JP5261861B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5261861B2
JP5261861B2 JP2005157295A JP2005157295A JP5261861B2 JP 5261861 B2 JP5261861 B2 JP 5261861B2 JP 2005157295 A JP2005157295 A JP 2005157295A JP 2005157295 A JP2005157295 A JP 2005157295A JP 5261861 B2 JP5261861 B2 JP 5261861B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
electrode terminal
conditional expression
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005157295A
Other languages
Japanese (ja)
Other versions
JP2006331987A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005157295A priority Critical patent/JP5261861B2/en
Publication of JP2006331987A publication Critical patent/JP2006331987A/en
Application granted granted Critical
Publication of JP5261861B2 publication Critical patent/JP5261861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、電極板を外装部材に収容して封止すると共に、電極板に接続された電極端子が外装部材の外周縁から導出した二次電池に関する。   The present invention relates to a secondary battery in which an electrode plate is accommodated in an exterior member and sealed, and electrode terminals connected to the electrode plate are led out from an outer peripheral edge of the exterior member.

金属箔から成る正極側集電体に正極活物質を塗布した正極板と、金属箔から成る負極側集電体に負極活物質を塗布した負極板とを、セパレータを介して交互に積層した電極積層体を外装部材に収容して封止すると共に、正極板及び負極板をそれぞれ正極端子及び負極端子に接続して、当該電極端子を外装部材から導出させた二次電池が従来から知られている。このような二次電池では、更なる出力密度の向上や長寿命化が求められている(例えば、特許文献1参照)。
特開平9−213301号公報
An electrode in which a positive electrode plate in which a positive electrode active material is applied to a positive electrode side current collector made of metal foil and a negative electrode plate in which a negative electrode side current collector made of metal foil is applied to a negative electrode active material are alternately stacked via separators 2. Description of the Related Art Conventionally, a secondary battery in which a laminate is housed in an exterior member and sealed, and a positive electrode plate and a negative electrode plate are connected to a positive electrode terminal and a negative electrode terminal, respectively, and the electrode terminal is led out from the exterior member is known. Yes. Such secondary batteries are required to have further improved output density and longer life (for example, see Patent Document 1).
JP-A-9-213301

本発明は、出力密度の向上及び長寿命化を図ることが可能な二次電池を提供することを目的とする。
上記目的を達成するために、本発明によれば、集電体、及び、前記集電体の一部の主面に形成された電極層を有し、セパレータを介して積層された複数の電極板と、フィルム状部材で形成され、前記積層された電極板を平板状のまま内部に収容して封止している外装部材と、前記電極板に接続され、前記外装部材の外周縁から外部に導出している電極端子と、を備え、前記電極端子は、正極端子を含み、前記電極板は、前記正極端子に接続された正極板を含んでおり、前記正極端子と前記正極板が有する正極側集電体とは、主成分が同一の材料から構成されており、下記条件式(1)を満たす薄型の二次電池が提供される。
An object of this invention is to provide the secondary battery which can aim at the improvement of output density and lifetime.
In order to achieve the above object, according to the present invention, a current collector and a plurality of electrodes having electrode layers formed on a main surface of a part of the current collector and stacked via separators An exterior member that is formed of a plate and a film-like member and accommodates and seals the laminated electrode plates in a flat plate shape; and an external member that is connected to the electrode plate and that is connected to the outer periphery of the exterior member and a electrode terminal is derived to the electrode terminal includes a positive terminal, the electrode plate, the includes a positive electrode plate connected to the positive terminal, and the positive electrode terminal, the positive electrode plate The positive electrode side current collector has a main component made of the same material, and a thin secondary battery that satisfies the following conditional expression (1) is provided.

Sa>Sb … 式(1)
但し、上記条件式(1)において、Saは、前記正極端子の断面積であり、Sbは、前記正極側集電体の総断面積である。
Sa> Sb Formula (1)
However, in the above-mentioned conditional expression (1), Sa is a cross-sectional area of the positive electrode terminal, Sb is the total cross-sectional area of the positive electrode side current collector.

本発明では、正極端子の断面積(Sa)を、正極端子に接続した正極板が有する正極側集電体の総断面積(Sb)よりも大きくする。これにより、正極端子の抵抗が正極側集電体の抵抗よりも小さくなるため、出力密度を向上させることが出来る。
In the present invention, the cross-sectional area of the positive electrode terminal (Sa), is larger than the total cross-sectional area of the positive electrode side current collector having the positive electrode plate connected to the positive terminal (Sb). Thus, the resistance of the positive electrode terminal is less than the resistance of the positive electrode side current collector, it is possible to improve the output density.

また、上記条件式(1)を満たすことにより、正極端子の発熱が正極側集電体の発熱よりも小さくなるため、正極側集電体の熱が正極端子に伝達され、さらにその正極端子から外部に放熱されるので、二次電池の温度上昇が抑えられ、電池の長寿命化を図ることが出来る。 Further, by satisfying the conditional expressions (1), since the heat generation of the positive electrode terminal is smaller than the heat generation of the positive-electrode current collector, the heat of the positive electrode side current collector is transferred to the positive electrode terminal, further from the positive terminal Since heat is radiated to the outside, the temperature rise of the secondary battery can be suppressed and the battery life can be extended.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る薄型の二次電池(以下、単に「薄型電池」とも称する。)の全体を示す平面図、図2は図1のII-II線に沿った断面図である。   FIG. 1 is a plan view showing the entirety of a thin secondary battery (hereinafter also simply referred to as “thin battery”) according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line II-II in FIG. is there.

図1は一つの薄型電池(単位電池)を示す。この薄型電池10を複数接続することにより所望の電圧、容量の組電池が構成される。 FIG. 1 shows one thin battery (unit battery). An assembled battery having a desired voltage and capacity is configured by connecting a plurality of the thin batteries 10.

