JP5257186B2 - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP5257186B2
JP5257186B2 JP2009073330A JP2009073330A JP5257186B2 JP 5257186 B2 JP5257186 B2 JP 5257186B2 JP 2009073330 A JP2009073330 A JP 2009073330A JP 2009073330 A JP2009073330 A JP 2009073330A JP 5257186 B2 JP5257186 B2 JP 5257186B2
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
burner
flow path
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009073330A
Other languages
Japanese (ja)
Other versions
JP2010222209A (en
Inventor
裕二 向井
晃 前西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009073330A priority Critical patent/JP5257186B2/en
Publication of JP2010222209A publication Critical patent/JP2010222209A/en
Application granted granted Critical
Publication of JP5257186B2 publication Critical patent/JP5257186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、炭化水素化合物原料と水を反応させて水素含有ガスを生成する水素生成装置およびそれを用いた燃料電池発電装置に関し、特に一酸化炭素濃度を減少する水素生成装置の変成部の温度制御に関する。   TECHNICAL FIELD The present invention relates to a hydrogen generator that generates a hydrogen-containing gas by reacting a hydrocarbon compound raw material with water, and a fuel cell power generator using the same, and in particular, the temperature of a shift section of a hydrogen generator that reduces the carbon monoxide concentration. Regarding control.

一般に、燃料電池からなる発電装置は、まず、水素生成装置の改質部によって炭化水素化合物と水蒸気を原料として水蒸気改質反応により水素・二酸化炭素・一酸化炭素、および未反応のメタンと水蒸気を含む改質ガスを生成する。つぎに、変成部や選択酸化部などの一酸化炭素低減部によって燃料電池に有害となる一酸化炭素を除去して燃料ガスを生成する。そして、得られた燃料ガスを用いて燃料電池で発電を行うものである。   In general, a power generation device composed of a fuel cell first generates hydrogen, carbon dioxide, carbon monoxide, and unreacted methane and steam by a steam reforming reaction using a hydrocarbon compound and steam as raw materials by a reforming unit of a hydrogen generator. A reformed gas containing is generated. Next, carbon monoxide that is harmful to the fuel cell is removed by a carbon monoxide reduction unit such as a transformation unit or a selective oxidation unit to generate fuel gas. Then, power is generated by a fuel cell using the obtained fuel gas.

このとき、一酸化炭素の除去が不十分な場合、燃料電池が被毒し、発電が停止するため、一酸化炭素低減部の役割は重大である。中でも、10%以上の高濃度の一酸化炭素を1%程度以下にまで低減させる変成部は、その動作や性能に支障が生じるとその影響が大きい。ここで、変成部の性能に大きな影響を与える要因は、その動作温度である。そして、変成部の温度は、改質部から送られる改質ガスの保有熱量と、改質部を加熱した燃焼ガスによる加熱量と、変成部から周囲への放熱量などによって決まる。そのため、変成部の温度は、燃料電池の発電電力量などの運転条件や、水素生成装置の配置された周囲温度により変動する。つまり、燃料電池の発電電力量が小さいと変成部の温度が低下する。また、水素生成装置の周囲温度が低いと変成部の温度が低下する。   At this time, if the removal of carbon monoxide is insufficient, the fuel cell is poisoned and power generation is stopped, so the role of the carbon monoxide reduction unit is critical. Among them, the metamorphic portion that reduces carbon monoxide having a high concentration of 10% or more to about 1% or less has a great influence when its operation and performance are disturbed. Here, the factor that greatly affects the performance of the metamorphic part is the operating temperature. The temperature of the shift section is determined by the amount of heat held by the reformed gas sent from the reforming section, the amount of heating by the combustion gas that heated the reforming section, the amount of heat released from the shift section to the surroundings, and the like. For this reason, the temperature of the shift unit varies depending on operating conditions such as the amount of power generated by the fuel cell and the ambient temperature where the hydrogen generator is disposed. That is, when the amount of power generated by the fuel cell is small, the temperature of the metamorphic part is lowered. Further, when the ambient temperature of the hydrogen generator is low, the temperature of the metamorphic part is lowered.

一方、変成部の最適な動作温度は、使用する触媒に依存するが、一般に使用される銅−亜鉛触媒の場合、およそ250℃から300℃程度である。そのため、最適な動作温度より低いと、触媒の反応速度が遅くなり、一酸化炭素の低減性能が低下する。一方、最適な動作温度より高いと、反応平衡により一酸化炭素の低減性能が低下する。   On the other hand, the optimum operating temperature of the shift section depends on the catalyst used, but in the case of a commonly used copper-zinc catalyst, it is about 250 to 300 ° C. For this reason, when the temperature is lower than the optimum operating temperature, the reaction rate of the catalyst becomes slow, and the carbon monoxide reduction performance is lowered. On the other hand, if the temperature is higher than the optimum operating temperature, the carbon monoxide reduction performance decreases due to reaction equilibrium.

したがって、変成部の温度を最適な動作温度に維持することが、燃料電池を被毒させることなく安定に運転するために重要となる。   Therefore, it is important to maintain the temperature of the metamorphic part at an optimum operating temperature in order to stably operate the fuel cell without being poisoned.

そこで、変成部の温度を最適な動作温度に制御するための技術が開示されている(例えば、特許文献1参照)。特許文献1に示された水素生成装置は、変成部の温度制御を、変成部の下流に位置する選択酸化部へ供給する選択酸化空気の供給量によって行う構成である。   Therefore, a technique for controlling the temperature of the transformation section to an optimum operating temperature is disclosed (for example, see Patent Document 1). The hydrogen generator shown in Patent Document 1 has a configuration in which temperature control of the shift unit is performed by a supply amount of selective oxidation air supplied to a selective oxidation unit located downstream of the shift unit.

以下に、特許文献1に示された水素生成装置の動作について簡単に説明する。まず、変成部の温度を上昇させる場合、選択酸化空気の供給量を増加させる。そして、選択酸化部では、供給された選択酸化空気により一酸化炭素および水素が燃焼して発熱する。そのため、選択酸化空気の供給量を増加すると、選択酸化部での発熱量が増加し、選択酸化部と熱交換可能に配置している改質用水の蒸発用熱交換器の温度が上昇する。このとき、蒸発用熱交換器は、変成部にも熱交換可能に配置されているため、変成部の温度も上昇する。   Below, operation | movement of the hydrogen generator shown by patent document 1 is demonstrated easily. First, when raising the temperature of a metamorphic part, the supply amount of selective oxidation air is increased. In the selective oxidation unit, carbon monoxide and hydrogen are combusted by the supplied selective oxidation air to generate heat. Therefore, when the supply amount of the selective oxidation air is increased, the amount of heat generated in the selective oxidation unit increases, and the temperature of the heat exchanger for evaporating reforming water arranged so as to be able to exchange heat with the selective oxidation unit rises. At this time, since the evaporating heat exchanger is also arranged in the metamorphic part so as to be able to exchange heat, the temperature of the metamorphic part also rises.

逆に、変成部の温度を下げる場合、選択酸化空気の供給量を減少すればよい。上記で示すように、選択酸化空気の供給量を増減させることにより、変成部の温度を最適な動作温度に制御できるとしている。
特開2008−74688号公報
On the other hand, when the temperature of the metamorphic part is lowered, the supply amount of the selective oxidation air may be reduced. As described above, the temperature of the shift section can be controlled to the optimum operating temperature by increasing or decreasing the supply amount of the selective oxidation air.
JP 2008-74688 A

しかしながら、上記特許文献1の水素生成装置では、変成部の温度制御のために選択酸化空気の供給量を増減するため、以下に示す課題があった。   However, in the hydrogen generator of Patent Document 1 described above, the supply amount of the selective oxidation air is increased / decreased in order to control the temperature of the shift section.

第1に、選択酸化空気の供給量を増加すると、選択酸化部で水素が燃焼消費されるため、水素生成装置によって生成される水素量が減少するという課題があった。一方、燃料電池で消費される水素量を供給量の70%から90%程度以下に抑える必要がある。その理由は、水素生成装置によって生成される水素量が減少すると燃料電池内で凝縮生成した水を押し出せなくなる、いわゆるフラッディング現象が発生し燃料電池を安定に動作できなくなるためである。   First, when the supply amount of the selective oxidation air is increased, hydrogen is combusted and consumed in the selective oxidation unit, which causes a problem that the amount of hydrogen generated by the hydrogen generator decreases. On the other hand, it is necessary to suppress the amount of hydrogen consumed by the fuel cell to about 70% to 90% or less of the supply amount. The reason is that when the amount of hydrogen generated by the hydrogen generator decreases, the water condensed and generated in the fuel cell cannot be pushed out, a so-called flooding phenomenon occurs, and the fuel cell cannot be operated stably.

第2に、変成温度を下げる場合、選択酸化空気の供給量を減少しなければならない。その場合、選択酸化空気の供給量の不足により、選択酸化部で一酸化炭素を十分に低減できなくなるという課題もあった。   Second, when the transformation temperature is lowered, the supply amount of the selective oxidation air must be reduced. In that case, there is also a problem that carbon monoxide cannot be sufficiently reduced in the selective oxidation unit due to a shortage of supply amount of the selective oxidation air.

本発明は、上記従来の課題を解決するもので、一酸化炭素濃度を充分に低減できる水素生成装置を実現することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to realize a hydrogen generator capable of sufficiently reducing the carbon monoxide concentration.

上記の従来の課題を解決するために、本発明の燃料電池発電装置は、
改質反応により炭化水素を主成分とする原料と水蒸気とから水素を主成分とする改質ガスを生成する改質部と、
変成反応により前記改質部で生成された前記改質ガスに含まれる一酸化炭素を低減する変成部と、
前記変成部を介して供給される燃料ガスを用いて発電を行う燃料電池と、
前記燃料ガスを燃焼させて前記改質部と前記変成部の温度を維持するバーナと、
前記燃料ガスを前記燃料電池を通らずに直接前記バーナへ供給するためのバイパス流路と、
前記燃料ガスの供給先を前記燃料電池側又は前記バイパス流路側へ切り替える流路切替え弁と、
前記変成部の周囲温度を測定する周囲温度測定手段と、
前記周囲温度測定手段が測定した前記周囲温度に基づいて前記バーナによる前記変成部への加熱量を調節する変成部温度制御手段と、
を有している燃料電池発電装置であって、
前記燃料電池発電装置の起動時には、前記燃料ガスが前記バイパス流路を通って前記バーナへ供給されるように前記流路切替え弁が制御され、前記周囲温度が低い場合は原料の供給量が多くなるように制御され、前記変成部の温度が所定温度に到達すれば前記燃料ガスの供給先が前記燃料電池側になるように前記流路切替え弁が制御される
In order to solve the above-described conventional problems, the fuel cell power generator of the present invention includes:
A reforming unit that generates a reformed gas mainly composed of hydrogen from a raw material mainly composed of hydrocarbon and water vapor by a reforming reaction;
A shift unit that reduces carbon monoxide contained in the reformed gas generated by the shift unit by a shift reaction;
A fuel cell that generates power using fuel gas supplied through the metamorphic section;
A burner to maintain the temperature of the shift converter and the reformer by burning the fuel gas,
A bypass flow path for supplying the fuel gas directly to the burner without passing through the fuel cell;
A flow path switching valve for switching the fuel gas supply destination to the fuel cell side or the bypass flow path side;
Ambient temperature measuring means for measuring the ambient temperature of the metamorphic part;
A transformer temperature control means for adjusting a heating amount to the transformer by the burner based on the ambient temperature measured by the ambient temperature measuring means;
A perforated to have a fuel cell power generation device,
When starting the fuel cell power generation device, the flow path switching valve is controlled so that the fuel gas is supplied to the burner through the bypass flow path, and when the ambient temperature is low, the supply amount of raw material is large. The flow path switching valve is controlled so that the supply destination of the fuel gas is on the fuel cell side when the temperature of the transformation section reaches a predetermined temperature .

この構成により、変成部の周囲温度に応じて変成部の温度を最適な動作温度に制御することができる。   With this configuration, the temperature of the metamorphic part can be controlled to the optimum operating temperature according to the ambient temperature of the metamorphic part.

また、本発明の水素生成装置は、
改質反応により炭化水素を主成分とする原料と水蒸気とから水素を主成分とする改質ガスを生成する改質部と、
変成反応により前記改質部で生成された前記改質ガスに含まれる一酸化炭素を低減する変成部と、
前記変成部を介して供給される燃料ガスを用いて発電を行う燃料電池と、
前記燃料ガスを燃焼させて前記改質部と前記変成部の温度を維持するバーナと、
前記燃料ガスを前記燃料電池を通らずに直接前記バーナへ供給するためのバイパス流路と、
前記燃料ガスの供給先を前記燃料電池側又は前記バイパス流路側へ切り替える流路切替え弁と、
前記変成部の温度を測定する変成部温度測定手段と、
前記変成部温度測定手段が測定した前記温度に基づいて前記バーナによる前記変成部への加熱量を調節する変成部温度制御手段と、を有している燃料電池発電装置であって、
前記燃料電池発電装置の起動時には、前記燃料ガスが前記バイパス流路を通って前記バーナへ供給されるように前記流路切替え弁が制御され、前記温度が低い場合は原料の供給量が多くなるように制御され、前記変成部の温度が所定温度に到達すれば前記燃料ガスの供給先が前記燃料電池側になるように前記流路切替え弁が制御される
The hydrogen generator of the present invention is
A reforming unit that generates a reformed gas mainly composed of hydrogen from a raw material mainly composed of hydrocarbon and water vapor by a reforming reaction;
A shift unit that reduces carbon monoxide contained in the reformed gas generated by the shift unit by a shift reaction;
A fuel cell that generates power using fuel gas supplied through the metamorphic section;
A burner to maintain the temperature of the shift converter and the reformer by burning the fuel gas,
A bypass flow path for supplying the fuel gas directly to the burner without passing through the fuel cell;
A flow path switching valve for switching the fuel gas supply destination to the fuel cell side or the bypass flow path side;
A transformer temperature measuring means for measuring the temperature of the transformer,
Wherein a shift converter temperature measuring means based on the temperature that was measured chromatic to that fuel cell power generation device, and a shift converter temperature control means for adjusting the heating amount to the shift converter by said burner,
When the fuel cell power generator is started, the flow path switching valve is controlled so that the fuel gas is supplied to the burner through the bypass flow path, and when the temperature is low, the supply amount of the raw material increases. The flow path switching valve is controlled so that the supply destination of the fuel gas is on the fuel cell side when the temperature of the transformation section reaches a predetermined temperature .

