may be used. For example, as shown in FIG. 16, the light transmission type first pressure receiving element 83 includes a diffractive element 127 inserted between the optical waveguide 11 and the optical waveguide 12, a housing 143 for holding the diffractive element 127, and an external device. And a pressure-sensitive film 150 that receives the first pressure P O1 .

回折素子127は、それぞれ屈折率が異なる第1屈折率部及び第2屈折率部が交互に配置された周期構造を有するファイバブラッググレーティングである。回折素子127に入射した蛍光は、第1屈折率部及び第2屈折率部の周期構造により、特定の波長成分のみが選択的に減衰される。ここで、第1屈折率部及び第2屈折率部の周期構造における平均屈折率をnDとし、周期構造の間隔をΛm1とすると、下記(6)式で表されるブラッグ波長λBが減衰した蛍光が光導波路12に伝播する。
λB = 2 ×nD ×Λm1 ・・・(6)
The diffraction element 127 is a fiber Bragg grating having a periodic structure in which first and second refractive index portions having different refractive indexes are alternately arranged. Only a specific wavelength component of the fluorescence incident on the diffraction element 127 is selectively attenuated by the periodic structure of the first refractive index portion and the second refractive index portion. Here, when the average refractive index in the periodic structure of the first refractive index part and the second refractive index part is n D and the interval of the periodic structure is Λ m1 , the Bragg wavelength λ B represented by the following equation (6) is obtained. The attenuated fluorescence propagates to the optical waveguide 12.
λ B = 2 × n D × Λ m1 (6)

ここで、外部から第1の圧力PO1が感圧膜150に加わると、回折素子127も撓むため、周期構造の間隔Λm1が大きくなる。そのため、ブラッグ波長λBも長波長側にシフトする。このように、光透過型の第1の受圧素子83においては、第1の圧力PO1に応じて、光導波路12に伝播する蛍光の分光スペクトルが変調される。図15に示す光透過型の第2の受圧素子84の構成要素は、図16に示す光透過型の第1の受圧素子83の構成要素と同様である。光透過型の第2の受圧素子84は、第2の圧力PO2に応じて、光導波路22に伝播する蛍光の分光スペクトルを変調する。 Here, when the first pressure P O1 is applied to the pressure-sensitive film 150 from the outside, the diffraction element 127 is also bent, so that the interval Λ m1 of the periodic structure is increased. Therefore, the Bragg wavelength λ B is also shifted to the long wavelength side. As described above, in the light transmission type first pressure receiving element 83, the spectral spectrum of the fluorescence propagating to the optical waveguide 12 is modulated according to the first pressure P O1 . The components of the light transmissive second pressure receiving element 84 shown in FIG. 15 are the same as the components of the light transmissive first pressure receiving element 83 shown in FIG. The light transmission type second pressure receiving element 84 modulates the spectral spectrum of the fluorescence propagating to the optical waveguide 22 in accordance with the second pressure P O2 .

(第2の実施の形態)
第2の実施の形態に係る圧力測定システムにおいては、例えば、図17に示す蛍光体2の材料に、変換効率が100%に満たない蛍光物質が使用される。そのため、発光素子1から放射された励起光の一部も、光導波路11で第1の受圧素子3に伝搬される。第1の受圧素子3において、蛍光と同様に、励起光も第1の変調を与えられる。第1の変調を与えられた蛍光は、光導波路12で第1の波長フィルタ15に伝搬される。第2の実施の形態において、第1の波長フィルタ15は、図18に示すように、蛍光の700nm未満の波長成分と共に、励起光も透過させる。
(Second Embodiment)
In the pressure measurement system according to the second embodiment, for example, a fluorescent material having a conversion efficiency of less than 100% is used as the material of the phosphor 2 shown in FIG. Therefore, part of the excitation light emitted from the light emitting element 1 is also propagated to the first pressure receiving element 3 through the optical waveguide 11. In the first pressure receiving element 3, the excitation light is also given the first modulation in the same manner as fluorescence. The fluorescence given the first modulation is propagated to the first wavelength filter 15 through the optical waveguide 12. In the second embodiment, the first wavelength filter 15 transmits the excitation light together with the wavelength component of less than 700 nm of fluorescence, as shown in FIG.

図12に示したように、発光素子1が励起光の照射を開始した瞬間又は直後には、図17に示す蛍光体2はまだ蛍光を発しない。CPU300に含まれる光強度測定部303は、発光素子1が励起光の照射を開始した瞬間又は直後に受光素子7で測定される第1の変調を与えられた励起光の光強度の測定値を取得する。ここで、図19に示すように、第1の変調を与えられた励起光の光強度と、第1の圧力PO1と、は相関関係を有する。 As shown in FIG. 12, immediately after or immediately after the light emitting element 1 starts irradiating the excitation light, the phosphor 2 shown in FIG. 17 does not emit fluorescence yet. The light intensity measurement unit 303 included in the CPU 300 displays the measured value of the light intensity of the excitation light given the first modulation measured by the light receiving element 7 immediately or immediately after the light emitting element 1 starts the irradiation of the excitation light. get. Here, as shown in FIG. 19, the light intensity of the excitation light subjected to the first modulation has a correlation with the first pressure P O1 .

図17に示す圧力算出部304は、第1の変調を与えられた励起光の光強度及び第1の圧力PO1の予め取得された相関関係と、第1の変調を与えられた励起光の光強度の測定値と、に基づいて、第1の圧力PO1の測定値を算出する。さらに圧力算出部304は、算出した第1の圧力PO1の測定値と、差圧算出部302が算出する差圧ΔPの測定値と、に基づいて、第2の圧力PO2の測定値を算出する。 The pressure calculation unit 304 illustrated in FIG. 17 includes the correlation between the light intensity of the excitation light given the first modulation and the first pressure P O1 acquired in advance, and the excitation light given the first modulation. Based on the measured value of the light intensity, the measured value of the first pressure P O1 is calculated. Furthermore, the pressure calculation unit 304 calculates the measurement value of the second pressure P O2 based on the calculated measurement value of the first pressure P O1 and the measurement value of the differential pressure ΔP calculated by the differential pressure calculation unit 302. calculate.

第2の実施の形態において、関係記憶部401は、圧力算出部304によって利用される、図19に示すような第1の変調を与えられた励起光の光強度と、第1の圧力PO1と、の予め取得された相関関係を保存する。なお、相関関係は、関数で表現されていてもよいし、表形式で表現されていてもよい。第2の実施の形態に係る図17に示す圧力測定システムのその他の構成要素は、第1の実施の形態と同様であるので、説明は省略する。第2の実施の形態に係る圧力測定システムによれば、第1の圧力PO1、第2の圧力PO2、及び差圧ΔPのそれぞれの測定値を得ることが可能となる。 In the second embodiment, the relationship storage unit 401 uses the light intensity of the excitation light subjected to the first modulation as shown in FIG. 19 and the first pressure P O1 used by the pressure calculation unit 304. And the previously obtained correlation is stored. The correlation may be expressed as a function or may be expressed in a table format. Since the other components of the pressure measurement system shown in FIG. 17 according to the second embodiment are the same as those of the first embodiment, description thereof will be omitted. According to the pressure measurement system according to the second embodiment, it is possible to obtain respective measured values of the first pressure P O1 , the second pressure P O2 , and the differential pressure ΔP.

(第3の実施の形態)
第3の実施の形態に係る圧力測定システムは、図20に示すように、発光素子1が放射した励起光を検出する発光検出器91と、検出された励起光の光強度の変動を補正する装置である発光強度補正部92と、をさらに備える。発光検出器91には、フォトダイオード等が使用可能である。発光検出器91は、検出した励起光の光強度の測定値Imを発光強度補正部92に伝送する。発光強度補正部92は、励起光の光強度の所定値Icと、測定値Imと、の差をとり、光強度の変動量ΔIを算出する。さらに発光強度補正部92は、通電制御部90に、励起光の光強度の変動量ΔIが0となるよう、発光素子1への通電量を制御させる。
(Third embodiment)
As shown in FIG. 20, the pressure measurement system according to the third embodiment corrects fluctuations in the light intensity of the detected excitation light and the light emission detector 91 that detects the excitation light emitted by the light emitting element 1. And a light emission intensity correction unit 92 which is a device. A photodiode or the like can be used for the light emission detector 91. The light emission detector 91 transmits the light intensity measurement value Im of the detected excitation light to the light emission intensity correction unit 92. The light emission intensity correction unit 92 calculates the light intensity variation ΔI by taking the difference between the predetermined value Ic of the light intensity of the excitation light and the measured value Im. Further, the light emission intensity correction unit 92 causes the energization control unit 90 to control the energization amount to the light emitting element 1 so that the fluctuation amount ΔI of the light intensity of the excitation light becomes zero.

