JP4998778B2 - Nanocarbon fiber-containing electrodeposition tool and method for producing the same - Google Patents

Nanocarbon fiber-containing electrodeposition tool and method for producing the same Download PDF

Info

Publication number
JP4998778B2
JP4998778B2 JP2007045924A JP2007045924A JP4998778B2 JP 4998778 B2 JP4998778 B2 JP 4998778B2 JP 2007045924 A JP2007045924 A JP 2007045924A JP 2007045924 A JP2007045924 A JP 2007045924A JP 4998778 B2 JP4998778 B2 JP 4998778B2
Authority
JP
Japan
Prior art keywords
nanocarbon
plating
plating film
base material
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007045924A
Other languages
Japanese (ja)
Other versions
JP2007253318A (en
Inventor
庸久 鈴木
邦夫 芦野
▲高▼志 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA PREFECTURAL GOVERNMENT
Original Assignee
YAMAGATA PREFECTURAL GOVERNMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA PREFECTURAL GOVERNMENT filed Critical YAMAGATA PREFECTURAL GOVERNMENT
Priority to JP2007045924A priority Critical patent/JP4998778B2/en
Publication of JP2007253318A publication Critical patent/JP2007253318A/en
Application granted granted Critical
Publication of JP4998778B2 publication Critical patent/JP4998778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、ナノカーボン繊維を含有する電着工具とその製造方法に関する。   The present invention relates to an electrodeposition tool containing nanocarbon fibers and a method for producing the same.

ナノカーボン繊維と砥粒を結合剤で固定した研磨用工具を半導体ウエハや層間絶縁膜の精密研磨に用いる事が公知となっている。   It is known that a polishing tool in which nanocarbon fibers and abrasive grains are fixed with a binder is used for precision polishing of semiconductor wafers and interlayer insulating films.

これらの公知技術に開示された研磨工具は、直径が2ないし500nm、アスペクト比が5ないし15000のナノカーボン繊維と酸化セリウム、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、シリコンカーバイド、タングステンカーバイド、ボロンカーバイド、ボロンナイトライド、ダイヤモンド、サファイヤなどの砥粒を樹脂あるいは金属の結合剤により樹脂や金属基板上に結合させたものである。   Abrasive tools disclosed in these known techniques include nanocarbon fibers having a diameter of 2 to 500 nm and an aspect ratio of 5 to 15000, cerium oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, silicon carbide, tungsten carbide, Abrasive grains such as boron carbide, boron nitride, diamond and sapphire are bonded on a resin or metal substrate with a resin or metal binder.

工具の形態としては、砥石、研磨ホイール、研削ブレード、研磨パッドなどが記載されている。   As the form of the tool, a grindstone, a polishing wheel, a grinding blade, a polishing pad and the like are described.

被加工物としては、多結晶シリコン、単結晶シリコン、アモルファスシリコンなど、シリコンを研削または研磨するものである。   As the workpiece, polycrystalline silicon, single crystal silicon, amorphous silicon, or the like is used for grinding or polishing silicon.

工具の母材としては、プラスチックやゴムなどの樹脂、セメントやガラスなどのセラミック、純金属や合金などを用いることが開示されている。   As the base material of the tool, it is disclosed to use a resin such as plastic or rubber, a ceramic such as cement or glass, a pure metal or an alloy.

結合材としては、レジノイドボンド、メタルボンド、ビトリファイドボンド、電着ボンドなどが開示されている。   Resinoid bonds, metal bonds, vitrified bonds, electrodeposition bonds, and the like are disclosed as binders.

また、放電加工において、電極工具として導電性ダイヤモンドを用い、該導電性ダイヤモンド電極工具を放電電源回路のプラス極に接続し、被加工物をマイナス極に接続すると共に、放電パルス時間を3〜30マイクロ秒のいずれかの放電パルス時間を設定し、放電電流を1.5〜15Aのいずれかの値に設定して放電加工するものも知られている(文献3)。
特開2004−181584号公報 特開2004−202681号公報 Susumu Arai、 Morinobu Endo and Norio Kaneko; “Ni-deposited multi-walled carbon nanotubes by electrodeposition”Carbon、 Volume 42、 Issue 3、 2004、 Pages 641-644 L. Shi、 C.F. Sun、 P. Gao、 F. Zhou and W.M. Liu; “Electrodeposition and characterization of Ni-Co-carbon nanotubes composite coatings” Surface and Coatings Technology、 In Press、 Corrected Proof、 Available online 20 June 2005、 特開2005−230938号広報
In electric discharge machining, conductive diamond is used as an electrode tool, the conductive diamond electrode tool is connected to the positive electrode of the discharge power supply circuit, the workpiece is connected to the negative electrode, and the discharge pulse time is 3 to 30. It is also known that discharge machining is performed by setting any discharge pulse time in microseconds and setting the discharge current to any value of 1.5 to 15 A (Reference 3).
JP 2004-181484 A JP 2004-202681 A Susumu Arai, Morinobu Endo and Norio Kaneko; “Ni-deposited multi-walled carbon nanotubes by electrodeposition” Carbon, Volume 42, Issue 3, 2004, Pages 641-644 L. Shi, CF Sun, P. Gao, F. Zhou and WM Liu; “Electrodeposition and characterization of Ni-Co-carbon nanotubes composite coatings” Surface and Coatings Technology, In Press, Corrected Proof, Available online 20 June 2005, Japanese Laid-Open Patent Publication No. 2005-230938

最近、半導体、光通信、バイオの分野で、石英ガラスやセラミックスなどの硬脆材料や金型材料に直径0.5mm以下の微細な穴や溝を加工する電着工具が求められている。ここで、「電着工具」とは、電着砥石および放電加工用電極工具を指す。   Recently, in the fields of semiconductors, optical communications, and biotechnology, there is a demand for an electrodeposition tool for machining fine holes and grooves having a diameter of 0.5 mm or less in hard and brittle materials such as quartz glass and ceramics and mold materials. Here, the “electrodeposition tool” refers to an electrodeposition grindstone and an electrode tool for electric discharge machining.

しかしながら、前記公知技術における電着工具においては、ナノカーボン繊維に導電性があるため、電解めっきにより電着工具、特に微小径工具を製作した場合複合めっき被膜が非常にポーラスになる。研削加工用電着工具の場合、ポーラスな複合めっき被膜は砥粒の保持力が十分でなく、砥粒が早期に脱落するという問題があり、特に微細な径を有する小軸径砥石には適用が出来ないと言う問題がある。放電加工用電着工具の場合、ポーラスな複合めっき被膜は熱伝導性が悪く、低消耗加工を実現できないという問題がある。   However, in the electrodeposition tool in the above-mentioned known technique, since the nanocarbon fiber has conductivity, the composite plating film becomes very porous when an electrodeposition tool, particularly a tool with a small diameter is manufactured by electrolytic plating. In the case of electrodeposition tools for grinding, the porous composite plating film has a problem that the holding power of the abrasive grains is insufficient and the abrasive grains fall off early, and is particularly applicable to small-shaft grinding wheels with fine diameters. There is a problem that cannot be done. In the case of an electrodeposition tool for electric discharge machining, a porous composite plating film has a problem that heat conductivity is poor and low wear machining cannot be realized.

文献1、2においては、表面研磨用工具であるため、微小直径の工具を想定しておらず、適用したとしても、前記理由により砥粒の保持力が弱いという問題がある。   In Documents 1 and 2, since it is a tool for surface polishing, there is a problem that the holding power of abrasive grains is weak for the above reason even if a tool with a small diameter is not assumed and applied.

文献3のナノカーボン繊維複合めっき被膜の製造方法においては、ナノカーボン繊維自体をニッケルでめっき処理するという前工程が入り、工程が多くなるため、本発明が優れている。   In the method for producing the nanocarbon fiber composite plating film of Document 3, the present invention is excellent because a pre-process of plating the nanocarbon fiber itself with nickel is performed and the number of processes is increased.

文献4のナノカーボン繊維複合めっき被膜の製造方法においては、攪拌方法として、マグネティックスターラーを用いてめっき液を攪拌させながら電解めっきを行っているが、この方法では緻密な複合めっき被膜を形成できず、電着工具への適用は難しい。   In the method for producing the nanocarbon fiber composite plating film of Document 4, as the stirring method, electrolytic plating is performed while stirring the plating solution using a magnetic stirrer, but this method cannot form a dense composite plating film. Application to electrodeposition tools is difficult.

また、文献5の低消耗電極工具においては、導電性ダイヤモンドという非常に硬い材料を工具に用いているため工具形状の加工が難しく、創成放電加工用の外径0.5mm以下の小径円筒形状電極工具や型彫放電加工用の数ミクロンピッチの微細形状を有する電極工具を作製することは困難であるという問題がある。   Further, in the low-consumable electrode tool of Reference 5, since a very hard material called conductive diamond is used for the tool, machining of the tool shape is difficult, and a small-diameter cylindrical electrode tool having an outer diameter of 0.5 mm or less for generating electric discharge machining. In addition, there is a problem that it is difficult to manufacture an electrode tool having a fine shape with a pitch of several microns for electric discharge machining.

そこで、本発明は、前記した課題を解決すべくなされたものであり、ナノカーボン繊維を含有した緻密な複合めっき被膜を有し、砥粒の保持力、加工熱の排出性、表面潤滑性に優れ、工具寿命が長い研削加工用小径軸付き電着工具、ナノカーボン繊維を含有した緻密な複合めっき被膜を有し高熱伝導性のため低消耗放電加工を実現できる形状創成が容易な微細電極工具、およびこれらの電着工具の製造方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and has a dense composite plating film containing nanocarbon fibers, and has an ability to retain abrasive grains, discharge heat of processing, and surface lubricity. An electrodeposition tool with a small-diameter shaft for grinding that has excellent tool life and a fine electrode tool that has a dense composite plating film containing nanocarbon fibers and can realize low consumption electric discharge machining due to high thermal conductivity. It is an object of the present invention to provide a method for manufacturing these electrodeposition tools.

