JP5261687B2 - Abrasive machining tool and coated abrasive - Google Patents

Abrasive machining tool and coated abrasive Download PDF

Info

Publication number
JP5261687B2
JP5261687B2 JP2008234654A JP2008234654A JP5261687B2 JP 5261687 B2 JP5261687 B2 JP 5261687B2 JP 2008234654 A JP2008234654 A JP 2008234654A JP 2008234654 A JP2008234654 A JP 2008234654A JP 5261687 B2 JP5261687 B2 JP 5261687B2
Authority
JP
Japan
Prior art keywords
abrasive
carbon nanotube
walled carbon
functional group
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008234654A
Other languages
Japanese (ja)
Other versions
JP2010064217A (en
Inventor
庸久 鈴木
俊明 三井
知樹 藤野
睦人 加藤
寛史 齊藤
康史 佐竹
誠也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA PREFECTURAL GOVERNMENT
Original Assignee
YAMAGATA PREFECTURAL GOVERNMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA PREFECTURAL GOVERNMENT filed Critical YAMAGATA PREFECTURAL GOVERNMENT
Priority to JP2008234654A priority Critical patent/JP5261687B2/en
Publication of JP2010064217A publication Critical patent/JP2010064217A/en
Application granted granted Critical
Publication of JP5261687B2 publication Critical patent/JP5261687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily improve the tool life of an abrasive grain processing tool 1 and abrasive grain processing performance by suppressing falling-off of coated abrasive grains 11. <P>SOLUTION: In the abrasive grain processing tool 1 whose processing surface side has an abrasive grain layer 9 formed by bonding a large number of the coated abrasive grains 11 with an electrodeposition bonding material 13, the coated abrasive grains 11 includes abrasive grains 17; and carbon nanotube coating 23 wrappingly formed on the surfaces of the abrasive grains 17. The carbon nanotube coating 23 is constructed to get tangled together by self-cohesion of a multilayer carbon nanotube 25 (or a single-layer carbon nanotube). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば脆性材料(石英ガラス、セラミックス、超硬等)からなる被加工物に対して砥粒加工を行う際に用いられる砥粒加工用工具、及び砥粒加工用工具の構成要素として用いられる被覆砥粒に関する。   The present invention is an abrasive processing tool used when abrasive processing is performed on a workpiece made of, for example, a brittle material (quartz glass, ceramics, cemented carbide, etc.), and a component of the abrasive processing tool. It relates to the coated abrasive used.

一般に、研削砥石、研磨砥石、固定砥粒ワイヤソー等の砥粒加工用工具においては、加工面側(表面側)に多数の砥粒をボンド材で結合してなる砥粒層が形成されており、砥粒加工用工具の工具寿命、及び砥粒加工用工具の研削比等の砥粒加工性能を向上させるには、砥粒層の砥粒保持力(換言すれば、ボンド材の砥粒保持力)を高めて、砥粒の脱落を抑える必要がある。そのため、ボンド材に強化フィラー等を混入させて、ボンド材の機械的強度を高めたり(特許文献1参照)、また、砥粒の表面に金属被覆を形成して、砥粒とボンド材との密着性を高めたり(特許文献2、特許文献3、特許文献4参照)、することによって、砥粒層の砥粒保持力を高める対策がなされている。
特開2007−253318号公報 特開2007−54905号公報 特開2006−181698号公報 特開2007−38337号公報
In general, in abrasive processing tools such as grinding wheels, polishing wheels, and fixed abrasive wire saws, an abrasive layer is formed on the processing surface side (surface side) by bonding a number of abrasive grains with a bonding material. In order to improve the abrasive processing performance such as the tool life of the abrasive tool, and the grinding ratio of the abrasive tool, etc., in order to improve the abrasive holding power of the abrasive layer (in other words, holding the abrasive of the bond material) It is necessary to increase the force) to prevent the abrasive grains from falling off. Therefore, a reinforcing filler or the like is mixed into the bond material to increase the mechanical strength of the bond material (see Patent Document 1), or a metal coating is formed on the surface of the abrasive grains, By increasing the adhesion (see Patent Document 2, Patent Document 3, and Patent Document 4), measures are taken to increase the abrasive retention of the abrasive layer.
JP 2007-253318 A JP 2007-54905 A JP 2006-181698 A JP 2007-38337 A

しかしながら、ボンド材に強化フィラーを混入させる手法をとった場合には、ボンド材の機械的強度を全体的に強化することができるものの、砥粒層の砥粒保持力に大きな影響を与える砥粒周辺部のボンド材の機械的強度を選択的に強化することができない。また、砥粒の表面に金属被覆を形成する手法をとった場合には、金属被膜を介して砥粒とボンド材との密着性を高めることができるものの、砥粒周辺部のボンド材の機械的強度を選択的に強化することができない。そのため、砥粒層の砥粒保持力を十分に高めることができず、砥粒加工中に砥粒の離脱を招き易く、砥粒加工用工具の工具寿命及び砥粒加工性能を向上させることは容易ではないという問題がある。   However, when a method of mixing a reinforcing filler into the bond material is adopted, the mechanical strength of the bond material can be strengthened as a whole, but the abrasive grains that have a large effect on the abrasive retention of the abrasive layer The mechanical strength of the peripheral bond material cannot be selectively enhanced. In addition, when the technique of forming a metal coating on the surface of the abrasive grains is adopted, the adhesion between the abrasive grains and the bond material can be improved through the metal coating, but the bonding material machine around the abrasive grains is used. It is not possible to selectively strengthen the mechanical strength. Therefore, it is not possible to sufficiently increase the abrasive holding power of the abrasive layer, easily causing the detachment of the abrasive during the abrasive processing, and improving the tool life and the abrasive processing performance of the abrasive processing tool There is a problem that it is not easy.

そこで、本発明は、前述の問題を解決することができる、新規な構成の砥粒加工用工具及び被覆砥粒を提供することを目的とする。   Then, an object of this invention is to provide the tool for abrasive processing of a novel structure and coated abrasive which can solve the above-mentioned problem.