発光素子1が発する励起光の光強度の揺らぎは、圧力算出部304及び差圧算出部302で算出される第1の圧力PO1、第2の圧力PO2、及び差圧ΔPの測定値に影響を与え得る。これに対し、第3の実施の形態に係る圧力測定システムは、フィードバック制御により、励起光の光強度の変動量ΔIを抑制するため、第1の圧力PO1、第2の圧力PO2、及び差圧ΔPを正確に測定することが可能となる。 The fluctuation of the light intensity of the excitation light emitted from the light emitting element 1 is caused by the measured values of the first pressure P O1 , the second pressure P O2 , and the differential pressure ΔP calculated by the pressure calculation unit 304 and the differential pressure calculation unit 302. May have an impact. On the other hand, the pressure measurement system according to the third embodiment suppresses the fluctuation amount ΔI of the light intensity of the excitation light by feedback control, so that the first pressure P O1 , the second pressure P O2 , and It becomes possible to accurately measure the differential pressure ΔP.

(第4の実施の形態)
図21は、蛍光体2の雰囲気温度Tを変えた場合における、励起光消光後の蛍光体2の蛍光強度の例を示している。なお、蛍光体2の雰囲気温度Tとは、例えば、蛍光体2又は蛍光体2を格納する熱伝導性の保持部材に接する気体の温度である。ここで、第1の温度条件下で、蛍光体2の雰囲気温度Tは最も低く、第2乃至第5の温度条件下で、蛍光体2の雰囲気温度Tは順次高くなる。図21に示すように、蛍光体2の蛍光寿命τは、蛍光体2の雰囲気温度Tが上昇するとともに、短くなる傾向にある。
(Fourth embodiment)
FIG. 21 shows an example of the fluorescence intensity of the phosphor 2 after excitation light quenching when the ambient temperature T of the phosphor 2 is changed. The ambient temperature T of the phosphor 2 is, for example, the temperature of the gas in contact with the phosphor 2 or a heat conductive holding member that stores the phosphor 2. Here, under the first temperature condition, the ambient temperature T of the phosphor 2 is the lowest, and under the second to fifth temperature conditions, the ambient temperature T of the phosphor 2 is sequentially increased. As shown in FIG. 21, the fluorescence lifetime τ of the phosphor 2 tends to become shorter as the ambient temperature T of the phosphor 2 increases.

したがって、図1、図17及び図20に示す蛍光体2の雰囲気温度Tが変動すると、差圧ΔPを正確に測定することが困難になり得る。これに対し、第4の実施の形態に係る圧力測定システムは、図22に示すように、蛍光体2の雰囲気温度Tを一定に保つ温度調節器101を備える。第4の実施の形態に係る圧力測定システムのその他の構成要素は、図20に示す第3の実施の形態に係る圧力測定システムと同様であるので、説明は省略する。   Therefore, when the atmospheric temperature T of the phosphor 2 shown in FIGS. 1, 17, and 20 varies, it may be difficult to accurately measure the differential pressure ΔP. On the other hand, the pressure measurement system according to the fourth embodiment includes a temperature controller 101 that keeps the ambient temperature T of the phosphor 2 constant as shown in FIG. The other components of the pressure measurement system according to the fourth embodiment are the same as those of the pressure measurement system according to the third embodiment shown in FIG.

図22に示す第4の実施の形態に係る圧力測定システムは、温度調節器101が蛍光体2の雰囲気温度Tを一定に保つため、雰囲気温度Tの変動に基づく蛍光の減衰特性の変動が抑制される。そのため、第4の実施の形態に係る圧力測定システムは、差圧ΔPの測定値をより正確に得ることを可能にする。   In the pressure measurement system according to the fourth embodiment shown in FIG. 22, since the temperature controller 101 keeps the ambient temperature T of the phosphor 2 constant, the variation in the fluorescence attenuation characteristic based on the variation in the ambient temperature T is suppressed. Is done. Therefore, the pressure measurement system according to the fourth embodiment makes it possible to obtain a measured value of the differential pressure ΔP more accurately.

(第5の実施の形態)
第5の実施の形態に係る圧力測定システムは、図23に示すように、蛍光体2の雰囲気温度Tの測定値Tmを測定する温度計102と、第1及び第2の受圧素子3,4で変調される前の蛍光の蛍光寿命τ等の減衰特性の雰囲気温度Tの変動による変動を補正する減衰特性補正部305と、をさらに備える。温度計102には、例えば、サーミスタ及び白金温度センサ等が使用可能である。
(Fifth embodiment)
As shown in FIG. 23, the pressure measurement system according to the fifth embodiment includes a thermometer 102 that measures a measured value Tm of the ambient temperature T of the phosphor 2, and first and second pressure receiving elements 3 and 4. And an attenuation characteristic correction unit 305 that corrects fluctuations due to fluctuations in the atmospheric temperature T of the attenuation characteristics such as the fluorescence lifetime τ of the fluorescence before being modulated by. For the thermometer 102, for example, a thermistor, a platinum temperature sensor, or the like can be used.

ここで、関係記憶部401に保存されている蛍光寿命τと、第1及び第2の圧力PO1,PO2の差圧ΔPと、の相関関係を取得した際の蛍光体2の雰囲気温度Tを基準温度Tsとする。第5の実施の形態に係る圧力測定システムは、基準温度Tsからの雰囲気温度の変動量ΔTと、第1及び第2の受圧素子3,4で変調される前の蛍光の蛍光寿命の変動量Δτと、の予め取得された関係を保存する補正情報記憶部402をさらに備える。 Here, the ambient temperature T of the phosphor 2 when the correlation between the fluorescence lifetime τ stored in the relationship storage unit 401 and the differential pressure ΔP between the first and second pressures P O1 and P O2 is acquired. Is a reference temperature Ts. The pressure measurement system according to the fifth embodiment includes a variation amount ΔT of the ambient temperature from the reference temperature Ts and a variation amount of the fluorescence lifetime of the fluorescence before being modulated by the first and second pressure receiving elements 3 and 4. A correction information storage unit 402 is further provided for storing a previously acquired relationship between Δτ and Δτ.

雰囲気温度の変動量ΔTと、蛍光寿命の変動量Δτと、の関係は、下記(7)式に示すように、雰囲気温度の変動量ΔTを独立変数とし、蛍光寿命の変動量Δτを従属変数とする、関数で表現されていてもよい。
Δτ=f(ΔT) ・・・(7)
減衰特性補正部305は、下記(8)式に従って、蛍光体2の雰囲気温度の測定値Tmと、基準温度Tsと、の差をとり、雰囲気温度の変動量の値ΔTcを算出する。
ΔTc=Tm-Ts ・・・(8)
As shown in the following equation (7), the relationship between the variation amount ΔT of the ambient temperature and the variation amount Δτ of the fluorescence lifetime has the variation amount ΔT of the ambient temperature as an independent variable and the variation amount Δτ of the fluorescence lifetime as a dependent variable. It may be expressed by a function.
Δτ = f (ΔT) (7)
The attenuation characteristic correction unit 305 calculates a value ΔTc of the variation amount of the ambient temperature by taking the difference between the measured value Tm of the ambient temperature of the phosphor 2 and the reference temperature Ts according to the following equation (8).
ΔTc = Tm-Ts (8)

また、減衰特性補正部305は、雰囲気温度の変動量の算出値ΔTcを、(7)式の雰囲気温度の変動量の変数ΔTに代入し、蛍光寿命の変動量の値Δτc1を算出する。さらに減衰特性補正部305は、下記(9)式に従って、減衰特性測定部301が取得した蛍光寿命の測定値τmと、蛍光寿命の変動量の算出値Δτc1と、の差をとり、蛍光寿命の補正値τc1を算出する。これにより、測定された雰囲気温度Tmにおける蛍光寿命τmが、基準温度Tsにおける蛍光寿命τc1に換算される。
τc1=τm-Δτc1 ・・・(9)
In addition, the attenuation characteristic correction unit 305 substitutes the calculated value ΔTc of the variation amount of the ambient temperature into the variable ΔT of the variation amount of the ambient temperature in the equation (7), and calculates the variation amount Δτc 1 of the fluorescence lifetime. Further, the attenuation characteristic correction unit 305 takes the difference between the measured value τm of the fluorescence lifetime acquired by the attenuation characteristic measurement unit 301 and the calculated value Δτc 1 of the fluctuation amount of the fluorescence lifetime according to the following equation (9), and calculates the fluorescence lifetime. The correction value τc 1 is calculated. Thereby, the fluorescence lifetime τm at the measured ambient temperature Tm is converted into the fluorescence lifetime τc 1 at the reference temperature Ts.
τc 1 = τm-Δτc 1 ... (9)

第5の実施の形態において、差圧算出部302は、減衰特性補正部305が算出した蛍光寿命の補正値τcと、関係記憶部401に保存されている蛍光寿命τ及び差圧ΔPの相関関係と、に基づいて、第1及び第2の圧力PO1,PO2の差圧ΔPの測定値を算出する。 In the fifth embodiment, the differential pressure calculation unit 302 correlates the fluorescence lifetime correction value τc calculated by the attenuation characteristic correction unit 305 with the fluorescence lifetime τ and the differential pressure ΔP stored in the relationship storage unit 401. Then, the measured value of the differential pressure ΔP between the first and second pressures P O1 and P O2 is calculated.

