JP2006315024A - Surface modification device by electronic beam irradiation - Google Patents

Surface modification device by electronic beam irradiation Download PDF

Info

Publication number
JP2006315024A
JP2006315024A JP2005139199A JP2005139199A JP2006315024A JP 2006315024 A JP2006315024 A JP 2006315024A JP 2005139199 A JP2005139199 A JP 2005139199A JP 2005139199 A JP2005139199 A JP 2005139199A JP 2006315024 A JP2006315024 A JP 2006315024A
Authority
JP
Japan
Prior art keywords
irradiation
cathode
irradiated
electron beam
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005139199A
Other languages
Japanese (ja)
Inventor
Tadami Izumi
忠美 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2005139199A priority Critical patent/JP2006315024A/en
Publication of JP2006315024A publication Critical patent/JP2006315024A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain the target irradiation effect by providing a means to designate the caloric value to be absorbed from the surface as the irradiation condition command, and to measure the caloric value, comparing the measured calorie with the commanded value, feeding back the error of the calorie, and correcting the other irradiation condition. <P>SOLUTION: A measurement body 21 is installed on a table 14 separately from an object 12 to be surface-reformed, the temperature rise is transmitted to a command control device 22 by a sensor provided on the measurement body 21 by allowing the measurement body 21 to receive the same electronic beam irradiation as that of the object 12, and the difference between the measured calorie and the commanded value is fed back to correct the other irradiation condition. A material of the measurement body 21 is the same as that of the object 12. The other irradiation condition includes the cathode voltage, the distance between a cathode and a target, and the pressure of ionized gas for plasma. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種金属部品、金型、工具、電気接続部品、金属医療機器、金属装飾品などの表面を鏡面化、清浄化、アモルファス化、耐食化するために電子ビームを表面に照射して表面改質を行なう装置に関する。   In the present invention, the surface of various metal parts, molds, tools, electrical connection parts, metal medical equipment, metal ornaments, etc. is irradiated with an electron beam in order to make the surface mirror-like, clean, amorphous, and corrosion resistant. The present invention relates to an apparatus for performing surface modification.

この技術は断面積10cm以上、低エネルギ10〜50KV、高電流10〜30KAの電子ビームを用いて表面の改質をおこなうもので、従来の真空電子銃による高密度の電子ビームではなく、電離ガスプラズマ中を通過する低いエネルギの電子ビームを用いるので物質に照射されたとき深く加工作用することがなく、広い面積に一様な作用をあたえるので表面の改質に利用される。ここでいう改質とは、物質表面に付着する異物の除去、浄化、表面あらさの改善、微視的凹凸を平坦化して鏡面となすこと、急激な加熱と冷却による金属のアモルファス化、耐食化などである。 This technique is to modify the surface using an electron beam with a cross-sectional area of 10 cm 2 or more, a low energy of 10 to 50 KV, and a high current of 10 to 30 KA. Since a low energy electron beam that passes through the gas plasma is used, it does not work deeply when irradiated with a substance, and it has a uniform action over a wide area and is used for surface modification. The modification here refers to removal and purification of foreign substances adhering to the surface of the material, improvement of surface roughness, flattening of microscopic unevenness to form a mirror surface, amorphization of metal by rapid heating and cooling, and corrosion resistance Etc.

この技術は一種の電子銃であるが真空室ではなく低圧の電離ガスが充填されプラズマ化されているのでプラズマ電子銃ともよばれている。このプラズマを安定に保つために反射放電(Reflected Discharge)方式という円環状のプラズマ陽極が設けられ、電子銃の外部にソレノイドが設けられて銃内空間に磁場を作る。   This technique is a kind of electron gun, but it is also called a plasma electron gun because it is not a vacuum chamber but is filled with low-pressure ionized gas and turned into plasma. In order to keep this plasma stable, an annular plasma anode called a reflected discharge system is provided, and a solenoid is provided outside the electron gun to create a magnetic field in the space inside the gun.

この装置の電子ビーム発射機構は電界放射カソードとして円板状の金属または黒鉛が用いられ、被照射体がターゲット陽極になる。両極間に10〜40KVの高圧コンデンサ放電を発生させてμs程度の電子ビームパルスを放射させる。プラズマ発生回路は前記の環状陽極と電子銃筐体との間にコンデンサ充放電によるグロー放電を作り電離ガスをプラズマ化する。プラズマ保持時間は数100μsでその時間内に前記の電子ビーム放射が行なわれる。プラズマ保持時間の前後を通じ電子銃内に磁場をつくるための前記ソレノイドに励磁する電源としてまた別のコンデンサ充放電回路が備えられている。   In the electron beam emission mechanism of this apparatus, a disk-like metal or graphite is used as a field emission cathode, and the irradiated object becomes a target anode. A high-voltage capacitor discharge of 10 to 40 KV is generated between both electrodes to emit an electron beam pulse of about μs. The plasma generation circuit generates glow discharge by charging / discharging the capacitor between the annular anode and the electron gun casing to turn the ionized gas into plasma. The plasma holding time is several hundreds μs, and the electron beam emission is performed within that time. Another capacitor charging / discharging circuit is provided as a power source for exciting the solenoid for creating a magnetic field in the electron gun before and after the plasma holding time.

表面改質をなさんとする被照射体をターゲットとしてテーブルに設置し電子銃内を一旦真空にしてから電離ガス、たとえばArガスを低圧に充填し磁場形成、プラズマ形成、電子ビーム発射の順序で作動させると被照射体の表面が改質される。通常は一回の照射では不充分なので数回から数10回の照射を行なってから電子銃を開放して被照射体を取り出す。   Place the irradiated object with surface modification on the table as a target, evacuate the inside of the electron gun, fill it with ionized gas, for example Ar gas, and form magnetic field, plasma, and electron beam When activated, the surface of the irradiated object is modified. Usually, one irradiation is insufficient, and after several to several tens of irradiations, the electron gun is opened and the irradiated object is taken out.

被照射体の材質、成分組成、表面積、改質前の状態などによって照射条件を選ぶ必要があるが、条件の選定の数式がある訳ではないので実験の結果とか経験に依存されている。常識的な判断として溶解温度の高い材質には大きいエネルギで、低い材質には小さいエネルギで照射することになる。ここに言うエネルギとは放射されるエネルギで被照射体が受けて熱量となるものではないことに注意が必要で本明細書では放射エネルギと受領熱量を区別して記述している。放射エネルギが変わる条件とは、1)カソード電圧 2)カソードとターゲットの距離 3)電離ガス圧力の3条件が通常に用いられる。これらの条件は全体装置を制御運用するシステムの指令手段で調整できるように構成されている。   Although it is necessary to select the irradiation conditions depending on the material of the irradiated object, the composition of the components, the surface area, the state before modification, etc., there are no formulas for selecting the conditions, so it depends on the results of experiments and experience. As a common judgment, a material having a high melting temperature is irradiated with a large energy, and a material having a low melting temperature is irradiated with a small energy. It should be noted that the energy referred to here is not the amount of heat received by the irradiated object by the radiated energy. In this specification, the radiant energy and the amount of received heat are described separately. The conditions for changing the radiant energy are usually 1) cathode voltage, 2) distance between cathode and target, and 3) ionized gas pressure. These conditions can be adjusted by command means of a system that controls and operates the entire apparatus.

図9は全体構成図で、1はハウジング、6は環状電極、8はカソード、Sは電子銃空間、5は励磁ソレノイド、14はターゲットとしてのテーブルである。一点破線部1−1以下の部分には図示しないテーブル移動機構などが設けられる。電子銃内の電離ガスの調整システムとしてスクロールポンプ2、ターボ分子ポンプ3が、流量調整弁2A、3Aを介して連結され、さらに図示しない圧力センサとともに作動する。室内は一旦真空状態とした後ボンベ15から希ガスたとえばArを充填し所定圧力に保たれる。   FIG. 9 is an overall configuration diagram, 1 is a housing, 6 is an annular electrode, 8 is a cathode, S is an electron gun space, 5 is an excitation solenoid, and 14 is a table as a target. A table moving mechanism or the like (not shown) is provided at a portion below the one-dot broken line portion 1-1. A scroll pump 2 and a turbo molecular pump 3 are connected via flow rate adjusting valves 2A and 3A as an adjustment system for ionized gas in the electron gun, and further operate together with a pressure sensor (not shown). The chamber is once evacuated and then filled with a rare gas such as Ar from the cylinder 15 and maintained at a predetermined pressure.

改質装置には最初に作動して電子銃室内にソレノイド5により磁場を作る励磁電源16、次に作動して環状陽極付近にプラズマを生成するコンデンサ充放電回路を含むパルス電源17、そしてプラズマを通過する電子ビームを放射して改質を実行する電源であってコンデンサ充放電回路で構成されるパルス電源18が備えられている。それぞれの電源は独立しており、絶縁物6A、8Aによりハウジング1から絶縁されている。   The reformer is first operated to generate an excitation power source 16 that generates a magnetic field by a solenoid 5 in the electron gun chamber, and then operates to operate a pulse power source 17 including a capacitor charge / discharge circuit that generates plasma near the annular anode, and plasma. There is provided a pulse power source 18 which is a power source for performing reforming by radiating a passing electron beam and configured by a capacitor charging / discharging circuit. Each power source is independent and insulated from the housing 1 by insulators 6A and 8A.