図1及び図2を参照しながら、本発明の実施形態に係る薄型電池10の全体構成について説明すると、本例の薄型電池10は、リチウム系の薄型二次電池であり、3枚の正極板101と、7枚のセパレータ102と、3枚の負極板103と、正極端子104と、負極端子105と、上部外装部材106と、下部外装部材107と、特に図示しない電解質と、から構成されている。正極板101、セパレータ102、負極板103の枚数には何ら限定されず、1枚の正極板101、3枚のセパレータ102、及び、1枚の負極板103でも良いし、また必要に応じて正極板101、負極板103及びセパレータ102の枚数を選択して構成することが出来る。なお、図2では、説明の便宜上、正極板101、セパレータ102、負極板103及び外装部材106、107をそれぞれ離した状態で図示しているが、実際にはこれらは密着して積層されている。   The overall configuration of the thin battery 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. The thin battery 10 of this example is a lithium-based thin secondary battery and includes three positive plates. 101, seven separators 102, three negative plates 103, a positive electrode terminal 104, a negative electrode terminal 105, an upper exterior member 106, a lower exterior member 107, and an electrolyte (not shown). Yes. The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is not limited at all, and may be one positive electrode plate 101, three separators 102, and one negative electrode plate 103, and if necessary, the positive electrode The number of plates 101, the negative electrode plate 103, and the separator 102 can be selected and configured. In FIG. 2, for convenience of explanation, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the exterior members 106 and 107 are illustrated as being separated from each other. .

本実施形態の正極板101は、正極端子104へと正極リード101cを介して接続される正極側集電体101aと、この正極側集電体101aの両主面に形成された正極層101bと、を有する。同じく、負極板103は、負極端子105へと負極リード103cを介して接続される負極側集電体103aと、この負極側集電体103aの両主面に形成された負極層103bと、を有する。また、正極板101の正極層101bと、負極板103の負極層103bとの間には、セパレータ102がそれぞれ介在している。   The positive electrode plate 101 of this embodiment includes a positive electrode current collector 101a connected to the positive electrode terminal 104 via a positive electrode lead 101c, and a positive electrode layer 101b formed on both main surfaces of the positive electrode current collector 101a. Have. Similarly, the negative electrode plate 103 includes a negative electrode side current collector 103a connected to the negative electrode terminal 105 via a negative electrode lead 103c, and a negative electrode layer 103b formed on both main surfaces of the negative electrode side current collector 103a. Have. Further, a separator 102 is interposed between the positive electrode layer 101 b of the positive electrode plate 101 and the negative electrode layer 103 b of the negative electrode plate 103.

本実施形態では、リチウム含有複合酸化物に属するLiMnを正極活物質とし、炭素系材料に属するカーボンブラックを導電材とし、ポリフッ化ビニリデン(PVDF)を結着剤として採用する。正極活物質と導電材とを混合し、ポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン(NMP)中に、混合した正極活物質と導電材とを均一に分散させてスラリーを作製し、このスラリーを正極側集電体101aとなるアルミ金属箔上に均一に塗布し、NMPを蒸発させ、ロールプレス機により圧延し、アルミ金属箔101a上に正極層101bを作製する。混合されるLiMnと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)との重量比は、75〜85:10〜20:5〜10であり、好ましくは85:10:5乃至75:20:5である。正極層101bが作製された後、所定の大きさに切断し、正極板101を得る。本実施形態の正極板101の正極層101bの厚さは50μm〜150μmであることが好ましく、さらに好ましくは60μm〜120μmである。 In this embodiment, LiMn 2 O 4 belonging to a lithium-containing composite oxide is used as a positive electrode active material, carbon black belonging to a carbon-based material is used as a conductive material, and polyvinylidene fluoride (PVDF) is used as a binder. A positive electrode active material and a conductive material are mixed, and a slurry is prepared by uniformly dispersing the mixed positive electrode active material and the conductive material in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride is dissolved. The slurry is uniformly applied on the aluminum metal foil to be the positive electrode current collector 101a, NMP is evaporated, and the roll is pressed by a roll press to produce the positive electrode layer 101b on the aluminum metal foil 101a. The weight ratio of LiMn 2 O 4 to be mixed, carbon black, and polyvinylidene fluoride (PVDF) is 75 to 85:10 to 20: 5 to 10, preferably 85: 10: 5 to 75:20. : 5. After the positive electrode layer 101b is manufactured, the positive electrode plate 101 is obtained by cutting into a predetermined size. The thickness of the positive electrode layer 101b of the positive electrode plate 101 of this embodiment is preferably 50 μm to 150 μm, and more preferably 60 μm to 120 μm.

正極活物質としては、LiMnのほか、リチウムマンガン複合酸化物(LiMnO)、層状構造LiMnO、スピネル構造LiMnO、LiMnO)、リチウムニッケル複合酸化物(LiNiO)、リチウムコバルト酸化物(LiCoO)、リチウム鉄リン酸化合物(LiFePO)、リチウムマンガンリン酸化合物(LiMnPO)、リチウムバナジウム複合酸化物(LiV)、リチウムチタン複合酸化物(LiTi)、その他のLiM(Mは遷移元素、X、Yは定比及び不定比を含む)などのリチウム複合酸化物を挙げることが出来る。 As the positive electrode active material, in addition to LiMn 2 O 4 , lithium manganese composite oxide (LiMnO 2 ), layered structure LiMnO 2 , spinel structure LiMnO 2 , LiMnO 4 ), lithium nickel composite oxide (LiNiO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium iron phosphate compound (LiFePO 4 ), lithium manganese phosphate compound (LiMnPO 4 ), lithium vanadium composite oxide (LiV 2 O 4 ), lithium titanium composite oxide (LiTi 2 O 4 ), Other lithium composite oxides such as LiM X O Y (M is a transition element, X and Y include a constant ratio and an indefinite ratio) can be given.