次に図24に示すフローチャートを用いて第5の実施の形態に係る圧力測定方法について説明する。
(a)まず、図13に示した第1の実施の形態に係る圧力測定方法と同様に、ステップS101乃至ステップS301を実施する。次に、図24のステップS302で、図23に示す減衰特性測定部301は、発光素子1を消灯した瞬間又は直後からの結合光の蛍光強度の時間変化を観測し、結合光の蛍光寿命の測定値τmを取得する。減衰特性測定部301は、取得した減衰特性の測定値τmを、減衰特性補正部305に伝送する。
Next, a pressure measuring method according to the fifth embodiment will be described using the flowchart shown in FIG.
(A) First, steps S101 to S301 are performed in the same manner as the pressure measurement method according to the first embodiment shown in FIG. Next, in step S302 of FIG. 24, the attenuation characteristic measurement unit 301 shown in FIG. 23 observes the temporal change in the fluorescence intensity of the combined light from the moment when the light emitting element 1 is turned off or immediately after that, and the fluorescence lifetime of the combined light is measured. Obtain the measured value τm. The attenuation characteristic measurement unit 301 transmits the acquired measurement value τm of the attenuation characteristic to the attenuation characteristic correction unit 305.

(b)ステップS401で、温度計102は、蛍光体2の雰囲気温度の測定値Tmを測定する。さらに温度計102は、蛍光体2の雰囲気温度の測定値Tmを、減衰特性補正部305に伝送する。なお、ステップS401は、ステップS101やステップS302と並行して実施してもよい。   (B) In step S401, the thermometer 102 measures the measured value Tm of the ambient temperature of the phosphor 2. Furthermore, the thermometer 102 transmits the measured value Tm of the ambient temperature of the phosphor 2 to the attenuation characteristic correction unit 305. Note that step S401 may be performed in parallel with step S101 or step S302.

(c)ステップS402で、減衰特性補正部305は、蛍光体2の雰囲気温度の測定値Tmと、基準温度Tsと、の差である雰囲気温度の変動量の値ΔTcを算出する。また、減衰特性補正部305は、補正情報記憶部402から、雰囲気温度の変動量ΔTと、蛍光寿命の変動量Δτと、の関係を読み出す。その後、減衰特性補正部305は、雰囲気温度の変動量の算出値ΔTcと、雰囲気温度の変動量ΔT及び蛍光寿命の変動量Δτの関係と、に基づいて、蛍光寿命の変動量の算出値Δτc1を算出する。 (C) In step S402, the attenuation characteristic correction unit 305 calculates a variation value ΔTc of the ambient temperature that is the difference between the measured value Tm of the ambient temperature of the phosphor 2 and the reference temperature Ts. In addition, the attenuation characteristic correction unit 305 reads the relationship between the variation amount ΔT of the ambient temperature and the variation amount Δτ of the fluorescence lifetime from the correction information storage unit 402. After that, the attenuation characteristic correcting unit 305 calculates the calculated value Δτc of the fluorescence lifetime variation based on the calculated value ΔTc of the ambient temperature variation and the relationship between the ambient temperature variation ΔT and the fluorescence lifetime variation Δτ. 1 is calculated.

(d)ステップS403で、減衰特性補正部305は、蛍光寿命の測定値τmと、蛍光寿命の変動量の算出値Δτc1と、の差をとり、蛍光寿命の補正値τc1を算出する。その後、減衰特性補正部305は、算出した蛍光寿命の補正値τc1を差圧算出部302に伝送する。ステップS404で、差圧算出部302は、関係記憶部401から、蛍光寿命τと、第1及び第2の圧力PO1,PO2の差圧ΔPと、の予め取得された相関関係を読み出す。次に、差圧算出部302は、蛍光寿命τ及び差圧ΔPの相関関係と、蛍光寿命の補正値τc1と、に基づいて、第1の圧力PO1と、第2の圧力PO2と、の差圧ΔPを算出する。 (D) In step S403, the attenuation characteristic correction unit 305 calculates the measured value τm in fluorescence lifetime, the calculated value Derutataushi 1 of the variation amount of the fluorescence lifetime, taking the difference, a correction value .tau.c 1 fluorescence lifetime. Thereafter, the attenuation characteristic correction unit 305 transmits the calculated fluorescence lifetime correction value τc 1 to the differential pressure calculation unit 302. In step S <b> 404, the differential pressure calculation unit 302 reads a correlation acquired in advance between the fluorescence lifetime τ and the differential pressure ΔP between the first and second pressures P O1 and P O2 from the relationship storage unit 401. Next, the differential pressure calculation unit 302 calculates the first pressure P O1 and the second pressure P O2 based on the correlation between the fluorescence lifetime τ and the differential pressure ΔP and the fluorescence lifetime correction value τc 1. The differential pressure ΔP is calculated.

以上説明した第5の実施の形態に係る圧力測定システムは、蛍光体2の雰囲気温度Tの変動による蛍光寿命τ等の減衰特性の変動を補正可能である。そのため、第5の実施の形態に係る圧力測定システムは、第1の圧力PO1、第2の圧力PO2、及び差圧ΔPのそれぞれの測定値をより正確に得ることを可能にする。 The pressure measurement system according to the fifth embodiment described above can correct variations in attenuation characteristics such as fluorescence lifetime τ due to variations in the ambient temperature T of the phosphor 2. Therefore, the pressure measurement system according to the fifth embodiment makes it possible to obtain the measured values of the first pressure P O1 , the second pressure P O2 , and the differential pressure ΔP more accurately.

(第6の実施の形態)
第6の実施の形態に係る圧力測定システムは、図25に示すように、第1及び第2の受圧素子3,4で変調される前の蛍光の未変調蛍光寿命の測定値τnmを測定する未変調蛍光寿命測定器103をさらに備える。未変調蛍光寿命測定器103は、例えば、フォトダイオード及び増幅器等を含む。ここで、蛍光体2の雰囲気温度Tが基準温度Tsである場合の、第1及び第2の受圧素子3,4で変調される前の蛍光の蛍光寿命τを基準蛍光寿命τnsとする。
(Sixth embodiment)
As shown in FIG. 25, the pressure measurement system according to the sixth embodiment measures the measurement value τ nm of the unmodulated fluorescence lifetime of the fluorescence before being modulated by the first and second pressure receiving elements 3 and 4. An unmodulated fluorescence lifetime measuring device 103 is further provided. The unmodulated fluorescence lifetime measuring device 103 includes, for example, a photodiode and an amplifier. Here, when the ambient temperature T of the phosphor 2 is the reference temperature Ts, the fluorescence fluorescence lifetime τ before being modulated by the first and second pressure receiving elements 3 and 4 is defined as the reference fluorescence lifetime τns.

第6の実施の形態において、減衰特性補正部305は、下記(10)式に示すように、未変調蛍光寿命の測定値τnmと、基準蛍光寿命τnsと、の差をとり、蛍光寿命の補正量Δτc2を算出する。
Δτc2=τnm-τns ・・・(10)
さらに減衰特性補正部305は、下記(11)式に従って、減衰特性測定部301が取得した蛍光寿命の測定値τmと、蛍光寿命の補正量Δτc2と、の差をとり、蛍光寿命の補正値τc2を算出する。
τc2=τm-Δτc2 ・・・(11)
In the sixth embodiment, the attenuation characteristic correction unit 305 corrects the fluorescence lifetime by calculating the difference between the measured value τnm of the unmodulated fluorescence lifetime and the reference fluorescence lifetime τns, as shown in the following equation (10). The quantity Δτc 2 is calculated.
Δτc 2 = τnm-τns (10)
Further, the attenuation characteristic correction unit 305 takes the difference between the fluorescence lifetime measurement value τm acquired by the attenuation characteristic measurement unit 301 and the fluorescence lifetime correction amount Δτc 2 according to the following equation (11), and corrects the fluorescence lifetime correction value. τc 2 is calculated.
τc 2 = τm-Δτc 2 ... (11)

第6の実施の形態において、差圧算出部302は、減衰特性補正部305が算出した蛍光寿命の補正値τc2と、関係記憶部401に保存されている蛍光寿命τ及び差圧ΔPの相関関係と、に基づいて、第1及び第2の圧力PO1,PO2の差圧ΔPの測定値を算出する。 In the sixth embodiment, the differential pressure calculation unit 302 correlates the fluorescence lifetime correction value τc 2 calculated by the attenuation characteristic correction unit 305 with the fluorescence lifetime τ and the differential pressure ΔP stored in the relationship storage unit 401. Based on the relationship, a measured value of the differential pressure ΔP between the first and second pressures P O1 and P O2 is calculated.