本発明の第1の特徴(請求項1に記載の発明の特徴)は、被加工物に対して砥粒加工を行う際に用いられ、加工面側(表面側)に多数の被覆砥粒をボンド材で結合してなる砥粒層が形成された砥粒加工用工具において、前記被覆砥粒は、砥粒と、前記砥粒の表面に包み込むように形成され、単層カーボンナノチューブ又は多層カーボンナノチューブの自己凝集力によって絡み合うように構成されたカーボンナノチューブ被覆と、を備えたことを要旨とする。   The first feature of the present invention (the feature of the invention described in claim 1) is used when abrasive processing is performed on a workpiece, and a large number of coated abrasive particles are provided on the processing surface side (surface side). In an abrasive processing tool in which an abrasive layer formed by bonding with a bond material is formed, the coated abrasive is formed so as to wrap around the abrasive and the surface of the abrasive, and is a single-walled carbon nanotube or a multilayered carbon. And a carbon nanotube coating configured to be entangled by the self-aggregation force of the nanotube.

ここで、本願の明細書及び特許請求の範囲において、砥粒加工とは、研削加工、研磨加工、切断加工等を含む意であって、前記砥粒加工用工具とは、研削砥石、研磨砥石、固定砥粒ワイヤソー等を含む意である。   Here, in the specification and claims of the present application, the term “abrasive processing” includes grinding processing, polishing processing, cutting processing, and the like, and the above-mentioned abrasive processing tools include grinding wheels and polishing wheels. Including the fixed abrasive wire saw.

第1の特徴によると、前記砥粒の表面に前記カーボンナノチューブ被覆が包み込むように形成され、前記カーボンナノチューブ被覆は機械的強度に優れた前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの自己凝集力によって絡み合うように構成されているため、前記砥粒周辺部の前記ボンド材の機械的強度を選択的に強化して、前記砥粒層の砥粒保持力(換言すれば、前記ボンド材の砥粒保持力)を十分に高めることができる。   According to the first feature, the carbon nanotube coating is formed so as to wrap around the surface of the abrasive grains, and the carbon nanotube coating is formed by the self-aggregation force of the single-walled carbon nanotube or the multi-walled carbon nanotube excellent in mechanical strength. Since it is configured to be intertwined, the mechanical strength of the bond material around the abrasive grains is selectively strengthened, and the abrasive retention force of the abrasive layer (in other words, the abrasive grains of the bond material) (Holding force) can be sufficiently increased.

本発明の第2の特徴(請求項2に記載の発明の特徴)は、第1の特徴に加えて、前記砥粒は、表面側に官能基Xを有し、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブは、表面側に前記砥粒の前記官能基Xと化学結合する官能基Yを有していることを要旨とする。   According to a second feature of the present invention (a feature of the invention described in claim 2), in addition to the first feature, the abrasive grains have a functional group X on the surface side, and the single-walled carbon nanotube or the The gist of the multi-walled carbon nanotube is that it has a functional group Y chemically bonded to the functional group X of the abrasive grains on the surface side.

第2の特徴によると、前記砥粒の前記官能基Xと前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの前記官能基Yが化学結合することによって、前記カーボンナノチューブ被覆を前記砥粒に強固に密着させて、前記砥粒周辺部の前記ボンド材の機械的強度を選択的により強化して、前記砥粒層の砥粒保持力をより十分に高めることができる。   According to the second feature, the functional group X of the abrasive grain and the functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube are chemically bonded, so that the carbon nanotube coating is firmly attached to the abrasive grain. Thus, the mechanical strength of the bond material in the peripheral part of the abrasive grains can be selectively strengthened, and the abrasive grain holding power of the abrasive grain layer can be sufficiently increased.

本発明の第3の特徴(請求項3に記載の発明の特徴)は、第2の特徴に加えて、前記砥粒の前記官能基Xは、前記砥粒の表面の原子又は分子と前記官能基Xを有する分子を化学吸着により置換することによって導入され、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの前記官能基Yは、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの表面の欠陥部の原子又は分子と前記官能基Yを有する分子を化学吸着により置換することによって導入されたこと要旨とする。   According to a third feature of the present invention (a feature of the invention described in claim 3), in addition to the second feature, the functional group X of the abrasive grain includes atoms or molecules on the surface of the abrasive grain and the functional group. The functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube is introduced by substituting the molecule having the group X by chemical adsorption, and the functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube Alternatively, the gist is introduced by replacing the molecule and the molecule having the functional group Y by chemical adsorption.

本発明の第4の特徴(請求項4に記載の発明の特徴)は、第1の特徴から第3の特徴のうちのいずれかの特徴に加えて、前記砥粒層の表面側の前記砥粒が露出するようになっていることを要旨とする。   According to a fourth feature of the present invention (a feature of the invention described in claim 4), in addition to any one of the first to third features, the abrasive on the surface side of the abrasive grain layer is provided. The gist is that the grains are exposed.

本発明の第5の特徴(請求項5に記載の発明の特徴)は、砥粒加工用工具の構成要素として用いられる被覆砥粒において、砥粒と、前記砥粒の表面に絡み合った状態で包み込むように形成され、単層カーボンナノチューブ又は多層カーボンナノチューブの自己凝集力によって構成されたカーボンナノチューブ被覆と、を備えたことを要旨とする。   A fifth feature of the present invention (feature of the invention described in claim 5) is a coated abrasive used as a constituent element of an abrasive machining tool in a state where the abrasive is entangled with the surface of the abrasive. And a carbon nanotube coating formed by wrapping and configured by the self-aggregation force of single-walled carbon nanotubes or multi-walled carbon nanotubes.

第5の特徴によると、前記砥粒の表面に前記カーボンナノチューブ被覆が包み込むように形成され、前記カーボンナノチューブ被覆は機械的強度に優れた前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの自己凝集力によって絡み合うように構成されているため、前記砥粒加工用工具における砥粒周辺部のボンド材の機械的強度を選択的に強化して、前記砥粒層の砥粒保持力を十分に高めることができる。   According to a fifth feature, the carbon nanotube coating is formed so as to wrap around the surface of the abrasive grains, and the carbon nanotube coating is formed by the self-aggregation force of the single-walled carbon nanotube or the multi-walled carbon nanotube excellent in mechanical strength. Since it is configured to be intertwined, the mechanical strength of the bond material around the abrasive grains in the abrasive machining tool can be selectively strengthened to sufficiently increase the abrasive grain retention of the abrasive layer. it can.

本発明の第6の特徴(請求項6に記載の発明の特徴)は、第5の特徴に加えて、前記砥粒は、表面側に官能基Xを有し、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブは、表面側に前記砥粒の前記官能基Xと化学結合する官能基Yを有していることを要旨とする。   According to a sixth feature of the present invention (the feature of the invention described in claim 6), in addition to the fifth feature, the abrasive grains have a functional group X on the surface side, and the single-walled carbon nanotube or the The gist of the multi-walled carbon nanotube is that it has a functional group Y chemically bonded to the functional group X of the abrasive grains on the surface side.