この構成により、変成部の温度を最適な動作温度で制御することができる。   With this configuration, the temperature of the metamorphic part can be controlled at an optimum operating temperature.

また、前記バーナ、前記改質部が変成部より高温になるように、前記改質部と前記変成部の両方を加熱、前記変成部の前記周囲温度または前記温度が低いほど前記バーナで燃焼する前記改質ガスの量を増やしてもよい。これにより、変成部の温度または周囲温度が低いほど、バーナによる燃焼量を増加して変成部の温度を上昇させて、一酸化炭素濃度を効率的に低減できる燃料電池発電装置を実現できる。
Further, the burner is such that said reformer becomes high from the shift converter, to heat both of the shift converter and the reforming section, at the ambient temperature or the burner the lower the temperature of the shift converter the amount of the reformed gas to burn may be increase the. As a result, the lower the temperature of the metamorphic part or the ambient temperature, the higher the combustion amount by the burner and the temperature of the metamorphic part can be increased, thereby realizing a fuel cell power generator capable of efficiently reducing the carbon monoxide concentration.

本発明の水素生成装置およびそれを用いた燃料電池発電装置によれば、変動する変成部
の温度を、常時最適な動作温度に制御して、効果的に一酸化炭素濃度を低減することができる。
According to the hydrogen generator of the present invention and the fuel cell power generator using the same, the temperature of the fluctuating metamorphic part can be controlled to the optimum operating temperature at all times, and the carbon monoxide concentration can be effectively reduced. .

第1の発明は、
改質反応により炭化水素を主成分とする原料と水蒸気とから水素を主成分とする改質ガスを生成する改質部と、
変成反応により前記改質部で生成された前記改質ガスに含まれる一酸化炭素を低減する変成部と、
前記変成部を介して供給される燃料ガスを用いて発電を行う燃料電池と、
前記燃料ガスを燃焼させて前記改質部と前記変成部の温度を維持するバーナと、
前記燃料ガスを前記燃料電池を通らずに直接前記バーナへ供給するためのバイパス流路と、
前記燃料ガスの供給先を前記燃料電池側又は前記バイパス流路側へ切り替える流路切替え弁と、
前記変成部の周囲温度を測定する周囲温度測定手段と、
前記周囲温度測定手段が測定した前記周囲温度に基づいて前記バーナによる前記変成部への加熱量を調節する変成部温度制御手段と、
を有している燃料電池発電装置であって、
前記燃料電池発電装置の起動時には、前記燃料ガスが前記バイパス流路を通って前記バーナへ供給されるように前記流路切替え弁が制御され、前記周囲温度が低い場合は原料の供給量が多くなるように制御され、前記変成部の温度が所定温度に到達すれば前記燃料ガスの供給先が前記燃料電池側になるように前記流路切替え弁が制御される、燃料電池発電装置である。この構成により、変成部の周囲温度に応じて変成部の温度を最適な動作温度に制御することができる。
The first invention is
A reforming unit that generates a reformed gas mainly composed of hydrogen from a raw material mainly composed of hydrocarbon and water vapor by a reforming reaction;
A shift unit that reduces carbon monoxide contained in the reformed gas generated by the shift unit by a shift reaction;
A fuel cell that generates power using fuel gas supplied through the metamorphic section;
A burner to maintain the temperature of the shift converter and the reformer by burning the fuel gas,
A bypass flow path for supplying the fuel gas directly to the burner without passing through the fuel cell;
A flow path switching valve for switching the fuel gas supply destination to the fuel cell side or the bypass flow path side;
Ambient temperature measuring means for measuring the ambient temperature of the metamorphic part;
A transformer temperature control means for adjusting a heating amount to the transformer by the burner based on the ambient temperature measured by the ambient temperature measuring means;
A perforated to have a fuel cell power generation device,
When starting the fuel cell power generation device, the flow path switching valve is controlled so that the fuel gas is supplied to the burner through the bypass flow path, and when the ambient temperature is low, the supply amount of raw material is large. In this fuel cell power generation apparatus , the flow path switching valve is controlled so that the supply destination of the fuel gas is on the fuel cell side when the temperature of the transformation section reaches a predetermined temperature . With this configuration, the temperature of the metamorphic part can be controlled to the optimum operating temperature according to the ambient temperature of the metamorphic part.

第2の発明は、
改質反応により炭化水素を主成分とする原料と水蒸気とから水素を主成分とする改質ガスを生成する改質部と、
変成反応により前記改質部で生成された前記改質ガスに含まれる一酸化炭素を低減する変成部と、
前記変成部を介して供給される燃料ガスを用いて発電を行う燃料電池と、
前記燃料ガスを燃焼させて前記改質部と前記変成部の温度を維持するバーナと、
前記燃料ガスを前記燃料電池を通らずに直接前記バーナへ供給するためのバイパス流路と、
前記燃料ガスの供給先を前記燃料電池側又は前記バイパス流路側へ切り替える流路切替え弁と、
前記変成部の温度を測定する変成部温度測定手段と、
前記変成部温度測定手段が測定した前記温度に基づいて前記バーナによる前記変成部への加熱量を調節する変成部温度制御手段と、を有している燃料電池発電装置であって、
前記燃料電池発電装置の起動時には、前記燃料ガスが前記バイパス流路を通って前記バーナへ供給されるように前記流路切替え弁が制御され、前記温度が低い場合は原料の供給量が多くなるように制御され、前記変成部の温度が所定温度に到達すれば前記燃料ガスの供給先が前記燃料電池側になるように前記流路切替え弁が制御される、燃料電池発電装置である。この構成により、変成部の温度を最適な動作温度で制御することができる。
The second invention is
A reforming unit that generates a reformed gas mainly composed of hydrogen from a raw material mainly composed of hydrocarbon and water vapor by a reforming reaction;
A shift unit that reduces carbon monoxide contained in the reformed gas generated by the shift unit by a shift reaction;
A fuel cell that generates power using fuel gas supplied through the metamorphic section;
A burner to maintain the temperature of the shift converter and the reformer by burning the fuel gas,
A bypass flow path for supplying the fuel gas directly to the burner without passing through the fuel cell;
A flow path switching valve for switching the fuel gas supply destination to the fuel cell side or the bypass flow path side;
A transformer temperature measuring means for measuring the temperature of the transformer,
Wherein a shift converter temperature measuring means based on the temperature that was measured chromatic to that fuel cell power generation device, and a shift converter temperature control means for adjusting the heating amount to the shift converter by said burner,
When the fuel cell power generator is started, the flow path switching valve is controlled so that the fuel gas is supplied to the burner through the bypass flow path, and when the temperature is low, the supply amount of the raw material increases. And the flow path switching valve is controlled so that the supply destination of the fuel gas is on the fuel cell side when the temperature of the metamorphic portion reaches a predetermined temperature . With this configuration, the temperature of the metamorphic part can be controlled at an optimum operating temperature.

第3の発明は、第1または第2の発明において、前記バーナ、前記改質部が変成部より高温になるように、前記改質部と前記変成部の両方を加熱、前記変成部の前記周囲温度または前記温度が低いほど前記バーナで燃焼する前記改質ガスの量を増やす。これにより、変成部の温度または周囲温度が低いほど、バーナによる燃焼量を増加して変成部の温度を上昇させて、一酸化炭素濃度を効率的に低減できる燃料電池発電装置を実現できる。 The third invention is the first or second aspect, the burner, the so reformer becomes high from the shift converter, to heat both of the shift converter and the reformer, the shift converter The amount of the reformed gas burned in the burner is increased as the ambient temperature or the temperature is lower. As a result, the lower the temperature of the metamorphic part or the ambient temperature, the higher the combustion amount by the burner and the temperature of the metamorphic part can be increased, thereby realizing a fuel cell power generator capable of efficiently reducing the carbon monoxide concentration.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下に、本発明の実施の形態1における水素生成装置について、詳細に説明する。
(Embodiment 1)
Hereinafter, the hydrogen generator in Embodiment 1 of the present invention will be described in detail.

図1は、本発明の実施の形態1における水素生成装置1の概略構成図である。なお、図1は、水素生成装置1と、燃料電池2とから少なくとも構成される燃料電池発電装置を例に図示している。   FIG. 1 is a schematic configuration diagram of a hydrogen generator 1 according to Embodiment 1 of the present invention. FIG. 1 illustrates a fuel cell power generator that includes at least a hydrogen generator 1 and a fuel cell 2 as an example.

図1に示すように、水素生成装置1は、加熱手段3であるバーナ(以下、「バーナ」と記す)、蒸発部4、改質部5、変成部6、選択酸化部7およびそれらを断熱する断熱材8を備えている。ここで、炭化水素を主成分とする原料と水は原料供給口9から供給され、水はらせん状の蒸発部4を経て蒸発し、水蒸気の状態で改質部5に送られる。そして、生成された水素含有の燃料ガスは生成ガス出口10から取り出された後、流路切替え弁20を通って燃料電池2へ供給される。また、バーナ3の燃焼ガスは排気口11から排気される。このとき、水蒸気改質反応に必要な反応熱を供給するバーナ3には、燃料としては燃料電池から排出される未使用の燃料ガスが供給される。   As shown in FIG. 1, the hydrogen generator 1 includes a burner (hereinafter referred to as “burner”), a vaporizer 4, a reformer 5, a shifter 6, a selective oxidizer 7, and the heating means 3. Insulating material 8 is provided. Here, the raw material mainly composed of hydrocarbons and water are supplied from the raw material supply port 9, the water evaporates through the spiral evaporation unit 4, and is sent to the reforming unit 5 in a steam state. The produced hydrogen-containing fuel gas is taken out from the produced gas outlet 10 and then supplied to the fuel cell 2 through the flow path switching valve 20. The combustion gas of the burner 3 is exhausted from the exhaust port 11. At this time, unused fuel gas discharged from the fuel cell is supplied as fuel to the burner 3 that supplies reaction heat necessary for the steam reforming reaction.

そして、ルテニウムを主成分とする改質部5の改質触媒は、原料と水蒸気の混合ガスを水素・二酸化炭素・一酸化炭素、および未反応のメタンと水蒸気を含む改質ガスへと反応させる。この改質ガス中に含まれる一酸化炭素濃度は、約10から12%と非常に高濃度である。つぎに、改質ガスに含まれる一酸化炭素は、変成部6の変成触媒によって改質ガ
ス中の水蒸気と反応して濃度が1%以下程度にまで低減される。さらに、改質ガスは、空気供給口12から供給された空気と混合されて、選択酸化部7の選択酸化触媒によって一酸化炭素が選択的に燃焼除去されて、一酸化炭素濃度を10ppm程度まで低減した燃料ガスが生成される。なお、変成部6の周囲に配置された変成部ヒータ13と、選択酸化部7の周囲に配置された選択酸化部ヒータ14は、主に起動時に各々の触媒を加熱するために設けられている。
The reforming catalyst of the reforming section 5 containing ruthenium as a main component causes the mixed gas of the raw material and steam to react with hydrogen, carbon dioxide, carbon monoxide, and a reformed gas containing unreacted methane and steam. . The concentration of carbon monoxide contained in the reformed gas is a very high concentration of about 10 to 12%. Next, the carbon monoxide contained in the reformed gas reacts with the water vapor in the reformed gas by the shift catalyst of the shift section 6 and is reduced in concentration to about 1% or less. Further, the reformed gas is mixed with the air supplied from the air supply port 12, and carbon monoxide is selectively burned and removed by the selective oxidation catalyst of the selective oxidation unit 7, so that the carbon monoxide concentration is about 10 ppm. Reduced fuel gas is produced. The shift heater 13 disposed around the shift unit 6 and the selective oxidation unit heater 14 disposed around the selective oxidation unit 7 are provided mainly for heating each catalyst at the time of startup. .

また、本実施の形態の水素生成装置を有する燃料電池発電装置は、その周囲の雰囲気温度を測定するための周囲温度測定手段である温度センサ15と、測定された温度に基づいて原料の供給量を制御する制御装置16、および原料の供給量を調節する流量調節弁17からなる変成部温度制御手段を有している。なお、原料と水の供給量は一定の比率で運転するため、原料供給量に応じて水の供給量を調節するための流量調節弁18も有している。   In addition, the fuel cell power generation device having the hydrogen generator of the present embodiment includes a temperature sensor 15 that is an ambient temperature measuring means for measuring the ambient temperature of the surroundings, and a supply amount of raw material based on the measured temperature. And a transformation unit temperature control means comprising a control device 16 for controlling the flow rate and a flow rate adjusting valve 17 for adjusting the supply amount of the raw material. In addition, since the supply amount of a raw material and water operates at a fixed ratio, it also has a flow rate adjusting valve 18 for adjusting the supply amount of water according to the raw material supply amount.

以下に、上記構成の水素生成装置を有する燃料電池発電装置の特性について簡単に、図1を参考にしながら図2から図4を用いて説明する。   Hereinafter, characteristics of the fuel cell power generation apparatus having the hydrogen generation apparatus having the above configuration will be briefly described with reference to FIGS. 2 to 4 with reference to FIG.

図2は、本実施の形態の水素生成装置の周囲温度と、水素生成装置の変成部の温度との関係を模式的に示す特性図である。図3は、本実施の形態の水素生成装置のバーナ燃焼量と、水素生成装置の変成部の温度との関係を模式的に示す特性図である。また、図4は、本実施の形態の燃料電池の発電出力と適正な原料供給量との関係を、周囲温度をパラメータとして模式的に示す特性図である。   FIG. 2 is a characteristic diagram schematically showing the relationship between the ambient temperature of the hydrogen generator of the present embodiment and the temperature of the shift section of the hydrogen generator. FIG. 3 is a characteristic diagram schematically showing the relationship between the burner combustion amount of the hydrogen generator of the present embodiment and the temperature of the shift section of the hydrogen generator. FIG. 4 is a characteristic diagram schematically showing the relationship between the power generation output of the fuel cell of the present embodiment and the appropriate amount of raw material supplied, with ambient temperature as a parameter.

一般に、水素生成装置を有する燃料電池発電装置は室外に設置されるため、水素生成装置の動作状態は、周囲温度の影響を受ける。つまり、図2に示すように、周囲温度が低下すると水素生成装置1の変成部6の温度が低下する。このとき、周囲温度が低下しすぎると、変成部6の温度が最適な動作温度領域から外れ、一酸化炭素を十分に低減できなくなる。   In general, since a fuel cell power generator having a hydrogen generator is installed outdoors, the operating state of the hydrogen generator is affected by the ambient temperature. That is, as shown in FIG. 2, when the ambient temperature decreases, the temperature of the shift section 6 of the hydrogen generator 1 decreases. At this time, if the ambient temperature is too low, the temperature of the metamorphic portion 6 deviates from the optimum operating temperature range, and carbon monoxide cannot be sufficiently reduced.

そこで、本実施の形態では、温度センサ15によって水素生成装置1の周囲温度を測定し、周囲温度が低いほどバーナ3で燃焼する燃焼量を増やして制御するものである。このとき、図3に示すように、水素生成装置の変成部6の温度は、バーナ燃焼量を増加すると上昇する特性を有している。これは、バーナ燃焼量の増加により変成部へ送られる改質ガスの温度が上昇すること、およびバーナ燃焼量の増加により蒸発部4内で水蒸気が加熱され、これによって変成部が加熱されることによるものである。そこで、まず、バーナ燃焼量と変成部の温度との特性を利用し、図4に示すように、発電出力と周囲温度に応じた原料供給量を予め制御装置16に記憶させる。そして、要求される発電電力と温度センサ15によって測定された周囲温度から原料供給量を決めて調節して供給する。   Therefore, in the present embodiment, the ambient temperature of the hydrogen generator 1 is measured by the temperature sensor 15, and the combustion amount burned by the burner 3 is increased and controlled as the ambient temperature is lower. At this time, as shown in FIG. 3, the temperature of the shift section 6 of the hydrogen generator has a characteristic of increasing when the burner combustion amount is increased. This is because the temperature of the reformed gas sent to the metamorphic section increases due to an increase in the burner combustion amount, and the steam is heated in the evaporation section 4 due to the increase in the burner combustion amount, thereby heating the metamorphic section. Is due to. Therefore, first, using the characteristics of the burner combustion amount and the temperature of the shift section, the raw material supply amount corresponding to the power generation output and the ambient temperature is stored in the control device 16 in advance as shown in FIG. Then, the raw material supply amount is determined and adjusted from the required generated power and the ambient temperature measured by the temperature sensor 15 and supplied.

これにより、周囲温度が低下しても変成部の温度を最適な動作温度範囲に維持して、一酸化炭素を安定に除去できる。また、本発明では選択酸化部に供給する選択酸化空気量を増加させる必要がないため、従来技術の課題であった水素量の減少といった問題も生じない。   Thereby, even if ambient temperature falls, the temperature of a metamorphic part can be maintained in the optimal operating temperature range, and carbon monoxide can be removed stably. Further, in the present invention, since it is not necessary to increase the amount of selective oxidation air supplied to the selective oxidation unit, the problem of reduction in the amount of hydrogen, which is a problem of the prior art, does not occur.

なお、バーナ燃焼量を増やすと、改質温度が上昇して、必要以上の水素含有ガスが生成され、水素生成装置の運転効率が多少低下する場合がある。しかし、変成部の温度が最適な動作温度から外れると、一酸化炭素の除去が不十分となり、被毒などにより燃料電池の運転ができなくなる可能性が高くなる。そこで、本実施の形態に示すように、燃料電池を安定に運転するために、運転効率の多少の低下を犠牲にしても、変成部の温度を最適な動作温度に制御することが重要である。   Note that when the burner combustion amount is increased, the reforming temperature rises and more hydrogen-containing gas is generated than necessary, and the operating efficiency of the hydrogen generator may be somewhat reduced. However, if the temperature of the metamorphic part deviates from the optimum operating temperature, removal of carbon monoxide becomes insufficient, and there is a high possibility that the fuel cell cannot be operated due to poisoning or the like. Therefore, as shown in the present embodiment, in order to stably operate the fuel cell, it is important to control the temperature of the metamorphic portion to the optimum operating temperature even at the expense of some decrease in operating efficiency. .

ここで、本実施の形態において、温度センサ15で測定する周囲温度は、燃料電池発電装置内の水素生成装置の位置する場所の周囲温度が好ましい。これは、例えば外気温度が0℃である場合、運転開始時の水素生成装置の周囲温度は0℃程度であるが、しばらく運転を行うと燃料電池発電装置内の温度は20℃程度にまで上昇するからである。このとき、変成部温度は20℃の周囲温度との放熱によって決まるため、原料供給量も周囲温度20℃として決めれば良い。   Here, in the present embodiment, the ambient temperature measured by the temperature sensor 15 is preferably the ambient temperature at the location where the hydrogen generator in the fuel cell power generator is located. This is because, for example, when the outside air temperature is 0 ° C., the ambient temperature of the hydrogen generator at the start of operation is about 0 ° C., but if the operation is continued for a while, the temperature in the fuel cell power generator rises to about 20 ° C. Because it does. At this time, the transformation temperature is determined by heat radiation with the ambient temperature of 20 ° C., and therefore the raw material supply amount may be determined as the ambient temperature of 20 ° C.

以下に、本実施の形態の水素生成装置を有する燃料電池発電装置の起動時の動作について、図1を参照しながら説明する。   Hereinafter, the operation at the start-up of the fuel cell power generator having the hydrogen generator of the present embodiment will be described with reference to FIG.

まず、起動時には、流路切替え弁20を切替え、燃料ガスが燃料電池2を通らず、バイパス流路21を通って直接にバーナ3へ供給する流路を構成しておく。そして、原料を原料供給口9から供給して、水素生成装置1を通過した原料を直接バーナ3に供給して水素生成装置1を加熱する。   First, at the time of start-up, the flow path switching valve 20 is switched to configure a flow path for supplying fuel gas directly to the burner 3 through the bypass flow path 21 without passing through the fuel cell 2. Then, the raw material is supplied from the raw material supply port 9, and the raw material that has passed through the hydrogen generator 1 is directly supplied to the burner 3 to heat the hydrogen generator 1.

その後、改質部5、変成部6、選択酸化部7が所定温度に達した時点で、改質水を供給して水蒸気改質反応を生じさせる。その状態で運転を継続して水素生成装置1内の改質部5、変成部6、選択酸化部7がさらに所定温度に達した時点で流路切替え弁20を燃料電池2側へ切替える。そして、水素を燃料電池2へ供給して発電を行う。このとき、一酸化炭素を十分に除去するために、変成部6の温度が所定温度に到達した状態で切り替えることが重要である。しかし、周囲温度が低い場合、変成部6の温度上昇が遅くなる。そこで、本実施の形態では、周囲温度が低い場合、起動時に供給する原料の供給量を多くして、バーナ3で燃焼されるバーナ燃焼量を多くする制御を行う。   Thereafter, when the reforming unit 5, the shift unit 6 and the selective oxidation unit 7 reach a predetermined temperature, the reforming water is supplied to cause a steam reforming reaction. The operation is continued in this state, and the flow path switching valve 20 is switched to the fuel cell 2 side when the reforming unit 5, the shift unit 6 and the selective oxidation unit 7 in the hydrogen generator 1 further reach a predetermined temperature. Then, hydrogen is supplied to the fuel cell 2 to generate power. At this time, in order to sufficiently remove carbon monoxide, it is important to switch in a state in which the temperature of the shift section 6 reaches a predetermined temperature. However, when the ambient temperature is low, the temperature rise of the transformation unit 6 is delayed. Therefore, in the present embodiment, when the ambient temperature is low, control is performed to increase the amount of raw material supplied at startup and increase the amount of burner burned by the burner 3.

これにより、変成部6の温度上昇が早くなり、一酸化炭素を充分に除去できる。   Thereby, the temperature rise of the metamorphic part 6 is accelerated, and carbon monoxide can be sufficiently removed.

(実施の形態2)
以下に、本発明の実施の形態2における水素生成装置について、図5を用いて説明する。
(Embodiment 2)
Below, the hydrogen generator in Embodiment 2 of this invention is demonstrated using FIG.

図5は、本発明の実施の形態2における水素生成装置1の概略構成図である。なお、図5は、実施の形態1と同様に、水素生成装置1と燃料電池2とから少なくとも構成される燃料電池発電装置を例に図示している。   FIG. 5 is a schematic configuration diagram of the hydrogen generator 1 according to Embodiment 2 of the present invention. FIG. 5 illustrates, as an example, a fuel cell power generation device including at least a hydrogen generation device 1 and a fuel cell 2 as in the first embodiment.

そして、図5に示すように、本発明の実施の形態2における水素生成装置は、実施の形態1の水素生成装置のバーナに原料を直接供給する経路を設け、その流量を制御する流量調節弁19を設けた点で異なる。他の構成要素や動作は、実施の形態1と同じであるので説明を省略する。   And as shown in FIG. 5, the hydrogen generator in Embodiment 2 of this invention provides the path | route which supplies a raw material directly to the burner of the hydrogen generator of Embodiment 1, and the flow regulating valve which controls the flow volume The difference is that 19 is provided. Since other components and operations are the same as those in the first embodiment, description thereof is omitted.

すなわち、図5に示すように、本実施の形態の水素生成装置は、原料供給口9の原料を供給する経路に、直接バーナ3に原料を供給する経路を設け、各経路に流量調節弁17、19を設けた構成を有する。そして、温度センサ15で測定された周囲温度に基づいて、制御装置16で流量調節弁19を制御して、原料をバーナ3に直接供給して、燃焼させてバーナ燃焼量を調整する構成である。   That is, as shown in FIG. 5, in the hydrogen generator of the present embodiment, a path for supplying the raw material directly to the burner 3 is provided in the path for supplying the raw material at the raw material supply port 9, and the flow rate control valve 17 is provided in each path. , 19 is provided. Then, based on the ambient temperature measured by the temperature sensor 15, the flow rate adjustment valve 19 is controlled by the control device 16, the raw material is directly supplied to the burner 3, and burned to adjust the burner combustion amount. .

これにより、原料を直接供給するので、簡単な制御で、精度よく変成部6の温度を制御できる。   Thereby, since the raw material is directly supplied, the temperature of the transformation section 6 can be accurately controlled with simple control.

(実施の形態3)
以下に、本発明の実施の形態3における水素生成装置について、図6と図7を用いて説明する。
(Embodiment 3)
Below, the hydrogen generator in Embodiment 3 of this invention is demonstrated using FIG. 6 and FIG.

図6は、本発明の実施の形態3における水素生成装置1の概略構成図である。なお、図6は、実施の形態1と同様に、水素生成装置1と燃料電池2とから少なくとも構成される燃料電池発電装置を例に図示している。また、図7は、本実施の形態の燃料電池の発電出力と適正な原料供給量との関係を、変成部の温度をパラメータとして模式的に示す特性図である。   FIG. 6 is a schematic configuration diagram of the hydrogen generator 1 according to Embodiment 3 of the present invention. FIG. 6 illustrates a fuel cell power generation device including at least a hydrogen generator 1 and a fuel cell 2 as an example, as in the first embodiment. FIG. 7 is a characteristic diagram schematically showing the relationship between the power generation output of the fuel cell according to the present embodiment and the appropriate amount of raw material supplied, with the temperature of the shift section as a parameter.

そして、図6に示すように、本発明の実施の形態3における水素生成装置は、変成部温度測定手段である温度センサ22で変成部6の温度を直接測定する点で、実施の形態1とは異なる。他の構成要素や動作は、実施の形態1と同じであるので説明を省略する。   And as shown in FIG. 6, the hydrogen generator in Embodiment 3 of this invention is the point which directly measures the temperature of the metamorphosis part 6 with the temperature sensor 22 which is a metamorphic part temperature measurement means, and Embodiment 1. Is different. Since other components and operations are the same as those in the first embodiment, description thereof is omitted.

すなわち、図6に示すように、本実施の形態の水素生成装置は、温度センサ22で直接測定した変成部6の温度に基づいて、制御装置16により原料の供給量を流量調節弁17で調節することにより、変成部6の温度を最適な動作温度で制御する構成である。   That is, as shown in FIG. 6, in the hydrogen generator of the present embodiment, the supply amount of the raw material is adjusted by the flow control valve 17 by the control device 16 based on the temperature of the shift unit 6 directly measured by the temperature sensor 22. By doing so, the temperature of the transformer 6 is controlled at the optimum operating temperature.

具体的に説明すると、図7に示すように、発電出力と変成部の温度に応じた適正な原料供給量を予め制御装置16に記憶させる。そして、要求される発電電力と温度センサ22によって測定された変成部の温度から原料供給量を決めて調節して供給する。   More specifically, as shown in FIG. 7, an appropriate raw material supply amount corresponding to the power generation output and the temperature of the transformation unit is stored in the control device 16 in advance. Then, the raw material supply amount is determined and supplied from the required generated power and the temperature of the metamorphic part measured by the temperature sensor 22.