次に図26に示すフローチャートを用いて第6の実施の形態に係る圧力測定方法について説明する。
(a)まず、図24に示した第5の実施の形態に係る圧力測定方法と同様に、ステップS101乃至ステップS302を実施する。また、ステップS302と並行して、図26のステップS501で、図25に示す未変調蛍光寿命測定器103が、第1及び第2の受圧素子3,4で変調される前の蛍光の未変調蛍光寿命の測定値τnmを測定する。さらに未変調蛍光寿命測定器103は、未変調蛍光寿命の測定値τnmを、減衰特性補正部305に伝送する。
Next, a pressure measuring method according to the sixth embodiment will be described using the flowchart shown in FIG.
(A) First, steps S101 to S302 are performed in the same manner as the pressure measurement method according to the fifth embodiment shown in FIG. In parallel with step S302, in step S501 of FIG. 26, the unmodulated fluorescence lifetime measuring instrument 103 shown in FIG. 25 is unmodulated before being modulated by the first and second pressure receiving elements 3 and 4. The fluorescence lifetime measurement value τ nm is measured. Further, the unmodulated fluorescence lifetime measuring device 103 transmits the measurement value τnm of the unmodulated fluorescence lifetime to the attenuation characteristic correcting unit 305.

(b)ステップS502で、減衰特性補正部305は、未変調蛍光寿命の測定値τnmと、基準蛍光寿命τnsと、の差である、蛍光寿命の補正量Δτc2を算出する。ステップS503で、減衰特性補正部305は、蛍光寿命の測定値τmと、蛍光寿命の補正量Δτc2と、の差をとり、蛍光寿命の補正値τc2を算出する。その後、減衰特性補正部305は、算出した蛍光寿命の補正値τc2を差圧算出部302に伝送する。ステップS504で、差圧算出部302は、関係記憶部401から、蛍光寿命τと、第1及び第2の圧力PO1,PO2の差圧ΔPと、の予め取得された相関関係を読み出す。次に、差圧算出部302は、蛍光寿命τ及び差圧ΔPの相関関係と、蛍光寿命の補正値τc2と、に基づいて、第1の圧力PO1と、第2の圧力PO2と、の差圧ΔPを算出する。 (B) In step S502, the attenuation characteristic correction unit 305 calculates a fluorescence lifetime correction amount Δτc 2 that is the difference between the measured value τnm of the unmodulated fluorescence lifetime and the reference fluorescence lifetime τns. In step S503, the attenuation characteristic correction unit 305 calculates the measured value τm of fluorescence lifetime, and the correction amount Derutataushi 2 fluorescence lifetime, taking the difference, a correction value .tau.c 2 fluorescence lifetime. Thereafter, the attenuation characteristic correction unit 305 transmits the calculated fluorescence lifetime correction value τc 2 to the differential pressure calculation unit 302. In step S504, the differential pressure calculation unit 302 reads a correlation acquired in advance between the fluorescence lifetime τ and the differential pressure ΔP between the first and second pressures P O1 and P O2 from the relationship storage unit 401. Next, the differential pressure calculation unit 302 calculates the first pressure P O1 and the second pressure P O2 based on the correlation between the fluorescence lifetime τ and the differential pressure ΔP and the correction value τc 2 of the fluorescence lifetime. The differential pressure ΔP is calculated.

以上説明した第6の実施の形態に係る圧力測定システムも、蛍光体2の雰囲気温度Tの変動による蛍光寿命τ等の減衰特性の変動を補正可能である。そのため、第6の実施の形態に係る圧力測定システムは、第1の圧力PO1、第2の圧力PO2、及び差圧ΔPのそれぞれの測定値をより正確に得ることを可能にする。 The pressure measurement system according to the sixth embodiment described above can also correct variations in attenuation characteristics such as the fluorescence lifetime τ due to variations in the ambient temperature T of the phosphor 2. Therefore, the pressure measurement system according to the sixth embodiment makes it possible to obtain the measured values of the first pressure P O1 , the second pressure P O2 , and the differential pressure ΔP more accurately.

(第7の実施の形態)
図27に示す第7の実施の形態に係る圧力測定システムは、図1に示した第1の実施の形態に係る圧力測定システムと異なり、第1の波長帯域の蛍光を発する蛍光体42と、第2の波長帯域の蛍光を発する蛍光体52と、を備える。この場合、例えば発光素子1には紫外線発光ダイオードが使用可能である。また、蛍光体42には青色蛍光体が使用可能であり、蛍光体52には緑色又は赤色蛍光体が使用可能である。蛍光体42が発した第1の波長帯域の蛍光は、第1の受圧素子3で、第1の圧力PO1に依存する第1の変調を与えられる。また、蛍光体52が発した第2の波長帯域の蛍光は、第2の受圧素子4で、第2の圧力PO2に依存する第2の変調を与えられる。
(Seventh embodiment)
Unlike the pressure measurement system according to the first embodiment illustrated in FIG. 1, the pressure measurement system according to the seventh embodiment illustrated in FIG. 27 includes a phosphor 42 that emits fluorescence in the first wavelength band, And a phosphor 52 that emits fluorescence in the second wavelength band. In this case, for example, an ultraviolet light emitting diode can be used for the light emitting element 1. Further, a blue phosphor can be used as the phosphor 42, and a green or red phosphor can be used as the phosphor 52. The fluorescence in the first wavelength band emitted from the phosphor 42 is given a first modulation depending on the first pressure P O1 by the first pressure receiving element 3. Further, the second wavelength band fluorescence emitted from the phosphor 52 is given a second modulation depending on the second pressure P O2 by the second pressure receiving element 4.

第1の変調を与えられた第1の波長帯域の蛍光は、光導波路12の端部から放射される。また、第2の変調を与えられた第2の波長帯域の蛍光は、光導波路22の端部から放射される。ここで、第1の変調を与えられた第1の波長帯域の蛍光と、第2の変調を与えられた第2の波長帯域の蛍光とは、重ねあわされ、結合光として受光素子7に受光される。第7の実施の形態に係る圧力測定システムのその他の構成要素は、第1の実施の形態と同様である。   The fluorescence of the first wavelength band given the first modulation is emitted from the end of the optical waveguide 12. The fluorescence of the second wavelength band given the second modulation is emitted from the end of the optical waveguide 22. Here, the fluorescence in the first wavelength band given the first modulation and the fluorescence in the second wavelength band given the second modulation are superimposed and received by the light receiving element 7 as coupled light. Is done. Other components of the pressure measurement system according to the seventh embodiment are the same as those in the first embodiment.

図28に示すように、光導波路12及び光導波路22のそれぞれの端部に、第1の波長フィルタ5及び第2の波長フィルタ6を配置してもよい。また、第2の実施の形態と同様に、第7の実施の形態においても、差圧ΔPのみならず、第1の圧力PO1及び第2の圧力PO2を測定してもよい。さらに、第3の実施の形態と同様に、第7の実施の形態においても、発光素子1の発光強度の揺らぎを補正してもよい。またさらに、第4乃至第6の実施の形態と同様に、第7の実施の形態においても、蛍光体52,62の雰囲気温度Tの変動を補正してもよい。 As shown in FIG. 28, the first wavelength filter 5 and the second wavelength filter 6 may be disposed at the respective end portions of the optical waveguide 12 and the optical waveguide 22. Similarly to the second embodiment, not only the differential pressure ΔP but also the first pressure P O1 and the second pressure P O2 may be measured in the seventh embodiment. Further, similarly to the third embodiment, in the seventh embodiment, the fluctuation of the light emission intensity of the light emitting element 1 may be corrected. Furthermore, similarly to the fourth to sixth embodiments, in the seventh embodiment, the variation in the ambient temperature T of the phosphors 52 and 62 may be corrected.

(第8の実施の形態)
図29に示す第8の実施の形態に係る圧力測定システムは、図1に示した第1の実施の形態に係る圧力測定システムと異なり、発光素子1が発した励起光が蛍光に変換されずに、光導波路11及び光導波路21を介して、第1の受圧素子3及び第2の受圧素子4にそれぞれ伝搬される。第1の受圧素子3は、第1の圧力PO1に応じて、光導波路12に伝播する励起光の光強度を変調する。また、第2の受圧素子4は、第2の圧力PO2に応じて、光導波路22に伝播する励起光の光強度を変調する。
(Eighth embodiment)
The pressure measurement system according to the eighth embodiment shown in FIG. 29 is different from the pressure measurement system according to the first embodiment shown in FIG. 1 in that the excitation light emitted from the light emitting element 1 is not converted into fluorescence. Then, the light is propagated to the first pressure receiving element 3 and the second pressure receiving element 4 through the optical waveguide 11 and the optical waveguide 21, respectively. The first pressure receiving element 3 modulates the light intensity of the excitation light propagating to the optical waveguide 12 according to the first pressure P O1 . The second pressure receiving element 4 modulates the light intensity of the excitation light propagating to the optical waveguide 22 according to the second pressure P O2 .

第8の実施の形態において、光導波路12及び光導波路22のそれぞれの端部に、第1の蛍光体62及び第2の蛍光体72が配置されている。第1の蛍光体62及び第2の蛍光体72は、第1及び第2の波長帯域を含む蛍光を発する同一の蛍光物質からなっていてもよい。あるいは、第1の蛍光体62が第1の波長帯域の蛍光を発する蛍光物質からなり、第2の蛍光体72が第2の波長帯域の蛍光を発する蛍光物質からなっていてもよい。また、第1の蛍光体62及び第2の蛍光体72は一体化していてもよい。   In the eighth embodiment, the first phosphor 62 and the second phosphor 72 are arranged at the respective end portions of the optical waveguide 12 and the optical waveguide 22. The first phosphor 62 and the second phosphor 72 may be made of the same phosphor that emits fluorescence including the first and second wavelength bands. Alternatively, the first phosphor 62 may be made of a fluorescent material that emits fluorescence in the first wavelength band, and the second phosphor 72 may be made of a fluorescent material that emits fluorescence in the second wavelength band. Moreover, the 1st fluorescent substance 62 and the 2nd fluorescent substance 72 may be integrated.

第1の蛍光体62が発した蛍光は第1の波長フィルタ5を透過し、第2の蛍光体72が発した蛍光は第2の波長フィルタ6を透過する。第1の波長フィルタ5を透過した蛍光と、第2の波長フィルタ6を透過した蛍光とは、重ねあわされ、結合光として受光素子7に受光される。第8の実施の形態に係る圧力測定システムのその他の構成要素は、第1の実施の形態と同様である。また、第2の実施の形態と同様に、第8の実施の形態においても、第1の圧力PO1及び第2の圧力PO2を測定してもよい。さらに、第3の実施の形態と同様に、第8の実施の形態においても、発光素子1の発光強度の揺らぎを補正してもよい。またさらに、第4乃至第6の実施の形態と同様に、第8の実施の形態においても、第1及び第2の蛍光体62,72の雰囲気温度Tの変動を補正してもよい。 The fluorescence emitted by the first phosphor 62 passes through the first wavelength filter 5, and the fluorescence emitted by the second phosphor 72 passes through the second wavelength filter 6. The fluorescence transmitted through the first wavelength filter 5 and the fluorescence transmitted through the second wavelength filter 6 are overlapped and received by the light receiving element 7 as coupled light. Other components of the pressure measurement system according to the eighth embodiment are the same as those in the first embodiment. Similarly to the second embodiment, the first pressure P O1 and the second pressure P O2 may also be measured in the eighth embodiment. Further, similarly to the third embodiment, in the eighth embodiment, the fluctuation of the light emission intensity of the light emitting element 1 may be corrected. Furthermore, similarly to the fourth to sixth embodiments, in the eighth embodiment, the variation in the ambient temperature T of the first and second phosphors 62 and 72 may be corrected.

(第9の実施の形態)
第9の実施の形態に係る圧力測定システムは、図30に示すように、第1の受圧素子3及び第2の受圧素子4が、流路500に設けられている。また、第9の実施の形態に係る圧力測定システムは、CPU300に、第1及び第2の圧力の差圧ΔPに基づき、第1及び第2の圧力ΔPを与えた流路500中の流体の流量Qを算出する流量算出部306をさらに備える。
(Ninth embodiment)
In the pressure measurement system according to the ninth embodiment, as shown in FIG. 30, the first pressure receiving element 3 and the second pressure receiving element 4 are provided in the flow path 500. Further, the pressure measurement system according to the ninth embodiment is configured so that the CPU 300 applies the first and second pressures ΔP to the CPU 300 based on the differential pressure ΔP between the first and second pressures. A flow rate calculation unit 306 that calculates the flow rate Q is further provided.

例えば、差圧ΔPが生じている第1の受圧素子3及び第2の受圧素子4の間を流れる流体の流量Qは、下記(12)式で与えられる。
Q = C×ΔP1/2 ・・・(12)
なお、Cは密度校正等によって予め求められる定数を表す。流量算出部306は、差圧算出部302が算出した差圧ΔPの測定値と、差圧ΔP及び流量Qの関係と、に基づいて、第1の受圧素子3及び第2の受圧素子4の間を流れる流体の流量Qの測定値を算出する。
For example, the flow rate Q of the fluid flowing between the first pressure receiving element 3 and the second pressure receiving element 4 in which the differential pressure ΔP is generated is given by the following equation (12).
Q = C × ΔP 1/2 ... (12)
C represents a constant obtained in advance by density calibration or the like. The flow rate calculation unit 306 determines the first pressure receiving element 3 and the second pressure receiving element 4 based on the measured value of the differential pressure ΔP calculated by the differential pressure calculation unit 302 and the relationship between the differential pressure ΔP and the flow rate Q. A measured value of the flow rate Q of the fluid flowing between them is calculated.

第9の実施の形態に係る圧力測定システムによれば、蛍光寿命τ等の蛍光の減衰特性に基づいて、第1の受圧素子3と、第2の受圧素子4と、の間を流れる流体の流量Qを、簡易かつ正確に算出することが可能となる。また、第2の実施の形態と同様に、第9の実施の形態においても、第1の圧力PO1及び第2の圧力PO2を測定してもよい。さらに、第3の実施の形態と同様に、第9の実施の形態においても、発光素子1の発光強度の揺らぎを補正してもよい。またさらに、第4乃至第6の実施の形態と同様に、第9の実施の形態においても、蛍光体2の雰囲気温度Tの変動を補正してもよい。 According to the pressure measurement system according to the ninth embodiment, the fluid flowing between the first pressure receiving element 3 and the second pressure receiving element 4 based on the fluorescence attenuation characteristics such as the fluorescence lifetime τ. The flow rate Q can be calculated easily and accurately. Similarly to the second embodiment, also in the ninth embodiment, the first pressure P O1 and the second pressure P O2 may be measured. Further, similarly to the third embodiment, in the ninth embodiment, the fluctuation of the light emission intensity of the light emitting element 1 may be corrected. Furthermore, similarly to the fourth to sixth embodiments, in the ninth embodiment, the variation in the ambient temperature T of the phosphor 2 may be corrected.

(その他の実施の形態)
以上、本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、図17等に示した受光素子7には、応答遅れ(励起光等の入力光が無くなっても、すぐには出力が無くならない現象)が生じ得る。したがって、図31に示すように、励起光を発する発光素子1を消灯した直後から、予め測定した(センサ全体の)応答遅れの時間よりも長い時間が経過した後に測定された蛍光強度と比較して1/e又は所定比率の蛍光強度に低下するまでに要する時間を、蛍光体2の蛍光寿命τとして定義してもよい。また、蛍光強度を測定する際に、図1及び図17等に示す処理部8における信号増幅で生じたオフセットを補正してもよい。さらに、蛍光体2の雰囲気温度Tの変動を抑制するため、蛍光体2を恒温槽に格納してもよい。この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, in the light receiving element 7 shown in FIG. 17 or the like, a response delay (a phenomenon in which an output does not immediately disappear even when input light such as excitation light disappears) may occur. Therefore, as shown in FIG. 31, compared with the fluorescence intensity measured immediately after the light emitting element 1 that emits the excitation light is turned off, after a time longer than the previously measured response delay time (of the entire sensor). The time required to decrease to 1 / e or a predetermined ratio of fluorescence intensity may be defined as the fluorescence lifetime τ of the phosphor 2. Further, when measuring the fluorescence intensity, an offset generated by signal amplification in the processing unit 8 shown in FIGS. 1 and 17 may be corrected. Further, the phosphor 2 may be stored in a thermostatic bath in order to suppress fluctuations in the ambient temperature T of the phosphor 2. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.

1 発光素子
2,42,52, 62,72 蛍光体
3,83 第1の受圧素子
4,84 第2の受圧素子
5,15 第1の波長フィルタ
6 第2の波長フィルタ
7 受光素子
8 処理部
11,12,21,22 光導波路
27 反射膜
31 レンズ
40 基底部
43,143 筐体
50,150 感圧膜
60 ホルダ
70 開放弁
90 通電制御部
91 発光検出器
92 発光強度補正部
101 温度調節器
102 温度計
103 未変調蛍光寿命測定器
127 回折素子
160 通気孔
301 減衰特性測定部
302 差圧算出部
303 光強度測定部
304 圧力算出部
305 減衰特性補正部
306 流量算出部
321 入力装置
322 出力装置
323 プログラム記憶装置
324 一時記憶装置
400 データ記憶装置
401 関係記憶部
402 補正情報記憶部
500 流路
DESCRIPTION OF SYMBOLS 1 Light emitting element 2,42,52,62,72 Phosphor 3,83 1st pressure receiving element 4,84 2nd pressure receiving element 5,15 1st wavelength filter 6 2nd wavelength filter 7 Light receiving element 8 Processing part DESCRIPTION OF SYMBOLS 11, 12, 21, 22 Optical waveguide 27 Reflective film 31 Lens 40 Base part 43,143 Case 50,150 Pressure sensitive film 60 Holder 70 Opening valve 90 Current supply control part 91 Light emission detector 92 Light emission intensity correction part 101 Temperature controller 102 Thermometer 103 Unmodulated fluorescence lifetime measuring device 127 Diffraction element 160 Ventilation hole 301 Attenuation characteristic measuring unit 302 Differential pressure calculating unit 303 Light intensity measuring unit 304 Pressure calculating unit 305 Attenuating characteristic correcting unit 306 Flow rate calculating unit 321 Input device 322 Output device 323 Program storage device 324 Temporary storage device 400 Data storage device 401 Relation storage unit 402 Correction information storage unit 500 Channel