第6の特徴によると、前記砥粒の前記官能基Xと前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの前記官能基Yが化学結合することによって、前記カーボンナノチューブ被覆を前記砥粒に強固に密着させて、前記砥粒周辺部の前記ボンド材の機械的強度を選択的により強化して、前記砥粒層の砥粒保持力をより十分に高めることができる。   According to the sixth feature, the functional group X of the abrasive grain and the functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube are chemically bonded, so that the carbon nanotube coating is firmly adhered to the abrasive grain. Thus, the mechanical strength of the bond material in the peripheral part of the abrasive grains can be selectively strengthened, and the abrasive grain holding power of the abrasive grain layer can be sufficiently increased.

本発明の第7の特徴(請求項7に記載の発明の特徴)は、第6の特徴に加えて、前記砥粒の前記官能基Xは、前記砥粒の表面の原子又は分子と前記官能基Xを有する分子を化学吸着により置換することによって導入され、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの前記官能基Yは、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの表面の欠陥部の原子又は分子と前記官能基Yを有する分子を化学吸着により置換することによって導入されたこと要旨とする。   In addition to the sixth feature, the seventh feature of the present invention (the feature of the invention described in claim 7) is that the functional group X of the abrasive grains includes atoms or molecules on the surface of the abrasive grains and the functional groups. The functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube is introduced by substituting the molecule having the group X by chemical adsorption, and the functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube Alternatively, the gist is introduced by replacing the molecule and the molecule having the functional group Y by chemical adsorption.

本発明によれば、前記砥粒周辺部の前記ボンド材の機械的強度を選択的に強化して、前記砥粒層の砥粒保持力を十分に高めることができるため、砥粒加工中の前記被覆砥粒の脱落を抑えて、前記砥粒加工用工具の工具寿命及び砥粒加工性能を容易に向上させることができる。   According to the present invention, the mechanical strength of the bond material around the abrasive grains can be selectively strengthened to sufficiently increase the abrasive retention force of the abrasive layer. The falling of the coated abrasive grains can be suppressed, and the tool life and the abrasive performance of the abrasive processing tool can be easily improved.

本発明の実施形態について図1(a)(b)から図9を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b) to FIG.

図1(a)は、本発明の実施形態に係る軸付き電着研削砥石の断面図、図1(b)は、本発明の実施形態に係る軸付き電着研削砥石を先端からみた図、図2は、単層の砥粒層を示す部分断面図、図3は、多層の砥粒層を示す部分断面図、図4は、気孔を内包した多層の砥粒層を示す部分断面図、図5は、本発明の実施形態に係る被覆砥粒を示す図、図6は、多層カーボンナノチューブと砥粒との化学結合例を示す図、図7は、本発明の実施形態に係る別態様の被覆砥粒を示す図、図8及び図9は、砥粒層の表面側の砥粒を露出した状態を示す部分断面図、図10は、本発明の実施形態に係る被覆砥粒の製造例を示す図である。   FIG. 1A is a cross-sectional view of an electrodeposited grinding wheel with a shaft according to an embodiment of the present invention, and FIG. 1B is a view of the electrodeposition grinding wheel with a shaft according to an embodiment of the present invention as viewed from the tip. 2 is a partial cross-sectional view showing a single abrasive layer, FIG. 3 is a partial cross-sectional view showing a multi-layer abrasive layer, and FIG. 4 is a partial cross-sectional view showing a multi-layer abrasive layer containing pores, FIG. 5 is a view showing coated abrasive grains according to an embodiment of the present invention, FIG. 6 is a view showing an example of chemical bonding between multi-walled carbon nanotubes and abrasive grains, and FIG. 7 is another aspect according to the embodiment of the present invention. FIG. 8 and FIG. 9 are partial cross-sectional views showing a state in which the abrasive grains on the surface side of the abrasive grain layer are exposed, and FIG. 10 shows the production of the coated abrasive grains according to the embodiment of the present invention. It is a figure which shows an example.

図1(a)(b)に示すように、本発明の実施形態に係る軸付き電着研削砥石1は、例えば脆性材料(石英ガラス、セラミックス、超硬等)からなる被加工物(図示省略)に対して研削加工(砥粒加工の一例)を行う際に用いられるものである。また、軸付き電着研削砥石1は、台金3を備えており、この台金3は、加工機の主軸(図示省略)に取付可能なシャンク部(軸部)5と、このシャンク部5の先端側に一体に形成された砥粒取付部7とからなる。   As shown in FIGS. 1A and 1B, a shafted electrodeposition grinding wheel 1 according to an embodiment of the present invention is a workpiece (not shown) made of, for example, a brittle material (quartz glass, ceramics, carbide, etc.). ) Is used for grinding (an example of abrasive processing). Moreover, the electrodeposited grinding wheel 1 with a shaft includes a base metal 3, and the base metal 3 includes a shank portion (shaft portion) 5 that can be attached to a main shaft (not shown) of the processing machine, and the shank portion 5. And an abrasive grain mounting portion 7 integrally formed on the tip end side of the.

台金3の砥粒取付部7の加工面側(周面側及び先端面側)には、砥粒層9が形成されており、この砥粒層9は、多数の被覆砥粒11をニッケル電着ボンド材等の電着ボンド材13で結合してなるものである。ここで、電着ボンド材13の代わりに、レジンボンド材、ビトリファイドボンド材、又はメタルボンド材等を用いても構わない。   An abrasive grain layer 9 is formed on the processing surface side (peripheral surface side and front end face side) of the abrasive grain mounting portion 7 of the base metal 3, and this abrasive grain layer 9 is composed of many coated abrasive grains 11 made of nickel. It is formed by bonding with an electrodeposition bond material 13 such as an electrodeposition bond material. Here, a resin bond material, a vitrified bond material, a metal bond material, or the like may be used instead of the electrodeposition bond material 13.

砥粒層9は、単層(図2参照)又は多層(図3及び図4参照)のいずれであっても構わない。更に、砥粒層9が多層の場合にあっては、例えば電着ボンド材13に中空ビーズを混入させることにより、砥粒層9が多数の気孔15を内包するようにしても構わない(図4参照)。   The abrasive grain layer 9 may be either a single layer (see FIG. 2) or a multilayer (see FIGS. 3 and 4). Further, when the abrasive grain layer 9 is a multilayer, for example, the abrasive grain layer 9 may contain a large number of pores 15 by mixing hollow beads into the electrodeposition bond material 13 (see FIG. 4).