これにより、変成部の温度に応じて即座にバーナ燃焼量を調節することができるため、変成部の温度を、短時間で、かつ小さい変動幅で安定に制御できる。   As a result, the burner combustion amount can be immediately adjusted in accordance with the temperature of the metamorphic portion, so that the temperature of the metamorphic portion can be stably controlled in a short time with a small fluctuation range.

(実施の形態4)
以下に、本発明の実施の形態4における水素生成装置について、図8を用いて説明する。
(Embodiment 4)
Below, the hydrogen generator in Embodiment 4 of this invention is demonstrated using FIG.

図8は、本発明の実施の形態4における水素生成装置1の概略構成図である。なお、図8は、実施の形態3と同様に、水素生成装置1と燃料電池2とから少なくとも構成される燃料電池発電装置を例に図示している。   FIG. 8 is a schematic configuration diagram of the hydrogen generator 1 according to Embodiment 4 of the present invention. FIG. 8 illustrates a fuel cell power generation device including at least a hydrogen generation device 1 and a fuel cell 2 as an example, as in the third embodiment.

そして、図8に示すように、本発明の実施の形態4における水素生成装置は、実施の形態3の水素生成装置のバーナに原料を直接供給する経路を設け、その流量を制御する流量調節弁19を設けた点で異なる。他の構成要素や動作は、実施の形態3と同じであるので説明を省略する。   And as shown in FIG. 8, the hydrogen generator in Embodiment 4 of this invention provides the path | route which supplies a raw material directly to the burner of the hydrogen generator of Embodiment 3, and the flow regulating valve which controls the flow volume The difference is that 19 is provided. Since other components and operations are the same as those in the third embodiment, description thereof is omitted.

すなわち、図8に示すように、本実施の形態の水素生成装置は、原料供給口9の原料を供給する経路に、直接バーナ3に原料を供給する経路を設け、各経路に流量調節弁17、19を設けた構成を有する。そして、温度センサ22で測定された変成部6の温度の基づいて、制御装置16で流量調節弁19を制御して、原料をバーナ3に直接供給して、燃焼させてバーナ燃焼量を調整する構成である。   That is, as shown in FIG. 8, in the hydrogen generator of the present embodiment, a path for supplying the raw material directly to the burner 3 is provided in the path for supplying the raw material at the raw material supply port 9, and the flow rate control valve 17 is provided in each path. , 19 is provided. And based on the temperature of the transformation | transformation part 6 measured with the temperature sensor 22, the flow control valve 19 is controlled by the control apparatus 16, a raw material is directly supplied to the burner 3, and it burns and adjusts the burner combustion amount. It is a configuration.

これにより、原料を直接供給するので、簡単な制御で、精度よく供給量を制御できる。   Thereby, since the raw material is directly supplied, the supply amount can be accurately controlled with simple control.

また、変成部の温度に応じて即座にバーナ燃焼量を調節することができるため、変成部の温度を、短時間で、かつ小さい変動幅で安定に制御できる。   Further, since the burner combustion amount can be adjusted immediately according to the temperature of the metamorphic part, the temperature of the metamorphic part can be stably controlled in a short time with a small fluctuation range.

本発明の水素生成装置は、変成部の温度を制御して、一酸化炭素を効果的に低減できる
ため、ガス発電や燃料電池を用いた発電装置などの技術分野において有用である。
Since the hydrogen generator of the present invention can effectively reduce carbon monoxide by controlling the temperature of the shift section, it is useful in technical fields such as a power generator using gas power generation or a fuel cell.

本発明の実施の形態1における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 1 of the present invention 本発明の実施の形態1における水素生成装置の周囲温度と水素生成装置の変成部の温度との関係を模式的に示す特性図The characteristic view which shows typically the relationship between the ambient temperature of the hydrogen generator in Embodiment 1 of this invention, and the temperature of the transformation part of a hydrogen generator 本発明の実施の形態1における水素生成装置のバーナ燃焼量と水素生成装置の変成部の温度との関係を模式的に示す特性図The characteristic view which shows typically the relationship between the burner combustion amount of the hydrogen generator in Embodiment 1 of this invention, and the temperature of the transformation part of a hydrogen generator 本発明の実施の形態1における燃料電池の発電出力と原料供給量との関係を周囲温度をパラメータとして模式的に示す特性図The characteristic view which shows typically the relationship between the electric power generation output of a fuel cell and raw material supply amount in Embodiment 1 of this invention by making ambient temperature into a parameter. 本発明の実施の形態2における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 2 of the present invention 本発明の実施の形態3における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 3 of the present invention 本発明の実施の形態3における燃料電池の発電出力と原料供給量との関係を変成部の温度をパラメータとして模式的に示す特性図The characteristic view which shows typically the relationship between the electric power generation output of a fuel cell and raw material supply amount in Embodiment 3 of this invention by using the temperature of a metamorphic part as a parameter 本発明の実施の形態4における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 4 of the present invention

1 水素生成装置
2 燃料電池
3 バーナ(加熱手段)
4 蒸発部
5 改質部
6 変成部
7 選択酸化部
8 断熱材
9 原料供給口
10 生成ガス出口
11 排気口
12 空気供給口
13 変成部ヒータ
14 選択酸化部ヒータ
15 温度センサ(周囲温度測定手段)
16 制御装置
17,18,19 流量調節弁
20 流路切替え弁
21 バイパス流路
22 温度センサ(変成部温度測定手段)
1 Hydrogen generator 2 Fuel cell 3 Burner (heating means)
DESCRIPTION OF SYMBOLS 4 Evaporating part 5 Reforming part 6 Transformation part 7 Selective oxidation part 8 Heat insulating material 9 Raw material supply port 10 Product gas outlet 11 Exhaust port 12 Air supply port 13 Transformation part heater 14 Selective oxidation part heater 15 Temperature sensor (ambient temperature measuring means)
16 Control device 17, 18, 19 Flow control valve 20 Flow path switching valve 21 Bypass flow path 22 Temperature sensor (transformer temperature measuring means)

Claims (3)

改質反応により炭化水素を主成分とする原料と水蒸気とから水素を主成分とする改質ガスを生成する改質部と、
変成反応により前記改質部で生成された前記改質ガスに含まれる一酸化炭素を低減する変成部と、
前記変成部を介して供給される燃料ガスを用いて発電を行う燃料電池と、
前記燃料ガスを燃焼させて前記改質部と前記変成部の温度を維持するバーナと、
前記燃料ガスを前記燃料電池を通らずに直接前記バーナへ供給するためのバイパス流路と、
前記燃料ガスの供給先を前記燃料電池側又は前記バイパス流路側へ切り替える流路切替え弁と、
前記変成部の周囲温度を測定する周囲温度測定手段と、
前記周囲温度測定手段が測定した前記周囲温度に基づいて前記バーナによる前記変成部への加熱量を調節する変成部温度制御手段と、
を有している燃料電池発電装置であって、
前記燃料電池発電装置の起動時には、前記燃料ガスが前記バイパス流路を通って前記バーナへ供給されるように前記流路切替え弁が制御され、前記周囲温度が低い場合は原料の供給量が多くなるように制御され、前記変成部の温度が所定温度に到達すれば前記燃料ガスの供給先が前記燃料電池側になるように前記流路切替え弁が制御される、
燃料電池発電装置
A reforming unit that generates a reformed gas mainly composed of hydrogen from a raw material mainly composed of hydrocarbon and water vapor by a reforming reaction;
A shift unit that reduces carbon monoxide contained in the reformed gas generated by the shift unit by a shift reaction;
A fuel cell that generates power using fuel gas supplied through the metamorphic section;
A burner to maintain the temperature of the shift converter and the reformer by burning the fuel gas,
A bypass flow path for supplying the fuel gas directly to the burner without passing through the fuel cell;
A flow path switching valve for switching the fuel gas supply destination to the fuel cell side or the bypass flow path side;
Ambient temperature measuring means for measuring the ambient temperature of the metamorphic part;
A transformer temperature control means for adjusting a heating amount to the transformer by the burner based on the ambient temperature measured by the ambient temperature measuring means;
A perforated to have a fuel cell power generation device,
When starting the fuel cell power generation device, the flow path switching valve is controlled so that the fuel gas is supplied to the burner through the bypass flow path, and when the ambient temperature is low, the supply amount of raw material is large. The flow path switching valve is controlled so that the supply destination of the fuel gas is on the fuel cell side when the temperature of the transformation section reaches a predetermined temperature.
Fuel cell power generator .
改質反応により炭化水素を主成分とする原料と水蒸気とから水素を主成分とする改質ガスを生成する改質部と、
変成反応により前記改質部で生成された前記改質ガスに含まれる一酸化炭素を低減する変成部と、
前記変成部を介して供給される燃料ガスを用いて発電を行う燃料電池と、
前記燃料ガスを燃焼させて前記改質部と前記変成部の温度を維持するバーナと、
前記燃料ガスを前記燃料電池を通らずに直接前記バーナへ供給するためのバイパス流路と、
前記燃料ガスの供給先を前記燃料電池側又は前記バイパス流路側へ切り替える流路切替
え弁と、
前記変成部の温度を測定する変成部温度測定手段と、
前記変成部温度測定手段が測定した前記温度に基づいて前記バーナによる前記変成部への加熱量を調節する変成部温度制御手段と、を有している燃料電池発電装置であって、
前記燃料電池発電装置の起動時には、前記燃料ガスが前記バイパス流路を通って前記バーナへ供給されるように前記流路切替え弁が制御され、前記温度が低い場合は原料の供給量が多くなるように制御され、前記変成部の温度が所定温度に到達すれば前記燃料ガスの供給先が前記燃料電池側になるように前記流路切替え弁が制御される、
燃料電池発電装置
A reforming unit that generates a reformed gas mainly composed of hydrogen from a raw material mainly composed of hydrocarbon and water vapor by a reforming reaction;
A shift unit that reduces carbon monoxide contained in the reformed gas generated by the shift unit by a shift reaction;
A fuel cell that generates power using fuel gas supplied through the metamorphic section;
A burner to maintain the temperature of the shift converter and the reformer by burning the fuel gas,
A bypass flow path for supplying the fuel gas directly to the burner without passing through the fuel cell;
Channel switching for switching the fuel gas supply destination to the fuel cell side or the bypass channel side
Eben,
A transformer temperature measuring means for measuring the temperature of the transformer,
Wherein a shift converter temperature measuring means based on the temperature that was measured chromatic to that fuel cell power generation device, and a shift converter temperature control means for adjusting the heating amount to the shift converter by said burner,
When the fuel cell power generator is started, the flow path switching valve is controlled so that the fuel gas is supplied to the burner through the bypass flow path, and when the temperature is low, the supply amount of the raw material increases. The flow path switching valve is controlled so that the supply destination of the fuel gas is on the fuel cell side when the temperature of the transformation section reaches a predetermined temperature.
Fuel cell power generator .
前記バーナ、前記改質部が変成部より高温になるように、前記改質部と前記変成部の両方を加熱
前記変成部の前記周囲温度または前記温度が低いほど前記バーナで燃焼する前記改質ガスの量を増やす請求項1又は2に記載の燃料電池発電装置。
The burner, the so reformer becomes high from the shift converter, to heat both of the shift converter and the reformer,
3. The fuel cell power generator according to claim 1 , wherein the amount of the reformed gas burned in the burner is increased as the ambient temperature or the temperature of the metamorphic portion is lower.
JP2009073330A 2009-03-25 2009-03-25 Fuel cell power generator Active JP5257186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073330A JP5257186B2 (en) 2009-03-25 2009-03-25 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073330A JP5257186B2 (en) 2009-03-25 2009-03-25 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2010222209A JP2010222209A (en) 2010-10-07
JP5257186B2 true JP5257186B2 (en) 2013-08-07

Family

ID=43039814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073330A Active JP5257186B2 (en) 2009-03-25 2009-03-25 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP5257186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643707B2 (en) * 2011-03-30 2014-12-17 大阪瓦斯株式会社 Hydrogen-containing gas generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031280A (en) * 2002-06-28 2004-01-29 Ebara Ballard Corp Fuel processing device, fuel cell power generation system, fuel processing method and fuel cell power generation method
JP2005206413A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel cell system
JP2006290652A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Hydrogen generating apparatus and fuel cell system
JP5379353B2 (en) * 2007-03-12 2013-12-25 大阪瓦斯株式会社 Temperature control system of reformer in fuel cell device

Also Published As

Publication number Publication date
JP2010222209A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4105758B2 (en) Fuel cell system
WO2001048851A1 (en) Power generation device and operation method therefor
JP5135209B2 (en) HYDROGEN GENERATOR, FUEL CELL SYSTEM HAVING THE SAME, AND METHOD FOR OPERATING THE SAME
US8951683B2 (en) Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
JP2011181440A (en) Fuel cell system
JP4855688B2 (en) Fuel cell power generation system
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP4827405B2 (en) Hydrogen generator and fuel cell system using the same
JP5257186B2 (en) Fuel cell power generator
JP4357306B2 (en) Fuel reformer and fuel cell system
JP4847759B2 (en) Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus
JP2014047083A (en) Hydrogen-containing gas generator, and method of adjusting generation rate of hydrogen-containing gas
WO2012032744A1 (en) Fuel cell system
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
WO2013027415A1 (en) Fuel cell system and operation method therefor
JP4835273B2 (en) Hydrogen generator and fuel cell system
JP5462687B2 (en) Hydrogen production apparatus and fuel cell system
JP2009212040A (en) Fuel cell system
JP6722893B2 (en) Fuel cell system
JP4917791B2 (en) Fuel cell system
JP2004002154A (en) Hydrogen generating apparatus and fuel cell system equipped with the same
JP2019119648A (en) Hydrogen generator, fuel cell system using the same, and method for operating the same
WO2012029322A1 (en) Hydrogen generation device and fuel cell system equipped with same
JP6270507B2 (en) Start-up operation method for hydrogen-containing gas generator and hydrogen-containing gas generator
JP2016177919A (en) Fuel battery system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151