また、本実施形態では、炭素系材料に属するハードカーボンを負極活物質とし、ポリフッ化ビニリデン(PVDF)を結着剤として採用する。ハードカーボンとポリフッ化ビニリデン(PVDF)とを90:10の重量比で混合し、これをN−メチル−2−ピロリドン(NMP)に分散させてスラリーを作製し、このスラリーを負極側集電体103aとなる銅金属箔上に均一に塗布し、NMPを蒸発させ、ロールプレスにより圧延し、銅金属箔103a上に負極層103bを作製する。作製された負極層103bを所定の大きさに切断し、負極板103を得る。   In this embodiment, hard carbon belonging to a carbon-based material is used as a negative electrode active material, and polyvinylidene fluoride (PVDF) is used as a binder. Hard carbon and polyvinylidene fluoride (PVDF) are mixed at a weight ratio of 90:10 and dispersed in N-methyl-2-pyrrolidone (NMP) to produce a slurry. It apply | coats uniformly on the copper metal foil used as 103a, NMP is evaporated, It rolls with a roll press, and the negative electrode layer 103b is produced on the copper metal foil 103a. The prepared negative electrode layer 103b is cut into a predetermined size to obtain the negative electrode plate 103.

負極活物質としては、ハードカーボンをはじめとする非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のように、正極活物質のリチウムイオンを吸蔵及び放出する材料を挙げることが出来る。   Examples of the negative electrode active material include materials that occlude and release lithium ions of the positive electrode active material, such as amorphous carbon including hard carbon, non-graphitizable carbon, graphitizable carbon, or graphite. I can do it.

また、セパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えても良い。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって膜の空孔が閉塞され電流を遮断する機能をも有する。なお、本発明のセパレータは、ポリオレフィン等の単層膜のみに限定されず、ポリプロピレン層をポリエチレン層でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものも用いることが出来る。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることも出来る。   The separator 102 prevents the short-circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of holding an electrolyte. The separator 102 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example, and when an overcurrent flows, the pores of the film are blocked by the heat generation, thereby blocking the current. It also has. The separator of the present invention is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene layer is sandwiched with polyethylene layers, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can be used. . By forming the separator 102 in multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (rigidity improvement) function can be provided. Further, instead of the separator 102, a gel electrolyte or an intrinsic polymer electrolyte can be used.

以上の正極板101と負極板103とが交互に、且つ、当該正極板101と負極板103との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層されている。   The positive electrode plates 101 and the negative electrode plates 103 are alternately stacked in such an order that the separators 102 are positioned between the positive electrode plates 101 and the negative electrode plates 103, and further, the separators are provided at the uppermost and lowermost parts. 102 are stacked one by one.

そして、3枚の正極板101のそれぞれは、正極側集電体101aが正極リード101cを介して、金属箔製の正極端子104に接続される一方で、3枚の負極板103は、負極側集電体103aが負極リード103cを介して、同じく金属箔製の負極端子105に接続されている。   Each of the three positive plates 101 has a positive current collector 101a connected to a positive electrode terminal 104 made of metal foil via a positive lead 101c, while the three negative plates 103 have a negative electrode side A current collector 103a is connected to a negative electrode terminal 105, also made of metal foil, through a negative electrode lead 103c.

正極端子104を構成する材料としては、例えば、アルミニウムやアルミニウム合金等の電気化学的に安定した金属材料を挙げることが出来る。   Examples of the material constituting the positive electrode terminal 104 include an electrochemically stable metal material such as aluminum or an aluminum alloy.

本実施形態では、正極端子104は、下記条件式(1)を満たすように、全ての正極側集電体101aの断面積の総和(総断面積)Sbより大きな断面積Saを有している。   In the present embodiment, the positive electrode terminal 104 has a cross-sectional area Sa larger than the total cross-sectional area (total cross-sectional area) Sb of all the positive electrode side current collectors 101a so as to satisfy the following conditional expression (1). .

Sa>Sb … 式(1)
これにより、正極端子104の抵抗が正極側集電体101aの抵抗よりも小さくなるため、出力密度を向上させることが出来る。また、正極端子104の断面積Saを正極側集電体101aの総断面積Sbよりも大きくすることにより、正極端子104の発熱が正極側集電体101aの発熱よりも小さくなるため、正極側集電体101aの熱が正極端子104に伝達され、さらに正極端子104から外部に放熱されるので、薄型電池10の温度上昇が抑えられ、薄型電池10の長寿命化を図ることが出来る。
Sa> Sb Formula (1)
Thereby, since the resistance of the positive electrode terminal 104 becomes smaller than the resistance of the positive electrode current collector 101a, the output density can be improved. Further, since the cross-sectional area Sa of the positive electrode terminal 104 is made larger than the total cross-sectional area Sb of the positive electrode side current collector 101a, the heat generation of the positive electrode terminal 104 becomes smaller than the heat generation of the positive electrode side current collector 101a. Since the heat of the current collector 101a is transmitted to the positive electrode terminal 104 and further radiated from the positive electrode terminal 104 to the outside, the temperature rise of the thin battery 10 can be suppressed and the life of the thin battery 10 can be extended.

なお、本実施形態では、正極端子104の断面積Saとは、当該正極端子104の導出方向に対して実質的に直交する方向に沿った断面積であり、図1に示す正極端子104の幅Waに、図2に示す正極端子104の厚さTaを乗じることにより算出される。同様に、総断面積Sbを構成する正極側集電体101aの断面積も、正極端子104の導出方向に対して実質的に直交する方向に沿った断面積であり、図1に示す正極側集電体101aの幅Wbに、図2に示す正極側集電体101aの厚さTbと、正極側集電体101aの層数(例えば、本実施形態における層数は3)と、乗じることにより算出される。   In the present embodiment, the cross-sectional area Sa of the positive electrode terminal 104 is a cross-sectional area along a direction substantially perpendicular to the lead-out direction of the positive electrode terminal 104, and the width of the positive electrode terminal 104 shown in FIG. It is calculated by multiplying Wa by the thickness Ta of the positive terminal 104 shown in FIG. Similarly, the cross-sectional area of the positive current collector 101a constituting the total cross-sectional area Sb is also a cross-sectional area along a direction substantially perpendicular to the direction in which the positive terminal 104 is led out, and is shown in FIG. The width Wb of the current collector 101a is multiplied by the thickness Tb of the positive current collector 101a shown in FIG. 2 and the number of layers of the positive current collector 101a (for example, the number of layers in this embodiment is 3). Is calculated by

さらに、正極端子104の断面形状が、当該正極端子104の導出方向に沿って変化する場合には、正極端子104の断面積Saは、そのうちの最も小さな断面積である。同様に、正極側集電体101aの断面形状が、正極端子104の導出方向に沿って変化するような場合には、正極側集電体101aの総断面積Sbは、そのうちの最も小さな断面積である。   Furthermore, when the cross-sectional shape of the positive electrode terminal 104 changes along the lead-out direction of the positive electrode terminal 104, the cross-sectional area Sa of the positive electrode terminal 104 is the smallest cross-sectional area among them. Similarly, when the cross-sectional shape of the positive current collector 101a changes along the lead-out direction of the positive terminal 104, the total cross-sectional area Sb of the positive current collector 101a is the smallest cross-sectional area among them. It is.

本実施形態では、正極端子104は、下記条件式(2)を満たすように、全ての正極側集電体101aの体積の総和Vbよりも小さな体積Vaを有しており、好ましくは、下記条件式(3)を満たすように、正極側集電体101aの総体積の1/2よりも小さな体積Vaを有している。   In the present embodiment, the positive electrode terminal 104 has a volume Va smaller than the total volume Vb of all the positive electrode side current collectors 101a so as to satisfy the following conditional expression (2). The volume Va is smaller than ½ of the total volume of the positive electrode side current collector 101a so as to satisfy the formula (3).

Va<Vb … 式(2)
Va<1/2×Vb …式(3)
また、この際、正極端子104は、下記条件式(4)を満たすように設定されており、好ましくは、下記条件式(5)を満たすように設定されている。
Va <Vb Formula (2)
Va <1/2 × Vb Formula (3)
At this time, the positive electrode terminal 104 is set to satisfy the following conditional expression (4), and is preferably set to satisfy the following conditional expression (5).

Sa<Sb×Lb/La … 式(4)
Sa<1/2×Sb×Lb/La … 式(5)
以上の関係式を満たすことにより、正極端子104の体積(重量)当たりの抵抗が、正極側集電体101aの体積(重量)当たりの抵抗よりも小さくなり、薄型電池10の出力密度を向上させることが出来る。
Sa <Sb × Lb / La (4)
Sa <1/2 × Sb × Lb / La (5)
By satisfying the above relational expression, the resistance per volume (weight) of the positive electrode terminal 104 becomes smaller than the resistance per volume (weight) of the positive electrode side current collector 101a, and the output density of the thin battery 10 is improved. I can do it.

なお、正極端子104の体積Vaは、正極端子104の断面積Saに、当該正極端子104の長さLa(図1参照)を乗じて算出される(Va=Sa×La)。同様に、正極側集電体101aの総体積Vbは、正極側集電体101aの総断面積Sbに、正極側集電体101aの長さLb(図1参照)を乗じて算出される(Vb=Sb×Lb)。また、正極端子104の長さLaは、導出方向に沿った正極端子104の全長である。同様に、正極側集電体101aの長さLbは、積層された状態の正極側集電体101aの前記導出方向に沿った長さであり、リード部101cを含めた長さである。なお、積層された各正極側集電体101aの長さが異なる場合には、Lbはそれらの平均値で算出される。 The volume Va of the positive electrode terminal 104 is calculated by multiplying the cross-sectional area Sa of the positive electrode terminal 104 by the length La (see FIG. 1) of the positive electrode terminal 104 (Va = Sa × La). Similarly, the total volume Vb of the positive electrode current collector 101a is calculated by multiplying the total cross-sectional area Sb of the positive electrode current collector 101a by the length Lb (see FIG. 1) of the positive electrode current collector 101a (see FIG. 1). Vb = Sb × Lb). The length La of the positive electrode terminal 104 is the total length of the positive electrode terminal 104 along the lead-out direction. Similarly, the length Lb of the positive electrode current collector 101a is a length along the lead-out direction of the stacked positive electrode current collector 101a and includes the lead portion 101c. In addition, when the length of each laminated | stacked positive electrode side collector 101a differs, Lb is calculated by those average values.

負極端子105を構成する材料としては、例えば、ニッケル、銅、又は、ステンレス等を挙げることが出来る。負極端子105においても、上記の条件式(1)〜(5)を満たすように設定されているが、一般的に、正極端子104の方が負極端子105と比較して抵抗が大きいので、正極端子104の方が負極端子105よりも大きな出力密度の向上効果や冷却効果を得ることが出来る。   Examples of the material constituting the negative electrode terminal 105 include nickel, copper, and stainless steel. The negative electrode terminal 105 is also set so as to satisfy the above conditional expressions (1) to (5). However, since the positive electrode terminal 104 generally has a higher resistance than the negative electrode terminal 105, the positive electrode terminal 104 The terminal 104 can obtain a larger output density improvement effect and cooling effect than the negative electrode terminal 105.

以上の正極板101、負極板103、セパレータ102等は、上部外装部材106及び下部外装部材107により封止されている。これら上部外装部材106及び下部外装部材107は、例えば、ポリエチレンやポリプロピレン等の樹脂フィルムや、アルミニウム等の金属箔の両面をポリエチレンやポリプロピレン等の樹脂でラミネートした、樹脂−金属薄膜ラミネート材等の柔軟性を有する材料で形成されている。   The positive electrode plate 101, the negative electrode plate 103, the separator 102, and the like are sealed by the upper exterior member 106 and the lower exterior member 107. The upper exterior member 106 and the lower exterior member 107 are, for example, flexible films such as a resin-metal thin film laminate material obtained by laminating both surfaces of a resin film such as polyethylene or polypropylene, or a metal foil such as aluminum with a resin such as polyethylene or polypropylene. It is made of a material having properties.