本発明は、上記課題を解決するためになされたもので、請求項1の発明は、電解めっきによる析出ビッカース硬度150〜300のニッケルを主成分とする被膜、無電解めっきによる析出ビッカース硬度450〜800のニッケルを主成分とする被膜、あるいは電解めっきによる析出ビッカース硬度40〜200の銅を主成分とする被膜の中から選ばれた少なくとも一つの被膜に、直径10-100nm、アスペクト比(=長さ/直径)5〜200であるナノカーボン繊維を均一に含有し、ナノカーボン繊維を含まない前記硬度を有するめっき被膜に比べ1.1倍〜2.5倍のビッカース硬度を有する複合金属めっき被膜(以下に「複合めっき被膜」と呼ぶ)を、金属めっき被膜部の少なくとも最表面に配置したナノカーボン繊維含有電着工具であることを特徴とする。ここで、「電着工具」とは、電着砥石および放電加工用電極工具と定義する。また、「母材」とは、ナノカーボン繊維複合金属めっき被膜を形成する工程の直前のめっき処理対象物である。つまり、電極工具の構成部位となる超硬などの材料(以下に「台金」と呼ぶ)、砥粒を台金に仮止めした構成物、電極工具の構成部位とはならない電鋳型なども、ナノカーボン繊維複合金属めっき被膜を形成する工程の直前の状態であれば、それを「母材」と定義する。   The present invention has been made to solve the above-mentioned problems. The invention of claim 1 is a coating mainly composed of nickel having a deposition Vickers hardness of 150 to 300 by electrolytic plating, and a deposition Vickers hardness of 450 to 450 by electroless plating. At least one film selected from 800 nickel-based coatings or electrolytic plating-deposited Vickers hardness 40-200 copper-based coatings with a diameter of 10-100 nm and an aspect ratio (= long) The composite metal plating film having Vickers hardness 1.1 times to 2.5 times that of the plating film having the hardness which does not contain nanocarbon fibers and uniformly contains nanocarbon fibers having a thickness of 5 to 200) (Hereinafter referred to as “composite plating film”) is a nanocarbon fiber-containing electrodeposition tool disposed on at least the outermost surface of the metal plating film portion. Here, the “electrodeposition tool” is defined as an electrodeposition grindstone and an electrode tool for electric discharge machining. The “base material” is an object to be plated immediately before the step of forming the nanocarbon fiber composite metal plating film. In other words, materials such as cemented carbide (hereinafter referred to as “base metal”) that are constituent parts of the electrode tool, components in which abrasive grains are temporarily fixed to the base metal, electroforming molds that do not become constituent parts of the electrode tool, If it is in a state immediately before the step of forming the nanocarbon fiber composite metal plating film, it is defined as “base material”.

請求項2の発明は、請求項1記載の電着工具のうち、前記複合めっき被膜が円柱状母材表面に形成され、該めっき被膜が、直径が砥石直径の1/5〜1/200の硬質砥粒と、砥粒直径以下の長さの前記ナノカーボン繊維を含有し、該硬質砥粒を、最表面層の硬質砥粒の一部を露出させた状態で、母材に固定した直径0.01mm〜3mmの小径軸付電着砥石であることを特徴とする。   According to a second aspect of the present invention, in the electrodeposition tool according to the first aspect, the composite plating film is formed on a cylindrical base material surface, and the plating film has a diameter of 1/5 to 1/200 of the grindstone diameter. A diameter containing hard abrasive grains and the nanocarbon fiber having a length equal to or less than the diameter of the abrasive grains, and fixing the hard abrasive grains to a base material with a part of the hard abrasive grains of the outermost surface layer exposed. It is an electrodeposition grindstone with a small diameter shaft of 0.01 mm to 3 mm.

請求項3の発明は、請求項1記載の電着工具のうち、放電加工用電極工具であることを特徴とする。放電加工用電極工具とは、被加工物に電極形状を転写させる形彫放電加工用電極工具、回転させながら走査して使用する円柱形状あるいは円筒形状の創成放電加工用電極工具を指す。   The invention according to claim 3 is an electrode tool for electric discharge machining among the electrodeposition tools according to claim 1. The electrode tool for electric discharge machining refers to an electrode tool for electric discharge machining for transferring an electrode shape to a workpiece, or an electrode tool for generating electric discharge machining in a columnar shape or a cylindrical shape used by scanning while rotating.

請求項4の発明は、1リットルあたり0.1〜2グラムのナノカーボン繊維をカチオン系界面活性剤により分散させためっき浴を用い、ニッケルあるいは銅を主成分とした金属めっき被膜の形成過程において、母材を該めっき浴に浸漬し、めっき浴に超音波振動を加えた状態で、電解めっき法あるいは無電解めっき法により、ナノカーボン繊維複合金属めっき被膜を母材表面に形成するナノカーボン繊維含有電着工具の製造方法であることを特徴とする。   The invention of claim 4 uses a plating bath in which 0.1 to 2 grams of nanocarbon fiber per liter is dispersed with a cationic surfactant, and in the process of forming a metal plating film mainly composed of nickel or copper, A nanocarbon fiber-containing electrode is formed by forming a nanocarbon fiber composite metal plating film on the surface of the base material by electrolytic plating or electroless plating in a state where the material is immersed in the plating bath and ultrasonic vibration is applied to the plating bath. It is a manufacturing method of a wearing tool.

請求項5の発明は、純水あるいは極性を持った界面活性剤を加えた水にナノカーボン繊維を分散させ、母材を該溶液に浸漬し、ナノカーボン繊維を電気泳動により母材表面に固着させたのち、ニッケルあるいは銅を主成分とした金属めっき被膜の形成過程において、母材を該めっき浴に浸漬し、電解めっき法あるいは無電解めっき法により、ナノカーボン繊維複合金属めっき被膜を母材表面に形成することを特徴としたナノカーボン繊維含有電着工具の製造方法であることを特徴とする。   In the invention of claim 5, the nanocarbon fibers are dispersed in pure water or water to which a polar surfactant is added, the base material is immersed in the solution, and the nanocarbon fibers are fixed to the surface of the base material by electrophoresis. Then, in the process of forming the metal plating film mainly composed of nickel or copper, the base material is immersed in the plating bath, and the nanocarbon fiber composite metal plating film is formed by the electrolytic plating method or the electroless plating method. It is characterized by being a method for producing a nanocarbon fiber-containing electrodeposition tool characterized by being formed on the surface.

請求項6の発明は、請求項4および請求項5記載のナノカーボン繊維含有電着工具の製造方法のうち、母材が電着工具の構成部位となる母材であり、前記ナノカーボン繊維分散めっき浴あるいはナノカーボン繊維分散溶液にさらに硬質砥粒を分散させためっき浴を用い、ナノカーボン繊維と硬質砥粒を含む金属めっき被膜を母材表面に形成することを特徴とした請求項4または請求項5記載のナノカーボン繊維含有電着工具の製造方法であることを特徴とする。   Invention of Claim 6 is a base material in which the base material is a constituent part of the electrodeposition tool in the method for producing a nanocarbon fiber-containing electrodeposition tool according to Claims 4 and 5, and the nanocarbon fiber dispersion The metal plating film containing nanocarbon fibers and hard abrasive grains is formed on the surface of the base material by using a plating bath or a plating bath in which hard abrasive grains are further dispersed in a plating bath or nanocarbon fiber dispersion solution. It is a manufacturing method of the nanocarbon fiber containing electrodeposition tool of Claim 5, It is characterized by the above-mentioned.

請求項7の発明は、請求項4および請求項5記載のナノカーボン繊維含有電着工具の製造方法のうち、母材が電鋳型であり、前記金属めっき被膜の形成後に、形成したナノカーボン繊維含有電着工具を電鋳型から剥離する工程を含むナノカーボン繊維含有電着工具の製造方法であることを特徴とする。   A seventh aspect of the present invention is the method for producing a nanocarbon fiber-containing electrodeposition tool according to the fourth and fifth aspects, wherein the base material is an electroforming mold, and the nanocarbon fiber formed after the formation of the metal plating film It is a manufacturing method of the nanocarbon fiber containing electrodeposition tool including the process of peeling the containing electrodeposition tool from an electric mold.

請求項8の発明は、請求項4および請求項5記載のナノカーボン繊維含有電着工具の製造方法のうち、母材が電着工具の構成部位となる母材であり、前記金属めっき被膜の形成前に、電解めっきあるいは無電解めっきにより単層の硬質砥粒を母材表面に仮固着する工程を含むナノカーボン繊維含有電着工具の製造方法であることを特長とする。   Invention of Claim 8 is a base material in which the base material is a constituent part of the electrodeposition tool in the manufacturing method of the nanocarbon fiber-containing electrodeposition tool according to Claims 4 and 5, and the metal plating film It is characterized by being a method for producing a nanocarbon fiber-containing electrodeposition tool including a step of temporarily fixing a single layer of hard abrasive grains to the surface of a base material by electrolytic plating or electroless plating before formation.

請求項1および請求項2の発明によれば、ナノカーボン繊維含有複合めっき被膜をめっき部の最表面に具備されたことにより、次にあげる要因により、穴加工あるいは溝加工に用いる小径軸付電着砥石の工具寿命が向上し、これまでの小径軸付電着砥石に比べて優れている。1)めっき被膜の機械的強度が向上し、砥粒に大きな荷重が加わった場合もめっき被膜の変形が抑制されるため、砥粒保持力が向上し、工具寿命に大きな影響を与える砥粒の脱落を押さえることができる。2)めっき被膜の機械的強度が向上し、耐摩耗性が向上するため、加工屑等の接触によるめっき被膜の摩耗が抑制される。3)めっき被膜の熱伝導性が向上し、加工による熱の排出性が良くなる。4)めっき被膜の表面潤滑性の向上により、加工屑排出性が向上し、加工屑による目詰まりが抑制されるため、加工抵抗が低く保たれる。   According to the first and second aspects of the invention, since the nano-carbon fiber-containing composite plating film is provided on the outermost surface of the plating portion, the small diameter shaft-attached electric power used for drilling or grooving due to the following factors. The tool life of the grinding wheel is improved, which is superior to the conventional electrodeposition grinding wheels with a small diameter shaft. 1) The mechanical strength of the plating film is improved, and even when a large load is applied to the abrasive grains, deformation of the plating film is suppressed, so that the holding power of the abrasive grains is improved, and the abrasive grains that have a great influence on the tool life Dropping can be suppressed. 2) Since the mechanical strength of the plating film is improved and the wear resistance is improved, the wear of the plating film due to contact with processing scraps is suppressed. 3) The thermal conductivity of the plating film is improved, and the heat exhaustion due to processing is improved. 4) By improving the surface lubricity of the plating film, the processing waste dischargeability is improved and clogging by processing waste is suppressed, so that the processing resistance is kept low.