特開平09−216075号公報Japanese Patent Application Laid-Open No. 09-216075 特開2003−111778号公報JP 2003-111778 A 特開2004−1086号公報JP 2004-1086 A 宇野義幸、外4名「大面積パルス電子ビームによる金型の仕上げと表面改質」電気加工技術、社団法人電気加工学会、平成15年6月、第27卷、第86号、p.12−17、Yoshiyuki Uno, 4 others "Die finishing and surface modification by large area pulsed electron beam" Electromachining Technology, Japan Society for Electrical Machining, June 2003, No. 27, No. 86, p. 12-17, 藪下法康、外4名「大面積電子ビームによる金型加工面仕上げに関する研究(第2報)」一傾斜面平滑化特性と表面改質効果―電気加工学会全国大会(2003)講演論文集 社団法人電気加工学会、平成15年1d2月、p.47−50、Tomoyasu Kajishita and 4 others "Study on Finishing of Die Machining by Large Area Electron Beam (2nd Report)" Smoothing Characteristics and Surface Modification Effect of Inclined Surfaces-Proceedings of National Conference on Electrical Machining (2003) Japan Institute of Electrical Machining, 2003 February, p. 47-50, G.E.OZUR外3、Production and application of low-energy,high-current electron beams, Laser and Particle Beams (2003), 21,157-174, Printed in the USA.Outside G.E.OZUR 3, Production and application of low-energy, high-current electron beams, Laser and Particle Beams (2003), 21,157-174, Printed in the USA.

表面改質の目的は表面の粗さの改善、鏡面化、清浄化、アモルファス化、耐食化など多様であるし、また材質も多様である。従がって前述の三つの条件を適正に選択することが困難である。放射された電子ビームの相当部分が散逸し被照射体に吸収される割合は一定ではないから結果としての効果も変わる欠点があった。被照射体と同じ照射結果となる条件のデータを持つことができなかったからである。   The purpose of surface modification is various, such as improvement of surface roughness, mirror surface, cleaning, amorphization, corrosion resistance, and various materials. Therefore, it is difficult to properly select the above three conditions. Since the proportion of the emitted electron beam is dissipated and absorbed by the irradiated object is not constant, the resulting effect also has a drawback. This is because it was not possible to have data on conditions that would result in the same irradiation result as the irradiated object.

従来技術で述べたように、この装置は多様な目的に対して優れた結果をもたらす能力を有するが、使いこなすためには多様な材質や処理前の状態に応じて照射条件を適切に選ぶ必要がある。被照射体が受けた熱量値は改質結果と密接に関係し、その過不足が照射効果を左右するから熱量値を介して照射条件を調整することが出来れば目的達成が容易になる。   As described in the prior art, this device has the ability to give excellent results for various purposes, but in order to use it properly, it is necessary to select irradiation conditions appropriately according to various materials and conditions before processing. is there. The amount of heat received by the irradiated object is closely related to the modification result, and the excess or deficiency affects the irradiation effect. Therefore, if the irradiation condition can be adjusted via the amount of heat, the object can be easily achieved.

この装置の電子ビームがターゲットの表面に当たるとその相当量が発光、二次電子、電磁放射、X線および金属蒸気となって飛散し、残部が被照射体に吸収され熱量となる吸収過程で溶解が生じて蒸発と併せて表面改質がおこなわれる。電子ビームは結晶格子の網目を通って進入し自由電子あるいは粒界移動として動くから材質、組成により吸収率が異なる。   When the electron beam of this device hits the surface of the target, a considerable amount of light is emitted, secondary electrons, electromagnetic radiation, X-rays and metal vapors are scattered, and the remainder is absorbed by the irradiated object and dissolved in the absorption process. And surface modification is performed together with evaporation. Since the electron beam enters through the network of the crystal lattice and moves as free electrons or grain boundary movement, the absorptance varies depending on the material and composition.

被照射体の熱量増加は改質メカニズムに関与したビームエネルギなのであるが、蒸発モードと溶解モードがあり前者は熱量増加には含まらない。しかも両モードの熱量比率は照射条件で異なるという複雑さがある。   The increase in the amount of heat of the irradiated object is the beam energy related to the reforming mechanism, but there is an evaporation mode and a dissolution mode, and the former is not included in the increase in the amount of heat. In addition, there is a complexity that the heat quantity ratio in both modes differs depending on the irradiation conditions.

発射された電子ビームのエネルギの計算値よりも、被照射体に残された熱量値の方が事実に近く、照射効果たとえば面粗さ、溶融深さなどとの相関に信頼性がある。また、前述の段落番号[0006]の照射条件で述べたように電子ビームエネルギは3種の照射条件を選べるから、たとえばカソード電圧をAからBに変更したとき同じエネルギ条件とするためには、カソードとターゲット間の距離をいかほどにすべきかは熱量のデータを媒介すればただちに知り得る。この明細書では被照射体が受領する熱量(J/cm)を照射エネルギと呼ぶことにする。 The amount of heat remaining in the irradiated object is closer to the fact than the calculated value of the energy of the emitted electron beam, and the correlation with irradiation effects such as surface roughness and melting depth is reliable. In addition, as described in the irradiation condition of paragraph [0006] above, the electron beam energy can be selected from three irradiation conditions. For example, when the cathode voltage is changed from A to B, the same energy condition can be obtained. The distance between the cathode and the target can be determined immediately by mediating calorimetric data. In this specification, the amount of heat (J / cm 2 ) received by the irradiated object is referred to as irradiation energy.

被照射体金属の種類、組成、結晶状態による熱量吸収の差異は発光、反射による散逸だけではなく表面からの金属蒸発や金属内部での電子ビーム移動の差異にもよるもので実験の結果を図13に表記した。これが熱量測定体の材質は被照射体と同質であることが必要な理由である。   The difference in heat absorption due to the type, composition, and crystal state of the irradiated metal is not only due to dissipation due to light emission and reflection, but also due to differences in metal evaporation from the surface and electron beam movement inside the metal. 13 This is the reason why the material of the calorimeter is required to be the same quality as the irradiated body.

この明細書に例示する装置の電子ビームの発射エネルギは前記パルス電源18のカソード電圧と電離気体の濃度によって変更設定できるように構成されている。飛行中の電子ビーム11がプラズマの影響をうけることにより電離気体の濃度、すなわち圧力を変更すると同じカソード電圧を用いたときでも被照射体に入射する電子ビームの強度が変化する。   The emission energy of the electron beam of the apparatus exemplified in this specification is configured so that it can be changed and set according to the cathode voltage of the pulse power supply 18 and the concentration of ionized gas. When the electron beam 11 in flight is affected by plasma, the concentration of the ionized gas, that is, when the pressure is changed, the intensity of the electron beam incident on the irradiated object changes even when the same cathode voltage is used.

この実験結果の例が図10である。電離ガス圧力(横軸)と表面積当たりの受領熱量(縦軸)を3種類のカソード電圧について実験したものである。これにより被照射体が受ける熱量値が電離ガス濃度に影響されていることがわかる。ただしこの相関関係は特定の範囲に限られていて、電離ガス濃度の最適値の選択が必要である。なおこの実験と以降に説明する実験は、銅製の被照射体に温度センサを取り付けて一回の照射ごとに温度上昇を測定して増加熱量値を計算し、表面積で除した値である。本明細書では以降この表面積当たりの受領熱量値を照射熱量(J/cm)と呼ぶ。 An example of this experimental result is shown in FIG. The ionized gas pressure (horizontal axis) and the amount of heat received per surface area (vertical axis) were tested for three types of cathode voltages. This shows that the calorific value received by the irradiated object is influenced by the ionized gas concentration. However, this correlation is limited to a specific range, and it is necessary to select an optimum value of the ionized gas concentration. This experiment and the experiment described below are values obtained by attaching a temperature sensor to an object to be irradiated made of copper, measuring a temperature rise for each irradiation, calculating an increased heat value, and dividing by a surface area. In the present specification, this received heat amount value per surface area is hereinafter referred to as irradiation heat amount (J / cm 2 ).

別の実験は図11であって、カソード電圧(KV)と照射熱量(J/cm)の関係を2種類のカソードとターゲットの距離について実験したものである。この関係は実験範囲内で連続性があり実用性が高いが、高い電圧を扱うことで連続微調整は困難が伴なう。 Another experiment is shown in FIG. 11, in which the relationship between the cathode voltage (KV) and the amount of irradiation heat (J / cm 2 ) was tested for the distance between the two types of cathodes and the target. This relationship has continuity within the experimental range and high practicality, but continuous fine adjustment is difficult by handling a high voltage.

さらに別の実験は図12であって、カソードから被照射体までの距離と照射熱量の関係を2種類のカソード電圧について調べた結果である。この関係も実験範囲内で連続性があり、しかも距離の変更は実施が容易であるから改質条件を変更するのに最適である。   Another experiment is shown in FIG. 12, which is the result of examining the relationship between the distance from the cathode to the irradiated object and the amount of irradiation heat for two types of cathode voltages. This relationship is also continuity within the experimental range, and since changing the distance is easy to implement, it is optimal for changing the reforming conditions.

以上に従来技術の状況と種々の実験結果を述べ、また電子ビーム表面改質のメカニズムを考察したのでこれに基づき改良をなさんとする点を次のように要約し本発明の目的とする。
電子ビーム照射表面改質装置に熱量測定体を含む熱量測定システムを付加し、前記測定体が被照射体と同じ条件で電子ビーム照射をうけるようにテーブルに設置し、熱量測定を行なう。照射条件としてカソード電圧、カソードと被照射体との距離、電離ガス圧力を設定するとともに指令とする熱量増加値と許容範囲を制御装置に入力記憶せしめ、前記測定結果の熱量と指令熱量とを比較し、その誤差を条件調整手段にフィードバックして、許容範囲になるように前記照射条件を調整するようにする。測定体の材質は被照射体と同質または近似した材質とする。
The state of the prior art and various experimental results have been described above, and the mechanism of electron beam surface modification has been considered. The points to be improved based on this are summarized as follows and are the object of the present invention.
A calorimeter measuring system including a calorimeter is added to the electron beam irradiation surface reforming apparatus, and the calorimeter is placed on a table so that it can be irradiated with an electron beam under the same conditions as the object to be irradiated. The cathode voltage, the distance between the cathode and the object to be irradiated, and the ionized gas pressure are set as the irradiation conditions, and the heat increase value and allowable range to be commanded are input and stored in the control device, and the heat amount of the measurement result and the command heat amount are compared. The error is fed back to the condition adjusting means, and the irradiation condition is adjusted to be within an allowable range. The material of the measurement body is the same as or similar to the material to be irradiated.

前述の本発明の目的は、(1)カソード8と、プラズマ生成電極6と、電離気体を充填するハウジング1と、前記カソードからの電子ビームを受ける被照射体12を設置するテーブル14とを備え、前記ハウジング内に磁場を形成するソレノイド5よりなる電子銃装置であり、前記ソレノイドが磁場を形成してからプラズマを生成させ、更に、カソードと被照射体の間にパルス電圧を印加してプラズマを通路とする電子ビームパルスを放射して前記被照射体の表面処理行う装置において、カソードパルス電圧、カソードと被照射体間の距離、電離気体濃度を照射条件として調整可能にする手段を備え、前記電子ビームパルスの照射条件を入力し、照射の条件指令、実行、制御、を進行させるプログラム制御装置と、前記被照射体と同じ姿勢でテーブルに設置される熱量測定体と、該測定体の温度上昇を測定するセンサと、前記プログラム制御装置に入力された指令熱量値に応ずる照射条件によって、被照射体への照射と同時に、または、別工程で測定体に照射された結果である温度上昇を前記センサで読み取り、熱量を計算し、指令熱量値と比較して誤差を前記プログラム制御装置に伝達する熱量測定装置が設けられて、前記プログラム制御装置が前記条件調整手段を通じ前記誤差をフィードバックして許容値内に納るよう調整することを特徴とする表面改質装置とすることにより達成される。   The object of the present invention described above includes (1) a cathode 8, a plasma generation electrode 6, a housing 1 filled with an ionized gas, and a table 14 on which an irradiated body 12 that receives an electron beam from the cathode is installed. An electron gun device comprising a solenoid 5 for forming a magnetic field in the housing, generating plasma after the solenoid forms a magnetic field, and further applying a pulse voltage between the cathode and the irradiated object to generate plasma In the apparatus for performing the surface treatment of the irradiated object by emitting an electron beam pulse having a path as a path, the apparatus includes means for adjusting the cathode pulse voltage, the distance between the cathode and the irradiated object, and the ionized gas concentration as irradiation conditions, A program control device that inputs irradiation conditions of the electron beam pulse and advances irradiation condition commands, execution, and control, and the same posture as the irradiated object Depending on the calorie measuring body installed in the table, the sensor for measuring the temperature rise of the measuring body, and the irradiation condition according to the command calorific value input to the program control device, or simultaneously with the irradiation to the irradiated body, or A calorific value measuring device is provided that reads a temperature rise as a result of irradiating the measuring body in a separate process with the sensor, calculates a calorific value, and transmits an error to the program control device in comparison with a command calorific value, This is achieved by providing a surface modification device in which the program control device feeds back the error through the condition adjusting means and adjusts the error to fall within an allowable value.

また、前述の本発明の目的は、(2)前記熱量測定体が被照射体と同材質であることを特徴とする前記(1)に記載の表面改質装置とすることにより達成される。   The object of the present invention is achieved by (2) the surface reforming apparatus according to (1) above, wherein the calorimeter is made of the same material as the irradiated body.

また、前述の本発明の目的は、(3)前記測定熱量が指令熱量と一致するように照射条件を調整する手段が、
前記カソードと被照射体間の距離の増減変更手段、
前記電子銃内に充填される電離気体の濃度の変更手段、
又は、前記カソードに印加されるパルス電圧変更手段、
の内の何れか一つであることを特徴とする前記(1)、または(2)に記載の表面改質装置とすることにより達成される。
Further, the object of the present invention described above is (3) means for adjusting the irradiation conditions so that the measured calorific value coincides with the command calorific value,
Means for increasing or decreasing the distance between the cathode and the irradiated object;
Means for changing the concentration of ionized gas filled in the electron gun,
Or pulse voltage changing means applied to the cathode,
It is achieved by using the surface modifying apparatus according to (1) or (2), which is any one of the above.

また、前述の本発明の目的は、(4)前記カソードとテーブル間の電子ビーム照射距離の増減変更手段として、ハウジングに固定されるカソードに対してテーブルが電子ビーム軸線にそって移動する進退機構、およびテーブルは前記軸線に沿った移動をせず前記軸線に沿ってカソードが移動する進退機構、の何れか一方または両方が設けられている前記(1)または(3)に記載の表面改質装置とすることにより達成される。   The above-mentioned object of the present invention is as follows: (4) As a means for changing the electron beam irradiation distance between the cathode and the table, the advance / retreat mechanism for moving the table along the electron beam axis with respect to the cathode fixed to the housing. The surface modification according to (1) or (3), wherein the table is provided with either or both of an advancing / retreating mechanism in which the cathode does not move along the axis but moves along the axis. This is achieved by using a device.

また、前述の本発明の目的は、(5)電子ビーム軸と直交するテーブル上に被照射体と熱量測定体を分離して設置し、先に熱量測定体に対して前記電子ビームパルスの照射、熱量測定、比較、調整のサイクルを行ない、測定熱量が許容値範囲内となる照射条件を決定したのち、熱量測定体と被照射体の位置を交換して前記照射条件によって改質加工処理を開始させることを特徴とする前記(1)に記載の装置を用いる表面改質方法とすることにより達成される。   Further, the object of the present invention is as follows: (5) An object to be irradiated and a calorimeter are separately installed on a table orthogonal to the electron beam axis, and the electron beam pulse is irradiated to the calorimeter first. Then, after performing the calorimetric measurement, comparison and adjustment cycle and determining the irradiation conditions in which the measured calorific value is within the allowable range, the position of the calorimeter and the irradiated object is exchanged, and the modification processing is performed according to the irradiation conditions. This is achieved by a surface modification method using the apparatus according to (1) above, which is started.

本発明の前述発明(1)によれば、表面改質の結果目標として照射熱量(J/cm)を指令値として与え、照射熱量を熱量測定セットで測定し、熱量増加値と指令照射熱量値との差異を照射条件調整手段にフィードバックして、照射条件を調整し、所望の照射熱量(J/cm)に到達させることができる。 According to the above-mentioned invention (1) of the present invention, as a result of the surface modification, the irradiation heat amount (J / cm 2 ) is given as a command value, the irradiation heat amount is measured by a calorimeter measurement set, the heat amount increase value and the command irradiation heat amount. The difference from the value can be fed back to the irradiation condition adjusting means to adjust the irradiation condition to reach a desired amount of irradiation heat (J / cm 2 ).

また、本発明(2)によれば、被照射体で照射熱量を測定したことになるので、測定は全く正確なものであり表面改質加工の処理効果が測定体と被照射体との材質差による喰い違いを回避することができ、照射条件の調整により被照射体が得る熱量は指令熱量と一致したものとなるから改質作業の品質が保証される。   In addition, according to the present invention (2), since the amount of irradiation heat is measured with the irradiated body, the measurement is quite accurate, and the treatment effect of the surface modification processing is the material of the measuring body and the irradiated body. Differences due to the difference can be avoided, and the amount of heat obtained by the irradiated object by adjusting the irradiation conditions is the same as the commanded amount of heat, so that the quality of the reforming operation is guaranteed.

この発明は被照射体の受領熱量(J/cm)を目標値としカソードと被照射体間の距離(cm)、電離気体濃度(Pa)及びカソードに印加する電圧(KV)を操作量とするフィードバック制御であるが、上記三つの操作感度と制御可能範囲(J/cm)は異なっている。装置設計上の理由、電子ビーム発射機構自体の特性、利用上の制限などから操作不能の領域があることが図10、図11、図12から読み取れる。本発明(3)によれば前記フィードバック制御の操作手段を前記三種類から選択し、また時系列に選択、組合せ、接続して目的を達することができる。 In the present invention, the received heat amount (J / cm 2 ) of the irradiated body is set as a target value, the distance between the cathode and the irradiated body (cm), the ionized gas concentration (Pa), and the voltage (KV) applied to the cathode as the manipulated variable. However, the three operational sensitivities and the controllable range (J / cm 2 ) are different. From FIG. 10, FIG. 11, and FIG. 12, it can be seen that there are inoperable areas due to device design reasons, the characteristics of the electron beam emission mechanism itself, restrictions on use, and the like. According to the present invention (3), the operation means of the feedback control can be selected from the three types, and can be selected, combined and connected in time series to achieve the object.

また、本発明(4)によれば、カソードと被照射体の距離を可変とする手段として3種類の設計形式を選ぶことが出来る。第1種はハウジングに固定されるカソードに対してテーブルが電子ビーム軸線に沿って進退移動する形式で、装置を電子銃として看做せば銃口からターゲットまでの距離が可変となるものであり、第2種はハウジングに対して前記軸線に沿った移動がないテーブルに向かってカソードが進退移動する形式で、電子銃の銃身の長さが可変となり、銃口とターゲットの距離は変わらない。上記いずれの形式もカソードとターゲットの距離を変えることであるが、距離と改質効果の関係は等しくない。そして第3種の設計形式は第1種と第2種を併せ持つ形式であり、どちらかを選択利用しうる設計とするものである。いずれの形式を選択するかは、設計製造上の得失、利用上の利便と得失によって決定される。   According to the present invention (4), three types of design formats can be selected as means for changing the distance between the cathode and the irradiated object. The first type is a type in which the table moves forward and backward along the electron beam axis with respect to the cathode fixed to the housing. If the device is regarded as an electron gun, the distance from the muzzle to the target is variable. The second type is a type in which the cathode advances and retreats toward a table that does not move along the axis with respect to the housing. The length of the barrel of the electron gun is variable, and the distance between the muzzle and the target does not change. In any of the above types, the distance between the cathode and the target is changed, but the relationship between the distance and the reforming effect is not equal. The third type design format is a format having both the first type and the second type, and the design type can be selected and used. Which format is selected is determined by the advantages and disadvantages of design and manufacture, convenience and advantages and disadvantages in use.

また、本発明(5)によれば、テーブル上に被照射体と熱量測定体を分離して設置し、先に熱量測定体について照射と測定を行い、指令熱量値が得られる照射条件が決定してから、被照射体の照射を開始する方法をとり、改質作業の効率を高め得る。   Further, according to the present invention (5), the irradiated object and the calorimeter are separately installed on the table, and the irradiation condition is determined by performing irradiation and measurement on the calorimeter first. Then, the method of starting the irradiation of the irradiated object can be taken to improve the efficiency of the modification work.

図1は、本発明の一実施例装置の正断面説明図で、前述従来例の図11の装置に符合するものであり、同一物または同等物には同一の符号を付して示してある。
テーブル14は、水平2軸移動装置19の上に設置され指令値に位置決めされる。後述する熱量測定セット21と、前記被照射体12が前記2軸移動や相互の設置間隔等により、必要に応じ、実質上同一の条件及び姿勢で、同時にまたは別工程で、電子銃部1Aからの電子ビームパルス11の照射が受けられるようにテーブル14上にセットされる。
FIG. 1 is an explanatory front sectional view of an apparatus according to an embodiment of the present invention, which corresponds to the apparatus of FIG. 11 of the above-mentioned conventional example, and the same or equivalent parts are indicated by the same reference numerals. .
The table 14 is installed on the horizontal biaxial moving device 19 and positioned at the command value. From the electron gun unit 1A, the calorific value measurement set 21, which will be described later, and the irradiated object 12 are moved from the electron gun unit 1A at the same time or in different steps, if necessary, under substantially the same conditions and posture, depending on the biaxial movement and mutual installation interval. The electron beam pulse 11 is set on the table 14 so that it can be irradiated.

前記水平2軸移動装置19は固定ベース19AとXYガイドセット19Bにより構成され、上下進退機構20A、20Bにより上下に指令移動、位置決めされる。固定ベース19に備えられるXYガイドセット19Bは指令装置22EからのXY軸移動位置決め指令によりXY方向の2軸に水平移動してテーブル14の位置決めを行うもので、直線ガイド、ボールねじ、サーボモータ、リニアモータなどの要素を用いる公知、多様な構成が可能である。   The horizontal biaxial moving device 19 is composed of a fixed base 19A and an XY guide set 19B, and is commanded up and down and positioned by vertical moving mechanisms 20A and 20B. An XY guide set 19B provided in the fixed base 19 is used for positioning the table 14 by horizontally moving in two axes in the XY directions in accordance with an XY axis movement positioning command from the commanding device 22E. The linear guide, ball screw, servo motor, Various known configurations using elements such as a linear motor are possible.

前記上下進退機構はZ軸ラック支柱20Aとピニオン機構20Bにより構成されている。Z軸ラック支柱20Aの頭部には前記の水平2軸移動装置19が固定され、下部にはラックが刻まれていてピニオン機構20Bと咬合する。図示しないピニオン機構20Bの駆動装置がありピニオンは指令装置22EのZ軸移動位置決め指令により回転し、Z軸ラック支柱20AをZ軸方向に上下移動させて被照射体12の表面を照射距離hに位置決めする。この実施例では上下進退機構が外部にあるから、運動部は気密構造となっており、テーブル14は接地線26により加工函体1Bに接続されている。
なお、上下進退機構の構成はこの実施例に囚われることなく例えばラック、ピニオンに替えてボールねじとするなど他にも自由に公知機構を選択可能である。
The vertical movement mechanism is composed of a Z-axis rack column 20A and a pinion mechanism 20B. The horizontal biaxial moving device 19 is fixed to the head of the Z-axis rack column 20A, and the rack is carved at the lower part to mesh with the pinion mechanism 20B. There is a drive device for the pinion mechanism 20B (not shown), and the pinion is rotated by the Z-axis movement positioning command of the commanding device 22E, and the Z-axis rack column 20A is moved up and down in the Z-axis direction so that the surface of the irradiated object 12 is moved to the irradiation distance h. Position. In this embodiment, since the vertical movement mechanism is outside, the moving part has an airtight structure, and the table 14 is connected to the processing box 1B by a ground wire 26.
In addition, the structure of the up-and-down advance / retreat mechanism is not restricted to this embodiment, and a known mechanism can be freely selected other than, for example, a ball screw instead of a rack and a pinion.

図2は、前記熱量測定セット21をテーブル14に設置した状態として示す斜視図で、熱量測定セット21は測定体21Aと熱電対等の接触式の温度センサ21Bと、該測定体21Aと、設置ベース21Cと、前記測定体21Aをテーブル14から離隔し、熱絶縁して電子ビーム照射位置に設置する熱伝導度が小さい支柱21Dとから成る。なお前記温度センサ21Bは放射温度計に変えて同様目的に構成することができる。   FIG. 2 is a perspective view showing the calorie measurement set 21 installed on the table 14. The calorie measurement set 21 includes a measurement body 21A, a contact-type temperature sensor 21B such as a thermocouple, the measurement body 21A, and an installation base. 21C and a column 21D having a small thermal conductivity that is separated from the table 14, is thermally insulated, and is installed at the electron beam irradiation position. The temperature sensor 21B can be configured for the same purpose instead of a radiation thermometer.

図3は、前記一支柱21D部分の実施例断面図で、前記支柱21Dは熱伝導度が小さい非金属、通常Al系やZ系等の酸化物系セラミックス、又はSiC系やSi系等の非酸化物系セラミックスを用いることが好ましく、中空柱状体として測定体21Aをベース21Cを介してテーブル14に接地する導線21Eを中空部に挿入し、その上下端を測定体21Aとベース21Cに接するようにした金属片21Fに接続する。 FIG. 3 is a cross-sectional view of an embodiment of the one column 21D. The column 21D is a nonmetal having a low thermal conductivity, usually an oxide ceramic such as Al 2 O 3 or ZrO 2 , or SiC. It is preferable to use non-oxide ceramics such as Si 3 N 4 or the like, and a conductor 21E for grounding the measurement body 21A to the table 14 through the base 21C as a hollow columnar body is inserted into the hollow portion, and the upper and lower ends thereof are It is connected to a metal piece 21F that is in contact with the measurement body 21A and the base 21C.

前記熱量測定セット21の測定体21Aの材料としては、表面改質加工処理が為される例えば、金型等の被照射体12と同じ材料の素材が選定セットされるべきである。何故ならば、このプロセスによる表面改質加工の効果(吸収熱量)が、前述図13の表に示して説明したように被照射体の材料成分によって顕著な差異があるからである。さらに言えば、前述の図10、図11、図12の各特性関係も測定体の材料、材質により変化することに留意すべきである。   As a material of the measurement body 21A of the calorie measurement set 21, a material of the same material as the irradiated body 12, such as a mold, which is subjected to surface modification processing should be selected and set. This is because the effect (absorption heat amount) of the surface modification processing by this process has a significant difference depending on the material components of the irradiated object, as shown in the table of FIG. Furthermore, it should be noted that the characteristic relationships of FIGS. 10, 11 and 12 described above also vary depending on the material and the material of the measurement body.

測定体21Aの上面21Gの全面は電子ビーム11の照射を受ける面で所定面積(A)を有し、照射面積を正確に限定するために図示実施例では錐台を上下逆にした形状に形成される。   The entire upper surface 21G of the measurement body 21A has a predetermined area (A) on the surface to which the electron beam 11 is irradiated. In the illustrated embodiment, the frustum is formed upside down in order to accurately limit the irradiation area. Is done.

被照射体21Aは後述するように照射熱量の計算に必要な規定値として質量(M)、比重(ρ)、体積(Q)、比熱(Cp)及び表面積(cm)などが既知である。また測定体21Aの照射面21Gとカソード8の下面との距離は、被照射体12とカソード8との距離(h)と等しいことが必要であるから、支持脚21Dを交換自由とされる。 As will be described later, the irradiated body 21A has known mass (M), specific gravity (ρ), volume (Q), specific heat (Cp), surface area (cm 2 ), and the like as specified values necessary for calculating the amount of irradiation heat. Further, since the distance between the irradiation surface 21G of the measurement body 21A and the lower surface of the cathode 8 needs to be equal to the distance (h) between the irradiation object 12 and the cathode 8, the support leg 21D can be freely replaced.

図1に於ける22はCNC制御装置で、入力装置22A、プログラム制御装置22B、計算装置22C、表示装置22D、及び外XYZ等の軸移動装置23や各種機能装置24への制御指令出力装置22E等を有し、装置のプロセスを全体制御するとともに、前記測定体21Aに対する照射前の温度と照射後の平衡温度との差を読み取るようプログラム制御装置22Bから熱量測定手段25に指令して測定取り込み、該温度差と測定体21Aの照射面積(A)、比熱(Cp)、及び質量(M)とから、計算装置22Cに設定してある被照射熱量計算プログラムによって計算した結果を判別処理して熱量フィードバック制御を行なう。   In FIG. 1, reference numeral 22 denotes a CNC control device, which is an input device 22A, a program control device 22B, a calculation device 22C, a display device 22D, and a control command output device 22E to an axis moving device 23 such as an outer XYZ or various functional devices 24. The program control device 22B instructs the calorimeter 25 to read the difference between the temperature before the irradiation to the measuring body 21A and the equilibrium temperature after the irradiation. From the temperature difference and the irradiation area (A), specific heat (Cp), and mass (M) of the measuring body 21A, the result calculated by the irradiation heat amount calculation program set in the calculation device 22C is discriminated. Performs heat feedback control.

前記制御指令出力装置22Eから、機能駆動装置24へ指令信号が出力すると機能駆動装置24はその指令内容に応じ、ピニオンギア20Bを駆動して照射距離(h)を、又は第3のパルス電源18の電圧調整器18Aを操作してカソード電圧(KV)を、又は調整弁4や切換弁3Aを操作して稀ガスの流入、排出を調整することによりハウジング1内の稀ガスのガス圧(Pa)を、各単独に、又は適宜に組み合わせて調整する。   When a command signal is output from the control command output device 22E to the function drive device 24, the function drive device 24 drives the pinion gear 20B according to the content of the command to set the irradiation distance (h) or the third pulse power supply 18. The voltage regulator 18A is operated to adjust the cathode voltage (KV), or the adjusting valve 4 and the switching valve 3A are operated to adjust the inflow and discharge of the rare gas, thereby adjusting the gas pressure (Pa ) Are adjusted individually or in appropriate combination.

この装置では被照射体が受ける熱量を計測するために前記の熱量測定セットを設けている。
図4は熱量測定体21Aの表面が照射を受けてから平衡に達するまでの温度経過を示す。
既知の表面積(Acm)で受領したエネルギは、時刻(to)に照射を受けて瞬間的に表面温度を高熱にするが、熱は急速に拡散し表面温度を低下させ、他方、底面温度と中間点温度を上昇させる。時刻(tx)に平衡し全体の温度が均一化する。したがって時刻(to)での温度と時刻(tx)での温度の差(ΔT)から面積当たりの受領熱量(J/cm)が算出される。
In this apparatus, the calorific value measurement set is provided in order to measure the calorific value received by the irradiated object.
FIG. 4 shows a temperature course from when the surface of the calorimeter 21A is irradiated until it reaches equilibrium.
The energy received at a known surface area (Acm 2 ) is irradiated at the time (to) and instantaneously raises the surface temperature, but the heat diffuses rapidly and lowers the surface temperature, while the bottom surface temperature and Increase the midpoint temperature. Equilibrium at time (tx) makes the entire temperature uniform. Therefore, the amount of received heat (J / cm 2 ) per area is calculated from the difference (ΔT) between the temperature at time (to) and the temperature at time (tx).

またこの装置では、後述図6のフローチャートに従がって数回の照射がなされる。図5はそのプロセスの過程における測定体21Aの表面温度の遷移を示し、[0041]の図4を継続した図となり、図4の時間(tx−to)が図5の測定時間(tm)に相当している。この図5で得られた温度差(ΔT)はプログラム装置に送られ、予め入力された測定体21Aの表面積(A)、比熱(Cp)、質量(M)と併せて面積あたりの受領熱量(J/cm)が算出され、表示装置22Dに表示され、判別処理されてプロセスが進行する。 Further, in this apparatus, irradiation is performed several times according to the flowchart of FIG. FIG. 5 shows the transition of the surface temperature of the measuring body 21A in the course of the process. FIG. 5 is a continuation of FIG. 4 of [0041], and the time (tx-to) in FIG. 4 becomes the measurement time (tm) in FIG. It corresponds. The temperature difference (ΔT) obtained in FIG. 5 is sent to the program device, and the received heat amount per area (A), the specific heat (Cp), and the mass (M) of the measurement body 21A input in advance ( J / cm 2 ) is calculated, displayed on the display device 22D, subjected to discrimination processing, and the process proceeds.

図5において、正確には(tm)は温度差(ΔT)に応じて変わるはずであるが、実用的には無視し得るものであり、また、測定体12Aが平衡温度に達してからの自然放熱による温度低下も実用的には無視される程度である。   In FIG. 5, (tm) should change according to the temperature difference (ΔT) to be precise, but it can be ignored in practical use, and the natural temperature after the measurement body 12A reaches the equilibrium temperature. In practice, the temperature drop due to heat dissipation is negligible.

図5において第一回照射から第4回照射まで各回の照射条件が、後述フローチャートのように測定された熱量値(J/cm)が指令値と比較判別され、プログラム装置はアルゴリズムに従がって差分を各照射条件調整機構にフィードバックし指令熱量値に近づけ、あるいは所定誤差範囲の条件で照射の実行をはじめる。 In FIG. 5, each irradiation condition from the first irradiation to the fourth irradiation is determined by comparing the measured calorific value (J / cm 2 ) with the command value as shown in the flowchart below, and the program device follows the algorithm. Thus, the difference is fed back to each irradiation condition adjusting mechanism to approach the commanded calorific value, or the execution of irradiation is started under the condition of a predetermined error range.

本発明は被照射体の面積当たりの受領熱量(J/cm)を照射エネルギと看做して、表面の改質効果にもっとも密接な関係にある熱量を指標とすることで、装置の信頼性と安定性を確保している。具体的な例をあげれば、カソード電圧の不安定があった場合にその程度を事後に知ることは困難であり、また、プラズマの不安定にしても同様である。この様な場合でも熱量測定の結果は直ちにその不安定さを数値で示す。そしてまた、装置が不安定なままでも指令熱量にまで条件を修正して目的を達成することが可能である。 In the present invention, the amount of heat received per unit area of the irradiated object (J / cm 2 ) is regarded as irradiation energy, and the amount of heat most closely related to the surface modification effect is used as an index, so that the reliability of the apparatus can be improved. Ensuring stability and stability. As a specific example, when the cathode voltage is unstable, it is difficult to know the extent afterwards, and the same is true even if the plasma is unstable. Even in such a case, the result of calorimetry immediately indicates the instability as a numerical value. Moreover, even if the apparatus remains unstable, it is possible to achieve the object by correcting the conditions up to the command heat amount.

前述熱量の測定により、該測定熱量が、設定された指令照射熱量となるように電子ビームの照射条件を調整する手法の第1の一実施例は前述図12に照射距離と熱量との関係特性図として示したカソード8の端面と、被照射体12の表面間の距離(h)の変更であって、照射熱量と照射距離とがほぼ反比例の関係にあることから、図6に示す実施例のフローチャートの手法により照射条件の調整が行なわれる場合について説明する。   The first embodiment of the technique for adjusting the irradiation condition of the electron beam so that the measured calorific value becomes the set commanded calorific value by measuring the calorific value is shown in FIG. 12 as a characteristic of the relationship between the irradiation distance and the calorific value. 6 is a change in the distance (h) between the end face of the cathode 8 shown in the figure and the surface of the irradiated body 12, and the amount of irradiation heat and the irradiation distance are in an inversely proportional relationship. A case where the irradiation condition is adjusted by the method of the flowchart will be described.

この発明は改質条件を被照射体の受領する熱量値で指令するという手法を提案している。その効果として改質条件の決定が人為的ではなく、熱量の測定結果として実験的に行なわれるという特徴を有する。前記のように改質結果を支配する条件は三種であるから3種類の手法があるが図6はそのうちの1つである照射距離を可変数値とした手法についてのプロセスをフローチャートで示すものである。約束に従がってこれを説明すると(1)は装置駆動に必要な固定的指令をメモリー2に与えるフローラインであり、指令熱量Cおよび判別に必要な諸定数、可変でない他の条件(この場合はカソード電圧、低圧ガスの濃度)が固定して記録され書き換えられない。(2)のラインは測定された熱量を一時記録メモリー1に置き比較演算部に渡すものである。比較演算部の結果は図示のように三分され条件を逸脱していれば再試行を繰り返し、条件内に到達すると正規の改質作業にはいる。云うまでも無くこのフローチャートの記憶、演算、判別は制御装置22の内部で行われる。
図6は前記3種類の手法について記述されているが、熱量測定に関する部分と判別の論理は同一であり、支配する条件の変更手段は既に述べられているので図6を他の2種類の手法についての説明にも採用する。
This invention proposes a method of instructing the reforming condition by the calorific value received by the irradiated object. As an effect, the reforming conditions are not artificially determined, but are experimentally performed as a result of measurement of heat quantity. Since there are three types of conditions governing the reforming result as described above, there are three types of methods. FIG. 6 is a flowchart showing a process for a method of changing the irradiation distance, which is one of them, to a variable value. . Explaining this in accordance with the promise, (1) is a flow line that gives the memory 2 a fixed command necessary for driving the device. The command heat quantity C, various constants necessary for discrimination, and other conditions that are not variable (this In this case, the cathode voltage and the concentration of the low-pressure gas are fixedly recorded and cannot be rewritten. The line (2) is for placing the measured heat quantity in the temporary recording memory 1 and passing it to the comparison calculation unit. The result of the comparison operation unit is divided into three parts as shown in the figure, and if the condition is deviated, the retry is repeated, and when the condition is reached, the regular reforming operation is started. Needless to say, the storage, calculation, and determination of this flowchart are performed inside the control device 22.
Although FIG. 6 describes the above three types of methods, the part relating to calorimetry and the logic of discrimination are the same, and the means for changing the governing conditions have already been described, so FIG. 6 is replaced with the other two types of methods. It is also adopted in the explanation of.

