JP5267811B2 - Field test equipment for landslide prediction - Google Patents

Field test equipment for landslide prediction Download PDF

Info

Publication number
JP5267811B2
JP5267811B2 JP2009161194A JP2009161194A JP5267811B2 JP 5267811 B2 JP5267811 B2 JP 5267811B2 JP 2009161194 A JP2009161194 A JP 2009161194A JP 2009161194 A JP2009161194 A JP 2009161194A JP 5267811 B2 JP5267811 B2 JP 5267811B2
Authority
JP
Japan
Prior art keywords
sample
pressure
cylinder
shear
shear box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009161194A
Other languages
Japanese (ja)
Other versions
JP2010286463A (en
Inventor
恭二 佐々
健敏 圓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marui Co Ltd
Original Assignee
Marui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marui Co Ltd filed Critical Marui Co Ltd
Priority to JP2009161194A priority Critical patent/JP5267811B2/en
Publication of JP2010286463A publication Critical patent/JP2010286463A/en
Application granted granted Critical
Publication of JP5267811B2 publication Critical patent/JP5267811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that conventional testing machines are difficult to be reduced in size and weight and is not brought to an actual site of landslide, making it difficult to measure a pore pressure. <P>SOLUTION: A field test device for landslide prediction has been compacted by connecting the upper end of a central operating shaft 10 with a piston 12 in an upper cylinder 11; arranging a load cell 26 between the lower end of the operating shaft 10 and the upper end of a piston rod 25 in a lower cylinder 28; removing long columns and a beam for mounting a vertical load by connecting lower ends of a plurality of pressure rods 8 and 8 attached to the bottom surface of a support plate 9 of the upper cylinder 11 and a sample pressure plate 7 placed on the top surface of a sample in upper sidewall members 5<SB>1</SB>and 5<SB>2</SB>; minimizing gouging, expansion and contraction, and deflection of these members; attaching water leak preventive rubber edges along lower sidewall members 3<SB>1</SB>and 3<SB>2</SB>to allow measurement of the pore pressure; and liberating a liquid pressure between the cylinder support plate 9 and the piston 12 to mount a load on the sample held in upper and lower shearing boxes 5 and 3. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は山地や山地に近接する地域における地滑り・土石流現象を発生現場から採取したサンプルを用いて、発生現場に近いところで繰り返し試験を行い、その現場での地滑り・土石流の発生、流動、停止条件を定量的測定できるようにした軽量可搬式の地滑り予測用現場試験装置に関する。  The present invention uses a sample collected from the site of the landslide and debris flow phenomena in the mountains and areas close to the mountains, and repeatedly performs tests near the site of the occurrence, conditions of landslide and debris flow generation, flow, stop conditions at the site The present invention relates to a lightweight portable landslide prediction field test device that can quantitatively measure.

従来の地滑り予測試験装置は、環状の静止容器とこれに相対する環状の回転容器に跨がって互いに形成するその空間に土砂サンプルを収容保持し、静止容器内のサンプルを加圧する載荷板と装置上盤との間に荷重載荷用の気密室を形成し、水で飽和或いは不飽和の条件下で加圧状態で回転容器を回動することにより土砂サンプルに作用する剪断荷重、垂直荷重、剪断速度、垂直変位等を検出するようにした装置がある(例えば、特許文献1参照。)。  A conventional landslide prediction test apparatus includes a loading plate that holds and holds a soil sample in a space formed between an annular stationary container and an annular rotating container opposite to the annular stationary container, and pressurizes the sample in the stationary container; A load-carrying airtight chamber is formed between the upper panel of the device, and the shear load acting on the sediment sample by rotating the rotating container under pressure under saturated or unsaturated conditions with water, vertical load, There is an apparatus that detects a shear rate, vertical displacement, and the like (for example, see Patent Document 1).

また、台板と上端板とによって支持される2本の支柱上に、ジャッキにて上下動する昇降架台を装設し、昇降架台上にトルク計を介してサーボモータにより回動せしめられる剪断軸を枢設する。昇降架台の上位に支柱上の任意の位置で定置できる可動板を装設すると共に、剪断軸上に支持した水槽内底面と可動板との間に下部容器と上部容器とを対向定設し、可動板を貫通して上部容器内に臨ませた加圧杆の上端部を加圧板にて支持し、上端板の上面に定設した荷重載架部の出力端部と加圧板との間に適宜ロードセルを介在連設してなる装置がある。(例えば、特許文献2参照。)。  In addition, a lifting shaft that moves up and down with a jack is installed on two struts supported by the base plate and the upper end plate, and a shear shaft that is rotated on the lifting base by a servo motor via a torque meter Pivot. While installing a movable plate that can be placed at any position on the column above the lifting platform, a lower container and an upper container are fixed oppositely between the bottom surface of the water tank supported on the shear axis and the movable plate, The upper end of the pressure rod that penetrates the movable plate and faces the upper container is supported by the pressure plate, and between the pressure plate and the output end of the load platform fixed on the upper surface of the upper plate. There is an apparatus in which a load cell is provided in an intervening manner as appropriate. (For example, refer to Patent Document 2).

特公平2−60248号公報(回転水路型土石流試験法とその試験装置)。  Japanese Examined Patent Publication No. 2-60248 (Rotating water channel type debris flow test method and test apparatus). 特開平5−34252号公報(定体積、定圧力兼用リング剪断試験装置)。  JP-A-5-34252 (constant volume, constant pressure combined ring shear test apparatus).

しかし乍ら特許文献1では荷重載架手段として気密室に圧縮空気を送り込み載荷板を介してサンプルに荷重を架けるようにしている。従って載荷板の全面に均等な荷重が載架され難く、その結果、最大の欠点は支柱がこじることになり、剪断面に均等な応力が載架され難い。
また、上下剪断箱の接触部からサンプル及びサンプル内の間隙水が漏れるため、地滑り運動時の摩擦抵抗に大きく影響を及ぼす間隙水圧が計測できない。
それに剪断荷重を掛ける手段としてモーターを使用し、垂直荷重の載架にコンプレッサーを用いるため重量が嵩み、また電源が必要なため任意場所への持ち込みができない。
However, in Patent Document 1, as a load mounting means, compressed air is sent into an airtight chamber so that a load can be applied to a sample via a loading plate. Therefore, it is difficult for an equal load to be placed on the entire surface of the loading plate. As a result, the greatest drawback is that the struts are twisted, and it is difficult to place an even stress on the shearing surface.
Moreover, since the sample and pore water in the sample leak from the contact portion of the upper and lower shear boxes, the pore water pressure that greatly affects the frictional resistance during the landslide movement cannot be measured.
A motor is used as a means for applying a shear load to it, and a compressor is used to mount a vertical load, which increases the weight and requires a power source, so it cannot be brought into any place.

従来例の特許文献2では、台盤に2本の支柱を立て、この2本の支柱間をつなぐ梁の形で上端支持板を取り付け、その中央に載荷用シリンダーを取り付け、このシリンダーに油圧を掛けることによりシリンダー内のピストンを移動させ、試料に垂直応力を載荷するための反力を得ていた。  In Patent Document 2 of the conventional example, two struts are set up on the base, an upper end support plate is attached in the form of a beam connecting the two struts, a loading cylinder is attached at the center, and hydraulic pressure is applied to this cylinder. The piston in the cylinder was moved by applying it to obtain a reaction force for applying a normal stress to the sample.

この従来の方式では、2本の長い支柱が必要であり、試験機が小型化できなかった。また、梁と長い支柱に試料への載荷圧力の反力がかかるため、地滑り再現試験中に急激な応力変化が生じる際の伸縮と撓みのために上下容器間隙の制御が困難となり、剪断箱からの間隙水の漏れを止めること、及び試料にかかる力を高い精度で制御することができなかった。
また、従来の方式では、上部のピストンから垂直応力計測用のロードセルと加圧杆を経て、試料に垂直応力がかかるまでの間に上位剪断箱の側面摩擦力が作用するため、載荷時のロードセルの計測値は、試料の剪断面にかかる力よりも過大になる。一方剪断中に試料の体積が膨脹する際には逆に過少になる。側面摩擦力は最大で載荷する垂直応力の1/3程度になり、30%程度の誤差が発生する。
In this conventional method, two long columns are required, and the testing machine cannot be downsized. In addition, since the reaction force of the loading pressure on the specimen is applied to the beam and the long column, it becomes difficult to control the upper and lower container gaps due to expansion and contraction when a sudden stress change occurs during the landslide reproduction test, and it is difficult to control from the shear box It was not possible to stop leakage of pore water and to control the force applied to the sample with high accuracy.
In the conventional method, the side frictional force of the upper shear box acts from the upper piston through the load cell for measuring the vertical stress and the pressure rod until the vertical stress is applied to the sample. The measured value of is more than the force applied to the shearing surface of the sample. On the other hand, when the volume of the sample expands during shearing, it becomes too small. The side friction force is about 1/3 of the vertical stress loaded at the maximum, and an error of about 30% occurs.

従って従来の試験機では、小型軽量化することが困難であり、地すべり発生現場に近いところへ持ち込むことができなかった。また、間隙水の漏れを止めることができないため 地すべり予測に必要な発生する間隙水圧の計測が困難であった。さらに側面摩擦力の影響が入るため垂直応力の測定精度も高くなかった。  Therefore, it is difficult to reduce the size and weight of the conventional testing machine, and it was not possible to bring it close to the site where landslides occurred. In addition, since pore water leakage cannot be stopped, it was difficult to measure the pore water pressure required for landslide prediction. Furthermore, the measurement accuracy of normal stress was not high because of the influence of side friction.

装置中央の作動軸に垂直応力計測用のロードセル26、上位剪断箱5、垂直応力載荷用シリンダー内のピストン12を剛結することによりこれら4つの部材を一つの系とし、シリンダーに油圧をかけることによりシリンダーを移動させ、この系の外にある試料に外力として垂直応力を載荷する構造にした。この構造の場合、試料の剪断面にかかる垂直応力は、この系の外力として垂直応力計測用のロードセル26で計測される。上位剪断箱5にかかる側面摩擦力は系の内力でありロードセル26には反映されないため、垂直応力計測用のロードセル26によって、試料に作用している垂直応力のみを正確に計測することができ、高精度での応力制御が可能となった。  By rigidly connecting the load cell 26 for vertical stress measurement, the upper shear box 5, and the piston 12 in the vertical stress loading cylinder to the operating shaft in the center of the apparatus, these four members are combined into one system, and hydraulic pressure is applied to the cylinder. The cylinder was moved by this, and a structure in which normal stress was loaded as an external force on a sample outside the system was constructed. In the case of this structure, the normal stress applied to the shearing surface of the sample is measured by the load cell 26 for measuring the normal stress as an external force of the system. Since the side frictional force applied to the upper shear box 5 is an internal force of the system and is not reflected in the load cell 26, only the normal stress acting on the sample can be accurately measured by the load cell 26 for vertical stress measurement. Stress control with high accuracy became possible.

撓みの大きい梁、伸縮の大きな長い支柱がなくなるため、地すべり予測実験中に応力変化が生じても間隙水の漏れを防ぐことが可能となり、剪断中に発生する間隙水圧の計測が可能となった。長い支柱が不要になったことから、格段の小型軽量化が可能となり、地すべり現場に近いところへの可搬形の試験機とすることができた。また、構造が単純化したことにより、操作性も向上した。  Since there are no longer deflected beams and long struts with large expansion and contraction, it is possible to prevent leakage of pore water even if stress changes during the landslide prediction experiment, and measurement of pore water pressure generated during shearing is possible. . Since the long support was not needed, it was possible to make it much smaller and lighter, and it was possible to make it a portable testing machine near the landslide site. In addition, the operability has been improved due to the simplified structure.

装置の軽量化に伴い地滑りを起こす現地への持ち込みが容易になったことより地質、水分の状況や風化の度合い、異なる土や砂の混じり具合、火砕流堆積物等その他多くの複雑な土質条件に合ったテストが容易である。また、剪断荷重はギヤーによって手動で架けることができるので、持ち込み地域の制約が無く汎用性が高い。  Due to the ease of bringing landslides to the site due to the weight reduction of the equipment, the geological conditions, moisture conditions and weathering conditions, mixing of different soils and sand, pyroclastic flow deposits and many other complicated soil conditions Easy to test. In addition, since the shear load can be manually set by a gear, there is no restriction on the area where it is brought in, and the versatility is high.

操作が単純化されたことと現地へ持ち込めることから、現地(国内外)の研究者・技術者・学生・高中学生・防災に関心の高い社会人・消防団などの人材育成・防災教育・啓発などに大いに活用できる。  Human resources development, disaster prevention education, and enlightenment for local (domestic and overseas) researchers, engineers, students, high and junior high school students, members of society who are highly interested in disaster prevention, fire brigade, etc. It can be used for a lot.