そして、これらの上部外装部材106及び下部外装部材107によって、上述した正極板101、負極板103、セパレータ102、正極端子104の一部及び負極端子105の一部を包み込み、当該外装部材106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質として液体電解質を注入した後、上部外装部材106及び下部電池外装部材107の外周縁を熱融着等の方法により封止する。   The upper exterior member 106 and the lower exterior member 107 enclose the positive electrode plate 101, the negative electrode plate 103, the separator 102, a part of the positive electrode terminal 104, and a part of the negative electrode terminal 105, and the exterior members 106, 107. After injecting a liquid electrolyte with a lithium salt such as lithium perchlorate or lithium borofluoride as a solute in an organic liquid solvent, the outer periphery of the upper exterior member 106 and the lower battery exterior member 107 is heat-sealed into the space formed by It seals by methods, such as.

外装部材106、107により形成される空間に封入される液体電解質の有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)等のエステル系溶媒を挙げることが出来るが、本発明の有機液体溶媒はこれにのみ限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることも出来る。   Examples of the liquid electrolyte organic liquid solvent sealed in the space formed by the exterior members 106 and 107 include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). The organic liquid solvent of the present invention is not limited to this. An organic liquid solvent prepared by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) and dietoshietane (DEE) in an ester solvent. It can also be used.

なお、封止された外装部材106、107の一方の端部から、正極端子104が導出するが、正極端子104の厚さ分だけ上部外装部材106と下部外装部材107との接合部に隙間が生じるので、薄型電池10内の封止性を維持するために、当該正極端子104と外装部材106、107とが接触する部分に、ポリエチレンやポリプロピレンから構成されたシールフィルムを熱融着等の手法により介在させることも出来る。同様に、封止された外装部材106、107の他方の端部からは、負極端子105が導出するが、ここにも正極端子104側と同様に、当該負極端子105と外装部材106、107とが接触する部分にシールフィルムを介在させることも出来る。なお、正極端子104及び負極端子105の何れにおいても、シールフィルムは外装部材106、107を構成する樹脂と同系統の樹脂から構成することが熱融着の点から望ましい。   The positive electrode terminal 104 is led out from one end of the sealed exterior members 106 and 107, but there is a gap at the joint between the upper exterior member 106 and the lower exterior member 107 by the thickness of the positive electrode terminal 104. Therefore, in order to maintain the sealing performance in the thin battery 10, a sealing film made of polyethylene or polypropylene is applied to the portion where the positive electrode terminal 104 and the exterior members 106 and 107 are in contact with each other. Can also be interposed. Similarly, the negative electrode terminal 105 is led out from the other end portion of the sealed exterior members 106 and 107. Here, similarly to the positive electrode terminal 104 side, the negative electrode terminal 105 and the exterior members 106 and 107 It is also possible to interpose a seal film at the part where the contact is made. In any of the positive electrode terminal 104 and the negative electrode terminal 105, it is desirable from the viewpoint of heat-sealing that the seal film is made of the same type of resin as the resin constituting the exterior members 106 and 107.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下、本発明をさらに具体化した実施例及び比較例により本発明の効果を確認した。以下の実施例及び比較例は、上述した実施形態に係る薄型電池の効果を確認するためのものである。   Hereinafter, the effects of the present invention were confirmed by examples and comparative examples that further embody the present invention. The following examples and comparative examples are for confirming the effects of the thin battery according to the above-described embodiment.

実施例1
LiMn(正極活物質)にカーボンブラック(導電材)及びポリフッ化ビニリデン(PVDF)を混合した粉末をN−メチル−2−ピロリドン(NMP)に分散してスラリーとし、このスラリーを正極側集電体の両主面に塗布して乾燥させた後、圧縮及び裁断して正極板を作製した。実施例1では、正極側集電体としては、幅70mm、長さ(Lb)160mm、厚さ20μmのアルミニウム箔を用いた。
Example 1
A powder prepared by mixing carbon black (conductive material) and polyvinylidene fluoride (PVDF) with LiMn 2 O 4 (positive electrode active material) is dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry, and this slurry is used as the positive electrode side. After apply | coating to both main surfaces of a collector and drying, it compressed and cut | judged and produced the positive electrode plate. In Example 1, an aluminum foil having a width of 70 mm, a length (Lb) of 160 mm, and a thickness of 20 μm was used as the positive electrode side current collector.

ハードカーボン(負極活物質)にポリフッ化ビニリデン(PVDF)を混合し、これをN−メチル−2−ピロリドン(NMP)に分散させてスラリーとし、このスラリーを銅金属箔(負極側集電体)に塗布して乾燥させた後、圧縮及び裁断して負極板を作製した。   Hard carbon (negative electrode active material) is mixed with polyvinylidene fluoride (PVDF) and dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry. This slurry is made of copper metal foil (negative electrode side current collector). After being applied and dried, it was compressed and cut to prepare a negative electrode plate.

このように作製した正極板と負極板とを、それらの間にセパレータを挟みながら交互に積層して電極積層体とした。この際、実施例1では、先述の正極板を3層積層したので、正極側集電体の総断面積(Sb)は4.2mm(=20μm×70mm×3層)となった。 The positive electrode plate and the negative electrode plate thus produced were alternately laminated while sandwiching a separator between them to form an electrode laminate. At this time, in Example 1, since the three positive electrode plates described above were laminated, the total cross-sectional area (Sb) of the positive electrode side current collector was 4.2 mm 2 (= 20 μm × 70 mm × 3 layers).

この電極積層体から延びている各正極側集電体を正極端子にそれぞれ溶接すると共に、当該積層体から延びている各負極側集電体をニッケル製の負極端子にそれぞれ溶接した。実施例1では、正極端子として、幅45mm、長さ(La)50mm、厚さ100μm、断面積(Sa)4.5mmのアルミニウム箔を用いた。この実施例1で作製した薄型電池の正極側集電体及び正極端子の作製条件を表1に示す。

Figure 0005261861
Each positive current collector extending from the electrode laminate was welded to the positive terminal, and each negative current collector extending from the laminate was welded to the nickel negative terminal. In Example 1, an aluminum foil having a width of 45 mm, a length (La) of 50 mm, a thickness of 100 μm, and a cross-sectional area (Sa) of 4.5 mm 2 was used as the positive electrode terminal. Table 1 shows the production conditions of the positive electrode side current collector and the positive electrode terminal of the thin battery produced in Example 1.
Figure 0005261861

次いで、電極端子が接続された電極積層体を、2枚の外装部材の間に収容し、電極端子の一部をその外周縁から導出させた状態で、当該外装部材の短辺側二辺と長辺側一辺の合計三辺を熱融着し、当該開口から所定量の電解液を注入した後に、外装部材により形成される空間内を減圧した状態で、残る一辺を熱融着して実施例1の電池サンプルを作製した。   Next, the electrode laminate to which the electrode terminals are connected is accommodated between the two exterior members, and a part of the electrode terminals are led out from the outer peripheral edge, and the two short sides of the exterior member are After heat-sealing a total of three sides on the long side and injecting a predetermined amount of electrolyte from the opening, the remaining one side is heat-sealed while the space formed by the exterior member is decompressed. The battery sample of Example 1 was produced.

電解液としては、ポリカーボネート(PC)、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶媒に支持電解質としての六フッ化リン酸リチウム(LiPF)を溶解したものを使用した。 As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as a supporting electrolyte in a mixed solvent of polycarbonate (PC), ethylene carbonate (EC) and dimethyl carbonate (DMC) was used.

この実施例1の電池サンプルについて、以下の充放電サイクル試験により電池寿命の評価を行った。この充放電サイクル試験では、1サイクルが、充電→充電休止→放電→放電休止の4ステップから構成される充放電サイクルを45℃の環境下で繰り返し、各サイクル毎に内部抵抗値を算出した。そして、初期時の内部抵抗値に対する各サイクル後の内部抵抗値の上昇率を算出し、1000サイクル後の内部抵抗上昇度が小さいものほど電池寿命が長いと評価した。これに対し、1000サイクル後の内部抵抗上昇度が大きいものほど電池寿命が短いと評価した。なお、各サイクル毎の内部抵抗値は、電池を定電流で放電し、そのときの電圧降下よりオームの法則を用いて直流抵抗を算出することにより求めた。   The battery life of the battery sample of Example 1 was evaluated by the following charge / discharge cycle test. In this charge / discharge cycle test, one cycle was a charge / discharge cycle composed of four steps of charge → charge stop → discharge → discharge stop under a 45 ° C. environment, and the internal resistance value was calculated for each cycle. Then, the rate of increase of the internal resistance value after each cycle with respect to the initial internal resistance value was calculated, and the battery life was evaluated to be longer as the degree of increase in internal resistance after 1000 cycles was smaller. On the other hand, it was evaluated that the battery life was shorter as the increase in internal resistance after 1000 cycles was greater. The internal resistance value for each cycle was obtained by discharging the battery at a constant current and calculating the DC resistance using Ohm's law from the voltage drop at that time.

充放電サイクルの充電ステップでは、電流値10CA(6分で全容量を放電させる電流値)で充電を行い、電圧値が4.2Vとなったら充電を停止した。これに対し、充放電サイクルの放電ステップでは、電流値10CA(6分で全容量を放電させる電流値)で放電を行い、電圧値が2.5Vになったら放電を休止した。さらに、充放電サイクルの各休止ステップでは、1分間の休止時間を設けた。   In the charging step of the charge / discharge cycle, charging was performed at a current value of 10 CA (current value that discharges the entire capacity in 6 minutes), and the charging was stopped when the voltage value reached 4.2V. On the other hand, in the discharging step of the charge / discharge cycle, discharging was performed at a current value of 10 CA (current value that discharges the entire capacity in 6 minutes), and discharging was stopped when the voltage value reached 2.5V. Further, a pause time of 1 minute was provided in each pause step of the charge / discharge cycle.

実施例1の充放電サイクル試験の試験結果を図3に示す。また、実施例1で製作した電池サンプルの重量当たりの出力密度を図4に示す。   The test results of the charge / discharge cycle test of Example 1 are shown in FIG. Moreover, the power density per weight of the battery sample manufactured in Example 1 is shown in FIG.

比較例1
比較例1では、正極端子の厚さを50μmとしたこと以外は、実施例1と同様の条件で電池サンプルを作製した。この比較例1の電池サンプルの正極端子の断面積Saは、2.25mmであった。その作製条件を表1に示す。
Comparative Example 1
In Comparative Example 1, a battery sample was produced under the same conditions as in Example 1 except that the thickness of the positive electrode terminal was 50 μm. The cross-sectional area Sa of the positive electrode terminal of the battery sample of Comparative Example 1 was 2.25 mm 2 . The production conditions are shown in Table 1.

この比較例1の電池サンプルに対して、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。比較例1の充放電サイクル試験の試験結果を図3に示す。また、比較例1で作製した電池サンプルの重量当たりの出力密度を図4に示す。   The battery life of the battery sample of Comparative Example 1 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Comparative Example 1 are shown in FIG. Moreover, the power density per weight of the battery sample produced in Comparative Example 1 is shown in FIG.

比較例2
比較例2では、正極端子の厚さを200μmとしたこと以外は、実施例1と同様の条件で電池サンプルを作製した。この比較例2の電池サンプルの正極端子の断面積Saは、9mmであった。その作製条件を表1に示す。
Comparative Example 2
In Comparative Example 2, a battery sample was produced under the same conditions as in Example 1 except that the thickness of the positive electrode terminal was 200 μm. The cross-sectional area Sa of the positive electrode terminal of the battery sample of Comparative Example 2 was 9 mm 2 . The production conditions are shown in Table 1.

この比較例2の電池サンプルに対して、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。比較例2の充放電サイクル試験の試験結果を図3に示す。また、比較例2で作製した電池サンプルの重量当たりの出力密度を図4に示す。   The battery life of the battery sample of Comparative Example 2 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Comparative Example 2 are shown in FIG. Moreover, the power density per weight of the battery sample produced in Comparative Example 2 is shown in FIG.

比較例3
比較例3では、正極端子の厚さを300μmとしたこと以外は、実施例1と同様の条件で電池サンプルを作製した。この比較例3の電池サンプルの正極端子の断面積Saは、13.5mmであった。その作製条件を表1に示す。
Comparative Example 3
In Comparative Example 3, a battery sample was produced under the same conditions as in Example 1 except that the thickness of the positive electrode terminal was 300 μm. The cross-sectional area Sa of the positive electrode terminal of the battery sample of Comparative Example 3 was 13.5 mm 2 . The production conditions are shown in Table 1.

この比較例3の電池サンプルに対して、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。比較例3の充放電サイクル試験の試験結果を図3に示す。また、比較例3で作製した電池サンプルの重量当たりの出力密度を図4に示す。   The battery life of the battery sample of Comparative Example 3 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Comparative Example 3 are shown in FIG. Moreover, the power density per weight of the battery sample produced in Comparative Example 3 is shown in FIG.

考察
比較例1の電池は、図3に示すように、実施例1、比較例2及び3と比較して、内部抵抗上昇率が大きくなっていることから、電池の寿命が短いことが分かる。これは、比較例1の電池サンプルでは、正極端子の断面積(Sa)が正極側集電体の総断面積(Sb)以下となっているため(Sa≦Sb)、正極端子における発熱が大きくなり、正極端子の発熱が正極側集電体に伝わり(正極側集電体の発熱が正極端子から外部に放熱されず)、実施例1、比較例2及び比較例3よりも電池温度が高くなったためと考えられる。
Discussion As shown in FIG. 3, the battery of Comparative Example 1 has a higher internal resistance increase rate than that of Example 1 and Comparative Examples 2 and 3, and thus it can be seen that the battery life is short. This is because in the battery sample of Comparative Example 1, the cross-sectional area (Sa) of the positive electrode terminal is less than or equal to the total cross-sectional area (Sb) of the positive electrode side current collector (Sa ≦ Sb), and thus the heat generation at the positive electrode terminal is large. Thus, the heat generation of the positive electrode terminal is transmitted to the positive electrode side current collector (the heat generation of the positive electrode side current collector is not dissipated to the outside from the positive electrode terminal), and the battery temperature is higher than those of Example 1, Comparative Example 2 and Comparative Example 3. It is thought that it became.

また、比較例1の電池は、図4に示すように、実施例1と比較して、出力密度が小さくなっている。これは、正極端子の抵抗が正極側集電体の抵抗よりも大きくなっており、この抵抗が出力密度を下げているためである。   Further, as shown in FIG. 4, the battery of Comparative Example 1 has a lower output density than that of Example 1. This is because the resistance of the positive terminal is larger than the resistance of the positive current collector, and this resistance lowers the output density.

また、比較例3の電池は、図4に示すように、実施例1と比較して、出力密度が小さくなっている。これは、正極側集電体の総重量よりも正極端子の重量の方が重くなっているためである。   Further, as shown in FIG. 4, the battery of Comparative Example 3 has a lower output density than that of Example 1. This is because the weight of the positive electrode terminal is heavier than the total weight of the positive electrode side current collector.

さらに、比較例2の電池も、図4に示すように、実施例1と比較して、出力密度が小さくなっている。一般的に、全ての電流が正極側集電体の端から端までを流れる訳ではなく、平均すると正極側集電体の全長の1/2を流れており、実際の正極側集電体の抵抗は1/2程度と考えられる。それに比べて、比較例2の電池では、正極端子の重量が、正極側集電体の総重量の1/2よりも重くなっているため、実施例1よりも重量当たりの出力密度が小さくなっているものと考えられる。   Furthermore, the battery of Comparative Example 2 also has a lower output density than Example 1 as shown in FIG. In general, not all current flows from end to end of the positive current collector, and on average, it flows half of the total length of the positive current collector. The resistance is considered to be about 1/2. In contrast, in the battery of Comparative Example 2, the weight of the positive electrode terminal is heavier than ½ of the total weight of the positive electrode side current collector, and thus the output density per weight is smaller than that of Example 1. It is thought that.

図1は、本発明の第1実施形態に係る薄型電池の全体を示す平面図である。FIG. 1 is a plan view showing the entire thin battery according to the first embodiment of the present invention. 図2は、図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図3は、実施例における薄型電池の内部抵抗上昇率と充放電サイクル数との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the rate of increase in internal resistance and the number of charge / discharge cycles of the thin battery in the example. 図4は、実施例における薄型電池の出力密度を示すグラフである。FIG. 4 is a graph showing the output density of the thin battery in the example.

符号の説明Explanation of symbols

10…二次電池
101…正極板
101a…正極側集電体
101b…正極層
101c…リード部
102…セパレータ
103…負極板
103a…負極側集電体
103b…負極層
103c…リード部
104…正極端子
105…負極端子
106…上部外装部材
107…下部外装部材
DESCRIPTION OF SYMBOLS 10 ... Secondary battery 101 ... Positive electrode plate 101a ... Positive electrode side collector 101b ... Positive electrode layer 101c ... Lead part 102 ... Separator 103 ... Negative electrode plate 103a ... Negative electrode side current collector 103b ... Negative electrode layer 103c ... Lead part 104 ... Positive electrode terminal 105 ... Negative electrode terminal 106 ... Upper exterior member 107 ... Lower exterior member

Claims (6)

集電体、及び、前記集電体の一部の主面に形成された電極層を有し、セパレータを介して積層された複数の電極板と、
フィルム状部材で形成され、前記積層された電極板を平板状のまま内部に収容して封止している外装部材と、
前記電極板に接続され、前記外装部材の外周縁から外部に導出している電極端子と、を備え、
前記電極端子は、正極端子を含み、
前記電極板は、前記正極端子に接続された正極板を含んでおり、
前記正極端子と前記正極板が有する正極側集電体とは、主成分が同一の材料から構成されており、
下記条件式(1)を満たす薄型の二次電池。
Sa>Sb … 式(1)
但し、上記条件式(1)において、Saは、前記正極端子の断面積であり、Sbは、前記正極側集電体の総断面積である。
A current collector, and a plurality of electrode plates having electrode layers formed on a main surface of a part of the current collector and stacked via separators;
An exterior member that is formed of a film-like member and accommodates and seals the laminated electrode plates in a flat plate shape;
An electrode terminal connected to the electrode plate and led out from an outer peripheral edge of the exterior member, and
The electrode terminal includes a positive electrode terminal,
The electrode plate includes a positive plate connected to the positive terminal,
It said positive electrode terminal, the positive electrode plate and the positive electrode side current collector included in a main component is composed of the same material,
A thin secondary battery that satisfies the following conditional expression (1).
Sa> Sb Formula (1)
However, in the above-mentioned conditional expression (1), Sa is a cross-sectional area of the positive electrode terminal, Sb is the total cross-sectional area of the positive electrode side current collector.
下記条件式(2)を満たす請求項1記載の二次電池。
Sa×La<Sb×Lb … 式(2)
但し、上記条件式(2)において、Laは、前記正極端子の長さであり、Lbは、前記正極側集電体の長さである。
The secondary battery according to claim 1, wherein the following conditional expression (2) is satisfied.
Sa × La <Sb × Lb (2)
However, in the above-mentioned conditional expression (2), La is the length of the positive electrode terminal, Lb is the length of the positive electrode side current collector.
下記条件式(3)を満たす請求項1又は2記載の二次電池。
Sa×La<1/2×Sb×Lb … 式(3)
但し、上記条件式(3)において、Laは、前記正極端子の長さであり、Lbは、前記正極側集電体の長さである。
The secondary battery according to claim 1 or 2, wherein the following conditional expression (3) is satisfied.
Sa × La <1/2 × Sb × Lb Formula (3)
However, in the above-mentioned conditional expression (3), La is the length of the positive electrode terminal, Lb is the length of the positive electrode side current collector.
下記条件式(4)を満たす請求項1〜3の何れかに記載の二次電池。
Sa<Sb×Lb/La … 式(4)
但し、上記条件式(4)において、Laは、前記正極端子の長さであり、Lbは、前記正極側集電体の長さである。
The secondary battery in any one of Claims 1-3 which satisfy | fills following conditional expression (4).
Sa <Sb × Lb / La (4)
However, the conditional expression (4), La is the length of the positive electrode terminal, Lb is the length of the positive electrode side current collector.
下記条件式(5)を満たす請求項1〜4の何れかに記載の二次電池。
Sa<1/2×Sb×Lb/La … 式(5)
但し、上記条件式(5)において、Laは、前記正極端子の長さであり、Lbは、前記正極側集電体の長さである。
The secondary battery in any one of Claims 1-4 which satisfy | fills the following conditional expression (5).
Sa <1/2 × Sb × Lb / La (5)
However, in the above-mentioned conditional expression (5), La is the length of the positive electrode terminal, Lb is the length of the positive electrode side current collector.
前記正極板が有する正極層は、リチウム複合酸化物を含有する請求項1〜5の何れかに記載の二次電池。
The secondary battery according to claim 1, wherein the positive electrode layer of the positive electrode plate contains a lithium composite oxide .
JP2005157295A 2005-05-30 2005-05-30 Secondary battery Active JP5261861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157295A JP5261861B2 (en) 2005-05-30 2005-05-30 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157295A JP5261861B2 (en) 2005-05-30 2005-05-30 Secondary battery

Publications (2)

Publication Number Publication Date
JP2006331987A JP2006331987A (en) 2006-12-07
JP5261861B2 true JP5261861B2 (en) 2013-08-14

Family

ID=37553444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157295A Active JP5261861B2 (en) 2005-05-30 2005-05-30 Secondary battery

Country Status (1)

Country Link
JP (1) JP5261861B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172523A (en) * 1996-10-07 1998-06-26 Haibaru:Kk Nonaqueous cylindrical battery
JP2003017014A (en) * 2001-07-04 2003-01-17 Mitsubishi Chemicals Corp Battery
JP3591523B2 (en) * 2002-04-11 2004-11-24 日産自動車株式会社 Battery pack
JP4363017B2 (en) * 2002-09-20 2009-11-11 日本電気株式会社 Battery and battery manufacturing method
JP2004303759A (en) * 2003-03-28 2004-10-28 Tdk Corp Method for manufacturing electrochemical device
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell

Also Published As

Publication number Publication date
JP2006331987A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP6870914B2 (en) Non-aqueous electrolyte batteries, battery packs and vehicles
JP5618165B2 (en) Nonaqueous electrolyte secondary battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP6287651B2 (en) Non-aqueous secondary battery
JP5552398B2 (en) Lithium ion battery
JPWO2016113863A1 (en) Nonaqueous electrolyte battery and battery pack
JP2016207614A (en) Solid-state battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
US20200295397A1 (en) Lithium secondary battery
JP2018170099A (en) Active material, electrode, and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
WO2023166633A1 (en) Current collector, electrode for power storage device, and lithium ion secondary battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
US11936030B2 (en) Fabrication process to make electrodes by rolling
JP2005116304A (en) Secondary battery
JP2010232011A (en) Secondary battery
JP2007073437A (en) Secondary battery
JP5119615B2 (en) Secondary battery and assembled battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
JP4867147B2 (en) A negative electrode plate for a secondary battery, a secondary battery using the negative electrode plate, and a method for producing a negative electrode plate for a secondary battery.
JP6735036B2 (en) Lithium ion secondary battery
JP5261861B2 (en) Secondary battery
JP4107214B2 (en) Secondary battery
JP6737218B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5261861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250