JP5258402B2 - Electron beam surface treatment apparatus and electron beam surface treatment method - Google Patents

Electron beam surface treatment apparatus and electron beam surface treatment method Download PDF

Info

Publication number
JP5258402B2
JP5258402B2 JP2008151732A JP2008151732A JP5258402B2 JP 5258402 B2 JP5258402 B2 JP 5258402B2 JP 2008151732 A JP2008151732 A JP 2008151732A JP 2008151732 A JP2008151732 A JP 2008151732A JP 5258402 B2 JP5258402 B2 JP 5258402B2
Authority
JP
Japan
Prior art keywords
electron beam
surface treatment
processed
deflection
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008151732A
Other languages
Japanese (ja)
Other versions
JP2009297725A (en
Inventor
武士 物種
祥瑞 竹野
正博 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008151732A priority Critical patent/JP5258402B2/en
Publication of JP2009297725A publication Critical patent/JP2009297725A/en
Application granted granted Critical
Publication of JP5258402B2 publication Critical patent/JP5258402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Description

この発明は、電子ビームを用いて金属の表面処理を行う電子ビーム表面処理装置及び電子ビーム表面処理方法に関するものである。   The present invention relates to an electron beam surface treatment apparatus and an electron beam surface treatment method for performing metal surface treatment using an electron beam.

一般に、金型は切削加工機械や放電加工によって粗加工した後、表面の仕上げ加工が必要である。従来は、この仕上げ加工は熟練者による研磨で行われており、多大な時間とコストが必要となっていた。そこで、手作業によらずに被処理物の表面を平滑化するために、被処理物の表面の広い範囲にわたって電子ビームをパルス照射して表面処理を行うようにした技術(例えば、特許文献1参照)や、電子ビームを被処理物付近に焦点を合わせ、二次元走査して表面処理するようにした技術(例えば、特許文献2参照)がそれぞれ提案されている。   In general, a die must be subjected to surface finishing after rough machining by a cutting machine or electric discharge machining. Conventionally, this finishing process is performed by polishing by a skilled worker, and much time and cost are required. Therefore, in order to smooth the surface of the object to be processed without relying on manual work, a technique for performing surface treatment by irradiating an electron beam over a wide range of the surface of the object to be processed (for example, Patent Document 1). And a technique (for example, see Patent Document 2) in which an electron beam is focused on the vicinity of an object to be processed and surface-treated by two-dimensional scanning is proposed.

特開2004−1086号公報(第3〜5頁、図1)Japanese Patent Laid-Open No. 2004-1086 (pages 3 to 5, FIG. 1) 特開2006−35263号公報(第4〜9頁、図1)Japanese Patent Laying-Open No. 2006-35263 (pages 4-9, FIG. 1)

特許文献1に記載されている技術は、微細な表面粗さに仕上げることが可能であるが、広い面積にわたって電子ビームが照射されるため、表面層が溶融凝固した後に引っ張り残留応力が生じ易く、被処理物の表面に微細なクラックを生じる。また、被処理物の形状が複雑なものでは、その表面に均一に電子ビームを照射することができない。このため、表面粗さに局所的なむらを生じ易い。
特許文献2に記載されている技術では、被処理面の表面に焦点を合わせ、ビーム径がφ 0.03mmくらいで、電子ビームをデジタル的に微少量(例えば0.01mm〜0.05mm)ずつ予め設定された位置をデータ通りに動かし、二次元走査を行うため、複雑な形状であっても表面処理が行えるが、表面粗さが1μm程度までにしか改善されない。
被処理物の特性を改善する物質を被処理面に塗布し、電子ビームを照射して被処理面に一体化させ、特性を改善する処理を行う場合、従来の照射方法では照射後に塗布物質の存在に偏りが生じ、均一な表面特性を得られないという問題があった。
The technique described in Patent Document 1 can finish to a fine surface roughness, but since an electron beam is irradiated over a wide area, tensile residual stress is likely to occur after the surface layer is melted and solidified, Fine cracks are generated on the surface of the workpiece. Moreover, if the shape of the object to be processed is complicated, the surface cannot be irradiated with an electron beam uniformly. For this reason, local unevenness is likely to occur in the surface roughness.
In the technique described in Patent Document 2, the surface of the surface to be processed is focused, the beam diameter is about φ 0.03 mm, and the electron beam is digitally minutely (for example, 0.01 mm to 0.05 mm). Since the preset position is moved according to the data and two-dimensional scanning is performed, surface treatment can be performed even with a complicated shape, but the surface roughness can be improved only to about 1 μm.
When a material that improves the properties of the workpiece is applied to the surface to be processed, and is irradiated with an electron beam to be integrated with the surface to be processed, and the processing to improve the properties is performed, the conventional irradiation method uses a coating material after irradiation. There was a problem that the existence was uneven and uniform surface characteristics could not be obtained.

この発明は、上述のような課題を解決するためになされたものであり、被処理物の表面の溶融領域の湯流れを抑制し、微細な表面粗さに仕上げることができる電子ビーム表面処理装置及び電子ビーム表面処理方法を得ることを目的にしている。   The present invention has been made in order to solve the above-described problems, and suppresses the flow of molten metal in the molten region on the surface of the object to be processed, and can be finished to a fine surface roughness. And an electron beam surface treatment method.

この発明に係わる電子ビーム表面処理装置においては、被処理物を載置し、XYZ方向に移動するように構成されたテーブル、被処理物に電子ビームを照射するための電子ビーム照射装置、この電子ビーム照射装置により照射された電子ビームを偏向させる偏向レンズを制御する偏向制御装置、及びテーブル及び電子ビーム照射装置を制御する制御装置を備え、制御装置及び偏向制御装置は、偏向レンズを制御し、電子ビームを、この電子ビームの進行方向に対し前後に微小に振動させながら前進させ、被処理物の処理対象領域を電子ビームによって走査させるものである。 In the electron beam surface treatment apparatus according to the present invention, a table on which an object to be processed is placed and moved in the XYZ directions, an electron beam irradiation apparatus for irradiating the object to be processed with an electron beam, the electron A deflection control device that controls a deflection lens that deflects the electron beam irradiated by the beam irradiation device, and a control device that controls the table and the electron beam irradiation device; the control device and the deflection control device control the deflection lens; an electron beam, is advanced while minutely oscillated back and forth with respect to the traveling direction of the electron beam is intended to scan the processing target area of the object to be processed by the electron beam.

この発明は、以上説明したように、被処理物を載置し、XYZ方向に移動するように構成されたテーブル、被処理物に電子ビームを照射するための電子ビーム照射装置、この電子ビーム照射装置により照射された電子ビームを偏向させる偏向レンズを制御する偏向制御装置、及びテーブル及び電子ビーム照射装置を制御する制御装置を備え、制御装置及び偏向制御装置は、偏向レンズを制御し、電子ビームを、この電子ビームの進行方向に対し前後に微小に振動させながら前進させ、被処理物の処理対象領域を電子ビームによって走査させるので、処理対象領域内の溶融による湯流れを抑制することができ、平坦性を改善することができる。 As described above, the present invention includes a table configured to place an object to be processed and moved in the XYZ directions, an electron beam irradiation apparatus for irradiating the object to be processed with an electron beam, and the electron beam irradiation. A deflection control device that controls a deflection lens that deflects the electron beam irradiated by the apparatus, and a control device that controls the table and the electron beam irradiation device are provided. The control device and the deflection control device control the deflection lens, and the electron beam Is moved forward and backward with a slight vibration in the traveling direction of the electron beam, and the region to be processed of the object to be processed is scanned by the electron beam, so that the flow of molten metal due to melting in the region to be processed can be suppressed. , Flatness can be improved.

実施の形態1.
図1は、この発明の実施の形態1による電子ビーム表面処理装置を示す構成図である。
図1において、電子ビーム表面処理装置1は、真空チャンバ2内に、被処理部Wを載置するXYZテーブル4(テーブル)と、被処理部Wに向けて電子ビームを発生する電子銃8と、この電子銃8からの電子ビームを収束する収束レンズ9と、収束レンズ9によって収束された電子ビームを偏向する偏向レンズ10とを有している。電子銃8と、収束レンズ9と、偏向レンズ10は、電子ビーム照射装置3を構成する。
真空チャンバ2の外部には、真空排気装置5、電源装置6、および制御装置7が設けられている。真空排気装置5は、被処理物WをXYZテーブル4上に載置した後、真空チャンバ2内が所定の真空度に達するまで真空引きを行う。制御装置7は、マイクロコンピュータ等から構成され、予め設定された制御プログラムに基づいて電子ビーム照射装置3、XYZテーブル4、真空排気装置5、および電源装置6の各動作を制御し、さらに、電子ビームが被処理物Wの表面の照射位置に常に焦点を結ぶように収束レンズ9を制御する。偏向制御装置11は、偏向レンズ10を制御する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an electron beam surface treatment apparatus according to Embodiment 1 of the present invention.
In FIG. 1, an electron beam surface treatment apparatus 1 includes an XYZ table 4 (table) on which a processing target W is placed in a vacuum chamber 2, and an electron gun 8 that generates an electron beam toward the processing target W. And a converging lens 9 for converging the electron beam from the electron gun 8 and a deflecting lens 10 for deflecting the electron beam converged by the converging lens 9. The electron gun 8, the converging lens 9, and the deflection lens 10 constitute an electron beam irradiation device 3.
A vacuum exhaust device 5, a power supply device 6, and a control device 7 are provided outside the vacuum chamber 2. The vacuum evacuation device 5 evacuates the workpiece W after placing it on the XYZ table 4 until the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum. The control device 7 is constituted by a microcomputer or the like, and controls each operation of the electron beam irradiation device 3, the XYZ table 4, the vacuum exhaust device 5, and the power supply device 6 based on a preset control program. The converging lens 9 is controlled so that the beam always focuses on the irradiation position on the surface of the workpiece W. The deflection control device 11 controls the deflection lens 10.

図2は、この発明の実施の形態1による電子ビーム表面処理装置の電子ビーム軌跡を示す説明図である。
図2において、偏向制御装置11によって電子ビームを微小振動軌跡12のように進行方向に対し前後に微小に振動させる。制御装置7の制御により、全体としての電子ビーム軌跡13が被処理物Wに描かれる。
FIG. 2 is an explanatory diagram showing an electron beam trajectory of the electron beam surface treatment apparatus according to Embodiment 1 of the present invention.
In FIG. 2, the deflection control device 11 causes the electron beam to vibrate slightly back and forth with respect to the traveling direction as shown by a minute vibration locus 12. The electron beam trajectory 13 as a whole is drawn on the workpiece W under the control of the control device 7.

図3は、この発明の実施の形態1による電子ビーム表面処理装置の処理対象領域内の電子ビーム軌跡を示す説明図である。
図3において、被処理物Wの表面処理が必要な処理対象領域14内を二次元走査された全体としての電子ビーム軌跡13が示されている。
FIG. 3 is an explanatory diagram showing an electron beam trajectory in the processing target region of the electron beam surface processing apparatus according to Embodiment 1 of the present invention.
In FIG. 3, an electron beam trajectory 13 as a whole that is two-dimensionally scanned within the processing target region 14 that requires surface treatment of the workpiece W is shown.

次に、動作について説明する。
実施の形態1の電子ビーム表面処理装置1は、鋼等の鉄系金属、あるいはアルミニウム合金、チタン合金、超硬合金等の非鉄金属からなる被処理物Wの表面処理を行うものであって、真空チャンバ2内に電子ビーム照射装置3とXYZテーブル4とが配置されている。
被処理物WをXYZテーブル4上に載置した後、真空排気装置5により真空チャンバ2内が所定の真空度に達するまで真空引きを行う。真空チャンバ2内が所定の真空度に達すると、制御装置7は、XYZテーブル4を駆動して表面処理が必要とされる処理対象領域に電子ビームが照射可能な位置まで被処理物Wを移動させた後、電源装置6を起動して電子銃8から電子ビームを発生させる。
電子ビーム照射装置3は、被処理物Wの表面に電子ビームを照射するもので、電子ビームは収束レンズ9で収束された後、偏向レンズ10で偏向されて被処理物Wの表面に照射される。
マイクロコンピュータ等から構成された制御装置7は、予め設定された制御プログラムに基づいて電子ビーム照射装置3、XYZテーブル4、真空排気装置5、電源装置6の各動作を制御するとともに、電子ビームが被処理物Wの表面の照射位置に常に焦点を結ぶように収束レンズ9を制御する。このとき、ビーム径は処理領域に対し十分小さい。
Next, the operation will be described.
The electron beam surface treatment apparatus 1 according to Embodiment 1 performs surface treatment of an object to be processed W made of a ferrous metal such as steel, or a non-ferrous metal such as an aluminum alloy, a titanium alloy, or a cemented carbide, An electron beam irradiation device 3 and an XYZ table 4 are arranged in the vacuum chamber 2.
After the workpiece W is placed on the XYZ table 4, vacuuming is performed by the vacuum exhaust device 5 until the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum. When the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum, the control device 7 drives the XYZ table 4 to move the workpiece W to a position where an electron beam can be irradiated to a processing target area where surface processing is required. Then, the power supply device 6 is activated to generate an electron beam from the electron gun 8.
The electron beam irradiation device 3 irradiates the surface of the workpiece W with the electron beam. The electron beam is converged by the converging lens 9, then deflected by the deflection lens 10 and irradiated on the surface of the workpiece W. The
The control device 7 constituted by a microcomputer or the like controls each operation of the electron beam irradiation device 3, the XYZ table 4, the vacuum exhaust device 5, and the power supply device 6 based on a preset control program, The converging lens 9 is controlled so that the irradiation position on the surface of the workpiece W is always focused. At this time, the beam diameter is sufficiently small with respect to the processing region.

次に、実施の形態1での電子ビーム照射方法を、図2、図3を用いて説明する。
図2に示すように、偏向制御装置11によって電子ビームを、微小振動軌跡12のように電子ビームの進行方向に対し、前後に微小に振動させながら、制御装置7と偏向制御装置11により偏向レンズ10を制御して、全体としてのビーム軌跡13を描かせる。
この全体としての電子ビーム軌跡13は、図3に示すように、被処理物Wの表面処理が必要な処理対象領域14内を、溶融ムラが生じないように二次元走査することによって得られる。
このように、電子ビームを被処理物Wの処理対象領域内で走査の際、局所的に進行方向に対して振動しながら走査することで、走査の際に形成される溶融領域に対し、進行方向後方にも入熱が行われる。これにより、溶融領域内の温度場が均一、もしくは温度勾配が減少する。
溶融領域内の温度勾配が減少すると、溶融領域内で生じる対流や振動を低減させることができ、凝固後、表面の平坦性が改善され、一度の走査で0.5μm程度の微細な表面粗さに仕上げることができる。
Next, the electron beam irradiation method in Embodiment 1 is demonstrated using FIG. 2, FIG.
As shown in FIG. 2, the deflection control device 11 causes the electron beam to vibrate slightly back and forth with respect to the traveling direction of the electron beam as shown by a minute vibration trajectory 12, while the control device 7 and the deflection control device 11 use the deflection lens. 10 is controlled to draw the beam trajectory 13 as a whole.
As shown in FIG. 3, the entire electron beam trajectory 13 is obtained by two-dimensionally scanning the processing target region 14 that requires surface treatment of the workpiece W so as not to cause melting unevenness.
In this way, when the electron beam is scanned within the region to be processed of the workpiece W, the scanning is performed while locally vibrating in the traveling direction, so that the electron beam proceeds with respect to the melting region formed at the time of scanning. Heat is input also in the direction rear. Thereby, the temperature field in the melting region is uniform or the temperature gradient is reduced.
When the temperature gradient in the melting region decreases, convection and vibration generated in the melting region can be reduced, the surface flatness is improved after solidification, and a fine surface roughness of about 0.5 μm in one scan. Can be finished.

実施の形態1によれば、電子ビームを被処理物Wの処理対象領域内で走査する際、局所的に進行方向に対して前後に振動しながら走査することで、走査の際に形成される溶融領域に対し、進行方向後方にも入熱が行われることにより、溶融領域内の温度場が均一、もしくは温度勾配が減少し、溶融領域内で生じる対流や振動を低減させることができ、凝固後、表面の平坦性が改善され、一度の走査で0.5μm程度の微細な表面粗さに仕上げることができる。   According to the first embodiment, when the electron beam is scanned in the processing target region of the workpiece W, the scanning is performed while locally oscillating back and forth in the traveling direction. The heat input to the molten region is also performed in the rearward direction, so that the temperature field in the molten region is uniform or the temperature gradient is reduced, and the convection and vibration generated in the molten region can be reduced. Thereafter, the flatness of the surface is improved, and it is possible to finish the surface with a fine surface roughness of about 0.5 μm by a single scan.

実施の形態2.
実施の形態2は、実施の形態1において、偏向制御装置11によって電子ビームを進行方向に対し前後に微小に振動させながら、制御装置7により、被処理物Wを載置したXYZテーブル4を移動させることにより、全体としてのビーム軌跡13を描くようにしたものである。このとき、XYZテーブル4と電子ビームの両方を制御して、全体としてのビーム軌跡13を描くようにしてもよい。
Embodiment 2. FIG.
In the second embodiment, the XYZ table 4 on which the workpiece W is placed is moved by the controller 7 while the electron beam is vibrated minutely back and forth with respect to the traveling direction by the deflection controller 11 in the first embodiment. By doing so, the beam trajectory 13 as a whole is drawn. At this time, the beam trajectory 13 as a whole may be drawn by controlling both the XYZ table 4 and the electron beam.

実施の形態3.
図4は、この発明の実施の形態3による電子ビーム表面処理装置の電子ビーム軌跡を示す説明図である。
図4において、偏向制御装置11によってビームを被処理物Wの表面上に、局所的に円の走査軌跡15を繰り返し描くように走査する。この状態で電子ビームと被処理物Wとを相対的に移動させると、局部的には円の走査軌跡15を繰り返し描くような電子ビーム軌跡16が得られる。全体としては一方向に走査する電子ビーム軌跡17となる。
Embodiment 3 FIG.
FIG. 4 is an explanatory view showing an electron beam locus of an electron beam surface treatment apparatus according to Embodiment 3 of the present invention.
In FIG. 4, the deflection control device 11 scans the beam on the surface of the workpiece W so as to repeatedly draw a circular scanning locus 15 locally. When the electron beam and the workpiece W are relatively moved in this state, an electron beam locus 16 that repeatedly draws a circular scanning locus 15 is obtained locally. As a whole, the electron beam locus 17 is scanned in one direction.

実施の形態3は、実施の形態1の図1のような構成で、電子ビームの走査を次のような走査方法にする。
偏向制御装置11によってビームを被処理物Wの表面上に、局所的に円の軌跡15を繰り返し描くように走査する。この状態で、偏向レンズ10を制御することにより、局部的には円の軌跡15を繰り返し描くような電子ビーム軌跡16となり、全体としては一方向に走査する電子ビーム軌跡17を描かせる。
この全体としての電子ビーム軌跡17は、図3に示すように、被処理物Wの表面処理が必要な処理対象領域14内において溶融ムラが生じないように二次元走査することで得られる。
このように、電子ビームを被処理物Wの処理対象領域14内で走査の際、局所的に円の軌跡を繰り返し描くように走査することで、走査の際に形成される溶融領域に対し、進行方向後方にも入熱が行われる。これにより、溶融領域内の温度場が均一、もしくは温度勾配が減少する。溶融領域内の温度勾配が減少すると、溶融領域内で生じる対流や振動を低減させることができ、凝固後、表面の平坦性が改善され、一度の走査で0.5μm程度の微細な表面粗さに仕上げることができる。
The third embodiment is configured as shown in FIG. 1 of the first embodiment, and the electron beam scanning is performed as follows.
The deflection controller 11 scans the beam on the surface of the workpiece W so as to repeatedly draw a circular locus 15 locally. By controlling the deflecting lens 10 in this state, an electron beam locus 16 that locally draws a circular locus 15 is obtained, and an electron beam locus 17 that scans in one direction as a whole is drawn.
As shown in FIG. 3, the entire electron beam trajectory 17 is obtained by two-dimensional scanning so as not to cause melting unevenness in the processing target region 14 that requires surface treatment of the workpiece W.
As described above, when scanning the electron beam in the processing target region 14 of the workpiece W so as to repeatedly draw the locus of a circle locally, the molten region formed at the time of scanning is Heat input is also performed at the rear in the direction of travel. Thereby, the temperature field in the melting region is uniform or the temperature gradient is reduced. When the temperature gradient in the melting region decreases, convection and vibration generated in the melting region can be reduced, the surface flatness is improved after solidification, and a fine surface roughness of about 0.5 μm in one scan. Can be finished.

実施の形態3によれば、電子ビームを被処理物Wの処理対象領域14内で走査の際、局所的に円の軌跡を繰り返し描くように走査することで、走査の際に形成される溶融領域に対し、進行方向後方にも入熱が行われることにより、溶融領域内の温度場が均一、もしくは温度勾配が減少し、溶融領域内で生じる対流や振動を低減させることができ、凝固後、表面の平坦性が改善され、一度の走査で0.5μm程度の微細な表面粗さに仕上げることができる。   According to the third embodiment, when the electron beam is scanned in the processing target region 14 of the workpiece W, the scanning is performed so as to repeatedly draw the locus of a circle locally. The heat input is also applied to the rear of the region in the direction of travel, so that the temperature field in the melting region is uniform or the temperature gradient is reduced, and convection and vibration generated in the melting region can be reduced. The surface flatness is improved, and it is possible to finish the surface with a fine surface roughness of about 0.5 μm by a single scan.

実施の形態4.
実施の形態4は、実施の形態3において、偏向制御装置11によって局部的には円の軌跡15を繰り返し描きながら、制御装置7により、被処理物Wを載置したXYZテーブル4を移動させることにより、全体としてのビーム軌跡17を描くようにしたものである。このとき、XYZテーブル4と電子ビームの両方を制御して、全体としてのビーム軌跡17を描くようにしてもよい。
Embodiment 4 FIG.
In the fourth embodiment, the XYZ table 4 on which the workpiece W is placed is moved by the control device 7 while repeatedly drawing the locus 15 of the circle locally by the deflection control device 11 in the third embodiment. Thus, the beam trajectory 17 as a whole is drawn. At this time, the beam trajectory 17 as a whole may be drawn by controlling both the XYZ table 4 and the electron beam.

実施の形態5.
実施の形態5では、被処理面の特性を改善する物質を被処理面上に均一に塗布する(第一の工程)。塗布する厚みは被処理面への入熱が妨げられないように50μm以下が好ましい。被処理面への塗布後、実施の形態1〜実施の形態4に示した照射方法による電子ビーム照射を行う(第二の工程)。このとき、電子ビームの出力を制御することで、塗布物質の一部を昇華させ、残留する塗布物質量を調節することができる。
一般に、塗布物資は、被処理面が溶融すると溶融領域に入り込み、そのまま凝固することで一体化する。このとき、溶融領域に湯流れが生じると、塗布物質は溶融物に流され、残留時に偏りが生じる。これにより、特性にばらつきが生じ、さらに表面粗さの悪化も起きる。
これに対して、実施の形態1〜実施の形態4の電子ビーム照射方法では、溶融領域の湯流れを抑制できるため、均一に塗布されていれば、処理後も偏りなく均一に塗布物質が残留する。これにより、良好な特性、微細な表面粗さを得ることができる。
Embodiment 5 FIG.
In the fifth embodiment, a substance that improves the characteristics of the surface to be processed is uniformly applied on the surface to be processed (first step). The thickness to be applied is preferably 50 μm or less so that heat input to the surface to be treated is not hindered. After application to the surface to be processed, electron beam irradiation is performed by the irradiation method described in the first to fourth embodiments (second step). At this time, by controlling the output of the electron beam, a part of the coating substance can be sublimated and the amount of the remaining coating substance can be adjusted.
Generally, the coated material enters the melted region when the surface to be treated is melted, and is integrated by solidifying as it is. At this time, if a hot water flow is generated in the melting region, the coating substance is caused to flow into the melt, and deviation occurs when remaining. As a result, variations in characteristics occur, and surface roughness also deteriorates.
On the other hand, in the electron beam irradiation method according to the first to fourth embodiments, the flow of molten metal in the molten region can be suppressed. Therefore, if the coating is uniformly applied, the applied substance remains evenly even after processing. To do. Thereby, good characteristics and fine surface roughness can be obtained.

実施の形態5によれば、被処理面の特性を改善する物質を塗布した上で、電子ビーム照射を行うので、この物質を被処理面に偏りなく均一に一体化させ、表面特性を改善することができる。   According to the fifth embodiment, since the material for improving the characteristics of the surface to be processed is applied and then irradiated with the electron beam, the material is uniformly integrated with the surface to be processed without unevenness to improve the surface characteristics. be able to.

この発明の実施の形態1による電子ビーム表面処理装置を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the electron beam surface treatment apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電子ビーム表面処理装置の電子ビーム軌跡を示す説明図である。It is explanatory drawing which shows the electron beam locus | trajectory of the electron beam surface treatment apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電子ビーム表面処理装置の処理対象領域内の電子ビーム軌跡を示す説明図である。It is explanatory drawing which shows the electron beam locus | trajectory in the process target area | region of the electron beam surface treatment apparatus by Embodiment 1 of this invention. この発明の実施の形態3によるこの発明の実施の形態1による電子ビーム表面処理装置の電子ビーム軌跡を示す説明図である。It is explanatory drawing which shows the electron beam locus | trajectory of the electron beam surface treatment apparatus by Embodiment 3 of this invention by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 電子ビーム表面処理装置、2 真空チャンバ、3 電子ビーム照射装置、
4 XYZテーブル、5 真空排気装置、6 電源装置、7 制御装置、8 電子銃、
9 収束レンズ、10 偏向レンズ、11 偏向制御装置、12 微小振動軌跡、
13 全体としての電子ビーム軌跡、14 処理対象領域、15 走査軌跡、
16 電子ビーム軌跡、17 全体としての電子ビーム軌跡。
1 electron beam surface treatment device, 2 vacuum chamber, 3 electron beam irradiation device,
4 XYZ table, 5 vacuum exhaust device, 6 power supply device, 7 control device, 8 electron gun,
9 Converging lens, 10 Deflection lens, 11 Deflection control device, 12 Micro vibration locus,
13 Electron beam trajectory as a whole, 14 processing target area, 15 scanning trajectory,
16 Electron beam trajectory, 17 Electron beam trajectory as a whole.

Claims (2)

被処理物を載置し、XYZ方向に移動するように構成されたテーブル、
上記被処理物に電子ビームを照射するための電子ビーム照射装置、
この電子ビーム照射装置により照射された電子ビームを偏向させる偏向レンズを制御する偏向制御装置、
及び上記テーブル及び上記電子ビーム照射装置を制御する制御装置を備え、
上記制御装置及び上記偏向制御装置は、上記偏向レンズを制御し、上記電子ビームを、この電子ビームの進行方向に対し前後に微小に振動させながら前進させ、上記被処理物の処理対象領域を上記電子ビームによって走査させることを特徴とする電子ビーム表面処理装置。
A table configured to place an object to be processed and move in the XYZ directions;
An electron beam irradiation apparatus for irradiating the workpiece with an electron beam;
A deflection control device that controls a deflection lens that deflects the electron beam irradiated by the electron beam irradiation device;
And a control device for controlling the table and the electron beam irradiation device,
The control unit and the deflection control unit controls the deflection lens, the electron beam is advanced while minutely oscillated back and forth with respect to the traveling direction of the electron beam, the process target area of the object to be processed electron beam surface treatment apparatus, characterized in that for scanning by the electron beam.
電子ビームを偏向させる偏向レンズを制御することによって、上記電子ビームを、この電子ビームの進行方向に対し前後に微小に振動させながら前進させ、被処理物の処理対象領域を上記電子ビームによって走査させることを特徴とする電子ビーム表面処理方法。 By controlling the deflection lens for deflecting the electron beam, the electron beam is advanced while minutely oscillated back and forth with respect to the traveling direction of the electron beam to scan the processing target area of the object to be processed by the electron beam An electron beam surface treatment method.
JP2008151732A 2008-06-10 2008-06-10 Electron beam surface treatment apparatus and electron beam surface treatment method Active JP5258402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151732A JP5258402B2 (en) 2008-06-10 2008-06-10 Electron beam surface treatment apparatus and electron beam surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151732A JP5258402B2 (en) 2008-06-10 2008-06-10 Electron beam surface treatment apparatus and electron beam surface treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013009012A Division JP2013121623A (en) 2013-01-22 2013-01-22 Device and method for surface treatment with electron beam

Publications (2)

Publication Number Publication Date
JP2009297725A JP2009297725A (en) 2009-12-24
JP5258402B2 true JP5258402B2 (en) 2013-08-07

Family

ID=41545168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151732A Active JP5258402B2 (en) 2008-06-10 2008-06-10 Electron beam surface treatment apparatus and electron beam surface treatment method

Country Status (1)

Country Link
JP (1) JP5258402B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220321A (en) * 2013-05-07 2014-11-20 株式会社ジェイテクト Method of producing composite magnetic material
CN104289807B (en) * 2014-09-29 2017-02-01 中国航空工业集团公司北京航空制造工程研究所 Welding backing strip and welding method
CN106735828B (en) * 2015-11-19 2019-11-12 中国航空制造技术研究院 A kind of horizontal rifle electro-beam welding method of large size spherical shell side seam
CN107030356B (en) * 2017-05-03 2023-07-04 桂林电子科技大学 Multifunctional composite numerical control vacuum electron beam processing equipment
KR101990921B1 (en) * 2017-12-21 2019-06-19 울산과학기술원 Apparatus and method for treating surface of metal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941125A (en) * 1995-07-28 1997-02-10 Hitachi Seiki Co Ltd Method for hardening metallic surface
JPH09216075A (en) * 1996-02-06 1997-08-19 Aisin Aw Co Ltd Surface finishing method of metallic member and metallic member obtained thereby
JP3928336B2 (en) * 1999-09-21 2007-06-13 株式会社豊田自動織機 Manufacturing method of piston for compressor
JP2006315024A (en) * 2005-05-12 2006-11-24 Sodick Co Ltd Surface modification device by electronic beam irradiation

Also Published As

Publication number Publication date
JP2009297725A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
Dilberoglu et al. Current trends and research opportunities in hybrid additive manufacturing
JP5258402B2 (en) Electron beam surface treatment apparatus and electron beam surface treatment method
JP2016107299A (en) Laser cleaning device
JP2020097240A (en) Device for producing three-dimensional members
JP6203297B2 (en) Laser lap welding method
US5224997A (en) Apparatus for producing a surface layer on a metallic workpiece
CN111676477A (en) Ultrahigh-speed laser-induction composite cladding method and device
CN110625401B (en) Processing device and method under laser-induced material coupling reaction
JP5201424B2 (en) Carbon film coated cutting tool and method for manufacturing the same
TWI277475B (en) Surface processing method using electron beam and surface processing apparatus using electron beam
JP2012206145A (en) Hot wire laser welding method and apparatus
JP2007021528A (en) Laser beam machining apparatus, and method for controlling the same
US20220395906A1 (en) Laser treatment systems and methods for in-situ laser shock peening (lsp) treatment of parts during production thereof by a selective laser sintering or melting (sls/slm) process, and additive manufacturing systems and methods implementing the same
JP2010201430A (en) Method and apparatus for forming laser clad valve seat
JP2014210292A (en) Device for electron beam surface treatment, and method of electron beam surface treatment
JP2013121623A (en) Device and method for surface treatment with electron beam
JP5455009B2 (en) Tool steel surface treatment method and tool steel surface-treated by the method
CN113084197B (en) Inching repair method for thin-wall structural part based on laser additive manufacturing
US20220395908A1 (en) Method of additive manufacturing
Yang et al. Remote laser welding of zinc coated steels in a zero-gap lap joint configuration
JP2010222183A (en) Surface processing method of glass material
JP6768459B2 (en) Three-dimensional laminated molding method and three-dimensional laminated molding equipment
Haddad et al. Sheet Lamination
JP7284014B2 (en) Laser-arc hybrid welding equipment
RU2740687C2 (en) Method of article restoration by laser-acoustic surfacing and device for its implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5258402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250