日本の高いレベルの地滑り予想技術に対するアジア・ラテンアメリカ・アフリカ・東欧などの期待が高い。此等の地域での地滑り防災技術の移転にとって、軽量・可搬式の試験機の開発は極めて有意義である。  Asia, Latin America, Africa and Eastern Europe have high expectations for Japan's high-level landslide prediction technology. For the transfer of landslide disaster prevention technology in these areas, the development of lightweight and portable testing machines is extremely meaningful.

試験機の構造が単純化されて、コストも軽減されたことから、発展途上国での購入或いは寄贈も容易であり、且つ一台の試験機を必要なときに必要な地域へ持ち回ることにより、国内の各地で共用することが可能であり、試験機のコストパーフォーマンスは極めて高い。  Since the structure of the testing machine has been simplified and the cost has been reduced, it is easy to purchase or donate in developing countries, and by bringing a single testing machine to the required area when needed. It can be shared in various parts of the country, and the cost performance of the testing machine is extremely high.

地滑り発生・運動予測のためには、試料内の剪断ゾーンで発生する間隙水圧を的確に計測することが不可欠である。本発明では、下部シリンダー28へ液圧を与えて、下部剪断箱上面に取り付けた内外夫々のゴムエッジ18、18の変形を一定に保つことにより、ゴムエッジと上位剪断箱の底面間の接触圧力を常にサンプル内で発生する間隙水圧より高い値に保ち、間隙水圧水の漏れを防ぎ、試料内の剪断ゾーンに近接したところに取り付けられたフィルター付きの溝17に連結された間隙水圧計17により、サンプル内で発生する間隙水圧を正確に計測できる。In order to predict landslide occurrence and motion, it is indispensable to accurately measure the pore water pressure generated in the shear zone in the sample. In the present invention, the contact pressure between the rubber edge and the bottom surface of the upper shear box is maintained by applying a hydraulic pressure to the lower cylinder 28 to keep the deformation of the rubber edges 18 1 and 18 2 attached to the upper surface of the lower shear box constant. was kept always higher than the pore pressure generated in the sample to prevent leakage of the pore pressure water, pore water pressure connected to the groove 17 1 with filter attached to was close to the shear zone in the sample meter 17 2 , the pore water pressure generated in the sample can be accurately measured.

以下図1に基づいて説明する。
サンプルを収容保持する手段Aは、ドーナツ状の下位側壁部材3、3を底板2上に一定間隔を保って内外同心円上に対向配置することで、相対する両側壁部材3、3間と底板2とによりサンプルを収容する環状の下位剪断箱3を形成し、両下位側壁部材3、3並びに底板2を後述の回転台座1と共に回動するようにしている。
A description will be given below with reference to FIG.
Means A for housing and holding the sample, by opposing arranged on inner and outer concentric circles while maintaining a constant interval donut-shaped lower side wall member 3 1, 3 2 on the bottom plate 2, opposite side walls members 3 1, 3 2 An annular lower shear box 3 for accommodating a sample is formed by the space and the bottom plate 2, and both the lower side wall members 3 1 , 3 2 and the bottom plate 2 are rotated together with a rotating base 1 described later.

更に、前記下位側壁部材3、3の上位には同様の内側壁部材5と外側壁部材5とを一定間隔を保って内外同心円上に対向配置し、且つ下位側壁部材3、3の各上端と互いに当接させて固定天板6の下面に着脱自由に取着して上位剪断箱5を形成し、前記下位剪断箱3と上位剪断箱5とに跨がってサンプルを保持するようにしている。Further, the lower side wall member 3 1, 3 to 2 higher while maintaining a predetermined interval between same inner wall member 5 1 and the outer wall member 5 2 faces arranged on the inner and outer concentric circles, and the lower side wall members 3 1, 3 each upper end 2 and brought into contact with each other freely attached detachably to the lower surface of the fixed top plate 6 to form a higher shear box 5, samples straddling said lower shear box 3 and the upper shear box 5 To keep.

次に、剪断力付加手段Bは、下方に設けた水平固定台板23に作動軸10を垂直軸受け21の鞘軸部により直立保持し、垂直軸受け21の外側にはベアリング20を介して回転台座1を回動自由に枢設している。回転台座1の下面にはリング状歯車19を定着し、前記固定台板23の下位に枢設した剪断用ハンドル31からの回転動作を受けて回転する小歯車19と外接して噛み合わせて、小歯車19の転動により回転台座1を回動するようにしている。Next, the shearing force applying means B holds the operating shaft 10 upright by a sheath shaft portion of the vertical bearing 21 on a horizontal fixed base plate 23 provided below, and a rotating pedestal via a bearing 20 outside the vertical bearing 21. 1 is pivoted freely. The lower surface of the rotary seat 1 is fixed a ring gear 19 2, engagement circumscribe the small gear 19 1 which rotates by receiving rotation from the shearing wheel 31 which is pivoted to the lower of the fixed base plate 23 Te, and so as to rotate the rotary base 1 by the rolling of the pinion 19 1.

一方、サンプルに荷重を付加する荷重載架手段Cは、上位剪断箱5の天板6を複数本の加圧杆8、8・にて摺動自由に縦貫挿通し、その下端を上位側壁部材5、5の保持溝内に嵌入したドーナツ状のサンプル加圧板7に当接させると共に、加圧杆8、8・の上端はシリンダー11の支持板9の下面に取着しており、またシリンダー11内には支持板9を貫通する前記作動軸10の上端をピストン12に取り付けており、ピストン12の上端面とシリンダー11の内面との間にスプリング13を介在させ載荷・除荷制御の向上をはかっている。On the other hand, the load mounting means C for applying a load to the sample passes through the top plate 6 of the upper shear box 5 by a plurality of pressure rods 8, 8. 5 1, is brought into contact to 5 toroidal sample pressure plate 7 which is fitted into the holding groove 2, the upper end of the pressure圧杆8,8-has been attached to the lower surface of the support plate 9 of the cylinder 11, Further, the upper end of the operating shaft 10 penetrating the support plate 9 is attached to the piston 12 in the cylinder 11, and a loading / unloading control is performed by interposing a spring 13 between the upper end surface of the piston 12 and the inner surface of the cylinder 11. We are trying to improve.

更に上記作動軸10の下部は、水平固定台板23から下向突設した複数本の支持杆24、24・によって支持されるシリンダー内のピストン29のピストン杆25との間にロードセル26を介して連設している。しかもピストン29の下端面と下部シリンダー28との間にスプリング30を介在させ制御精度を高めている。  Further, the lower portion of the operating shaft 10 is interposed between a piston rod 25 of a piston 29 in a cylinder supported by a plurality of support rods 24, 24, which project downward from the horizontal fixed base plate 23, via a load cell 26. Are connected. In addition, a spring 30 is interposed between the lower end surface of the piston 29 and the lower cylinder 28 to enhance control accuracy.

次に一連動作について述べると、先ず下位側壁部材3、3と底板2からなる下位剪断箱3内のサンプル座板4と、上位の両側壁部材5、5にて囲まれた上位剪断箱5内に現場で採取したサンプルaを収容し、サンプルaの上面にサンプル加圧板7を載置し、サンプル加圧板7の上面を加圧杆8、8・にて加圧するようにしている。Next, a series of operations will be described. First, the upper part surrounded by the sample seat plate 4 in the lower shear box 3 composed of the lower side wall members 3 1 and 3 2 and the bottom plate 2 and the upper side wall members 5 1 and 5 2 . The sample a collected in the field is accommodated in the shear box 5, the sample pressurizing plate 7 is placed on the upper surface of the sample a, and the upper surface of the sample pressurizing plate 7 is pressurized with the pressurizing rods 8, 8. Yes.

上述のようにサンプルを装置本体に装填した後、送入口bにねじ式ポンプを接続して、流体(温度変性しない液体)例えばオイルなどを送り込むことにより作動軸10を引き上げ、その際の反力を用いて加圧杆8を矢印方向へ押し下げ、その下端に取り付けられた加圧板7によりサンプルaに圧力を載荷する。After the sample is loaded into the apparatus main body as described above, a screw type pump is connected to the inlet b 1, and the operating shaft 10 is pulled up by feeding a fluid (liquid that does not denature temperature) such as oil. The pressure rod 8 is pushed down in the direction of the arrow using force, and the pressure is loaded on the sample a by the pressure plate 7 attached to the lower end thereof.

サンプルに一定圧力をかけた状態で剪断用ハンドル31を手動で回すことにより、ハンドル31と連動する小歯車19が連動し、リング状歯車19を介して回転台座1が水平固定台板23に支持された状態で回動し、これに伴って下位側壁部材3、3も底板2と共にサンプルaを保持した儘作動軸10を中心に回動する。By turning the shearing handle 31 manually while applying a constant pressure to the sample, in conjunction pinion 19 1 in conjunction with a handle 31, a ring-shaped gear 19 2 rotated through the base 1 is horizontally fixed base plate 23 The lower side wall members 3 1 , 3 2 are rotated about the rod operating shaft 10 holding the sample a together with the bottom plate 2.

上記動作において、サンプルaの剪断面付近に発生する間隙水圧を高精度の間隙水圧計17で計測すると共に、ウイングに付設した左右二本のセンサー16、16にて剪断力を計測する。In the above operation, the pore water pressure occurring in the vicinity of the shearing surface of the sample a while measured by pore pressure meter 17 2 precision, measuring the shearing force at the left and right were attached to the wing two sensors 16 1, 16 2 .

剪断荷重載荷中にはサンプルaが膨脹あるいは収縮しようとする際に上位剪断箱5とサンプル間に作用する側面摩擦力により上下剪断箱間の間隙(ギャップ)が変化しようとする。間隙の変化によりゴムエッジ18、18にかかる圧力が変化し間隙水が漏れることを防ぐために、微小変位計(ギャップセンサー)27により作動軸10とこれに固定した剪断力測定用アーム15を介して上下剪断箱間の間隙を正確に計測し、常にゴムエッジの変形を一定に保つように下部シリンダー28に送入口bより流体を出し入れすることにより、ゴムエッジにかかる圧力を一定に保つものである。During the loading of the shear load, when the sample a tries to expand or contract, the gap (gap) between the upper and lower shear boxes tends to change due to the side frictional force acting between the upper shear box 5 and the sample. In order to prevent the pressure applied to the rubber edges 18 1 , 18 2 from being changed due to the change in the gap and leaking the gap water, the micro displacement meter (gap sensor) 27 passes through the operating shaft 10 and the shear force measuring arm 15 fixed thereto. The pressure between the upper and lower shear boxes is accurately measured, and the pressure applied to the rubber edge is kept constant by putting fluid into and out of the lower cylinder 28 from the inlet b 2 so as to always keep the deformation of the rubber edge constant. .

本発明の特徴はコンパクトな可搬型であると共に剪断面付近に発生する間隙水圧を正確に計測可能なシステムを有すること並びに中心の作動軸10を上下動しないようにして、ピストン12を定位置に保持することによりシリンダー11が上下に移動し、このことによって加圧杆8、8・によりサンプルaに作用する垂直荷重は一個のロードセル26によって計測するようにしていることである。  A feature of the present invention is that it is compact and portable, has a system capable of accurately measuring the pore water pressure generated in the vicinity of the shear plane, and moves the piston 12 in a fixed position by preventing the central operating shaft 10 from moving up and down. By holding, the cylinder 11 moves up and down, whereby the vertical load acting on the sample a by the pressure rods 8 and 8... Is measured by one load cell 26.

本発明は可搬式としているため土砂災害についての専門機関例えば大学等の研究施設で利用できる事はもとより、それ以外の装置開発の施設でも利用でき、最も有効な利用方法は災害の発生現場或いは災害発生予想地へ運び込み夫々の現場の土砂についてデータ収集し、災害予防に役立てることができる等幅広く各分野での利用が可能である。  Since the present invention is portable, it can be used not only at research institutions such as universities, but also at other equipment development facilities, and the most effective use method is the disaster occurrence site or disaster It can be used in a wide range of fields, such as transporting to the place where it is expected to occur, collecting data on the sediment at each site, and using it for disaster prevention.

本発明実施例を示す中央縦断側面図  Central longitudinal side view showing an embodiment of the present invention 要部拡大図  Enlarged view of main parts 図1の外観側面図  External side view of FIG. 同上平面図  Same as above

a サンプル
、b 送入口
1 回転台座
3 下位剪断箱
、3 下位側壁部材
5 上位剪断箱
、5 上位側壁部材
6 固定天板
7 サンプル加圧板
8 加圧杆
9 支持板
10 作動軸
11 シリンダー(垂直負荷用)
12 ピストン(垂直負荷用)
13 スプリング(垂直負荷用)
14 垂直変位計
15 剪断力計測用アーム
16、16 剪断力計
17 フィルター付き溝
17 間隙水圧計
18、18 ゴムエッジ
19 小歯車
19 リング状歯車
20 ベアリング
21 垂直軸受け
22 剪断変位計
23 水平固定台板
24 支持杆
25 ピストン杆
26 ロードセル
27 微小変位計(ギャップセンサー)
28 下部シリンダー(ギャップ調整用)
29 ピストン(ギャップ調整用)
30 スプリング(ギャップ調整用)
a Sample b 1 , b 2 Inlet 1 Rotating base 3 Lower shear box 3 1 , 3 2 Lower side wall member 5 Upper shear box 5 1 , 5 2 Upper side wall member 6 Fixed top plate 7 Sample pressure plate 8 Pressure rod 9 Support Plate 10 Operating shaft 11 Cylinder (for vertical load)
12 Piston (for vertical load)
13 Spring (for vertical load)
14 Vertical displacement meter 15 Shear force measurement arm 16 1 , 16 2 Shear force meter 17 1 Groove with filter 17 2 Gap water pressure gauge 18 1 , 18 2 Rubber edge 19 1 Small gear 19 2 Ring gear 20 Bearing 21 Vertical bearing 22 Shear Displacement meter 23 Horizontal fixed base plate 24 Support rod 25 Piston rod 26 Load cell 27 Minute displacement meter (gap sensor)
28 Lower cylinder (for gap adjustment)
29 Piston (for gap adjustment)
30 Spring (for gap adjustment)

Claims (3)

中央の作動軸10の上端を上部シリンダー11内のピストン12と接続し、作動軸10の下端部と下部シリンダー28内のピストン杆25上端との間にロードセル26を介在し、上部シリンダー11の支持板9の下面と上位剪断箱5内のサンプル上面に載置したサンプル加圧板7とを複数個の加圧杆8、8にて接続し、前記シリンダー支持板9とピストン12との間に液圧を作用させることにより上位剪断箱5及び下部剪断箱3内に保持されたサンプルに荷重を載架して上位内外側壁部材5、5に作用する摩擦力を相殺するようになし、上下剪断箱5及び3の境界面近傍のサンプル内に形成される剪断面に作用する有効荷重を一個のロードセル26にて計測するようにしてなる地滑り予測用現場試験装置The upper end of the central operating shaft 10 is connected to the piston 12 in the upper cylinder 11, and a load cell 26 is interposed between the lower end of the operating shaft 10 and the upper end of the piston rod 25 in the lower cylinder 28 to support the upper cylinder 11. A lower surface of the plate 9 and a sample pressure plate 7 placed on the upper surface of the sample in the upper shear box 5 are connected by a plurality of pressure rods 8 and 8, and a liquid is provided between the cylinder support plate 9 and the piston 12. By applying pressure, a load is placed on the sample held in the upper shear box 5 and the lower shear box 3 so as to cancel the frictional force acting on the upper inner and outer wall members 5 1 , 5 2. Field test device for landslide prediction, which measures the effective load acting on the shear surface formed in the sample near the boundary surface between the shear boxes 5 and 3 with one load cell 26. 下位剪断箱3の上位剪断箱5と相対する面に非排水用のゴムエッジ18、18を設置したことを特徴とする請求項1記載の地滑り予測用現場試験装置The ground test apparatus for landslide prediction according to claim 1 , wherein rubber edges 18 1 , 18 2 for non-drainage are installed on a surface of the lower shear box 3 facing the upper shear box 5. 上位剪断箱5を構成する上位外側壁部材5の内面に臨む部分に非排水剪断試験中にサンプル内に発生する間隙水圧を剪断箱外部に伝達する環状の検出溝を設け、剪断箱外面に取り付けられた間隙水圧計17にて計測することを特徴とする請求項1記載の地滑り予測用現場試験装置Detecting an annular groove for transmitting the pore water pressure which occurs in the upper outer wall member 5 within the sample during the undrained shear test at a portion facing the second inner surface constituting the upper shear box 5 to a shear box outside provided, the shear box outer surface landslide prediction field testing device of claim 1, wherein the measuring in the attached pore pressure meter 17 2
JP2009161194A 2009-06-15 2009-06-15 Field test equipment for landslide prediction Active JP5267811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161194A JP5267811B2 (en) 2009-06-15 2009-06-15 Field test equipment for landslide prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161194A JP5267811B2 (en) 2009-06-15 2009-06-15 Field test equipment for landslide prediction

Publications (2)

Publication Number Publication Date
JP2010286463A JP2010286463A (en) 2010-12-24
JP5267811B2 true JP5267811B2 (en) 2013-08-21

Family

ID=43542254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161194A Active JP5267811B2 (en) 2009-06-15 2009-06-15 Field test equipment for landslide prediction

Country Status (1)

Country Link
JP (1) JP5267811B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627279B (en) * 2020-05-19 2022-10-11 中国安全生产科学研究院 Test system for simulating landslide and debris flow disaster chain overall process
CN112945630A (en) * 2021-01-29 2021-06-11 西安航空学院 Debris flow area excavation detection device
CN112880602B (en) * 2021-03-20 2022-07-19 九江职业技术学院 Landslide deformation monitoring system
CN113899673B (en) * 2021-09-29 2024-04-16 中国地质科学院地质力学研究所 Top loading and rainfall infiltration coupling test lower side slope model experimental device
CN114740178B (en) * 2022-03-24 2024-02-23 胡利航 Slope internal erosion instability test device
CN116448228B (en) * 2023-06-20 2023-09-26 深圳市勘察研究院有限公司 Landslide automatic monitoring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176933A (en) * 1984-09-21 1986-04-19 Kyoji Sasa Rotary aqueduct type testing method of avalanche of sand and stone, and its testing device
JPH06103247B2 (en) * 1990-01-17 1994-12-14 東京精密測器株式会社 Soil test equipment
JPH07109390B2 (en) * 1991-07-30 1995-11-22 清一 宜保 Ring shear tester for both constant volume and constant pressure
JP3332284B2 (en) * 1994-03-28 2002-10-07 株式会社ブリヂストン Hydraulic servo flexometer
JPH0954028A (en) * 1995-08-18 1997-02-25 Shimadzu Corp Material testing machine
JPH10206306A (en) * 1997-01-23 1998-08-07 Fujita Corp Shearing testing device and method for ground material

Also Published As

Publication number Publication date
JP2010286463A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5267811B2 (en) Field test equipment for landslide prediction
US6591690B1 (en) Material testing machine with dual test space and integral axisymmetric triaxial measurement system
Fratta et al. Shear wave propagation in jointed rock: State of stress
CN108225945A (en) A kind of stacked ring type ring shear apparatus and stacked ring shear test
CN103115832A (en) Tester for soil pressure bearing and shearing test
Barla et al. New triaxial apparatus for rocks
Chidichimo et al. 1-g experimental investigation of bi-layer soil response and kinematic pile bending
CN106153314A (en) A kind of plane framework node loads and node area detrusion measurement apparatus
Cuomo et al. Wetting tests of partially saturated soils under simple shear conditions
CN105571991A (en) Cement slurry performance test system and a method thereof
Abbas et al. Evaluation of strain and stress states of a compacted highly expansive soil using a thin-walled oedometer
Yehya et al. Fluid-flow measurements in low permeability media with high pressure gradients using neutron imaging: application to concrete
Tan Pressuremeter and cone penetrometer testing in a calibration chamber with unsaturated Minco silt
Scarlett et al. A split ring annular shear cell for the determination of the shear strength of a powder
CN207891932U (en) A kind of controllable confining pressure is used to simulate the experimental provision of closing pile installation process
CN103983517B (en) Accumulated deformation loads true triaxial test case
Ibraim et al. New local system of measurement of axial strains for triaxial apparatus using LVDT
JP3767324B2 (en) Large bedrock testing equipment
US3552195A (en) Vane shear device
Collard et al. PWR fuel assembly modal testing and analysis
L’Esperance et al. Small-scale, high-precision and high-accuracy determination of Poisson’s ratios in cohesive marine sediments
Momeni et al. Study of physical modelling for piles
Cedolin et al. Vibrations Induced By the Two-Phase (Gas+ Liquid) Coolant Flow in the Power Channels of a Pressure Tube Type Nuclear Reactor (º)
SU1345094A1 (en) Ground investigation device
Setiawan et al. TXT-tool 3.081-1.6: Manual for the Undrained Dynamic-Loading Ring-Shear Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250