Claims (55)

第1の波長帯域の蛍光及び前記第1の波長帯域とは異なる第2の波長帯域の蛍光を発する少なくとも一つの蛍光体と、
第1の圧力を受け、少なくとも前記第1の波長帯域の蛍光に第1の変調を与える第1の受圧素子と、
第2の圧力を受け、少なくとも前記第2の波長帯域の蛍光に第2の変調を与える第2の受圧素子と、
前記第1の変調を与えられた前記第1の波長帯域の蛍光及び前記第2の変調を与えられた前記第2の波長帯域の蛍光の結合光の減衰特性を測定する減衰特性測定部と、
前記減衰特性に基づいて、前記第1及び第2の圧力の差圧を算出する差圧算出部と、
を備える圧力測定システム。
At least one phosphor that emits fluorescence in a first wavelength band and fluorescence in a second wavelength band different from the first wavelength band;
A first pressure-receiving element that receives a first pressure and applies a first modulation to at least the fluorescence in the first wavelength band;
A second pressure-receiving element that receives a second pressure and applies a second modulation to at least the fluorescence in the second wavelength band;
An attenuation characteristic measuring unit that measures an attenuation characteristic of the combined light of the fluorescence in the first wavelength band given the first modulation and the fluorescence in the second wavelength band given the second modulation;
A differential pressure calculation unit that calculates a differential pressure between the first and second pressures based on the damping characteristics;
Pressure measuring system.
前記減衰特性と、前記差圧と、の予め取得された関係を保存する関係記憶部を更に備える、請求項1に記載の圧力測定システム。   The pressure measurement system according to claim 1, further comprising a relationship storage unit that stores a previously acquired relationship between the damping characteristic and the differential pressure. 前記差圧算出部が、
前記減衰特性に基づいて、前記第1の変調を与えられた前記第1の波長帯域の蛍光の光量と、前記第2の変調を与えられた前記第2の波長帯域の蛍光の光量と、の光量比を算出し、
前記光量比に基づいて、前記第1及び第2の圧力の差圧を算出する、
請求項1に記載の圧力測定システム。
The differential pressure calculation unit
Based on the attenuation characteristics, the amount of fluorescence in the first wavelength band given the first modulation and the amount of fluorescence in the second wavelength band given the second modulation, Calculate the light intensity ratio,
Calculating a differential pressure between the first and second pressures based on the light amount ratio;
The pressure measurement system according to claim 1.
前記光量比と、前記差圧と、の予め取得された関係を保存する関係記憶部を更に備える、請求項3に記載の圧力測定システム。   The pressure measurement system according to claim 3, further comprising a relationship storage unit that stores a previously acquired relationship between the light amount ratio and the differential pressure. 前記第1の変調を与えられた前記第1の波長帯域の蛍光を透過させ、前記第1の変調を与えられた前記第2の波長帯域の蛍光を遮光する第1の波長フィルタと、
前記第2の変調を与えられた前記第2の波長帯域の蛍光を透過させ、前記第2の変調を与えられた前記第1の波長帯域の蛍光を遮光する第2の波長フィルタと、
を更に備える、請求項1乃至4のいずれか1項に記載の圧力測定システム。
A first wavelength filter that transmits fluorescence in the first wavelength band given the first modulation and shields fluorescence in the second wavelength band given the first modulation;
A second wavelength filter that transmits fluorescence in the second wavelength band given the second modulation and shields fluorescence in the first wavelength band given the second modulation;
The pressure measurement system according to any one of claims 1 to 4, further comprising:
前記第1の波長帯域と、前記第2の波長帯域とが、異なる重心波長を有する、請求項1乃至5のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 1 to 5, wherein the first wavelength band and the second wavelength band have different centroid wavelengths. 前記第1の波長帯域と、前記第2の波長帯域とが、異なる帯域幅を有する、請求項1乃至6のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 1 to 6, wherein the first wavelength band and the second wavelength band have different bandwidths. 前記少なくとも一つの蛍光体の雰囲気温度の変動に基づく前記減衰特性の変動を補正する減衰特性補正部を更に備える、請求項1乃至7のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 1 to 7, further comprising an attenuation characteristic correction unit that corrects a variation in the attenuation characteristic based on a variation in an ambient temperature of the at least one phosphor. 前記少なくとも一つの蛍光体の雰囲気温度を一定にする温度調節器を更に備える、請求項1乃至7のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 1 to 7, further comprising a temperature controller configured to make an ambient temperature of the at least one phosphor constant. 前記少なくとも一つの蛍光体を格納する恒温槽を更に備える、請求項1乃至7のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 1 to 7, further comprising a thermostatic chamber for storing the at least one phosphor. 光を発する発光素子を更に備え、
前記第1の受圧素子が、前記第1の圧力を受け、前記光に第1の変調を与え、
前記第1の変調を与えられた光の光強度に基づき、前記第1の圧力を算出する圧力算出部を更に備える、請求項1乃至10のいずれか1項に記載の圧力測定システム。
A light emitting element that emits light;
The first pressure-receiving element receives the first pressure and applies a first modulation to the light;
11. The pressure measurement system according to claim 1, further comprising a pressure calculation unit configured to calculate the first pressure based on a light intensity of the light subjected to the first modulation.
前記第1の変調を与えられた光の光強度と、前記第1の圧力と、の予め取得された関係を保存する関係記憶部を更に備える、請求項11に記載の圧力測定システム。   The pressure measurement system according to claim 11, further comprising a relationship storage unit that stores a previously acquired relationship between a light intensity of the light subjected to the first modulation and the first pressure. 前記光の光強度の変動を補正する発光強度補正部を更に備える、請求項11又は12に記載の圧力測定システム。   The pressure measurement system according to claim 11, further comprising a light emission intensity correction unit that corrects a variation in light intensity of the light. 前記第1及び第2の圧力の差圧に基づき、前記第1及び第2の圧力を与えた流体の流量を算出する流量算出部を更に備える、請求項1乃至13のいずれか1項に記載の圧力測定システム。   The flow rate calculation part which calculates the flow volume of the fluid which gave the said 1st and 2nd pressure based on the differential pressure of the said 1st and 2nd pressure is further provided in any one of Claims 1 thru | or 13. Pressure measurement system. 第1の波長帯域の蛍光及び前記第1の波長帯域とは異なる第2の波長帯域の蛍光を発することと、
少なくとも前記第1の波長帯域の蛍光に、第1の圧力に依存する第1の変調を与えることと、
少なくとも前記第2の波長帯域の蛍光に、第2の圧力に依存する第2の変調を与えることと、
前記第1の変調を与えられた前記第1の波長帯域の蛍光及び前記第2の変調を与えられた前記第2の波長帯域の蛍光の結合光の減衰特性を測定することと、
前記減衰特性に基づいて、前記第1及び第2の圧力の差圧を算出することと、
を含む圧力測定方法。
Emitting fluorescence of a first wavelength band and fluorescence of a second wavelength band different from the first wavelength band;
Applying at least a first modulation dependent on a first pressure to the fluorescence in the first wavelength band;
Providing at least a second modulation dependent on a second pressure on the fluorescence in the second wavelength band;
Measuring the attenuation characteristics of the combined light of the fluorescence in the first wavelength band given the first modulation and the fluorescence in the second wavelength band given the second modulation;
Calculating a differential pressure between the first and second pressures based on the damping characteristic;
A pressure measuring method including:
前記減衰特性と、前記差圧と、の予め取得された関係を用意することを更に含む、請求項15に記載の圧力測定方法。   The pressure measurement method according to claim 15, further comprising preparing a previously acquired relationship between the damping characteristic and the differential pressure. 前記差圧を算出することが、前記減衰特性に基づいて、前記第1の変調を与えられた前記第1の波長帯域の蛍光の光量と、前記第2の変調を与えられた前記第2の波長帯域の蛍光の光量と、の光量比を算出することを含み、
前記差圧が、前記光量比に基づいて算出される、請求項15に記載の圧力測定方法。
Calculating the differential pressure is based on the attenuation characteristics, and the amount of fluorescence in the first wavelength band given the first modulation, and the second quantity given the second modulation. Calculating the ratio of the amount of fluorescence in the wavelength band and the amount of fluorescence,
The pressure measurement method according to claim 15, wherein the differential pressure is calculated based on the light amount ratio.
前記光量比と、前記差圧と、の予め取得された関係を用意することを更に含む、請求項17に記載の圧力測定方法。   The pressure measurement method according to claim 17, further comprising preparing a previously acquired relationship between the light amount ratio and the differential pressure. 前記第1の変調を与えられた前記第1の波長帯域の蛍光を透過させ、前記第1の変調を与えられた前記第2の波長帯域の蛍光を遮光することと、
前記第2の変調を与えられた前記第2の波長帯域の蛍光を透過させ、前記第2の変調を与えられた前記第1の波長帯域の蛍光を遮光することと、
を更に含む、請求項15乃至18のいずれか1項に記載の圧力測定方法。
Transmitting fluorescence in the first wavelength band given the first modulation and shielding the fluorescence in the second wavelength band given the first modulation;
Transmitting fluorescence of the second wavelength band given the second modulation and shielding the fluorescence of the first wavelength band given the second modulation;
The pressure measurement method according to claim 15, further comprising:
前記第1の波長帯域と、前記第2の波長帯域とが、異なる重心波長を有する、請求項15乃至19のいずれか1項に記載の圧力測定方法。   The pressure measuring method according to any one of claims 15 to 19, wherein the first wavelength band and the second wavelength band have different centroid wavelengths. 前記第1の波長帯域と、前記第2の波長帯域とが、異なる帯域幅を有する、請求項15乃至20のいずれか1項に記載の圧力測定方法。   The pressure measurement method according to any one of claims 15 to 20, wherein the first wavelength band and the second wavelength band have different bandwidths. 前記少なくとも一つの蛍光体の雰囲気温度の変動に基づく前記減衰特性の変動を補正することを更に含む、請求項15乃至21のいずれか1項に記載の圧力測定方法。   The pressure measurement method according to any one of claims 15 to 21, further comprising correcting a variation in the attenuation characteristic based on a variation in an ambient temperature of the at least one phosphor. 前記少なくとも一つの蛍光体の雰囲気温度を一定にすることを更に含む、請求項15乃至21のいずれか1項に記載の圧力測定方法。   The pressure measurement method according to any one of claims 15 to 21, further comprising making an atmospheric temperature of the at least one phosphor constant. 光を発することと、
前記光に前記第1の変調を与えることと、
前記第1の変調を与えられた光の光強度に基づき、前記第1の圧力を算出することと、
を更に含む、請求項15乃至23のいずれか1項に記載の圧力測定方法。
Emitting light,
Providing the light with the first modulation;
Calculating the first pressure based on the light intensity of the light provided with the first modulation;
The pressure measurement method according to claim 15, further comprising:
前記第1の変調を与えられた光の光強度と、前記第1の圧力と、の予め取得された関係を用意することを更に含む、請求項24に記載の圧力測定方法。   25. The pressure measurement method according to claim 24, further comprising preparing a previously acquired relationship between light intensity of the light subjected to the first modulation and the first pressure. 前記光の光強度の変動を補正することを更に含む、請求項24又は25に記載の圧力測定方法。   The pressure measurement method according to claim 24, further comprising correcting a variation in light intensity of the light. 前記第1及び第2の圧力の差圧に基づき、前記第1及び第2の圧力を与えた流体の流量を算出することを更に含む、請求項15乃至26のいずれか1項に記載の圧力測定方法。   27. The pressure according to any one of claims 15 to 26, further comprising calculating a flow rate of a fluid that has applied the first and second pressures based on a differential pressure between the first and second pressures. Measuring method. 光を発する発光素子と、
第1の圧力を受け、前記光に第1の変調を与える第1の受圧素子と、
第2の圧力を受け、前記光に第2の変調を与える第2の受圧素子と、
前記第1の変調を与えられた光を照射され、少なくとも第1の波長帯域の蛍光を発する第1の蛍光体と、
前記第2の変調を与えられた光を照射され、前記第1の波長帯域とは異なる少なくとも第2の波長帯域の蛍光を発する第2の蛍光体と、
前記第1の波長帯域の蛍光及び前記第2の波長帯域の蛍光の結合光の減衰特性を測定する減衰特性測定部と、
前記減衰特性に基づいて、前記第1及び第2の圧力の差圧を算出する差圧算出部と、
を備える圧力測定システム。
A light emitting element that emits light;
A first pressure-receiving element that receives a first pressure and applies a first modulation to the light;
A second pressure receiving element that receives a second pressure and applies a second modulation to the light;
A first phosphor that is irradiated with light having the first modulation and emits fluorescence of at least a first wavelength band;
A second phosphor that is irradiated with light having the second modulation and emits fluorescence of at least a second wavelength band different from the first wavelength band;
An attenuation characteristic measurement unit that measures attenuation characteristics of the combined light of the fluorescence in the first wavelength band and the fluorescence in the second wavelength band;
A differential pressure calculation unit that calculates a differential pressure between the first and second pressures based on the damping characteristics;
Pressure measuring system.
前記減衰特性と、前記差圧と、の予め取得された関係を保存する関係記憶部を更に備える、請求項28に記載の圧力測定システム。   29. The pressure measurement system according to claim 28, further comprising a relationship storage unit that stores a previously acquired relationship between the damping characteristic and the differential pressure. 前記差圧算出部が、
前記減衰特性に基づいて、前記第1の波長帯域の蛍光の光量と、前記第2の波長帯域の蛍光の光量と、の光量比を算出し、
前記光量比に基づいて、前記第1及び第2の圧力の差圧を算出する、
請求項28に記載の圧力測定システム。
The differential pressure calculation unit
Based on the attenuation characteristics, a light amount ratio between the amount of fluorescence in the first wavelength band and the amount of fluorescence in the second wavelength band is calculated,
Calculating a differential pressure between the first and second pressures based on the light amount ratio;
The pressure measurement system according to claim 28.
前記光量比と、前記差圧と、の予め取得された関係を保存する関係記憶部を更に備える、請求項30に記載の圧力測定システム。   The pressure measurement system according to claim 30, further comprising a relationship storage unit that stores a previously acquired relationship between the light amount ratio and the differential pressure. 前記第1の蛍光体由来の前記第1の波長帯域の蛍光を透過させ、前記第1の蛍光体由来の前記第2の波長帯域の蛍光を遮光する第1の波長フィルタと、
前記第2の蛍光体由来の前記第2の波長帯域の蛍光を透過させ、前記第2の蛍光体由来の前記第1の波長帯域の蛍光を遮光する第2の波長フィルタと、
を更に備える、請求項28乃至31のいずれか1項に記載の圧力測定システム。
A first wavelength filter that transmits fluorescence in the first wavelength band derived from the first phosphor and shields fluorescence in the second wavelength band derived from the first phosphor;
A second wavelength filter that transmits fluorescence of the second wavelength band derived from the second phosphor and shields fluorescence of the first wavelength band derived from the second phosphor;
The pressure measurement system according to any one of claims 28 to 31, further comprising:
前記第1の波長帯域と、前記第2の波長帯域とが、異なる重心波長を有する、請求項28乃至32のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 28 to 32, wherein the first wavelength band and the second wavelength band have different centroid wavelengths. 前記第1の波長帯域と、前記第2の波長帯域とが、異なる帯域幅を有する、請求項28乃至33のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 28 to 33, wherein the first wavelength band and the second wavelength band have different bandwidths. 前記第1及び第2の蛍光体の雰囲気温度の変動に基づく前記減衰特性の変動を補正する減衰特性補正部を更に備える、請求項28乃至34のいずれか1項に記載の圧力測定システム。   35. The pressure measurement system according to any one of claims 28 to 34, further comprising an attenuation characteristic correction unit that corrects a variation in the attenuation characteristic based on a variation in the ambient temperature of the first and second phosphors. 前記第1及び第2の蛍光体の雰囲気温度を一定にする温度調節器を更に備える、請求項28乃至34のいずれか1項に記載の圧力測定システム。   35. The pressure measurement system according to any one of claims 28 to 34, further comprising a temperature controller that makes the ambient temperature of the first and second phosphors constant. 前記第1及び第2の蛍光体を格納する恒温槽を更に備える、請求項28乃至34のいずれか1項に記載の圧力測定システム。   The pressure measurement system according to any one of claims 28 to 34, further comprising a thermostatic chamber for storing the first and second phosphors. 前記第1の変調を与えられた光の光強度に基づき、前記第1の圧力を算出する圧力算出部を更に備える、請求項28乃至37のいずれか1項に記載の圧力測定システム。   38. The pressure measurement system according to any one of claims 28 to 37, further comprising a pressure calculation unit that calculates the first pressure based on light intensity of the light subjected to the first modulation. 前記第1の変調を与えられた光の光強度と、前記第1の圧力と、の予め取得された関係を保存する関係記憶部を更に備える、請求項38に記載の圧力測定システム。   39. The pressure measurement system according to claim 38, further comprising a relationship storage unit that stores a previously acquired relationship between light intensity of the light subjected to the first modulation and the first pressure. 前記光の光強度の変動を補正する発光強度補正部を更に備える、請求項38又は39に記載の圧力測定システム。   40. The pressure measurement system according to claim 38 or 39, further comprising a light emission intensity correction unit that corrects a variation in light intensity of the light. 前記第1及び第2の蛍光体が一体化している、請求項28乃至40のいずれか1項に記載の圧力測定システム。   41. The pressure measurement system according to any one of claims 28 to 40, wherein the first and second phosphors are integrated. 前記第1及び第2の圧力の差圧に基づき、前記第1及び第2の圧力を与えた流体の流量を算出する流量算出部を更に備える、請求項28乃至41のいずれか1項に記載の圧力測定システム。   42. The flow rate calculation unit according to any one of claims 28 to 41, further comprising a flow rate calculation unit configured to calculate a flow rate of the fluid to which the first and second pressures are applied based on a differential pressure between the first and second pressures. Pressure measurement system. 光を発することと、
前記光に、第1の圧力に依存する第1の変調を与えることと、
前記光に、第2の圧力に依存する第2の変調を与えることと、
前記第1の変調を与えられた光によって、少なくとも第1の波長帯域の蛍光を励起することと、
前記第2の変調を与えられた光によって、前記第1の波長帯域とは異なる少なくとも第2の波長帯域の蛍光を励起することと、
前記第1の波長帯域の蛍光及び前記第2の波長帯域の蛍光の結合光の減衰特性を測定することと、
前記減衰特性に基づいて、前記第1及び第2の圧力の差圧を算出することと、
を含む圧力測定方法。
Emitting light,
Providing the light with a first modulation that depends on a first pressure;
Providing the light with a second modulation that depends on a second pressure;
Exciting the fluorescence of at least the first wavelength band with the light subjected to the first modulation;
Exciting the fluorescence of at least a second wavelength band different from the first wavelength band with the light subjected to the second modulation;
Measuring the attenuation characteristics of the combined light of the fluorescence in the first wavelength band and the fluorescence in the second wavelength band;
Calculating a differential pressure between the first and second pressures based on the damping characteristic;
A pressure measuring method including:
前記減衰特性と、前記差圧と、の予め取得された関係を用意することを更に含む、請求項43に記載の圧力測定方法。   44. The pressure measurement method according to claim 43, further comprising preparing a previously acquired relationship between the attenuation characteristic and the differential pressure. 前記差圧を算出することが、前記減衰特性に基づいて、前記第1の波長帯域の蛍光の光量と、前記第2の波長帯域の蛍光の光量と、の光量比を算出することを含み、
前記差圧が、前記光量比に基づいて算出される、請求項43に記載の圧力測定方法。
Calculating the differential pressure includes calculating a light amount ratio between the amount of fluorescent light in the first wavelength band and the amount of fluorescent light in the second wavelength band based on the attenuation characteristics;
44. The pressure measurement method according to claim 43, wherein the differential pressure is calculated based on the light amount ratio.
前記光量比と、前記差圧と、の予め取得された関係を用意することを更に含む、請求項45に記載の圧力測定方法。   46. The pressure measurement method according to claim 45, further comprising preparing a previously acquired relationship between the light amount ratio and the differential pressure. 前記第1の蛍光体由来の前記第1の波長帯域の蛍光を透過させ、前記第1の蛍光体由来の前記第2の波長帯域の蛍光を遮光することと、
前記第2の蛍光体由来の前記第2の波長帯域の蛍光を透過させ、前記第2の蛍光体由来の前記第1の波長帯域の蛍光を遮光することと、
を更に含む、請求項43乃至46のいずれか1項に記載の圧力測定方法。
Transmitting fluorescence of the first wavelength band derived from the first phosphor and shielding fluorescence of the second wavelength band derived from the first phosphor;
Transmitting the fluorescence of the second wavelength band derived from the second phosphor and shielding the fluorescence of the first wavelength band derived from the second phosphor;
The pressure measurement method according to any one of claims 43 to 46, further comprising:
前記第1の波長帯域と、前記第2の波長帯域とが、異なる重心波長を有する、請求項43乃至47のいずれか1項に記載の圧力測定方法。   The pressure measurement method according to any one of claims 43 to 47, wherein the first wavelength band and the second wavelength band have different centroid wavelengths. 前記第1の波長帯域と、前記第2の波長帯域とが、異なる帯域幅を有する、請求項43乃至48のいずれか1項に記載の圧力測定方法。   49. The pressure measurement method according to any one of claims 43 to 48, wherein the first wavelength band and the second wavelength band have different bandwidths. 前記第1及び第2の蛍光体の雰囲気温度の変動に基づく前記減衰特性の変動を補正することを更に含む、請求項43乃至49のいずれか1項に記載の圧力測定方法。   The pressure measurement method according to any one of claims 43 to 49, further comprising correcting a variation in the attenuation characteristic based on a variation in the ambient temperature of the first and second phosphors. 前記第1及び第2の蛍光体の雰囲気温度を一定にすることを更に含む、請求項43乃至49のいずれか1項に記載の圧力測定方法。   The pressure measurement method according to any one of claims 43 to 49, further comprising making the ambient temperature of the first and second phosphors constant. 前記第1の変調を与えられた光の光強度に基づき、前記第1の圧力を算出することを更に含む、請求項43乃至51のいずれか1項に記載の圧力測定方法。   52. The pressure measurement method according to any one of claims 43 to 51, further comprising calculating the first pressure based on a light intensity of the light given the first modulation. 前記第1の変調を与えられた光の光強度と、前記第1の圧力と、の予め取得された関係を用意することを更に含む、請求項52に記載の圧力測定方法。   53. The pressure measurement method according to claim 52, further comprising preparing a previously acquired relationship between light intensity of the light subjected to the first modulation and the first pressure. 前記光の光強度の変動を補正することを更に含む、請求項43乃至53のいずれか1項に記載の圧力測定方法。   54. The pressure measurement method according to any one of claims 43 to 53, further comprising correcting a variation in light intensity of the light. 前記第1及び第2の圧力の差圧に基づき、前記第1及び第2の圧力を与えた流体の流量を算出することを更に含む、請求項43乃至54のいずれか1項に記載の圧力測定方法。   55. The pressure according to any one of claims 43 to 54, further comprising calculating a flow rate of a fluid that has applied the first and second pressures based on a differential pressure between the first and second pressures. Measuring method.
JP2010028068A 2010-02-10 2010-02-10 Pressure measuring system and pressure measuring method Expired - Fee Related JP5268963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028068A JP5268963B2 (en) 2010-02-10 2010-02-10 Pressure measuring system and pressure measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010028068A JP5268963B2 (en) 2010-02-10 2010-02-10 Pressure measuring system and pressure measuring method

Publications (2)

Publication Number Publication Date
JP2011163982A JP2011163982A (en) 2011-08-25
JP5268963B2 true JP5268963B2 (en) 2013-08-21

Family

ID=44594828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028068A Expired - Fee Related JP5268963B2 (en) 2010-02-10 2010-02-10 Pressure measuring system and pressure measuring method

Country Status (1)

Country Link
JP (1) JP5268963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422543B2 (en) 2008-08-08 2016-08-23 Cambridge Enterprise Limited Isolation of nucleic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571407B2 (en) * 2010-02-17 2014-08-13 アズビル株式会社 Measuring system and measuring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164227A (en) * 1984-02-06 1985-08-27 Nec Corp Temperature detecting method
JP2006034723A (en) * 2004-07-28 2006-02-09 Kyocera Corp Led light source equipment, and observation device and endoscope using the equipment
JP4817786B2 (en) * 2005-10-03 2011-11-16 株式会社山武 Differential pressure measurement system and differential pressure measurement method
JP2007121140A (en) * 2005-10-28 2007-05-17 Yamatake Corp System and method for measuring differential pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422543B2 (en) 2008-08-08 2016-08-23 Cambridge Enterprise Limited Isolation of nucleic acid

Also Published As

Publication number Publication date
JP2011163982A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US8046188B2 (en) Temperature sensor and temperature measuring method
JP6075372B2 (en) Material property measuring device
JP4817786B2 (en) Differential pressure measurement system and differential pressure measurement method
EP0029653B1 (en) Optical systems for sensing and measuring physical quantities
WO2015104885A1 (en) Light-intensity detection device and detection method
JP5268963B2 (en) Pressure measuring system and pressure measuring method
JP5571407B2 (en) Measuring system and measuring method
WO2020196691A1 (en) Spectrometer and method for calibrating correspondence table in spectrometer
US20100290105A1 (en) Wavelength converter and image display device
JP2007240294A (en) Apparatus for measuring optical fiber distortion
US20220074851A1 (en) Concentration measurement device
JPS60164227A (en) Temperature detecting method
JP6208236B2 (en) Optical sensor system
JP2015149369A (en) fiber laser device
JP5590961B2 (en) Fluorescent temperature sensor and temperature measuring method
JP2015175780A (en) sensor device and measurement method
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
TW585998B (en) Fiber grating sensor of energy modulation type
KR20110097108A (en) Fiber-optic temperature sensor
JP5358420B2 (en) Fluorescent temperature sensor and temperature measuring method
SU1076777A1 (en) Heat flux measuring method
US20230304871A1 (en) Temperature measurement system and method using multimode of an optical resonator
JP2009052964A (en) Fiber-optic temperature sensor and temperature detection system using it
JP5465132B2 (en) Dew point measurement system and dew point measurement method
Yu et al. All-optically-driven and All-optical-fiber Vacuum Gauge via Ytterbium-doped Optical Fiber Microheater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees