JP5259502B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP5259502B2
JP5259502B2 JP2009142360A JP2009142360A JP5259502B2 JP 5259502 B2 JP5259502 B2 JP 5259502B2 JP 2009142360 A JP2009142360 A JP 2009142360A JP 2009142360 A JP2009142360 A JP 2009142360A JP 5259502 B2 JP5259502 B2 JP 5259502B2
Authority
JP
Japan
Prior art keywords
water
tank
anaerobic
treatment
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009142360A
Other languages
Japanese (ja)
Other versions
JP2010284620A (en
Inventor
俊彦 余合
顕治 吉岡
洋一郎 清水
哲徳 小澤
高裕 牛田
健 中西
淳 戸苅
怜 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJICLEAN CO., LTD.
Original Assignee
FUJICLEAN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJICLEAN CO., LTD. filed Critical FUJICLEAN CO., LTD.
Priority to JP2009142360A priority Critical patent/JP5259502B2/en
Publication of JP2010284620A publication Critical patent/JP2010284620A/en
Application granted granted Critical
Publication of JP5259502B2 publication Critical patent/JP5259502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、被処理水の水処理を行う水処理装置の構築技術に関するものである。   The present invention relates to a construction technique of a water treatment apparatus that performs water treatment of water to be treated.

従来、一般家庭等から排出される生活排水や、産業廃水等の汚水などの被処理水を処理
する水処理装置においては、処理槽本体に被処理水のための水処理機構を収容されており、例えば下記特許文献1には、被処理水の固液分離処理及び嫌気処理を行なう一次処理部と、被処理水の好気性処理を行なう二次処理部とを含む水処理機構が処理槽本体に収容された汚水処理装置が開示されている。
ところで、この種の水処理装置では、被処理水の処埋性能向上を図る要請が高い。そこで、本発明者らは、特に被処理水の固液分離処理及び嫌気処理を行なう一次処理部の構成に着目し、当該一次処理部における処理性能向上を図る技術について鋭意検討した。
特開平10−146592号公報
Conventionally, in water treatment equipment that treats treated water such as domestic wastewater discharged from ordinary households and sewage such as industrial wastewater, a water treatment mechanism for the treated water is accommodated in the treatment tank body. For example, in Patent Document 1 below, a water treatment mechanism including a primary treatment unit that performs solid-liquid separation treatment and anaerobic treatment of water to be treated and a secondary treatment unit that performs aerobic treatment of the water to be treated is a treatment tank body. Is disclosed.
By the way, in this kind of water treatment apparatus, the request | requirement which aims at improvement of the disposal performance of to-be-processed water is high. Therefore, the present inventors have paid particular attention to the configuration of the primary processing unit that performs solid-liquid separation processing and anaerobic processing of water to be treated, and have intensively studied a technique for improving the processing performance in the primary processing unit.
Japanese Patent Laid-Open No. 10-146592

本発明では、処理槽本体に収容される水処理機構に、被処理水を固液分離処理する固液分離処理部と、この固液分離処理部で固液分離処理された水を嫌気処理する嫌気処理部とを含む水処理装置において、水処理性能向上を図るのに有効な技術を提供することを課題とする。   In the present invention, the water treatment mechanism accommodated in the treatment tank main body performs an anaerobic treatment on the solid-liquid separation processing section for subjecting the water to be treated to solid-liquid separation processing, and the water subjected to the solid-liquid separation processing in the solid-liquid separation processing section. An object of the present invention is to provide a technique effective for improving water treatment performance in a water treatment apparatus including an anaerobic treatment unit.

前記課題を解決するために、本発明が構成される。なお、本発明は、一般家庭、集合住宅、商業施設、公共施設、工場等の設備から排出される生活排水や産業廃水等の水ないし被処理水の浄化処理を行う水処理装置に対し好適に用いられる。ここでいう「水」ないし「被処理水」は、浄化処理等の所定の水処理がなされた後の水を含んでもよいし、所定の水処理がなされる前の水そのものであってもよい。   The present invention is configured to solve the above problems. The present invention is suitable for a water treatment apparatus for purifying water or treated water such as domestic wastewater and industrial wastewater discharged from facilities such as general households, apartment houses, commercial facilities, public facilities, and factories. Used. The “water” or “treated water” as used herein may include water after a predetermined water treatment such as a purification treatment, or may be the water itself before the predetermined water treatment. .

本発明にかかる水処埋装置は、処理槽本体と、この処理槽本体に収容される水処理機構とを有する装置として構成される。処理機構が収容された状態の処理槽本体に、被処理水を受け入れて処理することにより被処理水に対する実質的な水処理を行なわれる。水処理機構は、固液分離処理部、嫌気処理部及び好気処理部を含む構成とされる。この水処理機構は、前記の処理要素に更なる処理要素が付加された構成であってもよい。例えば、被処理水のろ過処理、貯留処理、消毒処埋等を行なう各処理要素を水処理機構に加えることもできる。   The water treatment embedding apparatus according to the present invention is configured as an apparatus having a treatment tank main body and a water treatment mechanism accommodated in the treatment tank main body. The water to be treated is substantially treated by receiving and treating the water to be treated in the treatment tank main body in a state where the treatment mechanism is accommodated. The water treatment mechanism includes a solid-liquid separation processing unit, an anaerobic processing unit, and an aerobic processing unit. The water treatment mechanism may have a configuration in which a further treatment element is added to the treatment element. For example, each treatment element that performs filtration, storage, disinfection, and the like of water to be treated can be added to the water treatment mechanism.

固液分離処理部は、水処理機構に流入した水を固液分離処理する水処理部とされる。この固液分離処理部として、典型的にはバッフル等によって被処理水の流れを調整することによって被処理水中の夾雑物を除去する領域が用いられる。嫌気処理部は、固液分離処理部で固液分離処理された水を嫌気処理する水処理部とされる。これら固液分離処理部及び嫌気処理部は、被処理水の一次的な処理を行なう「一次処理部」として構成される。好気処理部は、嫌気処理部で嫌気処理された水を好気処理する水処理部とされる。この好気処理部は、一次的な処理がなされた後の被処理水の二次的な処理を行なう「二次処理部」として構成される。また、固液分離処理部、嫌気処理部及び好気処理部が、水処理機構での水の処理流れに関して直列状に配設された構成とされる。   The solid-liquid separation processing unit is a water processing unit that performs solid-liquid separation processing on the water that has flowed into the water treatment mechanism. As this solid-liquid separation processing unit, a region where impurities in the water to be treated are removed is typically used by adjusting the flow of the water to be treated by a baffle or the like. The anaerobic treatment unit is a water treatment unit that anaerobically treats the water that has been subjected to the solid-liquid separation treatment by the solid-liquid separation treatment unit. The solid-liquid separation processing unit and the anaerobic processing unit are configured as a “primary processing unit” that performs primary processing of water to be treated. The aerobic treatment unit is a water treatment unit that aerobically treats water that has been anaerobically treated by the anaerobic treatment unit. The aerobic processing unit is configured as a “secondary processing unit” that performs secondary processing of the water to be treated after the primary processing. Moreover, it is set as the structure by which the solid-liquid separation process part, the anaerobic process part, and the aerobic process part were arrange | positioned in series regarding the water treatment flow in a water treatment mechanism.

嫌気処理部は、第1充填領域、第2充填領域、第1室、第2室、区画部材、第2区画部材、水導入路及び水導出路を備える。第1充填領域は、嫌気処理用の第1の嫌気濾材が充填された充填領域とされ、この第1充填領域が第1室に収容される。第2充填領域は、嫌気処理部での水の処理流れに関して第1充填領域の下流に配置され、嫌気処理用の第2の嫌気濾材が充填された充填領域とされる。第2室は、第2充填領域を収容するとともに、第1室に並置された構成とされる。区画部材は、第1室及び第2室を区画するべく、処理槽本体の槽上下方向に長尺状に延在する構成とされる。水導入路は、固液分離処理部で処理された水を第1室に導入する経路とされる。水導出路は、第1充填領域を上向きに流通して流れた水を第2室に導出する経路とされる。当該水導出路は、区画部材の上部に開口形成されて構成される。第2の水導出路は、第2充填領域を下向きに流通して流れた水を好気処理部に導出する経路とされる。導入経路や導出経路に関しては、処理槽本体に内装されるバッフル部材や仕切り部材等の内装部材や配管類などによって当該経路を構成することができる。そして、水処理装置に流入した水は、第1充填領域で第1の嫌気濾材に接触するよりも前に別の嫌気濾材に接触することなく、第1充填領域を上向きに流通して流れるように構成されている。 The anaerobic treatment unit includes a first filling area, a second filling area, a first chamber, a second chamber, a partition member, a second partition member, a water introduction path, and a water lead-out path. The first filling area is a filling area filled with the first anaerobic filter medium for anaerobic treatment, and the first filling area is accommodated in the first chamber. The second filling region is disposed downstream of the first filling region with respect to the water treatment flow in the anaerobic treatment unit, and is a filling region filled with the second anaerobic filter medium for anaerobic treatment. The second chamber accommodates the second filling region and is arranged in parallel with the first chamber. The partition member is configured to extend in a long shape in the vertical direction of the tank of the processing tank body so as to partition the first chamber and the second chamber. The water introduction path is a path through which water treated by the solid-liquid separation processing unit is introduced into the first chamber. The water lead-out path is a path through which the water that has flowed upward through the first filling region flows into the second chamber. The water lead-out path is formed by opening an upper part of the partition member. The second water lead-out path is a path for leading the water that has flowed downward through the second filling region to the aerobic treatment unit. Regarding the introduction route and the lead-out route, the route can be configured by interior members such as a baffle member and a partition member, piping, and the like, which are housed in the processing tank body. Then, the water flowing into the water treatment device flows and flows upward in the first filling area without contacting another anaerobic filter medium before contacting the first anaerobic filter medium in the first filling area. It is configured.

このような構成によれば、固液分離処理部で固液分離処理された後に更に嫌気処理部を流れる水が、嫌気濾材がそれぞれ充填された複数の充填領域が直列且つ断続的に配置された経路を通過することによって、固液分離処理に加えて更に複数段階の嫌気処理がなされる。これにより、一次処理部において被処理水の固液分離性能の向上、及び脱窒性能の向上を図ることが可能となる。   According to such a configuration, the water flowing through the anaerobic treatment unit after being subjected to the solid-liquid separation treatment in the solid-liquid separation treatment unit, a plurality of filling regions filled with anaerobic filter media are arranged in series and intermittently. By passing through the path, a plurality of stages of anaerobic treatment is performed in addition to the solid-liquid separation treatment. Thereby, it becomes possible to improve the solid-liquid separation performance of the water to be treated and the denitrification performance in the primary treatment section.

また本発明のかかる更なる形態の水処理装置では、嫌気処理部と好気処理部を区画するべく、処理槽本体の槽上下方向に長尺状に延在する障壁を有する。また、前記の嫌気処理部は濾材上部領域、濾材下部領域、第2の濾材上部領域、第2の濾材下部領域及び開口部をさらに備えるのが好ましい濾材上部領域は、第1室のうち処理槽本体の槽上下方向に関し第1充填領域よりも上方の領域とされる。濾材下部領域は、第1室のうち処理槽本体の槽上下方向に関し第1充填領域よりも下方の領域とされる。第2の濾材上部領域は、第2室のうち処理槽本体の槽上下方向に関し第2充填領域よりも上方の領域とされる。第2の濾材下部領域は、第2室のうち処理槽本体の槽上下方向に関し第2充填領域よりも下方の領域とされる。第2の水導出路は、第2の濾材上部領域から第2充填領域を下向きに流通して第2の濾材下部領域に流れた水を好気処理部に導出する経路とされる。導入経路や導出経路に関しては、処理槽本体に内装されるバッフル部材や仕切り部材等の内装部材や配管類などによって当該経路を構成することができる。開口部は、濾材上部領域と第2の濾材上部領域とを連通するべく、区画部材の上部に開口形成され、前述の水導出路として構成される。 Moreover, in the water treatment apparatus of the further form of this invention, in order to partition an anaerobic process part and an aerobic process part, it has the barrier extended in the elongate shape of the tank vertical direction of a process tank main body. Further, the anaerobic processing unit, the filter medium upper region, the filter medium lower region, the second filter medium upper region, further comprising is preferably a second filter medium lower region and the opening. The upper area of the filter medium is an area above the first filling area in the vertical direction of the treatment tank body in the first chamber. The filter medium lower region is a region below the first filling region with respect to the tank vertical direction of the treatment tank body in the first chamber. The second filter medium upper region is a region above the second filling region in the vertical direction of the treatment tank body in the second chamber. The second filter medium lower region is a region below the second filling region in the vertical direction of the treatment tank body in the second chamber. The second water lead-out path is a path through which the water flowing downward from the second filter medium upper region to the second filter medium lower region flows to the aerobic treatment unit. Regarding the introduction route and the lead-out route, the route can be configured by interior members such as a baffle member and a partition member, piping, and the like, which are housed in the processing tank body. The opening is formed in the upper part of the partition member so as to communicate the upper part of the filter medium and the second upper part of the filter medium, and is configured as the water lead-out path described above.

このような構成によれば、嫌気処理部の第1室では、被処理水が嫌気濾材の充填領域を上向流で通過するため、濾材下部領域の水に含まれるSS(懸濁固形物)が嫌気濾材を通過する前に沈殿して槽底部に堆積し易い。従って、嫌気濾材の充填領域を下向流で通過する構成に比べて嫌気濾材を通過するSS量が少なくなることで、嫌気濾材自体に捕捉されるSS量が少なくなる。これにより、嫌気濾材充填領域の部分的な閉塞や短絡等の発生が抑制され、長期間にわたって均一な流れを維持することが可能となるため、被処理水の固液分離性能の更なる向上が図られる。   According to such a configuration, in the first chamber of the anaerobic treatment unit, the water to be treated passes through the filling region of the anaerobic filter medium in an upward flow, so SS (suspended solids) contained in the water in the lower region of the filter medium Tends to settle before passing through the anaerobic filter medium and deposit on the bottom of the tank. Therefore, the amount of SS trapped by the anaerobic filter medium itself is reduced by reducing the amount of SS that passes through the anaerobic filter medium as compared with the configuration of passing through the packed region of the anaerobic filter medium in a downward flow. As a result, the occurrence of partial blockage or short-circuiting in the anaerobic filter medium filling region is suppressed, and a uniform flow can be maintained over a long period of time, so that the solid-liquid separation performance of the water to be treated can be further improved. Figured.

さらに、このような構成によれば、第1室で嫌気濾材の充填領域を上向流で通過した後、区画部材に形成された開口部を通じて第2室に移流し、そのまま第2室で嫌気濾材の充填領域を下向流で通過する水の流通経路を採用するため、当該流通経路の構造が簡素化され当該経路の構成要素の数を抑えるのに有効となる。また、水導入路における流入量、すなわち第1室に流入する流入量が増加した場合、濾材上部領域及び第2の濾材上部領域が流入量の増加分を貯留するための領域としての機能を果たす。従って、流入量が増加してもその増加分を濾材上部領域及び第2の濾材上部領域の水の水位上昇によって吸収することが可能である。これにより、第2室の嫌気濾床を通過する水の線速度を概ね一定に抑えることができ、被処理水の固液分離性能及び脱窒性能を安定化させることが可能となる。Further, according to such a configuration, after passing through the anaerobic filter medium filling region in the first chamber in an upward flow, it is transferred to the second chamber through the opening formed in the partition member and is directly anaerobic in the second chamber. Since the flow path of water that passes through the filter material filling region in a downward flow is adopted, the structure of the flow path is simplified, and the number of components of the path is reduced. Further, when the inflow amount in the water introduction path, that is, the inflow amount flowing into the first chamber increases, the filter medium upper region and the second filter medium upper region serve as a region for storing the increase in the inflow amount. . Therefore, even if the amount of inflow increases, the increase can be absorbed by the rise of the water level in the upper region of the filter medium and the upper region of the second filter medium. As a result, the linear velocity of water passing through the anaerobic filter bed in the second chamber can be kept substantially constant, and the solid-liquid separation performance and denitrification performance of the water to be treated can be stabilized.

また本発明のかかる更なる形態の水処理装置では、固液分離処理部及び嫌気処理部を区画するべく、処理槽本体の槽上下方向に長尺状に延在する第2障壁を有している。そして、水導入路は、第2障壁の上部に開口形成された第2開口部を有する構成であり、開口部の下端と第2開口部の下端が槽上下方向に関して一致するように設けられている。Moreover, in the water treatment apparatus of the further form of this invention, in order to partition a solid-liquid separation process part and an anaerobic process part, it has a 2nd barrier extended in the elongate shape of the tank vertical direction of a process tank main body. Yes. The water introduction path is configured to have a second opening formed in the upper portion of the second barrier, and is provided so that the lower end of the opening and the lower end of the second opening coincide with each other in the tank vertical direction. Yes.

また本発明のかかる更なる形態の水処理装置では、前記の嫌気処理部は、当該嫌気処理部の水処理に関する有効容量に占める嫌気濾材の濾材充填率が20〜60%とされた構成であるのが好ましい。ここでいう「嫌気処理部の水処理に関する有効容量」との記載については、嫌気処理部の空間全体の容量のうち、実質的に水処理に有効な容積、すなわち通常使用時に実際に被処理水が貯留される容積がここでいう有効容量に相当する。典型的には、通常使用時の上限水位に相当する嫌気処理部の容積を有効容量として規定することができる。また、「濾材充填率」については、体積中で実際に嫌気濾材が占める空間の割合として規定される。
このような構成によれば、濾材充填率を60%以下に抑えることによって、固形物によって嫌気濾材が閉塞するのを抑えるとともに、濾材充填率を20%以上に維持することによって、所望の嫌気処理性能及びろ過処理性能を確保するのに有効とされる。
Moreover, in the water treatment apparatus of the further form of this invention, the said anaerobic process part is the structure by which the filter medium filling rate of the anaerobic filter medium which occupies for the effective capacity regarding the water treatment of the said anaerobic process part was 20 to 60%. Is preferred. Regarding the description of “effective capacity regarding water treatment of anaerobic treatment unit” here, the volume of the entire space of the anaerobic treatment unit is substantially effective for water treatment, that is, actually treated water during normal use. The volume in which is stored corresponds to the effective capacity here. Typically, the volume of the anaerobic treatment unit corresponding to the upper limit water level during normal use can be defined as the effective capacity. Further, the “filter medium filling rate” is defined as the ratio of the space actually occupied by the anaerobic filter medium in the volume.
According to such a configuration, by suppressing the filter medium filling rate to 60% or less, it is possible to prevent the anaerobic filter medium from being clogged with solids, and to maintain the filter medium filling rate to 20% or more, thereby achieving a desired anaerobic treatment. It is effective to ensure performance and filtration performance.

また本発明のかかる更なる形態の水処理装置は、流量調整部を備える構成であるのが好ましい。この流量調整部は、嫌気処理部と好気処理部との間に設けられて、嫌気処理部で嫌気処理された後に好気処理部へと移流する水の流量を調整可能な機能を果たす。この流量調整部は、典型的には好気処理部へと流れる水の流量を調整可能なポンプや、更にこのポンプによって移送される水の一部を嫌気処理部に返送する装置等によって構成される。
このような構成によれば、嫌気処理部や好気処理部における被処理水の処理性能を向上させるのに有効とされる。具体的には、好気処理部へと流れる水の流量変動を流量調整部で抑えることによって、好気処理部では被処理水の有機物除去性能や硝化に関する処理性能を高める一方、固液分離処理部及び嫌気処理部では被処理水の滞留時間の変動を抑えることによって、被処理水の固液分離や汚泥貯留に関する処理性能を高めることが可能となる。
Moreover, it is preferable that the water treatment apparatus of the further form of this invention is a structure provided with a flow volume adjustment part. The flow rate adjusting unit is provided between the anaerobic processing unit and the aerobic processing unit, and fulfills a function capable of adjusting the flow rate of water that is transferred to the aerobic processing unit after being anaerobically processed by the anaerobic processing unit. This flow rate adjusting unit is typically configured by a pump capable of adjusting the flow rate of water flowing to the aerobic processing unit, and a device for returning a part of the water transferred by this pump to the anaerobic processing unit. The
According to such a configuration, it is effective to improve the treatment performance of the water to be treated in the anaerobic treatment unit and the aerobic treatment unit. Specifically, by suppressing fluctuations in the flow rate of water flowing to the aerobic treatment unit with the flow rate adjustment unit, the aerobic treatment unit improves the organic matter removal performance of the water to be treated and the treatment performance related to nitrification, while solid-liquid separation treatment By suppressing fluctuations in the retention time of the water to be treated in the part and the anaerobic treatment part, it is possible to improve the processing performance regarding the solid-liquid separation and sludge storage of the water to be treated.

以上のように、本発明によれば、処理槽本体に収容される水処理機構に、被処理水を固液分離処理する固液分離処理部と、この固液分離処理部で固液分離処理された水を嫌気処理する嫌気処理部とを含む水処理装置において、特に固液分離処理された後の水に更に複数段階の嫌気処理を施す構成を採用することによって、被処理水の固液分離性能の向上、及び脱窒性能の向上を図ることが可能となった。   As described above, according to the present invention, the water treatment mechanism accommodated in the treatment tank main body includes the solid-liquid separation processing unit for subjecting the water to be treated to solid-liquid separation processing, and the solid-liquid separation processing by the solid-liquid separation processing unit. In the water treatment apparatus including the anaerobic treatment unit that anaerobically treats the water that has been treated, in particular, by adopting a configuration in which the water after the solid-liquid separation treatment is further subjected to a plurality of stages of anaerobic treatment, It became possible to improve separation performance and denitrification performance.

以下に、本発明における一実施の形態の水処理装置の構成等を図面に基づいて説明する。なお、本実施の形態は、一般家庭、集合住宅、商業施設、公共施設、工場等の設備から排出される原水(「排水」ないし「被処理水」ともいう)の水処理を行う水処理装置について説明するものである。   Below, the structure of the water treatment apparatus of one Embodiment in this invention is demonstrated based on drawing. Note that this embodiment is a water treatment apparatus that performs water treatment of raw water (also referred to as “drainage” or “treated water”) discharged from facilities such as ordinary households, apartment houses, commercial facilities, public facilities, and factories. Is described.

本発明の「水処理装置」にかかる一実施の形態の水処理装置100の概略構成が図1に示され、また図1中の水処理装置100における水処理フローが図2に示されている。図1及び図2に示すように、本実施の形態の水処埋装置100は、複数の水処理機能を含む水処理機構101aが処理槽本体101に収容された構成とされている。   FIG. 1 shows a schematic configuration of a water treatment apparatus 100 according to an embodiment of the “water treatment apparatus” of the present invention, and FIG. 2 shows a water treatment flow in the water treatment apparatus 100 in FIG. . As shown in FIG.1 and FIG.2, the water treatment embedding apparatus 100 of this Embodiment is set as the structure by which the water treatment mechanism 101a containing a some water treatment function was accommodated in the processing tank main body 101. FIG.

処理槽本体101は、典型的には断面円形の長尺パイプ部材によって構成されるメインハウジング102と、このメインハウジング(「直胴部」ともいう)102の両側のパイプ開口部を塞ぐ椀型の蓋部(「鏡部」ともいう)103,103とによってタンク形状とされている。ここでいう処理槽本体101が、本発明における「処理槽本体」に相当する。この処理槽本体101は、メインハウジング102が横置きされた状態で設置場所に配置される。処理槽本体101の一方の蓋部103には、処理槽本体101内へ原水を受け入れるための流入管104が設置されている。また、処理槽本体101の他方の蓋部103には、処理槽本体101内の水処理機構101aで処理された水を処理槽本体101外へ放流するための流出管105が設置されている。また横置き状態のメインハウジング102の上部、すなわち長尺パイプ部材の側部には、入槽用、内部点検用、清掃用のマンホール106が複数設置されている。上記形状の処理槽本体101は、典型的には処理対象人数が数十人から数百人のような大型浄化槽に好適に使用される。
なお、本明細書において、メインハウジング102のマンホール106側(図1中の上側)を処理槽本体101の上側として規定し、またその反対側(図1中の下側)を処理槽本体101の下側として規定する。
The processing tank main body 101 is typically a bowl-shaped block that closes the main housing 102 constituted by a long pipe member having a circular cross section and the pipe openings on both sides of the main housing (also referred to as “straight barrel”) 102. A lid portion (also referred to as a “mirror portion”) 103 and 103 forms a tank shape. The processing tank main body 101 here corresponds to the “processing tank main body” in the present invention. The processing tank main body 101 is disposed at the installation location with the main housing 102 being placed horizontally. An inflow pipe 104 for receiving raw water into the processing tank main body 101 is installed in one lid portion 103 of the processing tank main body 101. In addition, the other lid portion 103 of the treatment tank main body 101 is provided with an outflow pipe 105 for discharging water treated by the water treatment mechanism 101 a in the treatment tank main body 101 to the outside of the treatment tank main body 101. In addition, a plurality of manholes 106 for tank entry, internal inspection, and cleaning are installed on the upper portion of the main housing 102 in the horizontal state, that is, on the side of the long pipe member. The treatment tank main body 101 having the above-mentioned shape is suitably used for a large septic tank having typically several tens to hundreds of people to be treated.
In this specification, the manhole 106 side (the upper side in FIG. 1) of the main housing 102 is defined as the upper side of the processing tank body 101, and the opposite side (the lower side in FIG. It is defined as the lower side.

水処理機構101aは、夾雑物除去槽110、好気処理部200、嫌気濾床槽130、好気処理槽150、沈殿槽170及び消毒槽190の各処理要素を少なくとも含む水処理領域として構成される。本実施の形態では、水処理機構101aに含まれるこれら各構成要素のうち、夾雑物除去槽110、嫌気濾床槽130、好気処理槽150、沈殿槽170及び消毒槽190は、原水の一連の処理順序に対応して上流(図1中の左側)から順に、すなわち水の処理流れに関して直列状に配設されている。また、好気処理部200は、上記の直列状の水の流れ(「メインフロー」ともいう)から分岐して設けられる水処理部として構成され、本実施の形態では夾雑物除去槽110に接続されている。ここでいう水処理機構101aが、本発明における「水処理機構」に相当する。また、この水処理機構101aのうち、夾雑物除去槽110、好気処理部200及び嫌気濾床槽130は被処理水の一次的な処理を行なう「一次処理部」とも称呼され、また好気処理槽150は一次的な処理がなされた後の被処理水の二次的な処理を行なう「二次処理部」とも称呼される。   The water treatment mechanism 101a is configured as a water treatment region including at least the treatment elements of the contaminant removal tank 110, the aerobic treatment unit 200, the anaerobic filter bed tank 130, the aerobic treatment tank 150, the precipitation tank 170, and the disinfection tank 190. The In the present embodiment, among these components included in the water treatment mechanism 101a, the contaminant removal tank 110, the anaerobic filter bed tank 130, the aerobic treatment tank 150, the precipitation tank 170, and the disinfection tank 190 are a series of raw water. Are arranged in order from the upstream (left side in FIG. 1), that is, in series with respect to the water treatment flow. The aerobic treatment unit 200 is configured as a water treatment unit provided by branching from the above-described series of water flows (also referred to as “main flow”), and is connected to the contaminant removal tank 110 in this embodiment. Has been. The water treatment mechanism 101a here corresponds to the “water treatment mechanism” in the present invention. Further, in the water treatment mechanism 101a, the contaminant removal tank 110, the aerobic treatment unit 200, and the anaerobic filter bed tank 130 are also referred to as “primary treatment unit” that performs a primary treatment of the water to be treated. The treatment tank 150 is also referred to as a “secondary treatment unit” that performs a secondary treatment of the water to be treated after the primary treatment.

処理槽本体101内の空間部分は、板壁状の隔壁が複数介在することによって各処理要素に区画されている。具体的には、隔壁112が夾雑物除去槽110と好気処理部200との間に介在し、隔壁113が夾雑物除去槽110と嫌気濾床槽130との間に介在し、隔壁156が嫌気濾床槽130と好気処理槽150との間に介在し、隔壁172が好気処理槽150と沈殿槽170との間に介在し、また隔壁192が沈殿槽170と消毒槽190との間に介在する。これら隔壁112,113,156,172はいずれも、処理槽本体101の槽上下方向に関し長尺状に延在する壁部材として構成される。   The space in the processing tank main body 101 is partitioned into processing elements by interposing a plurality of plate wall-shaped partition walls. Specifically, the partition 112 is interposed between the contaminant removal tank 110 and the aerobic treatment unit 200, the partition 113 is interposed between the contaminant removal tank 110 and the anaerobic filter bed tank 130, and the partition 156 is An anaerobic filter bed tank 130 and an aerobic treatment tank 150 are interposed, a partition wall 172 is interposed between the aerobic treatment tank 150 and the sedimentation tank 170, and a partition wall 192 is provided between the precipitation tank 170 and the disinfection tank 190. Intervene in between. All of these partition walls 112, 113, 156, and 172 are configured as wall members extending in a long shape in the tank vertical direction of the processing tank body 101.

なお、図1では、水処理機構101aの各処理要素がメインハウジング102の長尺延在方向に並置される例について記載しているが、当該処理要素による処理順序が予め設定された規定の処理順序であればよく、処理槽本体101内での水処理機構101aの各処理要素の配置の方向性に関しては必要に応じて適宜選択が可能である。   In addition, although FIG. 1 describes an example in which the processing elements of the water treatment mechanism 101a are juxtaposed in the long extending direction of the main housing 102, a prescribed process in which the processing order by the processing elements is set in advance is described. The order may be sufficient, and the directionality of the arrangement of the treatment elements of the water treatment mechanism 101a in the treatment tank body 101 can be appropriately selected as necessary.

夾雑物除去槽110は、水処理機構101aの水の処理流れに関して最上流部に配置されている。この夾雑物除去槽110は、原水中に含まれる夾雑物(固形物等)を、流入バッフル及び流出バッフルなどの固液分離手段を用いて被処理水から固液分離する処理槽であり、被処理水の固液分離機能を果たす。ここでいう夾雑物除去槽110が、本発明における「固液分離処理部」に相当する。図1に示す例では、流入管104から流入した原水に対し作用する流入バッフル120及び流出バッフル123が夾雑物除去槽110に設けられている。流入バッフル120は、プレート状部材或いはパイプ状部材によって被処理水の区画領域121を形成しており、この区画領域121が処理槽本体101の槽上下方向(図1中の上下方向)に長手状に延在している。同様に、流出バッフル123は、プレート状部材或いはパイプ状部材によって被処理水の区画領域125を形成しており、この区画領域125が処理槽本体101の槽上下方向(図1中の上下方向)に長手状に延在している。   The contaminant removal tank 110 is arranged at the most upstream part with respect to the water treatment flow of the water treatment mechanism 101a. The contaminant removal tank 110 is a treatment tank that separates impurities (solid matter, etc.) contained in the raw water from the water to be treated using solid-liquid separation means such as an inflow baffle and an outflow baffle. Performs solid-liquid separation function of treated water. The contaminant removal tank 110 here corresponds to the “solid-liquid separation processing unit” in the present invention. In the example shown in FIG. 1, an inflow baffle 120 and an outflow baffle 123 that act on the raw water flowing in from the inflow pipe 104 are provided in the contaminant removal tank 110. The inflow baffle 120 forms a partition area 121 of water to be treated by a plate-like member or a pipe-like member, and the partition area 121 is long in the tank vertical direction of the treatment tank body 101 (vertical direction in FIG. 1). It extends to. Similarly, the outflow baffle 123 forms a partition area 125 of water to be treated by a plate-like member or a pipe-like member, and this partition area 125 is the tank vertical direction of the treatment tank main body 101 (vertical direction in FIG. 1). It extends in the longitudinal direction.

これにより、流入管104から流入した原水は、流入バッフル120の区画領域121を流出部122に向けて下向きに流れ、この流出部122から固液分離領域111へと流出する。流出部122から流出した被処理水は、夾雑物が除去されつつ固液分離領域111を今度は上向きに流出バッフル123に向けて流れる。そして、固液分離領域111で夾雑物の除去処理がなされた後の水は、流出バッフル123の流入部124から区画領域125に流入して、この区画領域125を上向きに流れ、更に押し出し流れの原理によって隔壁113の上部の移流開口114へと流れ、この移流開口114を通じて嫌気濾床槽130へと移流する。   As a result, the raw water flowing in from the inflow pipe 104 flows downward toward the outflow portion 122 in the partition region 121 of the inflow baffle 120, and flows out from the outflow portion 122 to the solid-liquid separation region 111. The treated water that has flowed out of the outflow portion 122 flows upward toward the outflow baffle 123 this time through the solid-liquid separation region 111 while removing impurities. Then, the water after the contaminant removal process is performed in the solid-liquid separation region 111 flows into the partition region 125 from the inflow portion 124 of the outflow baffle 123, flows upward in the partition region 125, and is further pushed out. It flows to the advection opening 114 at the upper part of the partition wall 113 according to the principle, and flows to the anaerobic filter bed tank 130 through the advection opening 114.

好気処理部200は、夾雑物除去槽110での固液分離処理によって生じた水、すなわち汚泥の固液分離処理がなされた後の汚水、具体的には夾雑物除去槽110の中間水位に滞留する水(「中間水」ないし「上澄み液」ともいう)の一部を受け入れて処理する機能を果たす。より具体的には、夾雑物除去槽110から受け入れた中間水に含まれる有機汚濁物質を好気処理(被処理水中のアンモニアの「硝化」或いは「酸化」ともいう)する第1の処理と、夾雑物除去槽110において油脂や固形物の集まったスカムを浮上させ易くする第2の処理が、この好気処理部200において遂行される。   The aerobic treatment unit 200 is water generated by the solid-liquid separation process in the contaminant removal tank 110, that is, the sewage after the sludge solid-liquid separation process is performed, specifically, the intermediate water level of the contaminant removal tank 110. It fulfills the function of accepting and treating a part of the accumulated water (also called “intermediate water” or “supernatant liquid”). More specifically, a first treatment for aerobic treatment (also referred to as “nitrification” or “oxidation” of ammonia in water to be treated) of organic pollutants contained in the intermediate water received from the contaminant removal tank 110; In the aerobic treatment unit 200, a second process for facilitating the floating of the scum in which fats and oils and solids are collected in the contaminant removal tank 110 is performed.

この好気処理部200の具体的な構成に関しては、ばっ気槽、接触ばっ気槽、担体流動槽等のうちの1または複数を適宜用いることができ、特には、汚泥等の固形物の閉塞の危険性が低い担体流動槽を用いて構成するのが好ましい。
好気処理部200が担体流動槽として構成する場合、図1に示すように複数の粒状担体C3が流動可能に充填された担体充填領域201の下方に散気装置202を設置し、ブロワ(送風機)203から送り込まれるエアを散気装置202を介して粒状担体C3に供給する構成を用いることができる。本構成において、粒状担体C3に付着した好気性微生物は、ブロワ203から送り込まれるエア中の酸素の助けによって前述の第1の処理を行なう。また、ブロワ203からのエアの供給で生じる上向きのエア流れによって前述の第2の処理がなされる。
With respect to the specific configuration of the aerobic treatment unit 200, one or more of an aeration tank, a contact aeration tank, a carrier fluidized tank, and the like can be used as appropriate, and in particular, blockage of solid matter such as sludge. It is preferable to use a carrier fluidized tank that has a low risk.
When the aerobic treatment unit 200 is configured as a carrier flow tank, as shown in FIG. 1, an air diffuser 202 is installed below a carrier filling region 201 filled with a plurality of granular carriers C3 so as to flow, and a blower (blower ) The structure which supplies the air sent from 203 to the granular support | carrier C3 via the diffuser 202 can be used. In this configuration, the aerobic microorganism attached to the granular carrier C3 performs the first treatment described above with the help of oxygen in the air sent from the blower 203. Further, the second process described above is performed by the upward air flow generated by the supply of air from the blower 203.

夾雑物除去槽110の中間水の一部は、エアリフトポンプ等の移送ポンプ126によって好気処理部200へとポンプ移送される。この場合、図2に示すように、夾雑物除去槽110の中間水は、夾雑物除去槽110から嫌気濾床槽130へと流れる水のメインフローから分岐して好気処理部200に導入される。夾雑物除去槽110から好気処理部200へのこの水の導入流れが図1及び図2中の矢印10によって示される。
なお、移送ポンプ126は、移送水量を調節可能な調節機構を備えるのが好ましい。この調節機構の典型的として、エアリフトポンプに供給されるエア量を自動ないし手動で調節可能な調節バルブ等を用いることができる。この移送ポンプ126による移送手段にかえて、処理槽本体の槽壁や仕切り板等の内装材によって形成される移送流路を通じ、押し出し流れないしオーバーフローの原理によって汚水を移流させる手段を用いることもできる。
A portion of the intermediate water in the contaminant removal tank 110 is pumped to the aerobic treatment unit 200 by a transfer pump 126 such as an air lift pump. In this case, as shown in FIG. 2, the intermediate water in the contaminant removal tank 110 is branched from the main flow of water flowing from the contaminant removal tank 110 to the anaerobic filter bed tank 130 and introduced into the aerobic treatment unit 200. The This water introduction flow from the contaminant removal tank 110 to the aerobic treatment unit 200 is indicated by an arrow 10 in FIGS. 1 and 2.
In addition, it is preferable that the transfer pump 126 is provided with the adjustment mechanism which can adjust the amount of transferred water. A typical example of this adjustment mechanism is an adjustment valve that can automatically or manually adjust the amount of air supplied to the air lift pump. Instead of the transfer means by the transfer pump 126, means for transferring sewage by the principle of extrusion flow or overflow through a transfer flow path formed by interior materials such as the tank wall and partition plate of the processing tank main body can be used. .

この好気処理部200において好気処理された後の水は、当該好気処理部200から例えば押し出し流れないしオーバーフローの原理にしたがって夾雑物除去槽110へと返送されるように構成されている。好気処理部200から夾雑物除去槽110へのこの水の返送流れが図1及び図2中の矢印20によって示される。従って、夾雑物除去槽110には、好気処理部200との間で水の循環流れ(「還流」ともいう)が形成されることとなる。具体的には、好気処理部200と夾雑物除去槽110との間を仕切る隔壁112で生じる水位差によって水が押し出されて、好気処理部200から夾雑物除去槽110へと水が返送される。この返送に関しては、エアリフトポンプや水中ポンプなどの移送ポンプを用いることもできる。   The water after the aerobic treatment in the aerobic treatment unit 200 is configured to be returned from the aerobic treatment unit 200 to the contaminant removal tank 110 in accordance with, for example, the extrusion flow or overflow principle. The return flow of this water from the aerobic processing part 200 to the contaminant removal tank 110 is shown by the arrow 20 in FIG.1 and FIG.2. Accordingly, a water circulation flow (also referred to as “reflux”) is formed between the contaminant removal tank 110 and the aerobic treatment unit 200. Specifically, water is pushed out by the water level difference generated in the partition 112 that partitions the aerobic treatment unit 200 and the contaminant removal tank 110, and the water is returned from the aerobic treatment unit 200 to the contaminant removal tank 110. Is done. For this return, a transfer pump such as an air lift pump or a submersible pump can be used.

嫌気濾床槽130は、被処理水中の有機汚濁物質を嫌気処理(還元)する機能、及び被処埋水の濾過処理機能を有する処理槽として構成される。ここでいう嫌気濾床槽130が、本発明における「嫌気処理部」に相当する。この嫌気濾床槽130は、嫌気濾床槽第1室131及び嫌気濾床槽第2室132を含む。これら嫌気濾床槽第1室131及び嫌気濾床槽第2室132は、いずれも有機汚濁物質を嫌気処理する嫌気性微生物が付着する嫌気濾材C1が充填された嫌気濾床133及び嫌気濾床136を収容する領域として構成されている。ここでいう嫌気濾材C1が、本発明における「嫌気濾材」に相当する。また、ここでいう嫌気濾床133及び嫌気濾床136がそれぞれ、本発明における「(第1)充填領域」及び「(第2)充填領域」に相当し、これら嫌気濾床133,136を収容する嫌気濾床槽第1室131及び嫌気濾床槽第2室132がそれぞれ、本発明における「第1室」及び「第2室」に相当する。   The anaerobic filter bed tank 130 is configured as a treatment tank having a function of anaerobically treating (reducing) organic pollutants in the treated water and a function of filtering treated water. The anaerobic filter bed tank 130 here corresponds to the “anaerobic treatment section” in the present invention. The anaerobic filter bed tank 130 includes an anaerobic filter bed tank first chamber 131 and an anaerobic filter bed tank second chamber 132. The anaerobic filter bed first chamber 131 and the anaerobic filter bed second chamber 132 are both an anaerobic filter bed 133 and an anaerobic filter bed filled with an anaerobic filter medium C1 to which anaerobic microorganisms for anaerobically treating organic pollutants are attached. 136 is configured as an area for accommodating 136. The anaerobic filter medium C1 here corresponds to the “anaerobic filter medium” in the present invention. The anaerobic filter bed 133 and the anaerobic filter bed 136 here correspond to the “(first) packed area” and the “(second) packed area” in the present invention, respectively, and contain the anaerobic filter beds 133 and 136. The anaerobic filter bed first chamber 131 and the anaerobic filter bed second chamber 132 are respectively equivalent to the “first chamber” and the “second chamber” in the present invention.

嫌気濾床槽第1室131では、処理槽本体101の槽上下方向に関し濾材下部領域134と濾材上部領域135との間に嫌気濾材C1が充填されている。ここでいう濾材下部領域134及び濾材上部領域135がそれぞれ、本発明における「濾材下部領域」及び「濾材上部領域」に相当する。同様に、嫌気濾床槽第2室132では、処理槽本体101の槽上下方向に関し濾材上部領域137と濾材下部領域138との間に嫌気濾材C1が充填されている。ここでいう濾材上部領域137及び濾材下部領域138がそれぞれ、本発明における「第2の濾材上部領域」及び「第2の濾材下部領域」に相当する。   In the first chamber 131 of the anaerobic filter bed tank, the anaerobic filter medium C1 is filled between the filter medium lower area 134 and the filter medium upper area 135 in the vertical direction of the processing tank main body 101. The filter medium lower area 134 and the filter medium upper area 135 here correspond to the “filter medium lower area” and the “filter medium upper area” in the present invention, respectively. Similarly, in the second chamber 132 of the anaerobic filter bed tank, the anaerobic filter medium C <b> 1 is filled between the filter medium upper area 137 and the filter medium lower area 138 in the tank vertical direction of the treatment tank main body 101. The filter medium upper area 137 and the filter medium lower area 138 here correspond to the “second filter medium upper area” and the “second filter medium lower area” in the present invention, respectively.

これら嫌気濾床133や嫌気濾床136に被処理水が流通したときに嫌気処理がなされ、またこの嫌気処理によってBODの低減と汚泥物の減量化が図られる。なお、嫌気濾材C1の種類に関しては、嫌気濾床133と嫌気濾床136とで同一種類の嫌気濾材であってもよいし、或いは互いに異なる種類の嫌気濾材であってもよい。また嫌気濾材C1の充填量に関しては、嫌気濾床133と嫌気濾床136とで同一の充填量であってもよいし、或いは互いに異なる充填量であってもよい。   Anaerobic treatment is performed when the water to be treated flows through the anaerobic filter bed 133 and the anaerobic filter bed 136, and BOD is reduced and sludge is reduced by this anaerobic treatment. Regarding the type of the anaerobic filter medium C1, the anaerobic filter bed 133 and the anaerobic filter bed 136 may be the same type of anaerobic filter medium, or may be different types of anaerobic filter media. Further, regarding the filling amount of the anaerobic filter medium C1, the same filling amount may be used for the anaerobic filter bed 133 and the anaerobic filter bed 136, or different filling amounts may be used.

本実施の形態の嫌気濾床槽130では、嫌気濾床槽第2室132が、嫌気濾床槽130での水の処理流れに関して嫌気濾床槽第1室131の直近の下流(「後段」ともいう)に配設されている。このとき、嫌気濾床槽第1室131及び嫌気濾床槽第2室132は、典型的にはメインハウジング102の長尺延在方向に或いは当該長尺延在方向と交差する方向に関して並置され、両室は板壁状の区画部材139によって区画されている。この区画部材139は、処理槽本体101の槽上下方向に長尺状に延在する板状部材として構成されている。   In the anaerobic filter bed tank 130 of the present embodiment, the anaerobic filter bed tank second chamber 132 is located immediately downstream of the anaerobic filter bed tank first chamber 131 with respect to the water treatment flow in the anaerobic filter bed tank 130 ("back stage"). (Also called). At this time, the anaerobic filter bed first chamber 131 and the anaerobic filter bed second chamber 132 are typically juxtaposed in the long extension direction of the main housing 102 or in the direction intersecting the long extension direction. Both chambers are partitioned by a plate wall-shaped partition member 139. The partition member 139 is configured as a plate-like member extending in a long shape in the tank vertical direction of the processing tank main body 101.

また、嫌気濾床槽第1室131には、移流開口114から流入する水を濾材下部領域134に向けて下向きに直接誘導する誘導部材140が設けられている。この誘導部材140は、プレート状部材或いはパイプ状部材によって被処理水の区画領域141を形成しており、この区画領域141が処理槽本体101の槽上下方向(図1中の上下方向)に長手状に延在している。ここでいう誘導部材140は、夾雑物除去槽110で処理された水を濾材下部領域134に導入する水導入路を構成しており、本発明における「水導入路」に相当する。   In addition, the anaerobic filter bed first chamber 131 is provided with a guiding member 140 that directly guides the water flowing in from the advection opening 114 downward toward the filter medium lower region 134. The guiding member 140 forms a partition area 141 of water to be treated by a plate-like member or a pipe-like member, and the partition area 141 is long in the tank vertical direction of the treatment tank body 101 (vertical direction in FIG. 1). It extends to the shape. The guide member 140 here constitutes a water introduction path for introducing the water treated in the contaminant removal tank 110 into the filter medium lower region 134 and corresponds to a “water introduction path” in the present invention.

これにより、移流開口114から流入した水は、誘導部材140の区画領域141を流出部142に向けて下向きに流れ、この流出部142から濾材下部領域134へと流出する。この濾材下部領域134の被処理水は、その上向流(「上昇流」ともいう)によって嫌気濾床133(嫌気濾材C1)を濾材上部領域135に向けて上向きに流れる。このとき嫌気濾床133で最初の(1回目の)嫌気処理がなされる。この嫌気処理後の水は、押し出し流れの原理によって区画部材139の開口状の上縁部139aを越流して嫌気濾床槽第2室132の濾材上部領域137へと移流する。ここでいう区画部材139が、本発明における「区画部材」に相当する。またこの区画部材139の開口状の上縁部139aは、濾材上部領域135に流れた水を嫌気濾床槽第2室132に導出する水導出路として構成され、本発明における「導出路」及び「開口部」を構成する。   Thereby, the water that has flowed in from the advection opening 114 flows downward toward the outflow portion 142 in the partition region 141 of the guide member 140, and flows out from the outflow portion 142 to the filter medium lower region 134. The water to be treated in the lower filter medium region 134 flows upward through the anaerobic filter bed 133 (anaerobic filter medium C1) toward the upper filter medium region 135 by the upward flow (also referred to as “upward flow”). At this time, the first (first) anaerobic treatment is performed in the anaerobic filter bed 133. The water after the anaerobic treatment overflows the upper edge portion 139a of the partition member 139 according to the principle of extrusion flow, and moves to the filter medium upper region 137 of the second anaerobic filter bed tank 132. The partition member 139 here corresponds to the “partition member” in the present invention. Further, the upper edge portion 139a of the partition member 139 having an opening is configured as a water lead-out path for leading water flowing into the filter medium upper region 135 to the anaerobic filter bed tank second chamber 132. Configure the “opening”.

濾材上部領域137の被処理水は、その下向流(「下降流」ともいう)によって嫌気濾床136(嫌気濾材C1)を濾材下部領域138に向けて下向きに流れる。このとき嫌気濾床136では、嫌気濾床133での嫌気処理に引き続いて2回目の嫌気処理がなされる。この嫌気処理後の水は、押し出し流れの原理によって濾材下部領域138から導入部材160へと流入する。導入部材160は、濾材下部領域138にて開口する開口部161を有し、濾材下部領域138の水が開口部161を通じて導入空間162へ導入される。ここで濾材上部領域135及び濾材上部領域137は、互いに隣接する嫌気濾床133,136間に介在し、水の流通を許容する水流通空間(滞留領域)として構成され、本発明における「水流通空間」を構成する。この水流通空間は、嫌気濾床槽130とは別個に設けられてもよいし、或いはその一部が嫌気濾床槽130のうちの空間部分によって兼務されてもよい。   The water to be treated in the filter medium upper region 137 flows downward toward the filter medium lower region 138 through the anaerobic filter bed 136 (anaerobic filter medium C1) due to the downward flow (also referred to as “downflow”). At this time, in the anaerobic filter bed 136, the second anaerobic process is performed following the anaerobic process in the anaerobic filter bed 133. The water after the anaerobic treatment flows into the introduction member 160 from the filter medium lower region 138 by the principle of extrusion flow. The introduction member 160 has an opening 161 that opens in the filter medium lower region 138, and water in the filter medium lower region 138 is introduced into the introduction space 162 through the opening 161. Here, the filter medium upper area 135 and the filter medium upper area 137 are interposed between the anaerobic filter beds 133 and 136 adjacent to each other, and are configured as a water distribution space (retention area) that allows water to flow. A "space". This water circulation space may be provided separately from the anaerobic filter bed tank 130, or a part of the water circulation space may be shared by the space portion of the anaerobic filter bed tank 130.

また、嫌気濾床槽第2室132にはエアリフトポンプ163が設置されている。このエアリフトポンプ163は、処理槽本体101の槽上下方向に長尺状に延在するパイプ状部材にエアを導入し、このエア流れによってエアとともに水を吸入して汲み上げ吐出するポンプ作用を果たす既知の構成のエアリフトポンプとされる。本実施の形態のエアリフトポンプ163では、吸入口164が導入部材160の導入空間162に配設される一方、吐出口165が隔壁156を越えて好気処理槽150に配設されている。これにより、導入部材160の導入空間162に導入された水は、エアリフトポンプ163によって流量調整された状態で好気処理槽150へと移送される。ここでいう導入部材160及びエアリフトポンプ163は、濾材下部領域138に流れた水を好気処理槽150に導出する水導出路を構成しており、本発明における「第2の水導出路」に相当する。なお、このエアリフトポンプ163に代えて、水中ポンプ等のポンプ移送手段を用いることもできる。   An air lift pump 163 is installed in the anaerobic filter bed second chamber 132. This air lift pump 163 has a known pumping function that introduces air into a pipe-like member extending in the vertical direction of the tank of the processing tank main body 101, sucks water together with the air, pumps up, and discharges the air. The air lift pump is configured as follows. In the air lift pump 163 of the present embodiment, the suction port 164 is disposed in the introduction space 162 of the introduction member 160, while the discharge port 165 is disposed in the aerobic treatment tank 150 beyond the partition wall 156. Thereby, the water introduced into the introduction space 162 of the introduction member 160 is transferred to the aerobic treatment tank 150 in a state where the flow rate is adjusted by the air lift pump 163. The introduction member 160 and the air lift pump 163 referred to here constitute a water lead-out path for leading the water that has flowed to the filter medium lower region 138 to the aerobic treatment tank 150, and this is the “second water lead-out path” in the present invention. Equivalent to. Instead of the air lift pump 163, pump transfer means such as a submersible pump can be used.

このエアリフトポンプ163を用いることより、嫌気濾床槽130や好気処理槽150における被処理水の処理性能を向上させるのに有効とされる。具体的には、好気処理槽150へと流れる水の流量変動を抑えることによって、好気処理槽150では被処理水の有機物除去性能や硝化に関する処理性能を高める一方、夾雑物除去槽110及び嫌気濾床槽130では被処理水の滞留時間の変動を抑えることによって、被処理水の固液分離や汚泥貯留に関する処理性能を高めることが可能となる。ここでいうエアリフトポンプ163によって、本発明における「流量調整部」が構成される。必要に応じては、エアリフトポンプ163で汲み上げた水の一部を嫌気濾床槽130に返送し流量調整の強化を図る装置を別途設けることができる。   By using this air lift pump 163, it is effective to improve the treatment performance of the water to be treated in the anaerobic filter bed tank 130 and the aerobic treatment tank 150. Specifically, by suppressing fluctuations in the flow rate of water flowing to the aerobic treatment tank 150, the aerobic treatment tank 150 enhances the organic matter removal performance of the water to be treated and the treatment performance related to nitrification, while the contaminant removal tank 110 and In the anaerobic filter bed tank 130, it is possible to improve the processing performance regarding the solid-liquid separation and sludge storage of the water to be treated by suppressing the fluctuation of the residence time of the water to be treated. The air lift pump 163 here constitutes a “flow rate adjusting unit” in the present invention. If necessary, it is possible to separately provide a device for returning a part of the water pumped up by the air lift pump 163 to the anaerobic filter bed tank 130 to enhance the flow rate adjustment.

本実施の形態の嫌気濾床槽130では、嫌気濾床槽第1室131及び嫌気濾床槽第2室132の水位が常に一定に維持されるように構成されている。この構成は、区画部材139の上縁部139aでの越流によって、嫌気濾床槽第1室131と嫌気濾床槽第2室132との間に水が流れる構造によって実現される。更に、嫌気濾床槽第1室131及び嫌気濾床槽第2室132の水位は、夾雑物除去槽110での水位と一致するように構成されている。この構成は、隔壁113の移流開口114の設置高さと区画部材139の上縁部139aの設置高さとを概ね合致させることによって実現される。これらの構成によれば、夾雑物除去槽110及び嫌気濾床槽130(嫌気濾床槽第1室131及び嫌気濾床槽第2室132)の水位は、流入管104からの原水の流入量の変化に伴って、例えば低水位L1と高水位L2との間で一様に推移する。ここで、低水位L1は、水処理装置100の通常使用時での下限水位とされ、また高水位L2は、水処理装置100の通常使用時での上限水位とされる。   The anaerobic filter bed tank 130 of the present embodiment is configured such that the water levels in the anaerobic filter bed tank first chamber 131 and the anaerobic filter bed tank second chamber 132 are always maintained constant. This configuration is realized by a structure in which water flows between the anaerobic filter bed tank first chamber 131 and the anaerobic filter bed tank second chamber 132 due to overflow at the upper edge 139a of the partition member 139. Further, the water levels in the first anaerobic filter bed tank 131 and the second chamber 132 in the anaerobic filter bed tank are configured to coincide with the water levels in the contaminant removal tank 110. This configuration is realized by substantially matching the installation height of the advection opening 114 of the partition wall 113 with the installation height of the upper edge portion 139a of the partition member 139. According to these configurations, the water levels of the contaminant removal tank 110 and the anaerobic filter bed tank 130 (the anaerobic filter bed tank first chamber 131 and the anaerobic filter bed tank second chamber 132) are the inflow amount of raw water from the inflow pipe 104. With the change of, for example, it changes uniformly between the low water level L1 and the high water level L2. Here, the low water level L1 is a lower limit water level during normal use of the water treatment apparatus 100, and the high water level L2 is an upper limit water level during normal use of the water treatment apparatus 100.

好気処理槽150は、被処理水中の有機汚濁物質を好気処埋(酸化)する機能を有する接触ばっ気槽として構成される。ここでいう好気処理槽150が、本発明における「好気処理部」に相当する。この好気処理槽150では、有機汚濁物質を好気処理する好気性微生物が付着する所定量の接触材C2が充填された好気濾床151が、接触材上部領域152と接触材下部領域153との間に設けられている。接触材上部領域152の水は、図1中の矢印で示すような下向流によって好気濾床151を通じて接触材下部領域153へと下向きに流れる。また、この好気処理槽150では、ブロワ(送風機)155から送り込まれるエアが散気装置154を介して接触材C2に供給される構成を有する。本構成において、接触材C2に付着した好気性微生物は、ブロワ155から送り込まれるエア中の酸素の助けによって、被処理水中の有機汚濁物質を好気処理する。好気処理された水は、槽底部に設けられた移流開口157を通じて好気処理槽150の接触材下部領域153から沈殿槽170へと移流する。なお、この好気処理槽150に設けられるブロワ155は、好気処理部200に設けられるブロワ203と兼務されてもよい。   The aerobic treatment tank 150 is configured as a contact aeration tank having a function of aerobically treating (oxidizing) organic pollutants in the water to be treated. The aerobic treatment tank 150 here corresponds to the “aerobic treatment unit” in the present invention. In the aerobic treatment tank 150, an aerobic filter bed 151 filled with a predetermined amount of contact material C2 to which aerobic microorganisms for aerobic treatment of organic pollutants are attached includes a contact material upper region 152 and a contact material lower region 153. Between. The water in the contact material upper region 152 flows downward through the aerobic filter bed 151 to the contact material lower region 153 by a downward flow as indicated by an arrow in FIG. In addition, the aerobic treatment tank 150 has a configuration in which air fed from a blower (blower) 155 is supplied to the contact material C <b> 2 via the air diffuser 154. In this configuration, the aerobic microorganisms attached to the contact material C2 aerobically treat organic pollutants in the water to be treated with the help of oxygen in the air sent from the blower 155. The aerobically treated water flows from the contact material lower region 153 of the aerobic treatment tank 150 to the precipitation tank 170 through the advection opening 157 provided at the bottom of the tank. Note that the blower 155 provided in the aerobic treatment tank 150 may also serve as the blower 203 provided in the aerobic treatment unit 200.

なお、特に図示しないものの、この好気処理槽150で処理された水は、その一部が移送ポンプなどの移送手段によって夾雑物除去槽110に循環水として循環される一方、残りが沈殿槽170へと移流する構成であるのが好ましい。この場合、夾雑物除去槽110へと循環される循環水は、典型的には汚泥等の固形分を含む水とされる。また、この好気処理槽150は、上記のような接触ばっ気槽として構成される以外に、担体流動槽として構成されてもよい。担体流動槽は、概して有機汚濁物質を好気処理する好気性微生物が付着する所定量の粒状担体が流動可能に充填されるとともに、この粒状担体にブロワ(送風機)等から送り込まれる空気を供給することによって好気処理を行なう構成とされる。   Although not particularly illustrated, a part of the water treated in the aerobic treatment tank 150 is circulated as circulating water to the contaminant removal tank 110 by a transfer means such as a transfer pump, while the rest is settling tank 170. It is preferable that the structure be advected to the In this case, the circulating water circulated to the contaminant removal tank 110 is typically water containing solids such as sludge. Further, the aerobic treatment tank 150 may be configured as a carrier flow tank in addition to the contact aeration tank as described above. The carrier fluid tank is generally filled with a predetermined amount of particulate carrier to which aerobic microorganisms for aerobic treatment of organic pollutants adhere, and supplies air fed from a blower (blower) or the like to the particulate carrier. Thus, the aerobic process is performed.

沈殿槽170は、好気処理槽150から移流した水を一時的に滞留させて、水中の浮遊物質を沈殿・除去する機能を有する処理槽として構成される。この沈殿槽170で処理された後の水は、押し出し流れの原理によって、隔壁192の上部に配設された移流開口171を通じその下流に配置された消毒槽190へと移流する。この沈殿槽170にかえて、濾過担体が充填された濾過槽を用い、この濾過槽によって固液分離処理を行なうように構成することもできる。   The sedimentation tank 170 is configured as a treatment tank having a function of temporarily retaining water transferred from the aerobic treatment tank 150 and precipitating and removing suspended substances in the water. The water that has been treated in the settling tank 170 is transferred to the disinfection tank 190 disposed downstream through the advection opening 171 disposed in the upper part of the partition wall 192 according to the principle of extrusion flow. Instead of the sedimentation tank 170, a filtration tank filled with a filtration carrier may be used, and the solid-liquid separation process may be performed by this filtration tank.

消毒槽190は、沈殿槽170から流入した水を消毒処理する機能を有する処理槽であり、典型的には、消毒処理を行うための固形消毒剤が充填された薬剤筒191を備えている。この薬剤筒191から溶出した消毒剤によって消毒処理がなされた後の水は、流出管105を通じて処理槽本体101から槽外へと放流される。なお、本構成に関連して、消毒槽190の下流に、更に別の槽、例えば放流用のポンプが設置された放流ポンプ槽などを設けてもよい。   The disinfecting tank 190 is a processing tank having a function of disinfecting water flowing from the settling tank 170, and typically includes a medicine cylinder 191 filled with a solid disinfectant for performing disinfecting treatment. The water after the disinfection process is performed by the disinfectant eluted from the medicine cylinder 191 is discharged from the processing tank body 101 to the outside of the tank through the outflow pipe 105. In connection with this configuration, another tank, such as a discharge pump tank in which a discharge pump is installed, may be provided downstream of the disinfection tank 190.

ここで、上記実施の形態の嫌気濾床槽130の嫌気濾床槽第1室131及び嫌気濾床槽第2室132で形成される水の流れに関しては図3が参照される。   Here, FIG. 3 is referred to regarding the flow of water formed in the first anaerobic filter bed tank 131 and the second anaerobic filter bed tank 132 of the anaerobic filter bed tank 130 of the above embodiment.

図3には、本実施の形態の嫌気濾床槽130での水の流れが模式的に示されており、具体的には上流の夾雑物除去槽110から嫌気濾床槽130の嫌気濾床槽第1室131に流入する水の流量をQ1、嫌気濾床槽第1室131の嫌気濾床133を上向流によって通過する水の流量をQ2、嫌気濾床槽第2室132の嫌気濾床136を下向流によって通過する水の流量をQ3、嫌気濾床槽第2室132から下流の好気処理槽150へと流出する水の流量をQ4とする場合が示されている。   FIG. 3 schematically shows the flow of water in the anaerobic filter bed tank 130 of the present embodiment, specifically, the anaerobic filter bed of the anaerobic filter bed tank 130 from the upstream contaminant removal tank 110. Q1 is the flow rate of water flowing into the tank first chamber 131, Q2 is the flow rate of water passing through the anaerobic filter bed 133 of the anaerobic filter bed first chamber 131 by an upward flow, and the anaerobic flow of the second chamber 132 of the anaerobic filter bed A case is shown in which the flow rate of water passing through the filter bed 136 by the downward flow is Q3, and the flow rate of water flowing out from the anaerobic filter bed second chamber 132 to the downstream aerobic treatment tank 150 is Q4.

ここで、流量Q4の流量調整がなされた状態で嫌気濾床槽第1室131に流入する水の量が増え、流量Q1が流量Q4よりも増大した場合を想定する。このような場合には、濾材下部領域134の水は流量Q1と同一の流量Q2で嫌気濾床133を上向流によって濾材上部領域135へと流れる。これにより濾材上部領域135及び濾材上部領域137の水位が、例えば低水位L1から高水位L2へと上昇する。このとき低水位L1と高水位L2とによって規定される領域Aは、原水の流入量の増加分を貯留するための領域としての機能、すなわち流量Q1,Q2の増加が流量Q3の増加に及ぼす影響を抑えるような緩衝作用(バッファ作用)としての機能を果たす。一方で、濾材上部領域137の水は、流量Q4と同一の流量Q3で嫌気濾床136を下向流によって濾材下部領域138へと流れる。   Here, it is assumed that the amount of water flowing into the first anaerobic filter bed first chamber 131 is increased in a state where the flow rate Q4 is adjusted, and the flow rate Q1 is larger than the flow rate Q4. In such a case, the water in the lower filter medium region 134 flows through the anaerobic filter bed 133 to the upper filter medium region 135 through the anaerobic filter bed 133 at the same flow rate Q2 as the flow rate Q1. Thereby, the water level of the filter medium upper area | region 135 and the filter medium upper area | region 137 rises, for example from the low water level L1 to the high water level L2. At this time, the region A defined by the low water level L1 and the high water level L2 functions as a region for storing an increase in the amount of inflow of raw water, that is, the effect of the increase in the flow rate Q1, Q2 on the increase in the flow rate Q3. It functions as a buffering action (buffering action) that suppresses the above. On the other hand, water in the filter medium upper region 137 flows through the anaerobic filter bed 136 to the filter medium lower region 138 at a flow rate Q3 that is the same as the flow rate Q4.

従って、本実施の形態の嫌気濾床槽130の構成によれば、流量Q4が概ね一定に調整された状態では、流量Q1が増加してもその増加分を濾材上部領域135及び濾材上部領域137の水位上昇によって吸収することが可能である。これにより、嫌気濾床槽第2室132の嫌気濾床136を通過する水の線速度を概ね一定に抑えることができ、嫌気濾床136での被処理水の固液分離性能及び脱窒性能を安定化させることが可能となるという作用効果を奏する。このような作用効果は、特に嫌気濾床槽第2室132における水の流れを下向流とする構造によって実現される。   Therefore, according to the configuration of the anaerobic filter bed tank 130 of the present embodiment, in the state where the flow rate Q4 is adjusted to be substantially constant, even if the flow rate Q1 increases, the increased amount is increased by the filter medium upper region 135 and the filter material upper region 137. Can be absorbed by rising water levels. Thereby, the linear velocity of the water passing through the anaerobic filter bed 136 in the second chamber 132 of the anaerobic filter bed tank can be kept almost constant, and the solid-liquid separation performance and the denitrification performance of the water to be treated in the anaerobic filter bed 136. It is possible to stabilize the function. Such an effect is realized by a structure in which the water flow in the anaerobic filter bed second chamber 132 is a downward flow.

上述のように、本実施の形態では、夾雑物除去槽110で固液分離処理した後の水を、更に嫌気濾床133で嫌気処理し、また引き続いて嫌気濾床136で嫌気処理するように構成している。また、特に嫌気濾床133及び嫌気濾床136が互いに連接した構成ではなく、嫌気濾床133と嫌気濾床136との間に、濾材上部領域135及び濾材上部領域137からなる水流通空間(滞留領域)を設けるように構成している。このような構成によれば、被処理水の嫌気処理を2回連続して行なうとともに、嫌気処理間で被処理水が一旦滞留することによって、被処理水の固液分離性能(SS(懸濁固形物)に関するSS捕捉性能ともいう)の向上、及び脱窒性能の向上を図ることが可能となる。   As described above, in the present embodiment, the water after the solid-liquid separation treatment in the contaminant removal tank 110 is further anaerobically treated by the anaerobic filter bed 133 and subsequently anaerobically treated by the anaerobic filter bed 136. It is composed. In particular, the anaerobic filter bed 133 and the anaerobic filter bed 136 are not connected to each other, and a water circulation space (residence) composed of the filter medium upper area 135 and the filter medium upper area 137 between the anaerobic filter bed 133 and the anaerobic filter bed 136. (Region) is provided. According to such a configuration, the anaerobic treatment of the water to be treated is continuously performed twice, and the water to be treated is temporarily retained between the anaerobic treatments, so that the solid-liquid separation performance (SS (suspension) of the water to be treated is retained. It is possible to improve the SS trapping performance of the solid matter) and the denitrification performance.

例えば、夾雑物除去槽110及び嫌気濾床槽130の水処理に関する有効容量が、水処理機構101aで処理される一日当たりの流入量の(20/24)倍を下回るように設定したり、嫌気濾床槽130の水処理に関する有効容量が、水処理機構101aで処理される一日当たりの流入量の(12/24)倍を下回るように設定することが可能である。ここでいう「夾雑物除去槽及び嫌気濾床槽(ないし嫌気濾床槽)の水処理に関する有効容量」との記載については、夾雑物除去槽110及び嫌気濾床槽130(ないし嫌気濾床槽130)の空間全体の容量のうち、実質的に水処理に有効な容積、すなわち通常使用時に実際に被処理水が貯留される容積がここでいう有効容量に相当する。本実施の形態では、高水位(通常使用時の上限水位)L2に相当する嫌気濾床槽130の容積を有効容量として規定することができる。本実施の形態によれば、一日当たりの流入量をこのように設定したような場合であっても、所望の固液分離性能及び脱窒性能を得ることが可能となる。   For example, the effective capacity for water treatment in the contaminant removal tank 110 and the anaerobic filter bed tank 130 is set to be less than (20/24) times the inflow per day treated by the water treatment mechanism 101a, or anaerobic. It is possible to set the effective capacity for water treatment of the filter bed tank 130 to be less than (12/24) times the inflow amount per day treated by the water treatment mechanism 101a. As used herein, the description of “effective capacity for water treatment in the contaminant removal tank and anaerobic filter bed tank (or anaerobic filter bed tank)” refers to the contaminant removal tank 110 and the anaerobic filter bed tank 130 (or anaerobic filter bed tank). 130), the volume that is substantially effective for water treatment, that is, the volume in which treated water is actually stored during normal use corresponds to the effective capacity. In the present embodiment, the volume of the anaerobic filter bed tank 130 corresponding to the high water level (the upper limit water level during normal use) L2 can be defined as the effective capacity. According to the present embodiment, it is possible to obtain desired solid-liquid separation performance and denitrification performance even when the inflow amount per day is set in this way.

なお、上記実施の形態では、嫌気処理用の嫌気濾材C1がそれぞれ充填された2つの嫌気濾床133,136を用いて嫌気濾床槽130を構成し、被処理水の嫌気処理が2回連続して行なわれる場合について記載したが、嫌気濾床の数は水処理装置の設計仕様等に基づき、2以上の範囲で適宜選択が可能である。固液分離性能や脱窒性能の更なる向上を図るためには、嫌気濾床の数を増やして嫌気処理の回数を増やすのが好ましく、処理槽本体の小型化を実現するためには、嫌気濾床の数を抑えるのが好ましい。   In the above embodiment, the anaerobic filter bed tank 130 is configured using the two anaerobic filter beds 133 and 136 each filled with the anaerobic filter medium C1 for anaerobic treatment, and the anaerobic treatment of the water to be treated is performed twice. However, the number of anaerobic filter beds can be appropriately selected within a range of 2 or more based on the design specifications of the water treatment apparatus. In order to further improve the solid-liquid separation performance and denitrification performance, it is preferable to increase the number of anaerobic filter beds to increase the number of anaerobic treatments. It is preferable to reduce the number of filter beds.

また上述のように、本実施の形態の嫌気濾床槽130では、嫌気濾床槽第1室131を流れる水が上向流を形成するように構成されている。このような構成によれば、濾材下部領域134の水に含まれるSSが嫌気濾材C1を通過する前に沈殿して槽底部に堆積し易い。従って、嫌気濾床槽第1室131を下向流で通過する構成に比べて嫌気濾材C1を通過するSS量が少なくなることで、嫌気濾材C1自体に捕捉されるSS量が少なくなる。これにより、嫌気濾床133の部分的な閉塞や短絡等の発生が抑制され、長期間にわたって均一な流れを維持することが可能となるため、被処理水の固液分離性能の更なる向上が図られる。ところで、本実施の形態のように、断面円形のパイプ部材からなる処理槽本体101にあっては、嫌気濾床槽130の槽底部が円弧形状となる構成ゆえ、例えば半割れ槽状の上槽及び下槽を互いに突き合わせて構成されるカプセル形状の処理槽本体のように、槽底部に平坦部分が形成される場合に比較してSSの堆積容量を確保するのが難しいが、嫌気濾床槽第1室131を上向流とすることで、断面円形のパイプ部材からなる処理槽本体101を用いた場合でも、槽底部におけるSSの堆積性能を確保することが可能となる。また、上記カプセル形状の処理槽本体を用いた場合には、槽底部におけるSSの堆積性能の更なる向上を図ることが可能となる。   Further, as described above, the anaerobic filter bed tank 130 of the present embodiment is configured such that the water flowing through the anaerobic filter bed tank first chamber 131 forms an upward flow. According to such a configuration, SS contained in the water of the filter medium lower region 134 is likely to settle before passing through the anaerobic filter medium C1 and accumulate on the bottom of the tank. Therefore, the amount of SS that passes through the anaerobic filter medium C1 is reduced as compared with the configuration in which the first chamber 131 passes through the anaerobic filter bed first chamber 131 in a downward flow, so that the amount of SS captured by the anaerobic filter medium C1 itself is reduced. As a result, the occurrence of partial blockage or short-circuiting of the anaerobic filter bed 133 is suppressed, and a uniform flow can be maintained over a long period of time, so that the solid-liquid separation performance of the water to be treated can be further improved. Figured. By the way, in the processing tank main body 101 made of a pipe member having a circular cross section as in the present embodiment, the tank bottom of the anaerobic filter bed tank 130 has a circular arc shape. It is difficult to secure the SS accumulation capacity as compared with the case where a flat portion is formed at the bottom of the tank, such as a capsule-shaped treatment tank body configured by abutting the lower tank and the lower tank, but an anaerobic filter bed tank By using the first chamber 131 as an upward flow, it is possible to ensure the SS deposition performance at the bottom of the tank even when the processing tank main body 101 made of a pipe member having a circular cross section is used. Further, when the capsule-shaped treatment tank main body is used, it is possible to further improve the SS deposition performance at the tank bottom.

また上述のように、本実施の形態の嫌気濾床槽130では、嫌気濾床槽第1室131で上向流を形成した水が、引き続き嫌気濾床槽第2室132で下向流を形成するように構成されている。このような構成によれば、嫌気濾床槽第1室131から嫌気濾床槽第2室132へと流れる水の流通経路の構造が簡素化され当該流通経路の構成要素の数を抑えるのに有効となる。また、嫌気濾床槽第1室131への流入量が増加した場合、濾材上部領域135及び濾材上部領域137が流入量の増加分を貯留するための領域(図3中の領域A)としての機能を果たす。従って、流入量が増加してもその増加分を領域Aの水の水位上昇によって吸収することが可能である。これにより、嫌気濾床槽第2室132の嫌気濾床136を通過する水の線速度を概ね一定に抑えることができ、嫌気濾床槽第2室132での被処理水の固液分離性能及び脱窒性能を安定化させることが可能となる。   Further, as described above, in the anaerobic filter bed tank 130 of the present embodiment, the water that has formed an upward flow in the anaerobic filter bed tank first chamber 131 continues to flow downward in the anaerobic filter bed tank second chamber 132. It is configured to form. According to such a configuration, the structure of the flow path of the water flowing from the anaerobic filter bed tank first chamber 131 to the anaerobic filter bed tank second chamber 132 is simplified, and the number of components of the flow path is suppressed. It becomes effective. Moreover, when the inflow to the anaerobic filter bed first chamber 131 increases, the filter medium upper area 135 and the filter medium upper area 137 serve as areas for storing the increase in the inflow (area A in FIG. 3). Fulfills the function. Therefore, even if the amount of inflow increases, the increase can be absorbed by the water level rise in the region A. As a result, the linear velocity of the water passing through the anaerobic filter bed 136 of the anaerobic filter bed second chamber 132 can be kept almost constant, and the solid-liquid separation performance of the water to be treated in the anaerobic filter bed second chamber 132 is reduced. In addition, the denitrification performance can be stabilized.

また、本実施の形態では、嫌気濾床槽130の水処理に関する有効容積(有効容量)に占める嫌気濾材C1の濾材充填率が20〜60%とされた構成であるのが好ましい。ここでいう「濾材充填率」については、体積中で実際に嫌気濾材C1が占める空間の割合として規定される。これにより、被処理水の固液分離性能を高めるのに特に効果的とされる。なお必要に応じては、嫌気濾材C1の濾材充填率が20〜60%以外の範囲に設定された構成を採用してもよい。   Moreover, in this Embodiment, it is preferable that the filter medium filling rate of the anaerobic filter medium C1 which occupies the effective volume (effective capacity) regarding the water treatment of the anaerobic filter bed tank 130 is 20 to 60%. The “filter medium filling rate” here is defined as the ratio of the space actually occupied by the anaerobic filter medium C1 in the volume. This is particularly effective for improving the solid-liquid separation performance of the water to be treated. If necessary, a configuration in which the filter medium filling rate of the anaerobic filter medium C1 is set in a range other than 20 to 60% may be employed.

また、本実施の形態では、夾雑物除去槽110及び嫌気濾床槽130にわたる広範囲の水位が低水位L1と高水位L2との間で一定に変動することによって流量調整がなされる構成としている。これにより、処理槽本体101が断面円形のパイプ部材からなる構成によって、パイプ部材の径方向に関し水位の調整代が制限を受けるような場合であっても、パイプ部材の長手方向に関し水位の調整代を確保することが可能となる。   Moreover, in this Embodiment, it is set as the structure by which flow volume adjustment is made when the wide range water level over the contaminant removal tank 110 and the anaerobic filter bed tank 130 fluctuates between the low water level L1 and the high water level L2. Thereby, even if the water level adjustment allowance is restricted in the radial direction of the pipe member due to the configuration in which the treatment tank main body 101 is composed of a pipe member having a circular cross section, the water level adjustment allowance in the longitudinal direction of the pipe member is limited. Can be secured.

〔他の実施の形態〕
なお、本発明は上記の実施の形態のみに限定されるものではなく、種々の応用や変形が考えられる。例えば、上記実施の形態を応用した次の各形態を実施することもできる。
[Other Embodiments]
In addition, this invention is not limited only to said embodiment, A various application and deformation | transformation can be considered. For example, each of the following embodiments to which the above embodiment is applied can be implemented.

上記実施の形態では、嫌気濾床槽第1室131の嫌気濾床133を上向流によって水が流れ、嫌気濾床槽第2室132の嫌気濾床136を下向流によって水が流れる場合について記載したが、本発明では、嫌気濾床槽第1室131や嫌気濾床槽第2室132における水の流れ方向は、例えば上向流、下向流、水平流、傾斜流、旋回流等の中から必要に応じて適宜選択が可能である。この場合、嫌気濾床槽第1室131及び嫌気濾床槽第2室132の配置に関しては、上記実施の形態のように嫌気濾床槽第1室131及び嫌気濾床槽第2室132が前後ないし左右に並置される構成以外に、上下方向に配置される構成等を採用することもできる。   In the above embodiment, water flows through the anaerobic filter bed 133 of the anaerobic filter bed tank first chamber 131 by upward flow, and water flows through the anaerobic filter bed 136 of the anaerobic filter bed tank second chamber 132 by downward flow. In the present invention, the flow direction of water in the anaerobic filter bed first chamber 131 and the anaerobic filter bed second chamber 132 is, for example, an upward flow, a downward flow, a horizontal flow, an inclined flow, and a swirling flow. Etc. can be appropriately selected as necessary. In this case, regarding the arrangement of the anaerobic filter bed first chamber 131 and the anaerobic filter bed second chamber 132, the anaerobic filter bed first chamber 131 and the anaerobic filter bed second chamber 132 are the same as in the above embodiment. In addition to the front-rear or left-right juxtaposed configuration, a configuration arranged in the up-down direction can also be adopted.

また、上記実施の形態では、嫌気濾床槽第1室131から嫌気濾床槽第2室132への水の移流経路に関し、嫌気濾床槽第1室131の濾材上部領域135から、区画部材139の上縁部139aを越流して、嫌気濾床槽第2室132の濾材上部領域137へと移流する場合について記載したが、本発明では、嫌気濾床槽第1室131から嫌気濾床槽第2室132への水の移流経路はこの形態に限定されない。例えば、槽底部に設けられた開口部を通じて嫌気濾床槽第1室131から嫌気濾床槽第2室132へと水が移流する構成や、ポンプ等の手段によって嫌気濾床槽第1室131から嫌気濾床槽第2室132へと水が移送される構成等を採用することもできる。   Moreover, in the said embodiment, regarding the advection path | route of the water from the anaerobic filter bed tank 1st chamber 131 to the anaerobic filter bed tank 2nd chamber 132, it is a partition member from the filter material upper area | region 135 of the anaerobic filter bed tank 1st chamber 131. Although the case where it flows over the upper edge part 139a of 139 and is transferred to the filter medium upper region 137 of the anaerobic filter bed tank second chamber 132 has been described, in the present invention, the anaerobic filter bed tank 131 from the anaerobic filter bed tank first chamber 131 is described. The advection path of the water to the tank 2nd chamber 132 is not limited to this form. For example, the structure in which water flows from the anaerobic filter bed tank first chamber 131 to the anaerobic filter bed tank second chamber 132 through an opening provided at the bottom of the tank, or an anaerobic filter bed tank first chamber 131 by means such as a pump. A configuration in which water is transferred to the second chamber 132 from the anaerobic filter bed can also be adopted.

また、上記実施の形態では、エアリフトポンプ163を用いることにより、嫌気濾床槽130から好気処理槽150へと流れる水の流量調整を行う場合について記載したが、本発明ではこの流量調整を省略し、嫌気濾床槽130の水が好気処理槽150へと押し出し流れやオーバーフローの原理によって流れる構成を採用することもできる。   Moreover, in the said embodiment, although the flow volume adjustment of the water which flows from the anaerobic filter bed tank 130 to the aerobic treatment tank 150 was described by using the air lift pump 163, this flow volume adjustment was abbreviate | omitted in this invention. It is also possible to adopt a configuration in which the water in the anaerobic filter bed tank 130 flows to the aerobic treatment tank 150 by the flow of extrusion or overflow.

また、上記実施の形態の水処理装置100では、水処理機構101aが、夾雑物除去槽110、好気処理部200、嫌気濾床槽130、好気処理槽150、沈殿槽170及び消毒槽190の処理要素によって構成される場合について記載したが、処理要素の数や種類に関しては必要に応じて選択が可能であり、水処理機構に夾雑物除去槽110のような固液分離処理部、嫌気濾床槽130のような嫌気処理部、好気処理槽150のような好気処理部が少なくとも含まれる水処理装置に対し本発明を適用することができる。   Moreover, in the water treatment apparatus 100 of the said embodiment, the water treatment mechanism 101a has the contaminant removal tank 110, the aerobic treatment part 200, the anaerobic filter bed tank 130, the aerobic treatment tank 150, the sedimentation tank 170, and the disinfection tank 190. However, the number and types of processing elements can be selected as necessary, and the water-treatment mechanism can include a solid-liquid separation processing unit such as the contaminant removal tank 110, anaerobic. The present invention can be applied to a water treatment apparatus including at least an anaerobic treatment unit such as the filter bed tank 130 and an aerobic treatment unit such as the aerobic treatment tank 150.

また、上記実施の形態の水処理装置100では、長尺パイプ部材からなるメインハウジング102と、蓋部103,103とによってタンク形状とされる処理槽本体101を用いる場合について記載したが、処理槽本体の大きさや形状に関しては必要に応じて選択が可能であり、例えば処理槽本体が半割れ槽状の上槽及び下槽を互いに突き合わせて構成される水処理装置に対し本発明を適用することもできる。   Moreover, in the water treatment apparatus 100 of the said embodiment, although the case where the processing tank main body 101 made into a tank shape with the main housing 102 which consists of a long pipe member and the cover parts 103 and 103 was used was described, The size and shape of the main body can be selected as necessary. For example, the present invention is applied to a water treatment apparatus in which a treatment tank body is configured by abutting an upper tank and a lower tank in a half-cracked tank shape. You can also.

本発明の「水処理装置」にかかる一実施の形態の水処理装置100の概要を示す図である。It is a figure which shows the outline | summary of the water treatment apparatus 100 of one Embodiment concerning the "water treatment apparatus" of this invention. 図1中の水処理装置100における水処理フローを示す図である。It is a figure which shows the water treatment flow in the water treatment apparatus 100 in FIG. 図1中の嫌気濾床槽130での水の流れを模式的に示す図である。It is a figure which shows typically the flow of the water in the anaerobic filter bed tank 130 in FIG.

100…水処理装置
101…処理槽本体
101a…水処理機構
102…メインハウジング
103…蓋部
104…流入管
105…流出管
106…マンホール
110…夾雑物除去槽
111…固液分離領域
112…隔壁
113…隔壁
114…移流開口
120…流入バッフル
121…区画領域
122…流出部
123…流出バッフル
124…流入部
125…区画領域
126…移送ポンプ
130…嫌気濾床槽
131…嫌気濾床槽第1室
132…嫌気濾床槽第2室
133,136…嫌気濾床
134,138…濾材下部領域
135,137…濾材上部領域
139…区画部材
139a…上縁部
140…誘導部材
141…区画領域
142…流出部
150…好気処理槽
151…好気濾床
152…接触材上部領域
153…接触材下部領域
154…散気装置
155…ブロワ
156…隔壁
157…移流開口
160…導入部材
161…開口部
162…導入空間
163…エアリフトポンプ
164…吸入口
165…吐出口
170…沈殿槽
171…移流開口
172…隔壁
190…消毒槽
191…薬剤筒
200…好気処理部
201…担体充填領域
202…散気装置
203…ブロワ
DESCRIPTION OF SYMBOLS 100 ... Water treatment apparatus 101 ... Treatment tank main body 101a ... Water treatment mechanism 102 ... Main housing 103 ... Cover part 104 ... Inflow pipe 105 ... Outflow pipe 106 ... Manhole 110 ... Contaminant removal tank 111 ... Solid-liquid separation area 112 ... Partition wall 113 ... partition wall 114 ... advection opening 120 ... inflow baffle 121 ... partition area 122 ... outflow part 123 ... outflow baffle 124 ... inflow part 125 ... partition area 126 ... transfer pump 130 ... anaerobic filter bed tank 131 ... anaerobic filter bed tank first chamber 132 ... anaerobic filter bed second chamber 133, 136 ... anaerobic filter beds 134, 138 ... filter medium lower area 135, 137 ... filter medium upper area 139 ... partition member 139a ... upper edge 140 ... guide member 141 ... partition area 142 ... outflow section 150 ... Aerobic treatment tank 151 ... Aerobic filter bed 152 ... Contact material upper region 153 ... Contact material lower region 154 ... Aeration device 155 ... Bro 156... Partition 157. Transfer opening 160. Introduction member 161. Opening 162. 200 ... Aerobic processing part 201 ... Carrier filling area 202 ... Air diffuser 203 ... Blower

Claims (3)

処理槽本体と、前記処理槽本体に収容される水処理機構とを有する水処理装置であって、
前記水処理機構は、
当該水処理機構に流入した水を固液分離処理する固液分離処理部と、
前記固液分離処理部で固液分離処理された水を嫌気処理する嫌気処理部と、
前記嫌気処理部で嫌気処理された水を好気処理する好気処理部と、
前記嫌気処理部と前記好気処理部を区画するべく、前記処理槽本体の槽上下方向に長尺状に延在する障壁と、
前記固液分離処理部及び前記嫌気処理部を区画するべく、前記処理槽本体の槽上下方向に長尺状に延在する第2障壁と、
を含み、
前記固液分離処理部、前記嫌気処理部及び前記好気処理部が、当該水処理機構での水の処理流れに関して直列状に配設された構成であり、
前記嫌気処理部は、
嫌気処理用の第1の嫌気濾材が充填された第1充填領域と、
当該嫌気処理部での水の処理流れに関して前記第1充填領域の下流に配置され、嫌気処理用の第2の嫌気濾材が充填された第2充填領域と、
前記第1充填領域を収容するとともに、前記処理槽本体の槽上下方向に関し前記第1充填領域よりも上方の濾材上部領域と、前記処理槽本体の槽上下方向に関し前記第1充填領域よりも下方の濾材下部領域とを備えた第1室と、
前記第2充填領域を収容するとともに、前記処理槽本体の槽上下方向に関し前記第2充填領域よりも上方の第2の濾材上部領域と、前記処理槽本体の槽上下方向に関し前記第2充填領域よりも下方の第2の濾材下部領域とを備え、前記第1室に並置された第2室と、
前記第1室及び前記第2室を区画するべく、前記処理槽本体の槽上下方向に長尺状に延在する区画部材と、
前記第2障壁の上部に開口形成された第2開口部を有し、前記固液分離処理部で処理された水を前記第1室の前記濾材下部領域に導入する水導入路と、
前記濾材下部領域から前記第1充填領域を上向きに流通して前記濾材上部領域に流れた水を前記第2室に導出するために、前記濾材上部領域と前記第2の濾材上部領域とを連通するべく、前記区画部材の上部に開口形成された開口部を有する水導出路と、
前記第2の濾材上部領域から前記第2充填領域を下向きに流通して前記第2の濾材下部領域に流れた水を前記好気処理部に導出する第2の水導出路と、を備え、
当該水処理装置に流入した水は、前記第1充填領域で前記第1の嫌気濾材に接触するよりも前に別の嫌気濾材に接触することなく、前記第1充填領域を上向きに流通して流れるように構成されており、
前記開口部の下端と前記第2開口部の下端が前記槽上下方向に関して一致するように設けられていることを特徴とする水処理装置。
A water treatment apparatus having a treatment tank body and a water treatment mechanism accommodated in the treatment tank body,
The water treatment mechanism is
A solid-liquid separation processing unit for performing solid-liquid separation processing on the water flowing into the water treatment mechanism;
An anaerobic treatment unit for anaerobically treating the water subjected to the solid-liquid separation treatment in the solid-liquid separation treatment unit;
An aerobic treatment unit that aerobically treats the water anaerobically treated by the anaerobic treatment unit;
In order to partition the anaerobic treatment part and the aerobic treatment part, a barrier extending in a long shape in the tank vertical direction of the treatment tank body,
A second barrier extending in a vertical direction in the tank vertical direction of the processing tank main body in order to partition the solid-liquid separation processing unit and the anaerobic processing unit;
Including
The solid-liquid separation processing unit, the anaerobic processing unit and the aerobic processing unit are arranged in series with respect to the water treatment flow in the water treatment mechanism,
The anaerobic treatment unit is
A first filling region filled with a first anaerobic filter medium for anaerobic treatment;
A second filling region disposed downstream of the first filling region with respect to the water treatment flow in the anaerobic treatment unit and filled with a second anaerobic filter medium for anaerobic treatment;
The first filling region is accommodated , and the filter medium upper region above the first filling region with respect to the tank vertical direction of the processing tank main body, and below the first filling region with respect to the tank vertical direction of the processing tank main body. A first chamber comprising a filter medium lower region ;
The second filling area is accommodated in the tank upper direction of the processing tank main body and the second filter medium upper area above the second filling area with respect to the tank vertical direction of the processing tank main body, and the tank filling direction of the processing tank main body. A second chamber below the second filter medium, and a second chamber juxtaposed to the first chamber;
A partition member extending in a long shape in the vertical direction of the tank of the processing tank to partition the first chamber and the second chamber;
A water introduction path having a second opening formed in an upper part of the second barrier, and introducing water treated by the solid-liquid separation processing unit into the lower region of the filter medium in the first chamber;
The upper filter material region and the second upper filter material region communicate with each other in order to flow water flowing upward from the lower filter material region through the first packed region and flowing into the upper filter material region into the second chamber. In order to do so, a water outlet path having an opening formed in the upper part of the partition member;
A second water outlet path for flowing water downward from the second filter medium upper region to the second filter medium lower region and leading the water flowing to the second filter medium lower region to the aerobic treatment section,
The water that has flowed into the water treatment device flows upward in the first filling area without contacting another anaerobic filter medium before contacting the first anaerobic filter medium in the first filling area. Configured to flow ,
A water treatment apparatus, wherein a lower end of the opening and a lower end of the second opening are provided so as to coincide with each other in the tank vertical direction .
請求項に記載の水処埋装置であって、
前記嫌気処理部は、当該嫌気処理部の水処理に関する有効容量に占める前記嫌気濾材の濾材充填率が20〜60%とされた構成であることを特徴とする水処理装置。
The water treatment device according to claim 1 ,
The said anaerobic process part is the structure by which the filter medium filling rate of the said anaerobic filter medium occupied in the effective capacity | capacitance regarding the water treatment of the said anaerobic process part was 20 to 60%, The water treatment apparatus characterized by the above-mentioned.
請求項1または2に記載の水処埋装置であって、
前記嫌気処理部と前記好気処理部との間に、前記嫌気処理部で嫌気処理された後に前記好気処理部へと移流する水の流量を調整可能な流量調整部を備える構成であることを特徴とする水処理装置。
The water treatment device according to claim 1 or 2 ,
Between the anaerobic processing unit and the aerobic processing unit, a configuration is provided with a flow rate adjusting unit capable of adjusting the flow rate of water transferred to the aerobic processing unit after being anaerobically processed by the anaerobic processing unit. Water treatment device characterized by.
JP2009142360A 2009-06-15 2009-06-15 Water treatment equipment Active JP5259502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142360A JP5259502B2 (en) 2009-06-15 2009-06-15 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142360A JP5259502B2 (en) 2009-06-15 2009-06-15 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2010284620A JP2010284620A (en) 2010-12-24
JP5259502B2 true JP5259502B2 (en) 2013-08-07

Family

ID=43540750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142360A Active JP5259502B2 (en) 2009-06-15 2009-06-15 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP5259502B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016490B (en) * 2014-06-23 2016-04-06 珠江水利委员会珠江水利科学研究院 The application of many gallery interlocking filter wall microbial film apparatus for treating sewage in sewage disposal
JP7290458B2 (en) * 2019-05-07 2023-06-13 株式会社ハウステック Water treatment equipment and its operation method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316898U (en) * 1986-07-14 1988-02-04
JPH0291697U (en) * 1988-12-28 1990-07-20
JPH0361997U (en) * 1989-10-24 1991-06-18
JPH0717437Y2 (en) * 1989-12-20 1995-04-26 株式会社クボタ Sewage septic tank
JPH0611899U (en) * 1991-12-20 1994-02-15 麒麟麦酒株式会社 Purification device
JPH0819790A (en) * 1994-07-08 1996-01-23 Best Kogyo Kk Sewage treatment apparatus
JPH08276195A (en) * 1995-04-07 1996-10-22 Nikko Co Method and apparatus for purifying sewage and aerobic bacteria holding carrier
JP2000354858A (en) * 2000-01-01 2000-12-26 Fuji Clean Kogyo Kk Sewage treatment method and device therefor
JP3977122B2 (en) * 2002-03-28 2007-09-19 フジクリーン工業株式会社 Waste water treatment device and air supply method in waste water treatment device
JP3437966B1 (en) * 2002-05-08 2003-08-18 フジクリーン工業株式会社 Fluid supply pipe and wastewater treatment apparatus provided with the fluid supply pipe
JP4113409B2 (en) * 2002-10-16 2008-07-09 フジクリーン工業株式会社 Septic tank, how to use septic tank
JP4171290B2 (en) * 2002-12-03 2008-10-22 フジクリーン工業株式会社 Septic tank and sewage treatment method
JP4413077B2 (en) * 2004-05-21 2010-02-10 フジクリーン工業株式会社 Water treatment equipment
JP4812354B2 (en) * 2005-07-22 2011-11-09 フジクリーン工業株式会社 Water transfer pump, water treatment device
JP2007117908A (en) * 2005-10-28 2007-05-17 Kubota Corp Septic tank
JP2007307439A (en) * 2006-05-16 2007-11-29 Kubota Corp Purifying chamber and nozzle object
JP5001604B2 (en) * 2006-08-16 2012-08-15 フジクリーン工業株式会社 Water treatment equipment
JP2008043918A (en) * 2006-08-21 2008-02-28 Best Tech:Kk Contact aeration method and equipment for organic wastewater
JP2008200604A (en) * 2007-02-20 2008-09-04 Fuji Clean Kogyo Kk Bubble treatment device and water treatment apparatus
JP2008272702A (en) * 2007-05-02 2008-11-13 Nissin Industries Ltd Consolidated septic tank

Also Published As

Publication number Publication date
JP2010284620A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP4787133B2 (en) Water treatment apparatus and water treatment method
JP4945110B2 (en) Water treatment equipment
JP2010247051A (en) Water treatment apparatus
JP4702748B2 (en) Water treatment equipment
JP5259502B2 (en) Water treatment equipment
JP2007117908A (en) Septic tank
JP4413077B2 (en) Water treatment equipment
JP5048708B2 (en) Septic tank
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JP4113409B2 (en) Septic tank, how to use septic tank
JP6667188B2 (en) Water treatment equipment, water treatment method
JP6657524B2 (en) Water treatment equipment
JP2001079576A (en) Private sewage treatment tank
JP4022815B2 (en) Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber
JP4171290B2 (en) Septic tank and sewage treatment method
JP4454825B2 (en) Wastewater purification tank and wastewater purification method
KR950011768B1 (en) Waste water purifier
JP4712953B2 (en) Wastewater septic tank
JP4999672B2 (en) Wastewater septic tank
JP2004122080A (en) Septic tank with chambers having prescribed volume ratio
JP7290458B2 (en) Water treatment equipment and its operation method
JP4509460B2 (en) Solid-liquid separation tank having a filter bed and sewage septic tank provided with the same
WO2020031684A1 (en) Water purifier tank
JPH09206793A (en) Sewage treatment and sewage treating device
JP6017892B2 (en) Wastewater septic tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5259502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250