この照射熱量の測定は、既に述べたように、測定体の電子ビームパルスの照射前と後の平衡温度の温度差を測定し、この温度差と測定体につき予め測定等して入力してある電子ビームの照射面積、比熱、質量及び計算式等を用いて照射熱量Wの測定値を求め、メモリィ1に記憶される。照射熱量Wが測定されると指令熱量Cとの比較演算(|W−C|−E)=Δが行なわれ、指令熱量Cに対する測定熱量Wの偏差が設定した許容誤差E以内であるか否か判別される。前記の判別において、許容誤差Eが、前記の入力設定値以内である場合には、表面改質加工工程の電子ビームパルスの照射工程(4)に移行し、前述入力設定してある表面改質回数の照射を行い、照射回数が所定の設定回数に達すると、当該被照射体に対する表面改質加工を終了する。   As described above, the measurement of the amount of irradiation heat is performed by measuring the temperature difference between the equilibrium temperature before and after the irradiation of the electron beam pulse of the measuring object, and measuring and inputting the temperature difference and the measuring object in advance. A measured value of the irradiation heat amount W is obtained using the irradiation area of the electron beam, specific heat, mass, calculation formula, and the like, and is stored in the memory 1. When the irradiation heat quantity W is measured, a comparison calculation (| W−C | −E) = Δ with the command heat quantity C is performed, and whether or not the deviation of the measurement heat quantity W from the command heat quantity C is within the set allowable error E. Is determined. In the above determination, if the allowable error E is within the input set value, the process proceeds to the electron beam pulse irradiation step (4) of the surface modification processing step, and the surface modification that has been set as described above. When the number of times of irradiation is performed and the number of times of irradiation reaches a predetermined set number of times, the surface modification processing on the irradiated object is finished.

ところで、指令熱量Cに対する測定熱量Wの偏差が、入力設定してある許容誤差Eを上回って大きい場合と逆に許容誤差E以上小さい場合があるが、先ず前者の場合偏差(C−W)に定数αを掛けた値をデータとしてプログラム制御装置22Bに取り込み、指令出力装置22Eを介して軸移動駆動装置23のZ軸にピニオンギア20Bを、Z軸ラック支柱20Aが、Z軸方向に所定距離降下して、照射距離hが増大するように回転位置決めし、機能駆動装置24を介して位置決め完了信号をプログラム制御装置22Bに伝え、前記熱量測定工程(3)に戻って調整設定された新しい照射距離での照射熱量の測定を行なう。   Incidentally, the deviation of the measured heat quantity W with respect to the command heat quantity C may be smaller than the allowable error E, contrary to the case where the deviation is larger than the input allowable error E. First, in the former case, the deviation (C−W) is reduced. A value multiplied by the constant α is taken into the program control device 22B as data, and the pinion gear 20B is connected to the Z-axis of the shaft movement drive device 23 via the command output device 22E, and the Z-axis rack column 20A is moved a predetermined distance in the Z-axis direction. Then, the position is rotated and positioned so that the irradiation distance h increases, and a positioning completion signal is transmitted to the program control device 22B via the function driving device 24, and the new irradiation adjusted and set by returning to the heat quantity measurement step (3). Measure the heat of irradiation at a distance.

そして、前記後者の前記偏差が許容誤差以上に大幅に大きくて、照射熱量が大幅に小さい場合には、偏差(W−C)に定数βを掛けた値としてプログラム制御装置22Bが取り込み、前述の場合とは逆にZ軸方向に所定の距離上昇して、照射距離hが減少するようにピニオンギアが回転位置決めして、新しい照射距離を調整設定するように作動する。   When the latter deviation is much larger than the allowable error and the irradiation heat quantity is much smaller, the program control device 22B takes in the deviation (WC) multiplied by a constant β, Contrary to the case, the pinion gear is rotationally positioned so as to increase a predetermined distance in the Z-axis direction and decrease the irradiation distance h, and operates to adjust and set a new irradiation distance.

そして、この新しい照射距離での測定熱量が指令熱量に対し許容誤差E以下の偏差以内に修正調整されていれば、前述した表面改質加工工程の電子ビームのパルスの照射工程に移行するが、然らざる場合には、前記偏差が許容誤差E以内となる迄、照射熱量の測定による照射距離の変更調整を繰り返す。   Then, if the measured heat quantity at the new irradiation distance is corrected and adjusted within the deviation of the allowable error E or less with respect to the command heat quantity, the process proceeds to the electron beam pulse irradiation process of the surface modification process described above. If this is not the case, the irradiation distance change adjustment by measuring the irradiation heat quantity is repeated until the deviation falls within the allowable error E.

次の本発明第2の手法は、前述図11にカソード電圧と熱量との関係特性図として示した前記カソード8と被照射体12間に第3のパルス電源18からコンデンサを充電して印加されるカソード電圧の高低切換えの変更であって、前述第1の手法の場合と同様に、指令照射熱量に応じて設定された照射条件による照射から、測定された受領熱量が、目的とする指令熱量と一致するまで、前記フローチャートのアルゴリズムによりプログラム制御装置22Bから指令出力装置22を介して機能駆動装置24にコンデンサ充放電回路を含むパルス電源18の電圧調整器18Aを切換調整して、カソード電圧(KV)の電気諸元の変更調整をするものである。   In the second method of the present invention, a capacitor is charged from the third pulse power source 18 between the cathode 8 and the irradiated body 12 shown as the characteristic graph of the cathode voltage and the amount of heat in FIG. As in the case of the first method, the received heat quantity measured from the irradiation under the irradiation condition set in accordance with the command irradiation heat quantity becomes the target command heat quantity. The voltage regulator 18A of the pulse power supply 18 including the capacitor charge / discharge circuit is switched and adjusted from the program control device 22B to the function driving device 24 via the command output device 22 by the algorithm of the flowchart until the value of the cathode voltage ( KV) changes and adjusts the electrical specifications.

図8は、カソード8と被照射体12間に、電子ビーム11の生成加速用に負の高電圧のパルスを印加するパルス電源18とその電圧調整器18Aの原理的回路構成を示すもので、コンデンサ18Cの充電電圧は、交流電源ACから電圧調整器18Aを有する高電圧変換トランス18Bを介し、ダイオード18D1、18D2を介し、整流されて所定電圧に充電する。そして、このコンデンサ18Cの充電電圧が所定値に達した信号18Sと、ガス圧センサ29によりハウジング内のガス圧が、所定の設定圧力に達したのを検知したガス濃度信号29aと、パルス電源17がプラズマ生成電極6とターゲット14間にパルス電圧を印加してプラズマが生成されたことを伝える信号18Fの三条件が一致したとき、信号発生器18EからサイリスタSCRのゲートがトリガーされ、コンデンサ18Cの充電電荷をカソード8と被照射体12間に放電して電子ビームのパルス11を生成させる。前記のサイリスタSCRは他のトリガースイッチ素子例えばガス封入のトリガー放電スイッチに代替され得る。   FIG. 8 shows a basic circuit configuration of a pulse power source 18 for applying a negative high voltage pulse for accelerating the generation of the electron beam 11 between the cathode 8 and the irradiated object 12 and its voltage regulator 18A. The charging voltage of the capacitor 18C is rectified and charged to a predetermined voltage from the AC power supply AC through the high voltage conversion transformer 18B having the voltage regulator 18A and through the diodes 18D1 and 18D2. Then, the signal 18S that the charging voltage of the capacitor 18C has reached a predetermined value, the gas concentration signal 29a that the gas pressure sensor 29 detects that the gas pressure in the housing has reached a predetermined set pressure, and the pulse power source 17 When the three conditions of the signal 18F that conveys that a plasma is generated by applying a pulse voltage between the plasma generation electrode 6 and the target 14 are matched, the gate of the thyristor SCR is triggered from the signal generator 18E, and the capacitor 18C The charged charge is discharged between the cathode 8 and the irradiated object 12 to generate an electron beam pulse 11. The thyristor SCR may be replaced with other trigger switch elements such as a gas-filled trigger discharge switch.

そして、本発明の第3の手法は、発生電子ビーム照射による照射熱量とその電子ビーム発生領域を形成する真空ハウジング1内のArガス圧(Pa)との関係を利用しようとするものであるが、前述図10に一実施例の熱量(J/cm)とガス圧(Pa)との関係の特性図として示したように、両者の相関関係は、前述の手法1の照射距離(h)や手法2の加速電圧(KV)等程には判然としていないが、使用するガス圧(大凡0.05〜0.09Pa)領域の一部において、ガス圧変更を照射熱量の変更手段として使用できる可能性の有ることが判る。 The third method of the present invention intends to use the relationship between the amount of heat generated by the generated electron beam irradiation and the Ar gas pressure (Pa) in the vacuum housing 1 forming the electron beam generating region. As shown in the characteristic diagram of the relationship between the heat quantity (J / cm 2 ) and the gas pressure (Pa) in one embodiment in FIG. 10, the correlation between the two is the irradiation distance (h) of the method 1 described above. Although it is not as obvious as the acceleration voltage (KV) of method 2 or the like, the gas pressure change can be used as a means for changing the irradiation heat quantity in a part of the gas pressure (approximately 0.05 to 0.09 Pa) region to be used. It turns out that there is a possibility.

その具体的方法としてはプラズマを作る電離気体としてArガスを用いる装置(図1)にて、CNC制御装置22の入力装置22Aからカソード電圧、プラズマ条件、照射距離を一定な固定条件として入力する。同時に表面改質に最適と思われる受領熱量を想定しその目標値を照射熱量値(C)として入力する。また同時に目標値に対する許容範囲の値(E)も定数として与える。測定シーケンスの図6における上昇指令を圧力降下指令に、加工指令を圧力上昇指令と読み替えると、更にα、βの値も相応に定まるからその数値を(E)の値とともに入力する。
この場合は目標の熱量はガス圧を可変条件とするから、前記の圧力領域の適当な価を初期指令値として入力し測定サイクルをスタートする。上述の各指令値は制御装置22B、指令出力装置22Eを介して各機能機器に送られて測定照射サイクルを開始する。Arガスの濃度の決定はまずハウジング1内をスクロールポンプ2とターボポンプ3によって高真空にしながら、Arボンベ15の流量調整弁4をわずかに開くとハウジング内に徐々にArが流入し濃度が高まる。この間ガス圧センサ29は濃度信号29aを機能駆動装置24に送り続けており、該信号29aが数秒続いて前記初期指令値を示すと安定状態と判断してカソード電圧を印加する回路を作動する。
一回目の照射が終わると熱量測定がなされ計算装置22Cで結果の判別により、許容範囲から逸脱していると初期値を修正して次の測定サイクルに移る。一回のサイクルには10〜20秒の時間を要する。かくして許容範囲の照射熱量が得られると該ガス圧力を指令値として改質工程を指令回数だけ繰り返す。
As a specific method, a cathode voltage, plasma conditions, and irradiation distance are input as fixed conditions from an input device 22A of the CNC control device 22 using an Ar gas as an ionizing gas for generating plasma (FIG. 1). At the same time, assuming the amount of received heat that seems to be optimal for surface modification, the target value is input as the irradiation heat amount value (C). At the same time, the allowable range value (E) for the target value is also given as a constant. If the rise command in FIG. 6 of the measurement sequence is replaced with a pressure drop command and the machining command is replaced with a pressure rise command, the values of α and β are also determined accordingly, and the values are input together with the value of (E).
In this case, since the target heat quantity is a gas pressure variable condition, an appropriate value in the pressure region is input as an initial command value, and a measurement cycle is started. Each above-mentioned command value is sent to each functional device via control device 22B and command output device 22E, and a measurement irradiation cycle is started. The Ar gas concentration is determined by first opening the flow control valve 4 of the Ar cylinder 15 slightly while the housing 1 is evacuated by the scroll pump 2 and the turbo pump 3, and Ar gradually flows into the housing to increase the concentration. . During this time, the gas pressure sensor 29 continues to send the concentration signal 29a to the function driving device 24. When the signal 29a continues for several seconds and indicates the initial command value, the gas pressure sensor 29 determines that the state is stable and activates the circuit for applying the cathode voltage.
When the first irradiation is completed, the calorific value is measured, and the result of determination is made by the calculation device 22C. If the value deviates from the allowable range, the initial value is corrected and the next measurement cycle is started. A cycle takes 10-20 seconds. Thus, when the allowable amount of irradiation heat is obtained, the reforming process is repeated as many times as the number of commands with the gas pressure as the command value.

前述第1、第2及び第3の手法の内から、好ましい手法を選んで、または指令熱量値の大きさに応じて、さらには被照射体の性質によって調整の対象が決定される。調整の対象が同時に複数であってもよいし、時系列に複数であってもよい。   From among the first, second, and third methods described above, a preferable method is selected, or an object to be adjusted is determined according to the magnitude of the commanded calorific value, and further depending on the properties of the irradiated object. There may be a plurality of adjustment targets at the same time, or a plurality of adjustment targets in time series.

図7は、前述第1の手法に係る他の具体的な実施例装置の正断面図で、前述図1の実施例に於ける前記照射軸方向のZ軸に移動位置決めが可能なテーブルを兼ねるターゲット14に替え電界放射カソード8を、そのホルダ30ごと、照射軸のZ軸に移動位置決め可能に構成して電子銃部1Aに取り付けられ、前述照射距離(h)が長短に変更できるようにしたものである。   FIG. 7 is a front sectional view of another specific embodiment apparatus according to the first method, which also serves as a table that can be moved and positioned on the Z axis in the irradiation axis direction in the embodiment of FIG. The field emission cathode 8 instead of the target 14 is configured to be movable and positioned on the Z axis of the irradiation axis together with the holder 30 and is attached to the electron gun unit 1A so that the irradiation distance (h) can be changed to be longer or shorter. Is.

即ち、図に於いて、カソード8は、電子銃部1Aに照射軸のZ軸に平行に移動可能に、プラスチックやセラミックス製の絶縁性のブッシュ31を介して摺動するように嵌挿された筒状ホルダ30に同軸に保持具8Cにより固定され、前記嵌挿摺動部は真空シールされている。固定側の電子銃部1Aに設けたブラケット40には送り用ねじ33を連結し制御装置22からの指令で駆動される送り用モータ32が取り付けられ、これに対し移動側のホルダ30の上部外周部に設けられたブラケット35に取り付けられたナット34にねじ33を螺合させることにより、ホルダ30を移動させる。   That is, in the drawing, the cathode 8 is inserted into the electron gun unit 1A so as to be slidable through an insulating bush 31 made of plastic or ceramics so as to be movable in parallel with the Z axis of the irradiation axis. The cylindrical holder 30 is coaxially fixed by a holder 8C, and the fitting and sliding portion is vacuum-sealed. The bracket 40 provided on the fixed-side electron gun section 1A is connected with a feed screw 33 and is attached with a feed motor 32 that is driven by a command from the control device 22. The holder 30 is moved by screwing the screw 33 into the nut 34 attached to the bracket 35 provided in the section.

この図7の実施例は、電界放射カソード8とターゲット14間の電子ビーム11の照射距離(h)を変更する点においては、前述図1に示した実施例のものと同じだが、照射熱量を変化させる作用、効果は相違している。その理由は、[0029]で述べたように電子銃内のビーム発射機構を変化させた場合と、銃口からターゲットまでの距離を変えた場合の違いである。前者は関係する因子が多く利用上で複雑となるが、テーブル昇降機構が不要になる利点がある。   The embodiment of FIG. 7 is the same as that of the embodiment shown in FIG. 1 in that the irradiation distance (h) of the electron beam 11 between the field emission cathode 8 and the target 14 is changed. The changing action and effect are different. The reason is the difference between the case where the beam emission mechanism in the electron gun is changed as described in [0029] and the case where the distance from the muzzle to the target is changed. The former has many related factors and is complicated in use, but has the advantage that a table lifting mechanism is unnecessary.

本発明は、電子ビームパルスの照射改質加工装置に於ける表面改質加工の作業を、照射熱量を選択、設定した照射条件通りに正確に調整設定して使用することができる。   The present invention can use the surface modification work in the electron beam pulse irradiation modification processing apparatus by accurately adjusting and setting the irradiation heat quantity according to the irradiation conditions selected and set.

本発明の一実施例装置の正断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 実施例装置の部分の斜視図。The perspective view of the part of an Example apparatus. 図2の部分の断面図。Sectional drawing of the part of FIG. 本発明を説明するための熱伝導の特性図。FIG. 4 is a characteristic diagram of heat conduction for explaining the present invention. 本発明装置の稼動時の温度変化の特性図。The characteristic view of the temperature change at the time of operation | movement of this invention apparatus. 本発明の第1の手法の実施例を説明するフローチャート図。The flowchart figure explaining the Example of the 1st method of this invention. 本発明の第1の手法に係る具体的な他の実施例装置の正断面図。FIG. 6 is a front sectional view of another specific example apparatus according to the first technique of the present invention. 本発明の第2の手法に係る実施例の原理的回路構成図。The fundamental circuit block diagram of the Example which concerns on the 2nd method of this invention. 従来装置の全体構成を示す装置断面図。The apparatus sectional view showing the whole composition of the conventional apparatus. 放電ガス圧と電子ビームのエネルギ密度及び加速電圧との特性図。The characteristic diagram of discharge gas pressure, the energy density of an electron beam, and an acceleration voltage. 加速電圧とエネルギ密度との特性図。The characteristic diagram of acceleration voltage and energy density. 電子ビームの照射距離とエネルギ密度及び加速電圧との特性図。The characteristic diagram of the irradiation distance of an electron beam, energy density, and acceleration voltage. 測定体の材質により照射電子ビームの吸収熱量に差異があることを示す表。The table | surface which shows that there is a difference in the amount of absorbed heat of an irradiation electron beam by the material of a measurement body.

符号の説明Explanation of symbols

1 ハウジング
1A 電子銃部
1B 函体部
2 スクロールポンプ
3 ターボ分子ポンプ
4 流量調整弁
5 ソレノイド
6 アノードプラズマ生成電極
7 陽極プラズマ
8 電界放射カソード
9 カソードプラズマ
11 電子ビームパルス
12 被照射体(ワーク)
14 テーブル
15 電離性気体
16 ソレノイド励磁パルス電源
17 アノードプラズマ用パルス電源
18 加速電圧用カソードパルス電源
19 水平2軸移動装置
20A Z軸ラック支柱
20B ピニオンギア
21 熱量測定セット
21A 測定体
21B 温度センサ
21C 設置ベース
21D 非金属支柱
21E 導線
21F 金属片
21G 被照射面
22 CNC制御装置
22A 入力装置
22B プログラム制御装置
22C 計算装置
22D 表示装置
22E 指令出力装置
23 軸移動駆動装置
24 機能駆動装置
25 熱量測定器
26 接地導線
29 ガス圧センサ
29a ガス濃度信号
1 Housing 1A Electron Gun 1B Box 2 Scroll Pump 3 Turbo Molecular Pump 4 Flow Control Valve 5 Solenoid 6 Anode Plasma Generation Electrode 7 Anode Plasma 8 Field Emission Cathode 9 Cathode Plasma 11 Electron Beam Pulse 12 Object to be Irradiated (Work)
14 Table 15 Ionizing gas 16 Solenoid excitation pulse power supply 17 Anode plasma pulse power supply 18 Acceleration voltage cathode pulse power supply 19 Horizontal biaxial moving device 20A Z-axis rack post 20B Pinion gear 21 Calorie measurement set 21A Measurement body 21B Temperature sensor 21C Installation Base 21D Non-metallic strut 21E Conductor 21F Metal piece 21G Irradiated surface 22 CNC control device 22A Input device 22B Program control device 22C Calculation device 22D Display device 22E Command output device 23 Axis movement drive device 24 Function drive device 25 Calorimeter 26 Grounding Conductor 29 Gas pressure sensor 29a Gas concentration signal

Claims (5)

カソード8と、プラズマ生成電極6と、電離気体を充填するハウジング1と、前記カソードからの電子ビームを受ける被照射体12を設置するテーブル14とを備え、前記ハウジング内に磁場を形成するソレノイド5よりなる電子銃装置であり、前記ソレノイドが磁場を形成してからプラズマを生成させ、更に、カソードと被照射体の間にパルス電圧を印加してプラズマを通路とする電子ビームパルスを放射して前記被照射体の表面処理行う装置において、カソードパルス電圧、カソードと被照射体間の距離、電離気体濃度を照射条件として調整可能にする手段を備え、前記電子ビームパルスの照射条件を入力し、照射の条件指令、実行、制御、を進行させるプログラム制御装置と、前記被照射体と同じ姿勢でテーブルに設置される熱量測定体と、該測定体の温度上昇を測定するセンサと、前記プログラム制御装置に入力された指令熱量値に応ずる照射条件によって、被照射体への照射と同時に、または、別工程で測定体に照射された結果である温度上昇を前記センサで読み取り、熱量を計算し、指令熱量値と比較して誤差を前記プログラム制御装置に伝達する熱量測定装置が設けられて、前記プログラム制御装置が前記条件調整手段を通じ前記誤差をフィードバックして許容値内に納るよう調整することを特徴とする表面改質装置。   A solenoid 5 that includes a cathode 8, a plasma generation electrode 6, a housing 1 filled with an ionized gas, and a table 14 on which an irradiated body 12 that receives an electron beam from the cathode is installed, and forms a magnetic field in the housing. An electron gun device comprising: a plasma generated after the solenoid forms a magnetic field; and a pulse voltage is applied between the cathode and the irradiated object to emit an electron beam pulse using the plasma as a passage. In the apparatus for performing the surface treatment of the irradiated object, the cathode pulse voltage, the distance between the cathode and the irradiated object, and means for adjusting the ionized gas concentration as the irradiation condition, the irradiation condition of the electron beam pulse is input, Program control device for advancing irradiation condition commands, execution, and control, and calorimetry installed on the table in the same posture as the irradiated object And a sensor for measuring the temperature rise of the measurement object, and the irradiation condition according to the command heat value input to the program control device, the measurement object is irradiated simultaneously with the irradiation of the irradiated object or in a separate process. A calorific value measuring device is provided for reading the temperature rise as a result of the calculation by the sensor, calculating the calorific value, and comparing the command calorific value with the command calorific value, and transmitting the error to the program control device. The surface modification device is characterized in that the error is fed back and adjusted so as to be within an allowable value. 前記熱量測定体が被照射体と同材質であることを特徴とする請求項1に記載の表面改質装置。   The surface modification apparatus according to claim 1, wherein the calorimeter is made of the same material as the irradiated body. 前記測定熱量が指令熱量と一致するように照射条件を調整する手段が、
前記カソードと被照射体間の距離の増減変更手段、
前記電子銃内に充填される電離気体の濃度の変更手段、
又は、前記カソードに印加されるパルス電圧変更手段、
の内の何れか一つであることを特徴とする請求項1、または2に記載の表面改質装置。
Means for adjusting the irradiation conditions so that the measured calorific value matches the commanded calorific value,
Means for increasing or decreasing the distance between the cathode and the irradiated object;
Means for changing the concentration of ionized gas filled in the electron gun,
Or pulse voltage changing means applied to the cathode,
The surface modification apparatus according to claim 1, wherein the surface modification apparatus is any one of the above.
前記カソードとテーブル間の電子ビーム照射距離の増減変更手段として、ハウジングに固定されるカソードに対してテーブルが電子ビーム軸線にそって移動する進退機構、およびテーブルは前記軸線に沿った移動をせず前記軸線に沿ってカソードが移動する進退機構、の何れか一方または両方が設けられている請求項1または3に記載の表面改質装置。   As a means for increasing or decreasing the electron beam irradiation distance between the cathode and the table, an advance / retreat mechanism in which the table moves along the electron beam axis with respect to the cathode fixed to the housing, and the table does not move along the axis. 4. The surface reforming apparatus according to claim 1, wherein one or both of an advancing / retreating mechanism in which the cathode moves along the axis is provided. 5. 電子ビーム軸と直交するテーブル上に被照射体と熱量測定体を分離して設置し、先に熱量測定体に対して前記電子ビームパルスの照射、熱量測定、比較、調整のサイクルを行ない、測定熱量が許容値範囲内となる照射条件を決定したのち、熱量測定体と被照射体の位置を交換して前記照射条件によって改質加工処理を開始させることを特徴とする前記請求項1に記載の装置を用いる表面改質方法。   The object to be irradiated and the calorimeter are placed separately on a table orthogonal to the electron beam axis, and the electron beam pulse is irradiated, calorimetrically, compared, and adjusted on the calorimeter, and then measured. 2. The reforming process according to claim 1, wherein after determining the irradiation condition in which the amount of heat falls within an allowable range, the position of the calorimeter and the object to be irradiated is exchanged to start the reforming process according to the irradiation condition. Surface modification method using the apparatus of.
JP2005139199A 2005-05-12 2005-05-12 Surface modification device by electronic beam irradiation Pending JP2006315024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139199A JP2006315024A (en) 2005-05-12 2005-05-12 Surface modification device by electronic beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139199A JP2006315024A (en) 2005-05-12 2005-05-12 Surface modification device by electronic beam irradiation

Publications (1)

Publication Number Publication Date
JP2006315024A true JP2006315024A (en) 2006-11-24

Family

ID=37536144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139199A Pending JP2006315024A (en) 2005-05-12 2005-05-12 Surface modification device by electronic beam irradiation

Country Status (1)

Country Link
JP (1) JP2006315024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191733A (en) * 2008-02-14 2009-08-27 Toshiba Corp Steam turbine blade and method for modifying its surface
JP2009297725A (en) * 2008-06-10 2009-12-24 Mitsubishi Electric Corp Device and method for surface treatment with electron beam
JP2013049882A (en) * 2011-08-30 2013-03-14 Sodick Co Ltd Device for modification of metallic surface
JP2013049880A (en) * 2011-08-30 2013-03-14 Sodick Co Ltd Metal surface modifying method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191733A (en) * 2008-02-14 2009-08-27 Toshiba Corp Steam turbine blade and method for modifying its surface
JP2009297725A (en) * 2008-06-10 2009-12-24 Mitsubishi Electric Corp Device and method for surface treatment with electron beam
JP2013049882A (en) * 2011-08-30 2013-03-14 Sodick Co Ltd Device for modification of metallic surface
JP2013049880A (en) * 2011-08-30 2013-03-14 Sodick Co Ltd Metal surface modifying method

Similar Documents

Publication Publication Date Title
US20200001399A1 (en) Method for treating raw-material powder, apparatus for treating raw-material powder, and method for producing object
US9162394B2 (en) Method and device for producing three-dimensional objects
Greenly et al. Magnetically insulated ion diode with a gas‐breakdown plasma anode
TWI584696B (en) Method and device for generating optical radiation by means of electrically operated pulsed discharges
US6151345A (en) Laser power control with stretched initial pulses
TW200919525A (en) An extreme ultraviolet light source device and a method for generating extreme ultraviolet radiation
Glyavin et al. Experimental study of the pulsed terahertz gyrotron with record-breaking power and efficiency parameters
JP2006315024A (en) Surface modification device by electronic beam irradiation
Krása et al. Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation
CN103874312A (en) Generation method and device of Z-pinch shell plasma column
JP2009087807A (en) Extreme ultraviolet light generating method and extreme ultraviolet light source device
JP4711394B2 (en) Electron beam irradiation surface modification processing equipment
Koval et al. Electron sources with plasma grid emitters: Progress and prospects
Den Hartog et al. Pulse-burst operation of standard Nd: YAG lasers
Laska et al. Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities
Aleksandrov et al. Experimental and numerical studies of plasma production in the initial stage of implosion of a cylindrical wire array
US20100260322A1 (en) X-ray generator employing hemimorphic crystal
JP2011210768A (en) Heat treatment method and heat treatment apparatus
JP2007125574A (en) Method and apparatus for electron beam surface modification
Hayashi et al. Impedance control using electron beam diode in intense pulsed-power generator
Renk et al. Performance of a pulsed ion beam with a renewable cryogenically cooled ion source
Devyatkov et al. Equipment for pulsed thermal treatment of the surfaces of materials by a low-energy electron beam
Lee et al. Multiple pulse laser excitation of capillary discharge
JP2010100904A (en) Surface modification apparatus and surface modification method
Shahriari et al. Investigation of spatial distribution of hydrogen and argon ions and effects of them on aluminum samples in a 2.5 kJ mater type plasma focus device