続いて、本発明の実施形態の要部である被覆砥粒11の具体的な構成について説明する。   Then, the specific structure of the coated abrasive grain 11 which is the principal part of embodiment of this invention is demonstrated.

図5及び図6に示すように、本発明の実施形態に係る被覆砥粒11は、砥粒17を備えており、この砥粒17は、人造ダイヤモンドからなるものであるが、天然ダイヤモンド又はcBN等からなるものであってもよい。また、砥粒17は、表面側に、官能基Xとしてのアミノ基19を有しており、砥粒17のアミノ基(官能基X)19は、砥粒17の表面の原子(原子層を含む)又は分子(分子層を含む)とアミノ基を有する分子の化学吸着により置換することによって導入されるものである。   As shown in FIG. 5 and FIG. 6, the coated abrasive grain 11 according to the embodiment of the present invention includes an abrasive grain 17, and the abrasive grain 17 is made of artificial diamond, but natural diamond or cBN. Or the like. Further, the abrasive grain 17 has an amino group 19 as a functional group X on the surface side, and the amino group (functional group X) 19 of the abrasive grain 17 is an atom (atomic layer on the surface of the abrasive grain 17). Or a molecule (including a molecular layer) and a molecule having an amino group are substituted by chemical adsorption.

ここで、砥粒17の表面の原子又は分子とアミノ基(官能基X)を有する分子を化学吸着により置換する場合(例えば、アミノ基を有するシランカップリング剤を用いたシランカップリング処理、又はラジカルカップリング反応を用いた処理等を施した場合)には、砥粒17の表面側に有機分子鎖又はヘテロ原子(酸素原子、ケイ素原子等)を含む有機分子鎖の中間層21が生成される。一方、砥粒17の表面の原子又は分子とアミノ基(官能基X)を化学吸着により置換する場合(例えば、アンモニアガス雰囲気中におけるUV処理、アンモニアガス雰囲気中における加熱処理、又はアンモニアガス雰囲気中におけるプラズマ処理等を施した場合)には、砥粒17の表面側に中間層21は生成されない。   Here, when the atom or molecule on the surface of the abrasive grain 17 and the molecule having an amino group (functional group X) are substituted by chemical adsorption (for example, a silane coupling treatment using a silane coupling agent having an amino group, or When a treatment using a radical coupling reaction or the like is performed), an intermediate layer 21 of an organic molecular chain containing an organic molecular chain or a hetero atom (oxygen atom, silicon atom, etc.) is formed on the surface side of the abrasive grains 17. The On the other hand, when atoms or molecules on the surface of the abrasive grains 17 and amino groups (functional groups X) are replaced by chemical adsorption (for example, UV treatment in an ammonia gas atmosphere, heat treatment in an ammonia gas atmosphere, or in an ammonia gas atmosphere) When the plasma treatment or the like is performed), the intermediate layer 21 is not generated on the surface side of the abrasive grains 17.

砥粒17の表面には、カーボンナノチューブ被覆23が包み込むように形成されており、このカーボンナノチューブ被覆23は、多層カーボンナノチューブ25のファンデルワールス力等の自己凝集力によって自己組織化的に絡み合うように構成されている。また、多層カーボンナノチューブ25は、表面側に、砥粒17のアミノ基19と化学結合する官能基Yとしてカルボキシル基27を有しており、多層カーボンナノチューブ25のカルボキシル基27は、多層カーボンナノチューブ27の表面に対して酸化処理(例えば、硫酸・硝酸の混酸を用いた酸処理、酸素プラズマを用いた酸化処理、酸素雰囲気中における加熱処理、酸素雰囲気中におけるUV処理等)を施すことにより、多層カーボンナノチューブ27の表面の欠陥部の原子又は分子とカルボキシル基を有する分子を化学吸着により置換することによって導入されるものである。   The surface of the abrasive grain 17 is formed so as to wrap around the carbon nanotube coating 23, and the carbon nanotube coating 23 is entangled in a self-organized manner by self-cohesion force such as van der Waals force of the multi-walled carbon nanotube 25. It is configured. The multi-walled carbon nanotube 25 has a carboxyl group 27 as a functional group Y chemically bonded to the amino group 19 of the abrasive grain 17 on the surface side. By subjecting the surface of the substrate to oxidation treatment (for example, acid treatment using a mixed acid of sulfuric acid and nitric acid, oxidation treatment using oxygen plasma, heat treatment in an oxygen atmosphere, UV treatment in an oxygen atmosphere, etc.) It is introduced by substituting a molecule having a carboxyl group with an atom or molecule at a defect portion on the surface of the carbon nanotube 27 by chemical adsorption.

ここで、カーボンナノチューブ被覆23は多層カーボンナノチューブ25のみからなる代わりに、図7に示すように、多層カーボンナノチューブ25と複合用ボンド材29(複合用電着ボンド材、複合用レジンボンド材、複合用ビトリファイドボンド材、又はメタルボンド材複合用ボンド材等を含む)によって複合化されても構わなく、多層カーボンナノチューブ25の代わりに、単層カーボンナノチューブをカーボンナノチューブ被覆23に用いても構わない。   Here, instead of the carbon nanotube coating 23 consisting of only the multi-walled carbon nanotube 25, as shown in FIG. 7, the multi-walled carbon nanotube 25 and the composite bond material 29 (composite electrodeposition bond material, composite resin bond material, composite For example, a single-walled carbon nanotube may be used for the carbon nanotube coating 23 instead of the multi-walled carbon nanotube 25.

なお、図8及び図9に示すように、砥粒層9の表面側の電着ボンド材13及びカーボンナノチューブ被覆23を例えば切削加工、研削加工、研磨加工、放電加工、レーザ加工、電解加工等によって除去(ドレッシング)して、砥粒層9の表面側の砥粒17が露出するようにしても構わない。   As shown in FIGS. 8 and 9, the electrodeposition bond material 13 and the carbon nanotube coating 23 on the surface side of the abrasive grain layer 9 are subjected to, for example, cutting, grinding, polishing, electric discharge, laser processing, electrolytic processing, and the like. May be removed (dressing) to expose the abrasive grains 17 on the surface side of the abrasive grain layer 9.

続いて、本発明の実施形態に係る被覆砥粒11の製造例について説明する。   Then, the manufacture example of the coated abrasive grain 11 which concerns on embodiment of this invention is demonstrated.

図9に示すように、多層カーボンナノチューブ25の表面側に対して前述の酸化処理を施すことによって官能基Yとしてのカルボキシル基27を導入し、カルボキシル基27を有した多層カーボンナノチューブ25を溶液(例えば、DMF(N,N-ジメチルホルムアミド)溶液等)に入れて、超音波攪拌等によって溶液内において分散させる。ここで、官能基Yとしてのカルボキシル基27を導入する前又は導入する際に、酸中での超音波処理による多層カーボンナノチューブの切断又は酸処理によって多層カーボンナノチューブ25の表面(末端又はサイドウォール(側面))に欠陥部を導入することは、カルボキシル基27を化学吸着させる上で有効である。なお、多層カーボンナノチューブ25を分散させた溶液をカーボンナノチューブ分散溶液という。   As shown in FIG. 9, the carboxyl group 27 as the functional group Y is introduced by performing the above-described oxidation treatment on the surface side of the multilayer carbon nanotube 25, and the multilayer carbon nanotube 25 having the carboxyl group 27 is added to the solution ( For example, it is put in DMF (N, N-dimethylformamide) solution etc.) and dispersed in the solution by ultrasonic stirring or the like. Here, before or when the carboxyl group 27 as the functional group Y is introduced, the surface of the multi-walled carbon nanotube 25 (terminal or sidewall) is obtained by cutting or acid treatment of the multi-walled carbon nanotube by ultrasonic treatment in acid. Introducing a defect in the side surface)) is effective in chemically adsorbing the carboxyl group 27. A solution in which the multi-walled carbon nanotubes 25 are dispersed is referred to as a carbon nanotube dispersion solution.

次に、砥粒17の表面側に対して前述の置換処理を施すことによって官能基Xとしてのアミノ基19を導入し、アミノ基19を有した砥粒17をカーボンナノチューブ分散溶液に浸漬させる。その後、砥粒17をカーボンナノチューブ分散溶液から取り出して、エタノールで洗浄し、110℃で所定時間乾燥させる。   Next, the amino group 19 as the functional group X is introduced by performing the above-described substitution treatment on the surface side of the abrasive grain 17, and the abrasive grain 17 having the amino group 19 is immersed in the carbon nanotube dispersion solution. Thereafter, the abrasive grains 17 are taken out from the carbon nanotube dispersion solution, washed with ethanol, and dried at 110 ° C. for a predetermined time.

そして、砥粒17の乾燥後に、砥粒17の浸漬・取り出し・洗浄・乾燥を再度複数回繰り返す。これにより、多層カーボンナノチューブ25のファンデルワールス力等の自己凝集力によって自己組織化的に絡み合うようなカーボンナノチューブ被覆23を砥粒17の表面側に形成して、被覆砥粒11を製造することができる。   Then, after the abrasive grains 17 are dried, the immersion, removal, cleaning and drying of the abrasive grains 17 are repeated a plurality of times. Accordingly, the coated abrasive grain 11 is manufactured by forming the carbon nanotube coating 23 on the surface side of the abrasive grain 17 so as to be entangled in a self-organized manner by the self-cohesive force such as van der Waals force of the multi-walled carbon nanotube 25. Can do.

続いて、本発明の実施形態の作用及び効果について説明する。   Then, the effect | action and effect of embodiment of this invention are demonstrated.

砥粒17の表面にカーボンナノチューブ被覆23が包み込むように形成され、カーボンナノチューブ被覆23は機械的強度に優れた多層カーボンナノチューブ25のファンデルワールス力等の自己凝集力によって自己組織化的に絡み合うように構成されているため、砥粒17周辺部の電着ボンド材13の機械的強度を選択的に強化することができ、砥粒層9の砥粒保持力(換言すれば、電着ボンド材13の砥粒保持力)を十分に高めて高めることができる(後述の実施例参照)。特に、砥粒17の官能基Xとしてのアミノ基19と多層カーボンナノチューブ25の官能基Yとしてのカルボキシル基27が化学結合(アミド結合)することによって、カーボンナノチューブ被覆23を砥粒17に強固に密着させて、砥粒17周辺部の電着ボンド材13の機械的強度を選択的により強化して、砥粒層9の砥粒保持力を十分に高めることができる。   The carbon nanotube coating 23 is formed so as to wrap around the surface of the abrasive grains 17, and the carbon nanotube coating 23 is entangled in a self-organized manner by self-cohesion force such as van der Waals force of the multi-walled carbon nanotube 25 excellent in mechanical strength. Therefore, the mechanical strength of the electrodeposited bond material 13 around the abrasive grains 17 can be selectively strengthened, and the abrasive grain holding power of the abrasive layer 9 (in other words, the electrodeposited bond material). (13 abrasive holding power) can be sufficiently increased and increased (see Examples described later). Particularly, the amino group 19 as the functional group X of the abrasive grain 17 and the carboxyl group 27 as the functional group Y of the multi-walled carbon nanotube 25 are chemically bonded (amide bond), so that the carbon nanotube coating 23 is firmly attached to the abrasive grain 17. By adhering, the mechanical strength of the electrodeposition bond material 13 around the abrasive grains 17 can be selectively strengthened, and the abrasive grain holding power of the abrasive grain layer 9 can be sufficiently increased.

従って、本発明の実施形態によれば、砥粒17周辺部の電着ボンド材13の機械的強度を選択的により強化して、砥粒層9の砥粒保持力を十分に高めることができるため、研削加工中の被覆砥粒11の脱落を抑えて、軸付き研削砥石1の工具寿命及び砥粒加工性能(研削比、切れ味等を含む)を容易に向上させることができる。   Therefore, according to the embodiment of the present invention, the mechanical strength of the electrodeposition bond material 13 around the abrasive grains 17 can be selectively enhanced to sufficiently increase the abrasive grain retention of the abrasive layer 9. Therefore, dropping of the coated abrasive grains 11 during grinding can be suppressed, and the tool life and abrasive performance (including the grinding ratio, sharpness, etc.) of the shaft-equipped grinding wheel 1 can be easily improved.

また、図8及び図9に示すように、砥粒層9の表面側の砥粒17が露出するようにした場合には、加工当初から砥粒加工性能を十分に発揮することができる。   Further, as shown in FIGS. 8 and 9, when the abrasive grains 17 on the surface side of the abrasive grain layer 9 are exposed, the abrasive machining performance can be sufficiently exhibited from the beginning of the machining.

本発明は、前述の実施形態の説明に限られるものではなく、例えば、次のように種々の態様で実施可能である。即ち、軸付き電着研削砥石1に適用した技術思想を薄型,ストレート型,カップ型,ディスク型砥石等の別の砥石、又は固定砥粒ワイヤソー等の別の砥粒加工用工具に適用することができる。また、軸付き電着研削砥石1に適用した技術思想を薄型切断砥石に適用する場合には、台金3を省略することができ、軸付き電着研削砥石1に適用した技術思想を固定砥粒ワイヤソーに適用する場合には、台金3はピアノ線のようなワイヤー形状になる。   The present invention is not limited to the description of the above-described embodiment, and can be implemented in various aspects as follows, for example. That is, the technical idea applied to the electrodeposition grinding wheel 1 with a shaft is applied to another grinding wheel such as a thin, straight type, cup type, disk type grinding wheel, or another abrasive machining tool such as a fixed abrasive wire saw. Can do. Further, when the technical idea applied to the electrodeposited grinding wheel 1 with a shaft is applied to a thin cutting grindstone, the base metal 3 can be omitted, and the technical idea applied to the electrodeposited grinding wheel 1 with a shaft is fixed. When applied to a grain wire saw, the base metal 3 is shaped like a piano wire.

なお、本発明に包含される権利範囲は、これらの実施形態に限定されないものである。   The scope of rights encompassed by the present invention is not limited to these embodiments.

実施例について図11(a)(b)及び図12を参照して説明する。ここで、図11(a)は、実施例1に係る被覆砥粒の表面の電子顕微鏡写真を示す図、図11(b)は、図11(a)の一部を拡大した図、図12は、実施例1、実施例2、及び比較例についてのシェア試験の結果を示す図である。   Examples will be described with reference to FIGS. 11A and 11B and FIG. Here, FIG. 11A is a diagram showing an electron micrograph of the surface of the coated abrasive according to Example 1, FIG. 11B is an enlarged view of a part of FIG. 11A, and FIG. These are figures which show the result of the share test about Example 1, Example 2, and a comparative example.

(i) 実施例1に係る被覆砥粒
砥粒(ダイヤモンド砥粒)にアンモニア雰囲気中におけるUV処理(UV波長:185nm,254nm、ガス流量:50ccm、処理時間:2.5時間)を施すことによってアミノ基を導入する。次に、アミノ基を有した砥粒を、1.25g/Lの多層カーボンナノチューブ(直径:10nm、長さ:0.1〜10μm)を分散させたカーボンナノチューブ分散溶液に浸漬させる。そして、砥粒をカーボンナノチューブ分散溶液から取り出して、エタノールで洗浄し、110℃で所定時間乾燥させる。更に、砥粒の浸漬・取り出し・洗浄・乾燥4回繰り返す。以上により、実施例1に係る被覆砥粒を製造した。
(i) Coated abrasive according to Example 1 By applying UV treatment (UV wavelength: 185 nm, 254 nm, gas flow rate: 50 ccm, treatment time: 2.5 hours) in an ammonia atmosphere to the abrasive grains (diamond abrasive grains) An amino group is introduced. Next, the abrasive grains having amino groups are immersed in a carbon nanotube dispersion solution in which 1.25 g / L multi-walled carbon nanotubes (diameter: 10 nm, length: 0.1 to 10 μm) are dispersed. Then, the abrasive grains are taken out from the carbon nanotube dispersion solution, washed with ethanol, and dried at 110 ° C. for a predetermined time. Further, the abrasive grain is immersed, removed, washed and dried four times. The coated abrasive according to Example 1 was manufactured as described above.

(ii) 実施例2に係る被覆砥粒
アミノ基を有するシランカップリング剤(3-(aminopropyl)triethoxysilane)を2%含むエタノール溶液に30分間浸漬させた砥粒(ダイヤモンド砥粒)を取り出して、約100℃で10分間加熱することにより、砥粒の表面にシランカップリング剤を化学吸着させる。次に、第1実施例と同様に、アミノ基を有した砥粒をカーボンナノチューブ分散溶液に浸漬させる。そして、砥粒をカーボンナノチューブ分散溶液から取り出して、エタノールで洗浄し、110℃で所定時間乾燥させる。更に、砥粒の浸漬・取り出し・洗浄・乾燥4回繰り返す。以上により、実施例2に係る被覆砥粒を製造した。
(ii) Coated abrasive grains according to Example 2 Abrasive grains (diamond abrasive grains) immersed in an ethanol solution containing 2% of an amino group-containing silane coupling agent (3- (aminopropyl) triethoxysilane) for 30 minutes were taken out, By heating at about 100 ° C. for 10 minutes, the silane coupling agent is chemically adsorbed on the surface of the abrasive grains. Next, as in the first embodiment, abrasive grains having amino groups are immersed in the carbon nanotube dispersion solution. Then, the abrasive grains are taken out from the carbon nanotube dispersion solution, washed with ethanol, and dried at 110 ° C. for a predetermined time. Further, the abrasive grain is immersed, removed, washed and dried four times. The coated abrasive according to Example 2 was manufactured as described above.

(iii) 電子顕微鏡観察
第1実施例に係る被覆砥粒の表面を電子顕微鏡で観察すると、図11(a)(b)に示すようになる。
(iii) Electron Microscope Observation When the surface of the coated abrasive grain according to the first example is observed with an electron microscope, it is as shown in FIGS. 11 (a) and 11 (b).

即ち、砥粒の表面に形成されたカーボンナノチューブ被覆は、多層カーボンナノチューブのファンデルワールス力等の自己凝集力によって自己組織化的に絡み合うようになっていることが分かった。   That is, it was found that the carbon nanotube coating formed on the surface of the abrasive grains is entangled in a self-organized manner by self-cohesion force such as van der Waals force of the multi-walled carbon nanotube.

なお、図示は省略するが、第2実施例に係る被覆砥粒の表面を電子顕微鏡で観察した場合にも、同様の結果を得ることができた。   In addition, although illustration is abbreviate | omitted, the same result was able to be obtained also when the surface of the coated abrasive grain which concerns on 2nd Example was observed with the electron microscope.