また、直径10-100nm、アスペクト比(=長さ/直径)5〜200であるナノカーボン繊維をめっき強化材料とするため、従来では困難であった極めて薄い被膜の性能を向上させることが可能となる。たとえば、直径0.1mm以下の極小径軸付電着砥石で、砥粒層が単層で、砥粒径10μm以下とすると、めっき膜5μm以下と極めて薄い被膜となるが、ナノカーボン繊維はそれよりも十分細いため、適用できるという効果がある。   In addition, since nanocarbon fibers with a diameter of 10-100 nm and an aspect ratio (= length / diameter) of 5 to 200 are used as the plating reinforcement material, it is possible to improve the performance of extremely thin coatings that were difficult in the past. Become. For example, an electrodeposition grindstone with a very small diameter shaft with a diameter of 0.1 mm or less, with a single abrasive layer and an abrasive grain size of 10 μm or less, the coating film is 5 μm or less, but the nanocarbon fiber Is sufficiently thin to be applicable.

請求項1および請求項3の発明によれば、小径あるいは複雑形状を有する放電加工用電極工具の消耗を低く抑えることができ、これまでの電極工具に比べて耐消耗性に優れている。その理由を考察すると、以下のように考えられる。放電加工において、電極工具の消耗量は、電極材の融点と熱伝導率の積に反比例すると言われている。このため、熱伝導率の高い銅や高融点材料であるタングステン、グラファイトなどが電極工具に用いられる。最近の研究では、導電性多結晶ダイヤモンドを電極工具とすることで電極の消耗を押さえられることが報告されているが、ダイヤモンドで微細複雑形状の工具を作ることや微細小径電極工具を作ることは困難である。ナノカーボン繊維は多層タイプであってもダイヤモンドに匹敵する熱伝導性を有し、単層タイプのナノカーボン繊維ではダイヤモンドの1.5倍以上の熱伝導性を有する。このナノカーボン繊維を銅などに複合した複合めっき材料を電極工具として用いることで、電極工具の熱伝導率を向上させ、消耗を押さえることができる。製造方法としては、1)微細複雑形状を施した台金もしくは小径台金にナノカーボン繊維複合めっきを施す方法、2)微細複雑形状の電鋳型もしくは小径電鋳型を用いた電鋳法の2つの方法が考えられ、複雑な形状を有し、かつ低消耗な電極工具を提供できる。   According to the first and third aspects of the present invention, the consumption of the electrode tool for electric discharge machining having a small diameter or a complicated shape can be suppressed to be low, and the wear resistance is excellent as compared with the conventional electrode tools. The reason is considered as follows. In electric discharge machining, it is said that the amount of consumption of the electrode tool is inversely proportional to the product of the melting point and the thermal conductivity of the electrode material. For this reason, copper having a high thermal conductivity, tungsten, graphite, or the like, which is a high melting point material, is used for the electrode tool. In recent research, it has been reported that electrode consumption can be suppressed by using conductive polycrystalline diamond as an electrode tool. However, it is not possible to make a tool with a fine complex shape or a small-diameter electrode tool with diamond. Have difficulty. Even if the nanocarbon fiber is a multilayer type, it has thermal conductivity comparable to that of diamond, and the single-layer type nanocarbon fiber has thermal conductivity 1.5 times or more that of diamond. By using a composite plating material in which this nanocarbon fiber is combined with copper or the like as an electrode tool, the thermal conductivity of the electrode tool can be improved and consumption can be suppressed. There are two manufacturing methods: 1) a method of applying nano-carbon fiber composite plating to a base metal or a small-diameter base metal having a fine complicated shape, and 2) an electroforming method using an electroforming mold of a fine complicated shape or a small-diameter electroforming mold. A method is conceivable, and an electrode tool having a complicated shape and low consumption can be provided.

請求項4の発明によれば、めっき浴に1リットルあたり0.1-2グラムのナノカーボン繊維とカチオン系界面活性剤を加えた状態で超音波振動を加えることにより、めっき被膜形成時におけるナノカーボン繊維の分散性が向上し、ポーラスでない緻密なナノカーボン繊維複合めっき被膜を形成できるという効果がある。カチオン系界面活性剤を用いることにより、共析率を上げることができるため、従来の方法に比べて優れている。   According to the invention of claim 4, by applying ultrasonic vibration in a state where 0.1-2 gram of nanocarbon fibers and a cationic surfactant are added to a plating bath, the nanocarbon fibers at the time of forming the plating film There is an effect that the dispersibility of the resin can be improved and a dense non-porous nanocarbon fiber composite plating film can be formed. By using a cationic surfactant, the eutectoid rate can be increased, which is superior to conventional methods.

請求項5の発明によれば、めっき被膜の中により多くのナノカーボン繊維を含有させた複合めっき被膜を形成できるという効果がある。   According to the invention of claim 5, there is an effect that a composite plating film containing more nanocarbon fibers can be formed in the plating film.

請求項6の発明によれば、ナノカーボン繊維と硬質砥粒を同時に共析できるために、作業時間を短縮できる効果がある。特に粒径が小さい砥粒を用いる場合、また硬質砥粒を多層に形成したい場合に有効である。また砥粒と砥粒を保持するナノカーボン繊維をより近くに配置できるため高い砥粒保持力を発現できるという効果がある。   According to the invention of claim 6, since the nanocarbon fiber and the hard abrasive can be co-deposited simultaneously, there is an effect that the working time can be shortened. This is particularly effective when abrasive grains having a small particle diameter are used and when hard abrasive grains are desired to be formed in multiple layers. Moreover, since the nanocarbon fiber which hold | maintains an abrasive grain and an abrasive grain can be arrange | positioned closer, there exists an effect that high abrasive grain retention power can be expressed.

請求項7の発明によれば、微細形状を有する電鋳型を作製することで、その電鋳型形状を反転させた微細形状電着工具を、容易に複数個作製できるという効果がある。   According to the invention of claim 7, by producing an electroforming mold having a fine shape, there is an effect that it is possible to easily produce a plurality of fine-shaped electrodeposition tools in which the electroforming shape is inverted.

請求項8の発明によれば、複合めっき層の下に、2又はそれ以上の金属めっき被膜層が該砥粒の一部を保持する構成にすることにより、ダイヤモンドを台金に固着させる工程とナノカーボン繊維複合めっき層を形成する工程を分離でき、それぞれに合っためっき条件を選択できるという効果がある。   According to the invention of claim 8, the step of fixing diamond to the base metal by forming a structure in which two or more metal plating film layers hold a part of the abrasive grains under the composite plating layer; There is an effect that the process of forming the nanocarbon fiber composite plating layer can be separated and the plating conditions suitable for each can be selected.

本発明の製造方法より、表面粗さが良く、硬く緻密な複合めっき被膜が形成できるのは以下の理由による。めっきプロセスにおいて、めっき浴に超音波振動を加えることにより、再凝集しやすいナノカーボン繊維を常にほぼ単体の状態に分散できる。そのため、めっき形成時にナノカーボン繊維単体で取り込むことができ、ポーラスでない緻密な複合めっき被膜が形成できる。回転攪拌などの場合、分散状態が悪く、凝集し複数のナノカーボン繊維が架橋した状態で複合めっき被膜に取り込まれ、ナノカーボン繊維の間にめっきに入り込まず、ポーラスな複合めっき被膜になってしまう。   The surface roughness is better than that of the production method of the present invention, and a hard and dense composite plating film can be formed for the following reason. In the plating process, by applying ultrasonic vibration to the plating bath, nanocarbon fibers that are easily re-aggregated can always be dispersed in a substantially single state. Therefore, the nanocarbon fiber can be taken in at the time of plating formation, and a dense composite plating film that is not porous can be formed. In the case of rotating agitation, the dispersion state is poor, and agglomeration and a plurality of nanocarbon fibers are incorporated into the composite plating film in a crosslinked state, and do not enter the plating between the nanocarbon fibers, resulting in a porous composite plating film. .

また、分散剤として用いるカチオン系界面活性剤の作用により、プラスの電荷を持ったナノカーボン繊維は、陰極となる母材に効率よく集められ、複合めっき被膜に取り込まれるナノカーボン繊維の共析率が上がり、緻密な複合めっき被膜が形成できる。   In addition, due to the action of the cationic surfactant used as a dispersant, the nanocarbon fibers having a positive charge are efficiently collected on the base material serving as the cathode, and the eutectoid rate of the nanocarbon fibers incorporated into the composite plating film As a result, a dense composite plating film can be formed.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1及び図2は本発明の一実施形態を示し、図1は電着砥石の砥粒と電着層を含む拡大断面図、図2Aは、小径軸付電着砥石の先端正面図である。図2Bは、図2Aに示された小径工具のA−A’断面図である。図3A、及び図3Bは、放電加工用電極工具の例を示したものである。図4A、図4B、図4C、図4Dは本発明による製造方法を示した図である。   1 and 2 show an embodiment of the present invention, FIG. 1 is an enlarged cross-sectional view including abrasive grains and an electrodeposition layer of an electrodeposition grindstone, and FIG. 2A is a front view of the tip of an electrodeposition grindstone with a small diameter shaft. . FIG. 2B is a cross-sectional view taken along the line A-A ′ of the small diameter tool shown in FIG. 2A. 3A and 3B show an example of an electrode tool for electric discharge machining. 4A, 4B, 4C, and 4D are views showing a manufacturing method according to the present invention.

図1において、10は台金、12Aは第1めっき被膜、12Bは第2めっき被膜、14は複合めっき被膜、16はナノカーボン繊維、18は硬質砥粒、20は多層めっき被膜である。図4Aにおいて、30は電極、32はナノカーボン繊維を分散させためっき浴、34は温度コントロールバス、36は超音波振動装置、38はスリップリング、40はモーターである。図4Cにおいて、42は電鋳型、44は電極工具である。   In FIG. 1, 10 is a base metal, 12A is a first plating film, 12B is a second plating film, 14 is a composite plating film, 16 is a nanocarbon fiber, 18 is a hard abrasive grain, and 20 is a multilayer plating film. In FIG. 4A, 30 is an electrode, 32 is a plating bath in which nanocarbon fibers are dispersed, 34 is a temperature control bath, 36 is an ultrasonic vibration device, 38 is a slip ring, and 40 is a motor. In FIG. 4C, 42 is an electroforming mold, and 44 is an electrode tool.

小径軸付電着砥石の製造においては、台金として、仕上がりの工具直径より砥粒径の2倍だけ小さい直径を有する円柱状の超硬、高速度鋼、ステンレスが用いられる。加工屑の排出性能などを考慮し、前記台金に、ドリルのようなスパイラル溝、ストレート溝あるいは側面カットを形成したり、先端形状を半球状、斜め傾斜形状などを形成してもよい。   In the manufacture of an electrodeposition grindstone with a small-diameter shaft, cylindrical carbide, high-speed steel, and stainless steel having a diameter that is smaller than the finished tool diameter by twice the abrasive particle diameter are used as the base metal. In consideration of processing waste discharging performance, the base metal may be formed with a spiral groove such as a drill, a straight groove, or a side cut, or may have a hemispherical tip shape, an obliquely inclined shape, or the like.

表面被覆タイプの放電加工用小径電極工具の製造においては、台金として銅が用いられる。   In the manufacture of a surface coating type small-diameter electrode tool for electric discharge machining, copper is used as a base metal.

硬質砥粒としては、砥粒径が電着砥石直径の1/5〜1/200で、特に電着砥石の直径の10分の1程度の粒径が好ましく、直径0.1mmの電着砥石においては、平均粒径10μmのダイヤモンド、cBNなどが用いられる。直径0.5mmの電着砥石においては、平均粒径50μmのダイヤモンド、cBNなどが用いられる。   As hard abrasive grains, the grain size is 1/5 to 1/200 of the diameter of the electrodeposited wheel, and preferably about 1/10 of the diameter of the electrodeposited wheel. In this case, diamond having an average particle diameter of 10 μm, cBN, or the like is used. For an electrodeposition grindstone with a diameter of 0.5 mm, diamond, cBN, etc. with an average particle diameter of 50 μm are used.

硬質砥粒の埋込率は、砥粒径の60-80%が好ましい。   The embedding rate of hard abrasive grains is preferably 60-80% of the abrasive grain diameter.

放電加工用電極工具には、被加工物に電極形状を転写させる形彫放電加工用電極工具、回転させながら走査して使用する円柱形状あるいは円筒形状の創成放電加工用電極工具がある。図3Aは、創成放電加工用電極工具であり、図3Bは、形彫放電加工用電極工具である。図3Aは、電鋳法により形成した創成放電加工用電極工具の例であり、工具は銅を主成分とするナノカーボン繊維複合めっき材料のみで構成される。円筒状の台金の表面を複合めっきで被覆した構成の電極工具でもよい。   The electrode tool for electric discharge machining includes an electrode tool for engraving electric discharge machining for transferring an electrode shape to a workpiece, and an electrode tool for generating electric discharge machining having a cylindrical shape or a cylindrical shape for use while scanning while rotating. FIG. 3A is an electrode tool for generating electric discharge machining, and FIG. 3B is an electrode tool for electric discharge machining. FIG. 3A is an example of an electrodischarge machining electrode tool formed by electroforming, and the tool is composed only of a nanocarbon fiber composite plating material containing copper as a main component. An electrode tool having a structure in which the surface of a cylindrical base metal is covered with composite plating may be used.

図3Bは、微細複雑形状を施した台金にナノカーボン繊維複合めっきを形成した形彫放電加工用電極工具の例であり、台金には、銅、タングステン、グラファイトなどが用いられる。台金を用いず、電鋳法により微細複雑形状を銅を主成分とするナノカーボン繊維複合めっき材料のみで構成する電極工具でもよい。   FIG. 3B is an example of an electrode tool for engraving electric discharge machining in which nanocarbon fiber composite plating is formed on a base metal having a fine complex shape. Copper, tungsten, graphite, or the like is used for the base metal. An electrode tool may be used in which only a nanocarbon fiber composite plating material containing copper as a main component is formed by electroforming without using a base metal.

複合めっき被膜は、最大で2g/L(g/Lは1リットルのめっき液中に含まれるナノカーボン繊維のグラム重量を表す)のナノカーボン繊維をカチオン系界面活性剤により分散させためっき浴を用い、ニッケルあるいは銅を主成分とする複合めっき被膜の形成過程において、必要に応じて母材を回転させ、常にあるいは断続的にめっき浴に超音波振動を加えた状態で、電解めっき法あるいは無電解めっき法を用いることにより得られる。   The composite plating film consists of a plating bath in which nanocarbon fibers of 2 g / L (g / L represents the gram weight of nanocarbon fibers contained in 1 liter of plating solution) are dispersed with a cationic surfactant. In the process of forming a composite plating film containing nickel or copper as the main component, the base material is rotated as necessary, and ultrasonic plating is applied to the plating bath constantly or intermittently. It is obtained by using an electrolytic plating method.

ナノカーボン繊維としては、単層カーボンナノチューブ、多層カーボンナノチューブ(アスペクト比5-200、直径10-100nm)を用いるのがよい。   As the nanocarbon fiber, single-walled carbon nanotubes or multi-walled carbon nanotubes (aspect ratio: 5-200, diameter: 10-100 nm) are preferably used.

(小径軸付電着砥石製造方法の説明)
次に本発明の電着工具の製造方法を図4Bにしたがって説明する。
(Explanation of the method for manufacturing electrodeposited whetstone with small diameter shaft)
Next, the manufacturing method of the electrodeposition tool of this invention is demonstrated according to FIG. 4B.

1)台金を洗浄・脱脂、必要に応じて無電解めっき等の前処理を行う。2)加工に作用する硬質砥粒を電解めっきにより、台金に砥粒を仮固定する。めっき層の厚さは砥粒径の20%程度が好ましい。3)多層めっき構造にする場合は、電解めっきもしくは無電解めっきにより、めっき膜を形成する。4)ナノカーボン複合めっきには、図4Aの装置を用い、1リットルあたり0.1〜2グラムのナノカーボン繊維をカチオン系界面活性剤により分散させためっき浴を一定温度に保ち、ナノカーボン繊維の再凝集を防ぐために、ウオーターバスに入れ、ウオーターバスを超音波振動子上に載置し、常にあるいは断続的にめっき浴に超音波振動を加えた状態で、特に軸対称である電着工具の場合は必要に応じて母材を回転させながら、電解めっき法あるいは無電解めっき法により、図1に示すようなナノカーボン繊維複合めっき被膜を形成する。硬質砥粒とナノカーボン繊維を同時に共析させる方法をとる場合は、前記1)の工程後、硬質砥粒とナノカーボン繊維を分散させためっき浴を用いて、前記4)の工程により複合めっきを行い、硬質砥粒とナノカーボン繊維を同時に共析させる。   1) Wash and degrease the base metal and perform pretreatment such as electroless plating if necessary. 2) Abrasive grains are temporarily fixed to a base metal by electrolytic plating with hard abrasive grains that act on the processing. The thickness of the plating layer is preferably about 20% of the abrasive grain size. 3) In the case of a multilayer plating structure, a plating film is formed by electrolytic plating or electroless plating. 4) For the nanocarbon composite plating, using the apparatus shown in FIG. 4A, a plating bath in which 0.1 to 2 grams of nanocarbon fiber per liter is dispersed with a cationic surfactant is maintained at a constant temperature, and the nanocarbon fiber is regenerated. In order to prevent agglomeration, in the case of an electrodeposition tool that is axisymmetric, especially in a state where it is placed in a water bath, the water bath is placed on an ultrasonic vibrator, and ultrasonic vibrations are constantly or intermittently applied to the plating bath. 1 forms a nanocarbon fiber composite plating film as shown in FIG. 1 by electrolytic plating or electroless plating while rotating the base material as necessary. When the method of co-depositing hard abrasive grains and nanocarbon fibers is employed, composite plating is performed by the process of 4) using a plating bath in which hard abrasive grains and nanocarbon fibers are dispersed after the process of 1). The hard abrasive grains and nanocarbon fibers are co-deposited simultaneously.

超音波の周波数は、15kHzから100kHz程度が好ましい。超音波振動を加える方法としては、めっき浴内に直接超音波振動ホーンを導入し加振してもよい。   The frequency of the ultrasonic wave is preferably about 15 kHz to 100 kHz. As a method of applying ultrasonic vibration, an ultrasonic vibration horn may be directly introduced into the plating bath and the vibration may be applied.

電解めっきに用いる浴としては、ワット浴、スルファミン酸浴などのニッケルめっき浴、硫酸銅浴、シアン化銅浴などの銅めっき浴が好ましく、無電解めっきに用いる浴としては、無電解Ni-P浴、無電解Ni-B浴、無電解Ni-W-P浴、無電解Ni-W-B浴、無電解銅浴などが好ましい。ここで、Niはニッケル、Bはボロン、Pはリン、Wはタングステンを示す。たとえば、スルファミン酸ニッケルめっき浴(NiHSO3・NH2:500g/L、 NiCl・6H2O:4g/L、 H3BO3:33g/L)と多層カーボンナノチューブ(φ60-100 nm、 長さ1-2 μm)を用いて電解めっきを行う場合は、電流密度5A/dm2以下、めっき温度40-50℃が望ましい。また、多層カーボンナノチューブの量は、2g/L以上いれても大幅な性能向上は見込めない。カチオン系界面活性剤の量は、多層カーボンナノチューブの30wt%程度が適当である。カチオン系界面活性剤としては、アミン塩系、アンモニウム塩系が適当である。 As the bath used for electroplating, nickel plating bath such as Watt bath and sulfamic acid bath, copper plating bath such as copper sulfate bath and copper cyanide bath are preferable, and as electroless plating bath, electroless Ni-P A bath, an electroless Ni-B bath, an electroless Ni-WP bath, an electroless Ni-WB bath, an electroless copper bath, and the like are preferable. Here, Ni represents nickel, B represents boron, P represents phosphorus, and W represents tungsten. For example, nickel sulfamate plating bath (NiHSO 3 · NH 2 : 500 g / L, NiCl · 6H 2 O: 4 g / L, H 3 BO 3 : 33 g / L) and multi-walled carbon nanotubes (φ60-100 nm, length 1 -2 μm), the current density is 5A / dm 2 or less and the plating temperature is 40-50 ℃. In addition, even if the amount of multi-walled carbon nanotubes is 2 g / L or more, significant performance improvement cannot be expected. The amount of the cationic surfactant is suitably about 30 wt% of the multi-walled carbon nanotube. As the cationic surfactant, an amine salt type or an ammonium salt type is suitable.

次に本発明の放電加工用小径電極工具の電鋳および被覆法による製造方法を、それぞれ図4C、図4Dに従って説明する。   Next, a method for producing the small-diameter electrode tool for electric discharge machining according to the present invention by electroforming and coating will be described with reference to FIGS. 4C and 4D, respectively.

(電鋳法による放電加工電極工具の説明)
1)電鋳型を洗浄・脱脂等の前処理を行う。2)図4Aの装置を用い、前記小径軸付電着砥石製造方法の4)の工程と同様に複合めっき被膜を形成する。3)最後に電鋳型を剥離する。
(Explanation of EDM electrode tool by electroforming)
1) Pretreatment such as washing and degreasing of the electroforming mold is performed. 2) Using the apparatus of FIG. 4A, a composite plating film is formed in the same manner as in step 4) of the method for producing an electrodeposited grinding wheel with a small diameter shaft. 3) Finally, the electroforming mold is peeled off.

(被覆法による放電加工電極工具の説明)
1)台金の加工・洗浄・脱脂、必要に応じて無電解めっき等の前処理を行う。2)図4Aの装置を用い、小径軸付電着砥石の場合と同様に超音波を加えながら、電解めっきにより、ナノカーボン繊維複合めっき被覆を行う。
(Description of EDM electrode tool by coating method)
1) Pretreatment such as base metal processing, washing, degreasing, and electroless plating as necessary. 2) Using the apparatus of FIG. 4A, nanocarbon fiber composite plating coating is performed by electrolytic plating while applying ultrasonic waves as in the case of the electrodeposition grindstone with a small diameter shaft.

図5は、本発明の複合めっき被膜と通常のめっき被膜に保持された単粒砥粒のシェア試験による破壊強度(シェア強度)の比較図である。シェア試験には、テスト面の幅が150μmの単結晶ダイヤモンドツールおよび最大20Nのロードセルを取り付けたDage社製ボンドテスターseries4000を用いた。ツール先端は、めっき被膜面から10μmの高さとした。ツールをめっき被膜面と平行に速度100μm/sで動かし、めっき被膜から露出した砥粒を押し、砥粒が脱落するときの強度を測定し、これを破壊強度とした。シェア試験の試料は、平面金属台金上に、整った立方八面体構造を有する平均粒径100μmのダイヤモンド砥粒(GE社製MBG660)を2層のニッケルめっき被膜で固定し、突き出し量を約50μmとした。下層のめっきは、通常のスルファミン酸ニッケルめっき浴により形成し、めっき膜厚を30μmとした。上層(最表面層)のめっきは、スルファミン酸ニッケルめっき浴(NiHSO3・NH2:500g/L、 NiCl・6H2O:4g/L、 H3BO3:33g/L)に、ナノカーボン繊維(多層カーボンナノチューブ:直径60-100nm、長さ1-2μm)を0g/L、0.5g/L、1.0g/L分散させためっき浴を用いて形成し、複合めっき膜厚を20μmとした。複合めっき条件は、電流密度5A/dm2、めっき浴温度50℃、常時超音波攪拌(周波数42kHz)とした。図5より、ナノカーボン繊維を1.0g/L含んだめっき浴により作製した本発明の複合めっき被膜は、通常めっき被膜に比べ、約2倍のシェア強度を有していることがわかった。シェア強度は、ダイヤモンド砥粒とめっき被膜の密着性および変形に対するめっき被膜の強度を総合した砥粒保持力を表しており、ナノカーボン繊維を含有させることで、めっき被膜の砥粒保持力が向上していることが確認できた。 FIG. 5 is a comparison diagram of the breaking strength (shear strength) of the single-grain abrasive grains held in the composite plating film of the present invention and a normal plating film by a shear test. For the shear test, a Dage bond tester series 4000 equipped with a single crystal diamond tool having a test surface width of 150 μm and a load cell of a maximum of 20 N was used. The tool tip was 10 μm high from the plating film surface. The tool was moved parallel to the plating film surface at a speed of 100 μm / s, the abrasive grains exposed from the plating film were pressed, the strength when the abrasive grains dropped was measured, and this was taken as the breaking strength. In the shear test sample, diamond abrasive grains with a regular cubic octahedral structure and an average grain size of 100μm (GE MBG660) are fixed on a flat metal base metal with a two-layer nickel plating film, and the protruding amount is about The thickness was 50 μm. The lower layer plating was formed by a normal nickel sulfamate plating bath, and the plating film thickness was 30 μm. The upper layer (outermost layer) is plated with a nickel sulfamate plating bath (NiHSO 3 · NH 2 : 500 g / L, NiCl · 6H 2 O: 4 g / L, H 3 BO 3 : 33 g / L) and nanocarbon fiber (Multi-walled carbon nanotube: diameter 60-100 nm, length 1-2 μm) was formed using a plating bath in which 0 g / L, 0.5 g / L, and 1.0 g / L were dispersed, and the composite plating film thickness was 20 μm. The composite plating conditions were a current density of 5 A / dm 2 , a plating bath temperature of 50 ° C., and constant ultrasonic agitation (frequency 42 kHz). From FIG. 5, it was found that the composite plating film of the present invention produced by a plating bath containing 1.0 g / L of nanocarbon fibers had a shear strength about twice that of the normal plating film. The shear strength expresses the adhesive strength between the diamond abrasive grains and the plated coating and the strength of the plated coating against deformation. The inclusion of nanocarbon fibers improves the abrasive retention of the plated coating. I was able to confirm.

ナノカーボン繊維複合めっき被膜を電着砥石に応用した際の効果を確認するために、従来の電着砥石と本発明によるナノカーボン繊維含有電着砥石の工具寿命を比較した加工試験結果を示す。加工試験には、超硬の台金に、平均砥粒径50μmのダイヤモンド(GE社製MBG600)を2層のニッケルめっき被膜により埋込率60%で固定した直径0.5mm、3mmの小径軸付電着砥石を用いた。下層のめっき被膜は、通常のスルファミン酸ニッケルめっき浴により形成し、めっき膜厚を15μmとした。上層(最表面層)のめっき被膜は、スルファミン酸ニッケルめっき浴(NiHSO3・NH2:500g/L、 NiCl・6H2O:4g/L、 H3BO3:33g/L)に、ナノカーボン繊維(多層カーボンナノチューブ:直径60-100nm、長さ1-2μm)を0g/L、1.0g/L分散させためっき浴を用いて形成し、複合めっき膜厚を15μmとした。複合めっき条件は、電流密度5A/dm2、めっき浴温度50℃で、常時超音波攪拌(周波数42kHz)、ワーク回転数24min-1とした。 In order to confirm the effect when the nanocarbon fiber composite plating film is applied to an electrodeposition grindstone, the results of processing tests comparing tool life of the conventional electrodeposition grindstone and the nanocarbon fiber-containing electrodeposition grindstone according to the present invention are shown. For processing tests, with a carbide base metal, diamond with an average abrasive grain size of 50μm (GE MBG600) fixed with two layers of nickel plating film at a filling rate of 60%, with a small diameter shaft of 0.5mm and 3mm An electrodeposition grindstone was used. The lower plating film was formed by a normal nickel sulfamate plating bath, and the plating film thickness was 15 μm. The upper layer (outermost surface layer) is a nickel sulfamate plating bath (NiHSO 3 · NH 2 : 500 g / L, NiCl · 6H 2 O: 4 g / L, H 3 BO 3 : 33 g / L), nanocarbon Fibers (multi-walled carbon nanotubes: diameter 60-100 nm, length 1-2 μm) were formed using a plating bath in which 0 g / L and 1.0 g / L were dispersed, and the composite plating film thickness was 15 μm. The composite plating conditions were a current density of 5 A / dm 2 , a plating bath temperature of 50 ° C., ultrasonic stirring (frequency of 42 kHz), and workpiece rotation speed of 24 min −1 .

直径3mmの前記小径軸付電着砥石を用いて、工具回転数5000min-1、送り速度500mm/min、切り込み量50μmの加工条件で、厚さ1.0mmの白板ガラスの側面加工を行い、工具破損に至るまでの加工距離(=工具寿命)を図6に示す。図6から、本発明のナノカーボン繊維含有電着工具は、従来の工具に比較して平均8倍の工具寿命を有することが分かった。 Using the electrodeposition grindstone with small diameter shaft of 3mm in diameter, side processing of 1.0mm thick white sheet glass was performed under the processing conditions of tool rotation speed 5000min- 1 , feed rate 500mm / min, cutting depth 50μm, tool breakage The machining distance (= tool life) up to is shown in FIG. From FIG. 6, it was found that the nanocarbon fiber-containing electrodeposition tool of the present invention has an average tool life of 8 times that of a conventional tool.

直径0.5mmの前記小径軸付電着砥石を用いて、工具回転数15000min-1、送り速度1.5mm/min、ステップ量0.06mmの加工条件でステップ加工を行い、石英ガラスに直径0.5mm、深さ4mmの穴を10穴加工した後の工具底面部の電子顕微鏡像を図7A、Bに示す。ここで、ステップ加工とは、切りくずを穴の外へ排出させるために、ステップ量分の深さを加工するごとに工具の刃先を加工穴の入り口まで引き戻す加工方法である。図7Aから、従来の工具は、砥石底面の中央部において砥粒の著しい脱落が見られた。一方、図7Bから、本発明の電着工具は砥粒の脱落がほとんどなく、工具寿命が長いことが確認できた。 Using the electrodeposition grindstone with a small diameter shaft of 0.5 mm in diameter, step processing was performed at a tool rotation speed of 15000 min -1 , a feed rate of 1.5 mm / min, and a step amount of 0.06 mm. 7A and 7B show electron microscope images of the bottom surface of the tool after processing 10 holes of 4 mm in length. Here, the step machining is a machining method in which the cutting edge of the tool is pulled back to the entrance of the machining hole every time the depth corresponding to the step amount is machined in order to discharge chips out of the hole. From FIG. 7A, the conventional tool showed remarkable drop | off of the abrasive grain in the center part of the grindstone bottom face. On the other hand, from FIG. 7B, it was confirmed that the electrodeposition tool of the present invention had almost no falling off of abrasive grains and a long tool life.

ナノカーボン繊維ニッケル複合めっき被膜を放電加工用電極工具に応用した際の効果を確認するために、ナノカーボン繊維の有無によるワーク加工量に対する電極工具消耗を比較した加工試験結果を図8Aに示す。加工試験は、Cu材に約50μmのナノカーボン繊維複合ニッケルめっき膜および通常ニッケルめっきを施した電極工具を用いて、φ2mmのステンレス材の放電加工を行った。放電加工条件は、電極極性(+)、電流値8A、パルス幅2μs、休止時間128μs、加工液EDF-K(日石三菱製)とし、トランジスタ回路を用いた。実験に用いた電極工具は、ナノカーボン繊維(多層カーボンナノチューブ、直径60-100 nm、 長さ1-2 μm、熱伝導率1812±300 W/mK)を0.5 g/L含むスルファミン酸ニッケルめっき浴(NiHSO3・NH2:500g/L、 NiCl・6H2O:4g/L、 H3BO3:33g/L)を用い、電流密度5A/dm2、めっき浴温度50℃で、常時超音波攪拌(周波数42kHz)、ワーク回転数24min-1のめっき条件で作製した。図8Aより、通常めっきの電極工具に比べ、ナノカーボン繊維複合めっき電極工具の消耗量は約2分の1であることがわかった。 In order to confirm the effect when the nanocarbon fiber nickel composite plating film is applied to the electrode tool for electric discharge machining, FIG. 8A shows a machining test result comparing electrode tool consumption with respect to the workpiece machining amount with or without nanocarbon fibers. In the machining test, an electric discharge machining of a φ2 mm stainless steel material was performed using an electrode tool in which a Cu material was plated with a nanocarbon fiber composite nickel plating film of about 50 μm and normal nickel plating. The electrical discharge machining conditions were electrode polarity (+), current value 8A, pulse width 2 μs, pause time 128 μs, machining fluid EDF-K (manufactured by Mitsubishi Oil Corporation), and a transistor circuit was used. The electrode tool used in the experiment was a nickel sulfamate plating bath containing 0.5 g / L of nanocarbon fibers (multi-walled carbon nanotubes, diameter 60-100 nm, length 1-2 μm, thermal conductivity 1812 ± 300 W / mK). (NiHSO 3 · NH 2 : 500 g / L, NiCl · 6H 2 O: 4 g / L, H 3 BO 3 : 33 g / L), current density 5A / dm 2 , plating bath temperature 50 ° C, always ultrasonic It was produced under the plating conditions of stirring (frequency 42 kHz) and workpiece rotation speed 24 min- 1 . From FIG. 8A, it was found that the consumption amount of the nanocarbon fiber composite plating electrode tool was about one-half that of the normal plating electrode tool.

ナノカーボン繊維銅複合めっき被膜を放電加工用電極工具に応用した際の効果を確認するために、ナノカーボン繊維の有無によるワーク加工量に対する電極工具消耗を比較した加工試験結果を図8Bに示す。加工試験は、ステンレス材に約100μmのナノカーボン繊維複合銅めっき膜および通常銅めっきを施した電極工具を用いて、φ0.8mmのステンレス材の放電加工を行った。放電加工条件は、電極極性(+)、電流値8A、パルス幅2μs、休止時間128μs、加工液EDF-K(日石三菱製)とし、トランジスタ回路を用いた。実験に用いた電極工具は、ナノカーボン繊維(多層カーボンナノチューブ、直径60-100 nm、 長さ1-2 μm、熱伝導率1812±300 W/mK)を1.0 g/L含む硫酸銅めっき浴(CuSO・5H2O:200g/L、H2SO4:50g/L、 Cl:50mg/L)を用い、電流密度5A/dm2、めっき浴温度35℃で、常時超音波攪拌のめっき条件で作製した。図8Bより、通常めっきの電極工具に比べ、ナノカーボン繊維複合めっき電極工具の消耗量は約2分の1であることがわかった。また、純銅板を電極工具とした場合に比べてもナノカーボン繊維複合めっき電極工具の消耗量は約3分の2であることがわかった。 In order to confirm the effect at the time of applying the nanocarbon fiber copper composite plating film to the electrode tool for electric discharge machining, FIG. 8B shows a machining test result comparing electrode tool consumption with respect to the workpiece machining amount with and without nanocarbon fibers. In the machining test, electric discharge machining was performed on a stainless steel material having a diameter of 0.8 mm using an electrode tool obtained by subjecting a stainless steel material to an about 100 μm nanocarbon fiber composite copper plating film and normal copper plating. The electrical discharge machining conditions were electrode polarity (+), current value 8A, pulse width 2 μs, pause time 128 μs, machining fluid EDF-K (manufactured by Mitsubishi Oil Corporation), and a transistor circuit was used. The electrode tool used in the experiment was a copper sulfate plating bath containing 1.0 g / L of nanocarbon fibers (multi-walled carbon nanotubes, diameter 60-100 nm, length 1-2 μm, thermal conductivity 1812 ± 300 W / mK) ( CuSO 4 · 5H 2 O: 200 g / L, H 2 SO 4 : 50 g / L, Cl: 50 mg / L), current density 5A / dm 2 , plating bath temperature 35 ° C It was made with. From FIG. 8B, it was found that the consumption of the nanocarbon fiber composite plating electrode tool was about one-half that of the electrode tool for normal plating. Moreover, it turned out that the consumption of a nanocarbon fiber composite plating electrode tool is about 2/3 compared with the case where a pure copper plate is used as an electrode tool.

図9A、図9B、図9Cに、ナノカーボン繊維(φ60-100 nm、 長さ1-2 μm、多層カーボンナノチューブ)を0.25g/L分散させためっき浴を用いて、本発明の製造方法と従来の製造方法を用いて形成しためっき被膜表面の電子顕微鏡写真を示す。図9A、 図9Bは、スターラーを用いた従来の回転攪拌により、それぞれ回転数200rpm、 500rpmの状態で形成しためっき膜表面の電子顕微鏡写真である。図9A、 図9Bより、回転数を上げることで若干の改善は見られるもののめっき膜は非常にポーラスな状態で、とても砥粒を保持できるものではない。一方、図9Cは、超音波振動を用いた本発明の製造方法により形成しためっき被膜表面の電子顕微鏡写真であり、緻密なめっき被膜が形成されていることがわかる。従来の攪拌方法により回転数200rpm、 500rpmで形成しためっき膜の表面粗さRaがそれぞれ2.51μm、 1.95μmであるのに対して、本発明の製造方法により形成しためっき膜の表面粗さRaは、0.28μmであり、7倍以上の表面粗さの改善効果が確認できた。   9A, 9B, and 9C show a manufacturing method of the present invention using a plating bath in which nanocarbon fibers (φ60-100 nm, length 1-2 μm, multi-walled carbon nanotubes) are dispersed at 0.25 g / L. The electron micrograph of the plating film surface formed using the conventional manufacturing method is shown. FIG. 9A and FIG. 9B are electron micrographs of the surface of the plating film formed at a rotational speed of 200 rpm and 500 rpm, respectively, by conventional rotary stirring using a stirrer. From FIG. 9A and FIG. 9B, although a slight improvement can be seen by increasing the number of revolutions, the plating film is in a very porous state and cannot hold the abrasive grains very much. On the other hand, FIG. 9C is an electron micrograph of the surface of the plating film formed by the production method of the present invention using ultrasonic vibration, and it can be seen that a dense plating film is formed. The surface roughness Ra of the plating film formed by the conventional stirring method at a rotational speed of 200 rpm and 500 rpm is 2.51 μm and 1.95 μm, respectively, whereas the surface roughness Ra of the plating film formed by the manufacturing method of the present invention is 0.28 μm, and an improvement effect of the surface roughness of 7 times or more was confirmed.

また、めっき浴に含まれるナノカーボン繊維の量とめっき被膜のビッカース硬さの関係を示した図10より、ナノカーボン繊維(多層カーボンナノチューブ、φ60-100nm、 長さ1-2μm)を1.0g/L以上分散させためっき浴を用いて形成しためっき被膜は、ナノカーボン繊維を含まないめっき被膜に対して2.5倍以上の硬度を有することが確認でき、本発明の製造方法が非常に緻密な複合めっき被膜を形成できること、そして形成されたナノカーボン繊維複合めっき被膜の機械的特性がニッケルの単純めっき被膜に対して大きく向上していることがわかった。   Moreover, from FIG. 10 showing the relationship between the amount of nanocarbon fibers contained in the plating bath and the Vickers hardness of the plating film, 1.0 g / n of nanocarbon fibers (multi-walled carbon nanotubes, φ60-100 nm, length 1-2 μm) are obtained. It can be confirmed that the plating film formed using a plating bath in which L or more is dispersed has a hardness of 2.5 times or more that of the plating film not containing nanocarbon fibers, and the production method of the present invention is a very dense composite. It was found that the plating film can be formed, and the mechanical properties of the formed nanocarbon fiber composite plating film are greatly improved compared to the nickel simple plating film.

図11は、ニッケルめっき被膜中のナノカーボン繊維(多層カーボンナノチューブ:直径60-100nm、長さ1-2μm)の状態を示した電子顕微鏡写真である。ナノカーボン繊維含有ニッケルめっき被膜は、本発明の製造方法を用い、スルファミン酸ニッケル浴の電解めっきにより形成した。ナノカーボン繊維の状態を観察するために、ナノカーボン繊維含有ニッケルめっき被膜を、ニッケルめっき剥離剤を用いてエッチングし、ナノカーボン繊維を露出させた。図11よりニッケル被膜中にナノカーボン繊維が含有されていることをはっきりと確認できた。   FIG. 11 is an electron micrograph showing the state of nanocarbon fibers (multi-walled carbon nanotubes: diameter 60-100 nm, length 1-2 μm) in the nickel plating film. The nanocarbon fiber-containing nickel plating film was formed by electrolytic plating of a nickel sulfamate bath using the production method of the present invention. In order to observe the state of the nanocarbon fibers, the nanocarbon fiber-containing nickel plating film was etched using a nickel plating release agent to expose the nanocarbon fibers. From FIG. 11, it was clearly confirmed that nanocarbon fibers were contained in the nickel coating.

また、図12に示した本発明の製造方法により形成された硬質砥粒を含む複合めっき被膜の電子顕微鏡写真より、砥粒を含む場合でも緻密なめっき被膜であることが確認できた。   Further, from the electron micrograph of the composite plating film containing the hard abrasive grains formed by the production method of the present invention shown in FIG. 12, it was confirmed that even if the abrasive grains were contained, it was a dense plating film.

本発明の電着砥石における砥粒と電着層を含む拡大断面図である。It is an expanded sectional view containing the grain and electrodeposition layer in the electrodeposition grindstone of the present invention. 本発明の小径軸付電着砥石の先端正面図である。It is a front view of the tip of the electrodeposition grindstone with a small diameter shaft of the present invention. 図2AのA−A’断面図である。It is A-A 'sectional drawing of FIG. 2A. 電鋳法による円筒型小径放電加工用電極工具の構成例を示す図であるIt is a figure which shows the structural example of the electrode tool for cylindrical small diameter electrical discharge machining by an electroforming method. 複合めっき被覆による微細放電加工用電極工具の構成例を示す図である。It is a figure which shows the structural example of the electrode tool for fine electrical discharge machining by composite plating coating. 本発明によるナノカーボン繊維複合めっきの装置の一例を示す図である。It is a figure which shows an example of the apparatus of the nano carbon fiber composite plating by this invention. 本発明による小径軸付電着砥石の作製手順を示す図である。It is a figure which shows the preparation procedures of the electrodeposition grindstone with a small diameter shaft by this invention. 本発明による電鋳法による放電加工用電極工具の作製手順を示す図である。It is a figure which shows the preparation procedures of the electrode tool for electric discharge machining by the electroforming method by this invention. 本発明によるめっき被覆による放電加工用電極工具の作製手順を示す図である。It is a figure which shows the preparation procedures of the electrode tool for electric discharge machining by the plating coating by this invention. 本発明の複合めっき被膜と通常のめっき被膜に保持された砥粒のシェア試験による比較図Comparison diagram by shear test of abrasive grains held in composite plating film of present invention and normal plating film 本発明の小径軸付電着砥石と通常の小径軸付電着砥石の加工例(側面加工)による工具寿命の比較図である。It is a comparison figure of the tool life by the processing example (side surface processing) of the electrodeposition grindstone with a small diameter shaft of this invention, and the normal electrodeposition grindstone with a small diameter shaft. 石英ガラスに直径0.5mm、深さ4mmの穴を10穴加工した通常の小径軸付電着砥石の電子顕微鏡写真である。It is an electron micrograph of a normal electrodeposition grindstone with a small diameter shaft in which 10 holes of 0.5 mm in diameter and 4 mm in depth are processed in quartz glass. 石英ガラスに直径0.5mm、深さ4mmの穴を10穴加工した本発明の小径軸付電着砥石の電子顕微鏡写真である。4 is an electron micrograph of an electrodeposited grinding wheel with a small-diameter shaft according to the present invention in which 10 holes with a diameter of 0.5 mm and a depth of 4 mm are processed in quartz glass. 本発明のNiめっき被膜を用いた放電加工用電極工具と通常の放電加工用電極工具の加工例による工具寿命の比較図である。It is a comparison figure of the tool life by the example of a process of the electrode tool for electric discharge machining using the Ni plating film of the present invention, and the electrode tool for usual electric discharge machining. 本発明のCuめっき被膜を用いた放電加工用電極工具と通常の放電加工用電極工具の加工例による工具寿命の比較図である。It is a comparison figure of the tool life by the example of processing of the electrode tool for electric discharge machining using the Cu plating film of the present invention, and the usual electrode tool for electric discharge machining. 回転攪拌(200min-1)を用いた製造方法により形成した複合めっき被膜を示す電子顕微鏡写真である。It is an electron micrograph which shows the composite plating film formed with the manufacturing method using rotation stirring (200min-1). 回転攪拌(400min-1)を用いた製造方法により形成した複合めっき被膜を示す電子顕微鏡写真である。It is an electron micrograph which shows the composite plating film formed with the manufacturing method using rotation stirring (400min-1). 超音波振動を付加した本発明の製造方法により形成した複合めっき被膜を示す電子顕微鏡写真である。It is an electron micrograph which shows the composite plating film formed with the manufacturing method of this invention which added ultrasonic vibration. 本発明の製造方法により緻密に形成された複合めっき被膜のビッカース硬さとめっき浴中のナノカーボン繊維量の関係を示すグラフである。It is a graph which shows the relationship between the Vickers hardness of the composite plating film formed densely by the manufacturing method of this invention, and the amount of nanocarbon fibers in a plating bath. 本発明の製造方法により緻密に形成された複合めっき被膜をニッケルめっき剥離剤を用いてエッチングして露出させた複合めっき被膜中のナノカーボン繊維の電子顕微鏡写真である。It is the electron micrograph of the nano carbon fiber in the composite plating film which exposed the composite plating film formed densely by the manufacturing method of this invention using the nickel plating release agent. 本発明の製造方法により緻密に形成された硬質砥粒を含む複合めっき被膜の電子顕微鏡写真である。It is an electron micrograph of the composite plating film containing the hard abrasive grain formed densely by the manufacturing method of this invention.

符号の説明Explanation of symbols

10 :台金
12A:第1めっき被膜
12B:第2めっき被膜
14 :複合めっき被膜
16 :ナノカーボン繊維
18 :硬質砥粒
20 :多層めっき被膜
30 :電極
32 :ナノカーボン繊維を分散させためっき浴
34 :温度コントロールバス
36 :超音波振動装置
38 :スリップリング
40 :モーター
42 :電鋳型
44 :電極工具
DESCRIPTION OF SYMBOLS 10: Base metal 12A: 1st plating film 12B: 2nd plating film 14: Composite plating film 16: Nanocarbon fiber 18: Hard abrasive grain 20: Multilayer plating film 30: Electrode 32: Plating bath in which nanocarbon fiber is dispersed 34: Temperature control bath 36: Ultrasonic vibration device 38: Slip ring 40: Motor 42: Electric mold 44: Electrode tool

Claims (8)

電解めっきによるニッケルを主成分とする被膜、無電解めっきによるニッケルを主成分とする被膜、あるいは電解めっきによる銅を主成分とする被膜から選ばれた少なくとも一つの被膜の中に、直径10100nm、アスペクト比(=長さ/直径)5〜200であるナノカーボン繊維を均一に含有し、ナノカーボン繊維を含まない前記硬度を有するめっき被膜に比べ1.1倍〜2.5倍のビッカース硬度を有する複合金属めっき被膜を、少なくともその最表面に配置し
前記複合めっき被膜が円柱形状または円筒形状の母材表面に形成されたナノカーボン繊維含有電着工具であって、該めっき被膜が、直径が電着工具の直径の1/5〜1/200の硬質砥粒と、砥粒直径以下の長さの前記ナノカーボン繊維を含有し、該硬質砥粒を、最表面層の硬質砥粒の一部を露出させた状態で母材に固定した直径3mm以下のナノカーボン繊維含有電着工具。
Coating mainly the by Runi nickel electroplating, at least one coating film mainly composed of by Runi nickel in an electroless plating, or by that copper electroplating selected from coating mainly Among them, nanocarbon fibers having a diameter of 10 to 100 nm and an aspect ratio (= length / diameter) of 5 to 200 are uniformly contained, and 1.1 times that of the plating film having the hardness not including the nanocarbon fibers. A composite metal plating film having a Vickers hardness of ~ 2.5 times is disposed at least on the outermost surface ,
The composite plating film is a nanocarbon fiber-containing electrodeposition tool formed on a cylindrical or cylindrical base material surface, and the plating film has a diameter of 1/5 to 1/200 of the diameter of the electrodeposition tool. 3 mm diameter containing hard abrasive grains and the nanocarbon fiber having a length equal to or less than the diameter of the abrasive grains, and fixing the hard abrasive grains to the base material with a part of the hard abrasive grains of the outermost surface layer exposed. The following nanocarbon fiber-containing electrodeposition tools.
前記複合めっき被膜が、放電加工面に配置された放電加工用電極工具である請求項1に記載のナノカーボン繊維含有電着工具。  The nanocarbon fiber-containing electrodeposition tool according to claim 1, wherein the composite plating film is an electrode tool for electric discharge machining arranged on an electric discharge machining surface. 前記母材には、スパイラル溝またはストレート溝が形成されていることを特徴とする請求項1または2に記載のナノカーボン繊維含有電着工具。  The nanocarbon fiber-containing electrodeposition tool according to claim 1 or 2, wherein the base material is formed with a spiral groove or a straight groove. 1リットルあたり0.1〜2グラムのナノカーボン繊維をカチオン系界面活性剤により分散させためっき浴を用い、ニッケルあるいは銅を主成分とした金属めっき被膜の形成過程において、母材を該めっき浴に浸漬し、めっき浴に超音波振動を加えた状態で、電解めっき法あるいは無電解めっき法により、ナノカーボン繊維複合金属めっき被膜を母材表面に形成することを特徴とした請求項1ないし3のいずれかに記載のナノカーボン繊維含有電着工具の製造方法。 A plating bath in which 0.1 to 2 grams of nanocarbon fiber per liter is dispersed with a cationic surfactant is used, and the base material is immersed in the plating bath in the process of forming a metal plating film mainly composed of nickel or copper. and, while applying ultrasonic vibration to the plating bath, by electrolytic plating or electroless plating, one nanocarbon fiber-metal composite plating film claims 1 to characterized in that formed on the base material surface of 3 A method for producing a nanocarbon fiber-containing electrodeposition tool according to claim 1. 純水あるいは極性を持った界面活性剤を加えた水にナノカーボン繊維を分散させ、母材を該溶液に浸漬し、ナノカーボン繊維を電気泳動により母材表面に固着させたのち、ニッケルあるいは銅を主成分とした金属めっき被膜の形成過程において、母材を該めっき浴に浸漬し、電解めっき法あるいは無電解めっき法により、ナノカーボン繊維複合金属めっき被膜を母材表面に形成することを特徴とした請求項1ないし3のいずれかに記載のナノカーボン繊維含有電着工具の製造方法。 After dispersing the nanocarbon fibers in pure water or water with a polar surfactant, the base material is immersed in the solution, and the nanocarbon fibers are fixed to the base material surface by electrophoresis, and then nickel or copper In the process of forming a metal plating film containing as a main component, a base material is immersed in the plating bath, and a nanocarbon fiber composite metal plating film is formed on the surface of the base material by electrolytic plating or electroless plating. The method for producing a nanocarbon fiber-containing electrodeposition tool according to any one of claims 1 to 3 . 母材が電着工具の構成部位となる母材であり、前記ナノカーボン繊維分散めっき浴あるいはナノカーボン繊維分散溶液にさらに硬質砥粒を分散させためっき浴を用い、ナノカーボン繊維と硬質砥粒を含む金属めっき被膜を母材表面に形成することを特徴とした請求項1ないし3のいずれかに記載のナノカーボン繊維含有電着工具の製造方法。 The base material is a base material that is a constituent part of the electrodeposition tool, and the nanocarbon fiber and the hard abrasive grains are used by using the nanocarbon fiber dispersion plating bath or a plating bath in which hard abrasive grains are further dispersed in the nanocarbon fiber dispersion solution. A method for producing a nanocarbon fiber-containing electrodeposition tool according to any one of claims 1 to 3 , wherein a metal-plated film containing s is formed on the surface of the base material. 母材が電鋳型であり、前記金属めっき被膜の形成後に、形成したナノカーボン繊維含有電着工具を電鋳型から剥離する工程を含む請求項1ないし3のいずれかに記載のナノカーボン繊維含有電着工具の製造方法。 The nanocarbon fiber-containing electrode according to any one of claims 1 to 3, further comprising a step of peeling the formed nanocarbon fiber-containing electrodeposition tool from the electrode mold after forming the metal plating film. A method for manufacturing a tool. 母材が電着工具の構成部位となる母材であり、前記金属めっき被膜の形成前に、電解めっきあるいは無電解めっきにより単層の硬質砥粒を母材表面に仮固着する工程を含む請求項1ないし3のいずれかに記載のナノカーボン繊維含有電着工具の製造方法。 The base material is a base material that is a constituent part of an electrodeposition tool, and includes a step of temporarily fixing a single layer of hard abrasive grains to the surface of the base material by electrolytic plating or electroless plating before forming the metal plating film. Item 4. A method for producing an electrodeposition tool containing nanocarbon fibers according to any one of Items 1 to 3 .
JP2007045924A 2006-02-27 2007-02-26 Nanocarbon fiber-containing electrodeposition tool and method for producing the same Active JP4998778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045924A JP4998778B2 (en) 2006-02-27 2007-02-26 Nanocarbon fiber-containing electrodeposition tool and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006050775 2006-02-27
JP2006050775 2006-02-27
JP2007045924A JP4998778B2 (en) 2006-02-27 2007-02-26 Nanocarbon fiber-containing electrodeposition tool and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007253318A JP2007253318A (en) 2007-10-04
JP4998778B2 true JP4998778B2 (en) 2012-08-15

Family

ID=38628053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045924A Active JP4998778B2 (en) 2006-02-27 2007-02-26 Nanocarbon fiber-containing electrodeposition tool and method for producing the same

Country Status (1)

Country Link
JP (1) JP4998778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482906A (en) * 2020-05-11 2020-08-04 江苏赛扬精工科技有限责任公司 Short carbon fiber reinforced resin binder superhard abrasive grinding wheel and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261687B2 (en) * 2008-09-12 2013-08-14 山形県 Abrasive machining tool and coated abrasive
KR101046884B1 (en) 2008-09-19 2011-07-06 한국기계연구원 Manufacturing method of multifunctional composite fiber
KR101006497B1 (en) 2008-09-19 2011-01-07 한국기계연구원 Multi-functional hybrid fiber
KR101041396B1 (en) 2008-10-28 2011-06-14 한국기계연구원 Multi-functional Hybrid Fiber by Simultaneous Multi-component Deposition
KR101041395B1 (en) 2008-10-28 2011-06-14 한국기계연구원 Manufacturing Method for Multi-functional Hybrid Fiber by Simultaneous Multi-component Deposition
JP5119277B2 (en) 2010-01-12 2013-01-16 株式会社日立製作所 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP5629851B2 (en) * 2010-10-01 2014-11-26 山形県 Composite plating processing method and processing apparatus
CN102126260B (en) * 2011-01-06 2014-01-22 深圳市海明润实业有限公司 Method for processing irregular PDC (Polycrystalline Diamond Composite)
KR101041394B1 (en) 2011-03-02 2011-06-14 한국기계연구원 A composite material with Multi-functional Hybrid Fiber by Simultaneous Multi-component Deposition
JP6570054B2 (en) * 2015-03-30 2019-09-04 株式会社 コーア Sliding member
JP6839434B2 (en) * 2016-08-31 2021-03-10 山形県 Nanocarbon fiber-containing fixed abrasive wire saw and its manufacturing method
JP2019002034A (en) * 2017-06-13 2019-01-10 国立大学法人信州大学 Copper/monolayer carbon nanotube composite plating method
JP7350436B2 (en) * 2019-08-21 2023-09-26 株式会社ディスコ Cutting blade and processing method
CN113089036B (en) * 2021-04-09 2024-02-20 大连大学 Preparation method of variable-frequency power ultrasonic electrodeposition nano metal ceramic composite layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257875A (en) * 1985-09-09 1987-03-13 Masanori Yoshikawa Abrasive grain electrodeposition device of wire electrode for electric discharge grinding process
JP4513135B2 (en) * 1999-04-01 2010-07-28 三菱マテリアル株式会社 Grinding wheel containing fibrous hollow graphite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482906A (en) * 2020-05-11 2020-08-04 江苏赛扬精工科技有限责任公司 Short carbon fiber reinforced resin binder superhard abrasive grinding wheel and preparation method thereof

Also Published As

Publication number Publication date
JP2007253318A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4998778B2 (en) Nanocarbon fiber-containing electrodeposition tool and method for producing the same
JP4139810B2 (en) Electrodeposition wire tool
Suzuki et al. Improvement in tool life of electroplated diamond tools by Ni-based carbon nanotube composite coatings
JP5356071B2 (en) Diamond wire saw, diamond wire saw manufacturing method
JP2009066689A (en) Fixed abrasive grain wire saw
JPH06114739A (en) Electrodeposition grinding wheel
WO2013179434A1 (en) Fixed-abrasive-grain wire-saw, method for manufacturing same, and method for cutting workpiece using same
JP5066508B2 (en) Fixed abrasive wire saw
US8846208B2 (en) Porous materials, articles including such porous materials, and methods of making such porous materials
Ko et al. Mill-grinding with electroplated diamond abrasives for ceramic cutting
Aziz et al. Advanced burr-free hole machining using newly developed micro compound tool
CN111254467B (en) Nickel-tungsten alloy with gradient structure, preparation method and novel layered structure
JP4852078B2 (en) Electrodeposition fixed abrasive tool, method for manufacturing the same, and abrasive used for manufacturing the electrodeposition fixed abrasive tool
JP2007203443A (en) Method of producing electro-deposited grindstone, and electro-deposited grindstone produced by the method
JP5123628B2 (en) Electrodeposition tool manufacturing method
JP2009101441A (en) Electrocast carrier and method of manufacturing the same
JP2020066749A (en) Manufacturing method for carbide substrate coated with polycrystalline diamond
Hung et al. Fabrication of a micro-tool in micro-EDM combined with co-deposited Ni–SiC composites for micro-hole machining
JP4494590B2 (en) Thin blade blade manufacturing method
CN115570256B (en) Axial thrust reinforcing structure of friction stir material-increasing tool and preparation method thereof
RU2660434C2 (en) Method of manufacturing a diamond tool on a galvanical coupling with increased wear resistance, modified by carbon nanotubes
JP2014172115A (en) Fixed abrasive grain wire, and method for production thereof
JP6839434B2 (en) Nanocarbon fiber-containing fixed abrasive wire saw and its manufacturing method
CN102398193A (en) Grinding auxiliary electrochemical discharge machining tool and method
KR101277468B1 (en) Wire cutting tool and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Ref document number: 4998778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250