(iv) シェア試験
実施例1に係る被覆砥粒、実施例2に係る被覆砥粒、比較例に係るダイヤモンド砥粒(カーボンナノチューブ被覆無し)を、S45Cからなる基板にスルファミン酸ニッケル浴で形成した厚さ約15μmのニッケル電着ボンド材でそれぞれ固着する。そして、実施例1、実施例2、比較例の場合について、シェア試験(山形県工業技術センター報告 No39(2006)P6−10参照)をそれぞれ行い、その結果をまとめると、図12に示すようになる。
(iv) Shear test Coated abrasive grains according to Example 1, coated abrasive grains according to Example 2, and diamond abrasive grains according to comparative examples (without carbon nanotube coating) were formed on a substrate made of S45C in a nickel sulfamate bath. Each is fixed with a nickel electrodeposition bond material having a thickness of about 15 μm. And about the case of Example 1, Example 2, and a comparative example, a share test (refer to Yamagata Prefectural Industrial Technology Center report No39 (2006) P6-10) is performed, respectively, and the results are summarized as shown in FIG. Become.

即ち、実施例1の場合及び実施例2の場合におけるニッケル電着ボンド材の砥粒保持力は、比較例の場合に比べて、それぞれ平均値で約2.4倍、2.0倍になった。つまり、ダイヤモンド砥粒の表面にカーボンナノチューブ被覆が包み込むように形成されることによって、ニッケル電着ボンド材の砥粒保持力を十分に高めることが分かった。   That is, the abrasive grain retention of the nickel electrodeposited bond material in the case of Example 1 and Example 2 is about 2.4 times and 2.0 times on average as compared with the case of the comparative example, respectively. It was. That is, it has been found that the formation of the carbon nanotube coating on the surface of the diamond abrasive grains sufficiently enhances the abrasive grain retention of the nickel electrodeposition bond material.

図1(a)は、本発明の実施形態に係る軸付き電着研削砥石の断面図、図1(b)は、本発明の実施形態に係る軸付き電着研削砥石を先端からみた図である。FIG. 1A is a cross-sectional view of an electrodeposited grinding wheel with a shaft according to an embodiment of the present invention, and FIG. 1B is a view of the electrodeposited grinding wheel with a shaft according to an embodiment of the present invention as viewed from the tip. is there. 単層の砥粒層を示す部分断面図である。It is a fragmentary sectional view showing a single-layer abrasive grain layer. 多層の砥粒層を示す部分断面図である。It is a fragmentary sectional view showing a multilayer abrasive grain layer. 気孔を内包した多層の砥粒層を示す部分断面図である。It is a fragmentary sectional view which shows the multilayer abrasive grain layer which included the pore. 本発明の実施形態に係る被覆砥粒を示す図である。It is a figure which shows the covering abrasive grain which concerns on embodiment of this invention. 多層カーボンナノチューブと砥粒との化学結合例を示す図である。It is a figure which shows the chemical bond example of a multi-walled carbon nanotube and an abrasive grain. 本発明の実施形態に係る別態様の被覆砥粒を示す図である。It is a figure which shows the coated abrasive grain of another aspect which concerns on embodiment of this invention. 砥粒層の表面側の砥粒を露出した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which exposed the abrasive grain of the surface side of an abrasive grain layer. 砥粒層の表面側の砥粒を露出した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which exposed the abrasive grain of the surface side of an abrasive grain layer. 本発明の実施形態に係る被覆砥粒の製造例を示す図である。It is a figure which shows the manufacture example of the coated abrasive grain which concerns on embodiment of this invention. 図11(a)は、ダイヤモンド被覆砥粒の表面の電子顕微鏡写真を示す図、図11(b)は、図11(a)の一部を拡大した図である。Fig.11 (a) is a figure which shows the electron micrograph of the surface of a diamond covering abrasive grain, FIG.11 (b) is the figure which expanded a part of Fig.11 (a). 実施品1、実施品2、及び比較品についてのシェア試験の結果を示す図である。It is a figure which shows the result of the share test about implementation product 1, implementation product 2, and a comparison product.

符号の説明Explanation of symbols

1 電着研削砥石
3 台金
5 シャンク部
7 砥粒取付部
9 砥粒層
11 被覆砥粒
13 電着ボンド材
15 気孔
17 砥粒
19 官能基X(例えば、アミノ基)
21 中間層
23 カーボンナノチューブ被覆
25 多層カーボンナノチューブ
27 官能基Xと化学結合する官能基Y(例えば、カルボキシル基)
29 複合用ボンド材
DESCRIPTION OF SYMBOLS 1 Electrodeposition grinding wheel 3 Base metal 5 Shank part 7 Abrasive grain attachment part 9 Abrasive grain layer 11 Coated abrasive grain 13 Electrodeposition bond material 15 Pore 17 Abrasive grain 19 Functional group X (for example, amino group)
21 Intermediate layer 23 Carbon nanotube coating 25 Multi-walled carbon nanotube 27 Functional group Y (for example, carboxyl group) chemically bonded to functional group X
29 Composite bond material

Claims (7)

被加工物に対して砥粒加工を行う際に用いられ、加工面側に多数の被覆砥粒をボンド材で結合してなる砥粒層が形成された砥粒加工用工具において、
前記被覆砥粒は、
砥粒と、
前記砥粒の表面に包み込むように形成され、単層カーボンナノチューブ又は多層カーボンナノチューブの自己凝集力によって絡み合うように構成されたカーボンナノチューブ被覆と、を備えたことを特徴とする砥粒加工用工具。
In the abrasive machining tool in which an abrasive layer formed by bonding a large number of coated abrasive grains with a bonding material is used on the processing surface side when performing abrasive grain processing on a workpiece,
The coated abrasive is
Abrasive grains,
A tool for abrasive machining, comprising: a carbon nanotube coating formed so as to be wrapped around the surface of the abrasive grains and entangled by the self-cohesive force of single-walled carbon nanotubes or multi-walled carbon nanotubes.
前記砥粒は、表面側に官能基Xを有し、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブは、表面側に前記砥粒の前記官能基Xと化学結合する官能基Yを有していることを特徴とする請求項1に記載の砥粒加工用工具。   The abrasive grain has a functional group X on the surface side, and the single-walled carbon nanotube or the multi-walled carbon nanotube has a functional group Y that chemically bonds to the functional group X of the abrasive grain on the surface side. The abrasive grain processing tool according to claim 1. 前記砥粒の前記官能基Xは、前記砥粒の表面の原子又は分子と前記官能基Xを有する分子を化学吸着により置換することによって導入され、
前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの前記官能基Yは、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの表面の欠陥部の原子又は分子と前記官能基Yを有する分子を化学吸着により置換することによって導入されたこと特徴とする請求項2に記載の砥粒加工用工具。
The functional group X of the abrasive grains is introduced by substituting atoms or molecules on the surface of the abrasive grains and molecules having the functional group X by chemical adsorption,
The functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube replaces a molecule having the functional group Y with an atom or molecule at the surface of the single-walled carbon nanotube or the multi-walled carbon nanotube by chemical adsorption. The abrasive machining tool according to claim 2, wherein the abrasive grain machining tool is introduced.
前記砥粒層の表面側の前記砥粒が露出するようになっていることを特徴とする請求項1から請求項3のうちのいずれかの請求項に記載の砥粒加工用工具。   The abrasive grain processing tool according to any one of claims 1 to 3, wherein the abrasive grains on the surface side of the abrasive grain layer are exposed. 砥粒加工用工具の構成要素として用いられる被覆砥粒において、
砥粒と、
前記砥粒の表面に包み込むように形成され、単層カーボンナノチューブ又は多層カーボンナノチューブの自己凝集力によって絡み合うように構成されたカーボンナノチューブ被覆と、を備えたことを特徴とする被覆砥粒。
In the coated abrasive used as a component of the abrasive processing tool,
Abrasive grains,
A coated abrasive grain comprising: a carbon nanotube coating formed to wrap around the surface of the abrasive grain and configured to be entangled by the self-cohesion of single-walled carbon nanotubes or multi-walled carbon nanotubes.
前記砥粒は、表面側に官能基Xを有し、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブは、表面側に前記砥粒の前記官能基Xと化学結合する官能基Yを有していることを特徴とする請求項5に記載の被覆砥粒。   The abrasive grain has a functional group X on the surface side, and the single-walled carbon nanotube or the multi-walled carbon nanotube has a functional group Y that chemically bonds to the functional group X of the abrasive grain on the surface side. The coated abrasive according to claim 5. 前記砥粒の前記官能基Xは、前記砥粒の表面の原子又は分子と前記官能基Xを有する分子を化学吸着により置換することによって導入され、
前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの前記官能基Yは、前記単層カーボンナノチューブ又は前記多層カーボンナノチューブの表面の欠陥部の原子又は分子と前記官能基Yを有する分子を化学吸着により置換することによって導入されたこと特徴とする請求項6に記載の被覆砥粒。
The functional group X of the abrasive grains is introduced by substituting atoms or molecules on the surface of the abrasive grains and molecules having the functional group X by chemical adsorption,
The functional group Y of the single-walled carbon nanotube or the multi-walled carbon nanotube replaces a molecule having the functional group Y with an atom or molecule at the surface of the single-walled carbon nanotube or the multi-walled carbon nanotube by chemical adsorption. The coated abrasive according to claim 6, wherein the coated abrasive is introduced.
JP2008234654A 2008-09-12 2008-09-12 Abrasive machining tool and coated abrasive Expired - Fee Related JP5261687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234654A JP5261687B2 (en) 2008-09-12 2008-09-12 Abrasive machining tool and coated abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234654A JP5261687B2 (en) 2008-09-12 2008-09-12 Abrasive machining tool and coated abrasive

Publications (2)

Publication Number Publication Date
JP2010064217A JP2010064217A (en) 2010-03-25
JP5261687B2 true JP5261687B2 (en) 2013-08-14

Family

ID=42190250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234654A Expired - Fee Related JP5261687B2 (en) 2008-09-12 2008-09-12 Abrasive machining tool and coated abrasive

Country Status (1)

Country Link
JP (1) JP5261687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888666B2 (en) * 2011-03-24 2016-03-22 国立研究開発法人産業技術総合研究所 Conductive thin film and actuator elements composed of multi-walled carbon nanotubes, polymer and ionic liquid
JP6332986B2 (en) * 2014-02-04 2018-05-30 アイテック株式会社 Method for producing nanocarbon fiber coated diamond particles
JP6906763B2 (en) * 2017-06-26 2021-07-21 山形県 Carbon Nanotube Composite Resin Bond Whetstone

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513135B2 (en) * 1999-04-01 2010-07-28 三菱マテリアル株式会社 Grinding wheel containing fibrous hollow graphite
JP2004050364A (en) * 2002-07-22 2004-02-19 Nitolex Honsha:Kk Conductive grinding wheel, manufacturing method therefor and dressing method
JP2005095992A (en) * 2003-09-22 2005-04-14 Nitolex Honsha:Kk Laser truing and dressing method and grinding wheel for laser truing and dressing
JP2005246519A (en) * 2004-03-02 2005-09-15 Noritake Super Abrasive:Kk Resin bond wheel
JP4998778B2 (en) * 2006-02-27 2012-08-15 山形県 Nanocarbon fiber-containing electrodeposition tool and method for producing the same

Also Published As

Publication number Publication date
JP2010064217A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
TWI461249B (en) Wire saw and method for fabricating the same
US9375826B2 (en) Abrasive article and method of forming
JP6367815B2 (en) Smooth diamond surface and CMP method for its formation
JP2015521962A (en) Abrasive article and method of forming the same
EP3313615B1 (en) Abrasive article and method of forming
JP2015525682A (en) Abrasive article and method of forming the same
JP5261687B2 (en) Abrasive machining tool and coated abrasive
MX2013007616A (en) Abrasive article and method of forming.
WO2014172611A1 (en) Abrasive article and method of forming
JP2008030194A5 (en)
TW200720016A (en) Chemically modified chemical mechanical polishing pad, process of making a modified chemical mechanical polishing pad and method of chemical mechanical polishing
JP6291572B2 (en) Nickel-coated diamond particles and method for producing the particles
TWI566864B (en) Manufacture of wire saws and wire saws
JP2000106353A (en) Dresser for polishing cloth for semiconductor substrate
JPWO2007060984A1 (en) Resin bond superabrasive wheel and method of manufacturing the same
JP2009190155A (en) Polishing tool
JP2007054905A (en) Vitrified diamond wheel
JP6924436B2 (en) Carbon nanotube-coated abrasive grains
TW201116366A (en) Grinding tool trimmer with protection film and its protection film formation method
JP2012200831A (en) Super abrasive grain wheel and method of grinding using the same
TW201006611A (en) Improved pad properties using nanoparticle additives
JP2008012645A (en) Superabrasive tool and its manufacturing method
JP2014156004A (en) Composite plating coat and thin grindstone using the same
US20230294243A1 (en) Composite cluster structured abrasive
JP2005246519A (en) Resin bond wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5261687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees