JP5255580B2 - Method for producing flake copper powder - Google Patents

Method for producing flake copper powder Download PDF

Info

Publication number
JP5255580B2
JP5255580B2 JP2010027984A JP2010027984A JP5255580B2 JP 5255580 B2 JP5255580 B2 JP 5255580B2 JP 2010027984 A JP2010027984 A JP 2010027984A JP 2010027984 A JP2010027984 A JP 2010027984A JP 5255580 B2 JP5255580 B2 JP 5255580B2
Authority
JP
Japan
Prior art keywords
copper powder
copper
slurry
flake
flake copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010027984A
Other languages
Japanese (ja)
Other versions
JP2010138494A (en
Inventor
貴彦 坂上
克彦 吉丸
芳信 中村
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010027984A priority Critical patent/JP5255580B2/en
Publication of JP2010138494A publication Critical patent/JP2010138494A/en
Application granted granted Critical
Publication of JP5255580B2 publication Critical patent/JP5255580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、フレーク銅粉の製造方法に関し、詳しくは、例えば、プリント配線板の回路形成、セラミックコンデンサの外部電極等の電気的導通確保のために用いられる銅ペーストの原料として用いられるフレーク銅粉の製造方法に関するものである。 The present invention relates to the production how the flaky copper powder, particularly, for example, the circuit formation of the printed wiring board is used as a raw material for the copper paste used for electrical conduction securing external electrodes such as a ceramic capacitor flakes those concerning the manufacturing how the copper powder.

従来、電子部品等の電極や回路を形成する方法として、導電性材料である銅粉をペーストに分散させた導電性ペーストを基板に印刷した後、該ペーストを焼成又はキュアリングし硬化させて回路を形成する方法が知られている。   Conventionally, as a method of forming electrodes and circuits for electronic components, etc., after a conductive paste in which copper powder, which is a conductive material, is dispersed in a paste is printed on a substrate, the paste is baked or cured and cured. A method of forming is known.

近年、電子機器の高機能化により電子デバイスの小型高密度化が求められており、このため、導電性ペーストの材料である銅粉にも、導電性ペーストとしたときにペーストの充填性がよいように粒度分布がシャープであり、微細であることが望まれるようになってきている。   In recent years, electronic devices have been demanded to reduce the size and density of electronic devices due to higher functionality. For this reason, copper powder, which is a material for conductive pastes, has good paste filling properties when used as conductive pastes. Thus, it is desired that the particle size distribution is sharp and fine.

また、導電性ペーストに用いられる銅粉は、特に、脱媒時、すなわち焼成による導電性ペーストからのペースト分の除去の際等において銅粉が酸素に触れて酸化されると、形成される銅厚膜の抵抗が高くなるため好ましくない。このため銅粉は耐酸化性に優れていることが望ましいが、該耐酸化性は、銅粉中の結晶子を大きくして銅粉中結晶粒界を少なくすることにより高めることができると考えられる。従って、銅粉は、銅粉中の結晶子ができるだけ大きいものであることが望まれている。   In addition, the copper powder used in the conductive paste is formed when the copper powder is oxidized by contact with oxygen, particularly when the solvent is removed, that is, when the paste is removed from the conductive paste by firing. This is not preferable because the resistance of the thick film is increased. For this reason, it is desirable that the copper powder has excellent oxidation resistance, but the oxidation resistance can be enhanced by increasing the crystallites in the copper powder and reducing the crystal grain boundaries in the copper powder. It is done. Accordingly, it is desired that the copper powder has as large a crystallite as possible in the copper powder.

また、上記導電性ペーストが印刷される基板としては、セラミック基板が例えばICのパッケージ等の発熱が大きい部分等に用いられている。しかし、このセラミック基板に導電性ペーストを印刷する場合には、セラミック基板の熱収縮率と印刷した導電性ペーストから生成される銅厚膜の熱収縮率とが一般的に異なるため、焼成時においてセラミック基板と銅厚膜とが剥離したり基板自体が変形したりするおそれがある。このため、セラミック基板の熱収縮率と印刷した導電性ペーストから生成される銅厚膜の熱収縮率とは、なるべく近い値を採るものであることが好ましい。   In addition, as a substrate on which the conductive paste is printed, a ceramic substrate is used in a portion where heat generation is large such as an IC package. However, when a conductive paste is printed on this ceramic substrate, the thermal shrinkage rate of the ceramic substrate and the thermal shrinkage rate of the copper thick film generated from the printed conductive paste are generally different. There is a possibility that the ceramic substrate and the copper thick film are peeled off or the substrate itself is deformed. For this reason, it is preferable that the thermal contraction rate of the ceramic substrate and the thermal contraction rate of the copper thick film generated from the printed conductive paste are as close as possible.

このような焼成時における上記銅厚膜の熱収縮の一因は、導電性ペーストの脱媒時に、導電性ペースト中の銅粉同士の間に残存する空隙が、銅粉同士の焼結により減少することにあるものと考えられる。このため、熱収縮の少ない銅粉含有導電性ペーストを得るには、銅粉同士の間に残存する空隙がなるべく少ないものであること、すなわち、銅粉同士が密に充填され易い形状であることが望まれている。また、導電性ペーストを焼成させて得られる銅厚膜の導電性を向上させるためには、銅粉の形状が、導電性ペースト中の銅粉同士の接触面積の大きくなるものであることが好ましい。さらに導電性ペーストの銅粉の形状が球状に近いほど形状異方性が低くなり、銅粉の形状が扁平なほど形状異方性が高くなるものである。このような銅粉の形状への要請から、従来、銅粉自体の形状を球状でなくフレーク状としたフレーク銅粉とすることが検討されている。   One reason for the thermal contraction of the copper thick film during firing is that the voids remaining between the copper powders in the conductive paste are reduced by sintering the copper powders during the removal of the conductive paste. It is thought that there is to do. For this reason, in order to obtain a copper powder-containing conductive paste with little heat shrinkage, there should be as few voids as possible between the copper powders, that is, a shape in which the copper powders are easily filled with each other. Is desired. Moreover, in order to improve the electroconductivity of the copper thick film obtained by baking an electroconductive paste, it is preferable that the shape of a copper powder becomes a thing where the contact area of the copper powder in an electroconductive paste becomes large. . Furthermore, the shape anisotropy is lower as the shape of the copper powder of the conductive paste is closer to a sphere, and the shape anisotropy is higher as the shape of the copper powder is flatter. In view of the demand for the shape of the copper powder, it has been conventionally studied to use a flake copper powder in which the shape of the copper powder itself is not spherical but flakes.

また、フレーク銅粉は、導電性ペーストを調製したときにペースト中での分散性が良いように、粒度分布がシャープであると好ましい。   The flake copper powder preferably has a sharp particle size distribution so that the dispersibility in the paste is good when the conductive paste is prepared.

上記のように、導電性ペーストに用いられる銅粉、特にフレーク銅粉においては、微粒で、粒度分布がシャープであり、結晶子が大きいことが望まれている。   As described above, the copper powder used for the conductive paste, particularly the flake copper powder, is desired to be fine, have a sharp particle size distribution, and have a large crystallite.

これに対し、特許文献1(特開2003−119501号公報)には、粒径が10μm以下であって、体積累積粒径D50、粒度分布の標準偏差SDを用いて表されるSD/D50が0.15〜0.35であり、且つ、フレーク銅粉を構成する粉粒の厚さと前記体積累積粒径D50とで表されるアスペクト比([厚さ]/[D50])が0.3〜0.7であるフレーク銅粉が開示されているおり、該発明によれば、微粒で、扁平なフレーク状を呈するフレーク銅粉が得られる。 On the other hand, in Patent Document 1 (Japanese Patent Laid-Open No. 2003-119501), the particle size is 10 μm or less, and the SD / D 50 is expressed using the volume cumulative particle size D50 and the standard deviation SD of the particle size distribution. There is 0.15 to 0.35, and the aspect ratio represented by the thickness and the volume cumulative particle diameter D 50 of the powder grains forming the flaky copper powder (thickness] / [D 50]) is The flake copper powder which is 0.3-0.7 is disclosed, According to this invention, the flake copper powder which is a fine particle and exhibits a flat flake shape is obtained.

特開2003−119501号公報(第2頁)JP 2003-119501 A (second page)

しかしながら、特許文献1記載のフレーク銅粉は、微粒ではあるものの、凝集状態にある銅粉を解粒処理し、解粒処理の終了した銅粉の粉粒を高エネルギーボールミルで圧縮変形して製造するものであるため、銅粉が圧縮変形の際に酸化されたり歪みが生じたりし易く、また結晶子が小さくなるという問題があった。   However, although the flake copper powder described in Patent Document 1 is fine, it is produced by pulverizing the copper powder in an agglomerated state and compressing and deforming the pulverized copper powder by a high energy ball mill. Therefore, there is a problem that the copper powder is easily oxidized or distorted during compression deformation, and the crystallites are reduced.

従って、本発明の目的は、微粒で、粒度分布がシャープであり、結晶子が大きく、耐酸化性に優れたフレーク銅粉の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing flake copper powder which is fine and has a sharp particle size distribution, a large crystallite, and excellent oxidation resistance.

かかる実情において、本発明者は鋭意検討を行った結果、Pを含有しているフレーク銅粉、特に特定の粉体の形状を有するフレーク銅粉が目的とする導電性ペースト用に好適であることを知見した。またかかるフレーク銅粉の湿式製造法において、出発原料中の銅塩に含まれる銅(II)イオンを還元して銅粉を析出させる複数の工程のうちの少なくとも1つの工程において特定のリン酸及びその塩を添加すると、特許文献1のような圧縮変形処理を行わずに、粒径が小さく、結晶子径の大きく、耐酸化性に優れたフレーク銅粉が得られ、さらに、該フレーク銅粉は粒度分布がシャープになり易いことを見出し、本発明を完成するに至った。   In this situation, as a result of intensive studies, the present inventors have found that flake copper powder containing P, particularly flake copper powder having a specific powder shape, is suitable for the intended conductive paste. I found out. Moreover, in the wet manufacturing method of such flake copper powder, specific phosphoric acid and at least one of a plurality of steps of reducing copper (II) ions contained in the copper salt in the starting material and precipitating the copper powder When the salt is added, flake copper powder having a small particle size, a large crystallite diameter, and excellent oxidation resistance can be obtained without performing compression deformation treatment as in Patent Document 1, and the flake copper powder. Has found that the particle size distribution tends to be sharp, and has completed the present invention.

本件出願に係るフレーク銅粉の製造方法: 本件出願に係るフレーク銅粉の製造方法は、銅塩及び錯化剤を含む水溶液を調製する第1工程、該水溶液に水酸化アルカリを添加して酸化第二銅を含む第1スラリーを調製する第2工程、該第1スラリーに、酸化第二銅を酸化第一銅に還元し得る第1還元剤として、還元糖を添加して、酸化第一銅を含む第2スラリーを調製する第3工程、及び該第2スラリーに、酸化第一銅を銅に還元し得る第2還元剤として、ヒドラジン、水和ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン及び塩酸ヒドラジンからなる群より選択される少なくとも1種を添加してフレーク銅粉を得る第4工程を有するフレーク銅粉の製造方法であって、前記第1工程〜第3工程の少なくとも1つの工程においてリン酸及びその塩を添加すること、及び/又は第4工程において前記第2スラリーにリン酸及びその塩を添加することを特徴とする。 Manufacturing method of flake copper powder according to the present application: The manufacturing method of flake copper powder according to the present application is a first step of preparing an aqueous solution containing a copper salt and a complexing agent, and oxidizing by adding an alkali hydroxide to the aqueous solution. the second step of preparing a first slurry containing cupric, the first slurry, the first reducing agent capable of reducing cupric oxide to cuprous oxide, by adding a reducing sugar, the oxidation A third step of preparing a second slurry containing monocopper, and a second reducing agent capable of reducing cuprous oxide to copper in the second slurry as hydrazine, hydrated hydrazine, hydrazine sulfate, hydrazine carbonate and hydrochloric acid A method for producing flake copper powder comprising a fourth step of obtaining flake copper powder by adding at least one selected from the group consisting of hydrazine , wherein phosphorus is added in at least one of the first to third steps. Acid and its salt And / or adding phosphoric acid and a salt thereof to the second slurry in the fourth step.

本件出願に係るフレーク銅粉の製造方法において、前記第1工程〜第3工程の少なくとも1つの工程において添加する前記リン酸及びその塩、及び/又は、第4工程において前記第2スラリーに添加する前記リン酸及びその塩の全添加量は、該リン酸及びその塩中のP換算量が、前記第2スラリー中に含まれる銅1モルに対し、0.001モル〜3モルとすることが好ましい。 In the method for producing flake copper powder according to the present application, the phosphoric acid and its salt added in at least one of the first to third steps, and / or the second slurry in the fourth step. total amount of the phosphoric acid and its salts, P in terms of the amount of the phosphoric acid and the salt is, with respect to copper to 1 mole of the contained before Symbol second slurry, to 0.001 mol to 3 mol Is preferred.

本件出願に係るフレーク銅粉の製造方法において、前記第1スラリーが、前記銅塩1当量に対し、前記水酸化アルカリ1.05当量〜1.50当量含むものとすることが好ましい。   In the method for producing flake copper powder according to the present application, it is preferable that the first slurry contains 1.05 equivalents to 1.50 equivalents of the alkali hydroxide with respect to 1 equivalent of the copper salt.

本件出願に係るフレーク銅粉の製造方法において、前記錯化剤が、アミノ酸であることが好ましい。   In the method for producing flake copper powder according to the present application, the complexing agent is preferably an amino acid.

本件出願に係るフレーク銅粉の製造方法において、前記水溶液が、前記水溶液、第1スラリー又は第2スラリー中に含まれる銅1モルに対し、前記錯化剤0.005モル〜10モルを含むことが好ましい。   In the method for producing flake copper powder according to the present application, the aqueous solution contains 0.005 mol to 10 mol of the complexing agent with respect to 1 mol of copper contained in the aqueous solution, the first slurry, or the second slurry. Is preferred.

発明に係るフレーク銅粉の製造方法は、以下のような特徴を備えるフレーク銅粉を効率よく製造することができる。すなわち、本発明に係るフレーク銅粉の製造方法で得られるフレーク銅粉は、圧縮変形操作を経ていないため酸化されたり歪みが生じたりし難く、微粒で、粒度分布がシャープであり、結晶子が大きいため、導電性ペーストに用いた場合に、脱媒時の耐酸化性、ペースト中での分散性及び導電性ペーストの充填性に優れ、銅厚膜から形成される電極や回路等をよりファイン化することができる。そして、本発明に係るフレーク銅粉の製造方法で得られたフレーク銅粉を用いた導電性ペーストは、脱媒時の耐酸化性及び充填性に優れ、銅厚膜から形成される電極や回路等をよりファイン化することができ、また得られる銅厚膜を耐熱収縮性に優れたものとすることができる。 The method for producing flake copper powder according to the present invention can efficiently produce flake copper powder having the following characteristics . That is, the flake copper powder obtained by the method for producing flake copper powder according to the present invention is not oxidized or distorted because it has not undergone a compression deformation operation, is fine, has a sharp particle size distribution, and has crystallites. Because of its large size, when used in a conductive paste, it has excellent oxidation resistance during removal of the solvent, dispersibility in the paste and filling property of the conductive paste, and finer electrodes and circuits formed from thick copper films. Can be And the conductive paste using the flake copper powder obtained by the method for producing flake copper powder according to the present invention is excellent in oxidation resistance and filling property at the time of removal of the solvent, and is an electrode or circuit formed from a copper thick film. Etc. can be further refined, and the obtained copper thick film can be made excellent in heat shrinkage resistance.

(本発明に係るフレーク銅粉の製造方法)
本発明に係るフレーク銅粉の製造方法は、銅塩及び錯化剤を含む水溶液(以下、「銅塩水溶液」と称する。)を調製する第1工程、該水溶液に水酸化アルカリを添加して酸化第二銅を含む第1スラリーを調製する第2工程、該第1スラリーに、酸化第二銅を酸化第一銅に還元し得る第1還元剤として、還元糖を添加して、酸化第一銅を含む第2スラリーを調製する第3工程、及び該第2スラリーに、酸化第一銅を銅に還元し得る第2還元剤として、ヒドラジン、水和ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン及び塩酸ヒドラジンからなる群より選択される少なくとも1種を添加してフレーク銅粉を得る第4工程を有するフレーク銅粉の製造方法であって、前記第1工程〜第3工程の少なくとも1つの工程においてリン酸及びその塩を添加すること、及び/又は第4工程において前記第2スラリーにリン酸及びその塩を添加することを行うものである。
(Method for producing flake copper powder according to the present invention)
The method for producing flake copper powder according to the present invention includes a first step of preparing an aqueous solution containing a copper salt and a complexing agent (hereinafter referred to as “copper salt aqueous solution”), and an alkali hydroxide is added to the aqueous solution. the second step of preparing a first slurry containing cupric oxide, in the first slurry, the first reducing agent capable of reducing cupric oxide to cuprous oxide, by adding a reducing sugar, oxidation A third step of preparing a second slurry containing cuprous, and a second reducing agent capable of reducing cuprous oxide to copper in the second slurry include hydrazine, hydrated hydrazine, hydrazine sulfate, hydrazine carbonate, and A method for producing flake copper powder comprising a fourth step of obtaining flake copper powder by adding at least one selected from the group consisting of hydrazine hydrochloride , wherein at least one of the first to third steps Add phosphoric acid and its salts Rukoto, and / or performs the addition of phosphoric acid and salts thereof to the second slurry in the fourth step.

(第1工程)
第1工程では、まず、銅塩水溶液を調製する。本発明において銅塩水溶液とは、銅塩及び錯化剤を配合して得られる水溶液であって、銅塩由来の銅(II)イオンが錯化剤と結合してCu錯体を形成しているものをいう。
(First step)
In the first step, first, an aqueous copper salt solution is prepared. In the present invention, an aqueous copper salt solution is an aqueous solution obtained by blending a copper salt and a complexing agent, and copper (II) ions derived from the copper salt are combined with the complexing agent to form a Cu complex. Say things.

本発明で用いられる銅塩としては水に溶解可能な銅塩が用いられ、例えば、硫酸銅、硝酸銅、酢酸銅又はこれらの水和物等を用いることができる。このうち、硫酸銅5水和物及び硝酸銅は、塩としての溶解度が高くて銅濃度を高くすることができ、また粒度の均一性の高いフレーク銅粉が得られ易いため好ましい。本発明で用いられる錯化剤は、水溶液中における銅イオンの錯化剤であり、本発明において、銅塩から得られる銅(II)イオンをCu錯体にすることにより、第2工程における水酸化アルカリの添加によるCuOの形成を均一にする作用を有するものである。該錯化剤としては、例えば、アミノ酸、酒石酸等を用いることができる。また、アミノ酸としては、例えば、アミノ酢酸、アラニン、グルタミン酸等を用いることができる。このうち、アミノ酢酸は、粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。錯化剤は、1種単独で又は2種以上組み合わせて用いることができる。   As the copper salt used in the present invention, a copper salt that is soluble in water is used. For example, copper sulfate, copper nitrate, copper acetate, or a hydrate thereof can be used. Among these, copper sulfate pentahydrate and copper nitrate are preferable because they have high solubility as a salt, can increase the copper concentration, and easily obtain flake copper powder with high uniformity in particle size. The complexing agent used in the present invention is a complexing agent for copper ions in an aqueous solution. In the present invention, the copper (II) ion obtained from the copper salt is converted into a Cu complex, whereby hydroxylation in the second step. It has the effect | action which makes uniform the formation of CuO by addition of an alkali. As the complexing agent, for example, amino acid, tartaric acid and the like can be used. Moreover, as an amino acid, aminoacetic acid, alanine, glutamic acid, etc. can be used, for example. Of these, aminoacetic acid is preferable because flake copper powder having a highly uniform particle size is easily obtained. Complexing agents can be used alone or in combination of two or more.

銅塩水溶液は、水に銅塩及び錯化剤を溶解することにより調製する。なお、水への銅塩及び錯化剤の溶解方法及び溶解順序は特に限定されない。水への銅塩及び錯化剤の溶解方法としては、例えば、水を攪拌した状態にしておき、これに銅塩及び錯化剤を添加して攪拌する方法が挙げられる。銅塩水溶液の調製に用いられる水としては、純水、イオン交換水、超純水等が、フレーク銅粉が微粒で、結晶子径が大きくなり易いため好ましい。また、銅塩水溶液の調製の際、水温は、通常50℃〜90℃、好ましくは60℃〜80℃である。水温が該範囲内にあると、次工程において粒径の均一な酸化銅が形成され易いため好ましい。   An aqueous copper salt solution is prepared by dissolving a copper salt and a complexing agent in water. In addition, the dissolution method and dissolution order of the copper salt and complexing agent in water are not particularly limited. Examples of the method for dissolving the copper salt and the complexing agent in water include a method in which water is kept in a stirred state, and the copper salt and the complexing agent are added thereto and stirred. As water used for the preparation of the copper salt aqueous solution, pure water, ion-exchanged water, ultrapure water and the like are preferable because the flake copper powder is fine and the crystallite diameter tends to increase. Moreover, the water temperature is 50 to 90 degreeC normally in the case of preparation of copper salt aqueous solution, Preferably it is 60 to 80 degreeC. It is preferable for the water temperature to be within this range because copper oxide having a uniform particle size is easily formed in the next step.

銅塩水溶液は、これに含まれる銅1モルに対し、錯化剤を、通常0.005モル〜10モル、好ましくは0.01モル〜5モル含む。銅塩に対する錯化剤の配合比率が該範囲内にあると、フレーク銅粉が微粒で、結晶子径が大きくなり、形状が扁平率の高いフレーク状になり易いため好ましい。   Copper salt aqueous solution contains 0.005 mol-10 mol normally with respect to 1 mol of copper contained in this, Preferably it is 0.01 mol-5 mol. It is preferable that the compounding ratio of the complexing agent with respect to the copper salt is within the above range because the flake copper powder is fine, the crystallite diameter is large, and the shape tends to be a flake shape having a high flatness.

銅塩水溶液は、水100重量部に対し、銅塩を、通常10重量部〜50重量部、好ましくは20重量部〜40重量部含む。水に対する銅塩の配合比率が該範囲内にあると、粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。   The aqueous copper salt solution usually contains 10 to 50 parts by weight, preferably 20 to 40 parts by weight of the copper salt with respect to 100 parts by weight of water. It is preferable for the blending ratio of the copper salt to water to be within this range because flake copper powder having a highly uniform particle size can be easily obtained.

(第2工程)
第2工程では、銅塩水溶液に水酸化アルカリを添加して酸化第二銅を含む第1スラリーを調製する。本発明において第1スラリーとは、上記銅塩水溶液に水酸化アルカリを添加して得られる、液中に酸化第二銅(CuO)の微粒が析出した状態のスラリーをいう。上記銅塩水溶液への水酸化アルカリの添加方法としては、例えば、上記銅塩水溶液を攪拌した状態にしておき、これに水酸化アルカリの水溶液を添加して攪拌する方法が挙げられる。また、第1スラリーの調製の際、液温は、通常50℃〜90℃、好ましくは60℃〜80℃である。液温が該範囲内にあると、一次粒子の凝集が少ない粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。
(Second step)
In the second step, an alkali hydroxide is added to the copper salt aqueous solution to prepare a first slurry containing cupric oxide. In the present invention, the first slurry refers to a slurry obtained by adding alkali hydroxide to the copper salt aqueous solution, in which fine particles of cupric oxide (CuO) are precipitated in the liquid. Examples of the method for adding alkali hydroxide to the copper salt aqueous solution include a method in which the copper salt aqueous solution is stirred and the alkali hydroxide aqueous solution is added thereto and stirred. In preparing the first slurry, the liquid temperature is usually 50 ° C. to 90 ° C., preferably 60 ° C. to 80 ° C. When the liquid temperature is within this range, it is preferable because a flake copper powder having a high particle size with a small primary particle aggregation is easily obtained.

本発明で用いられる水酸化アルカリは、本発明において上記銅塩水溶液中のCu錯体を酸化第二銅(CuO)にする作用を有するものである。該水酸化アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、アンモニア水等を用いることができる。このうち、水酸化ナトリウムは、安価であり、また酸化第二銅を形成する反応を制御し易いため好ましい。また、水酸化アルカリは、水溶液の状態にしておくと、水酸化アルカリを水溶液に添加したときに、銅塩水溶液中におけるCu錯体の酸化第二銅(CuO)への反応が速やかに行われて、フレーク銅粉の粒径のバラツキが小さくなり易いため好ましい。   The alkali hydroxide used in the present invention has an effect of converting the Cu complex in the copper salt aqueous solution into cupric oxide (CuO) in the present invention. As the alkali hydroxide, for example, sodium hydroxide, potassium hydroxide, ammonia, aqueous ammonia and the like can be used. Of these, sodium hydroxide is preferable because it is inexpensive and easily controls the reaction to form cupric oxide. In addition, when the alkali hydroxide is in an aqueous solution state, when the alkali hydroxide is added to the aqueous solution, the reaction of the Cu complex in the aqueous copper salt solution to cupric oxide (CuO) is rapidly performed. The flake copper powder is preferable because the variation in the particle size tends to be small.

第1スラリーは、前記銅塩1当量に対し、前記水酸化アルカリを、通常1.05当量〜1.50当量、好ましくは1.10当量〜1.30当量を含む。水酸化アルカリの配合比率が該範囲内にあると、粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。ここで、銅塩及び水酸化アルカリの当量とは、それぞれ酸としての当量及び塩基としての当量をいう。   A 1st slurry contains 1.05 equivalent-1.50 equivalent normally with respect to 1 equivalent of the said copper salt, Preferably 1.10 equivalent-1.30 equivalent. It is preferable that the blending ratio of the alkali hydroxide is within the above range because a flake copper powder having a highly uniform particle size can be easily obtained. Here, the equivalents of copper salt and alkali hydroxide refer to equivalents as an acid and equivalents as a base, respectively.

第2工程は、銅塩水溶液に水酸化アルカリを添加して第1スラリーを調製した後、さらに通常10分〜60分、好ましくは20分〜40分攪拌することが望ましい。このように水酸化アルカリの添加後も攪拌を続けると、Cu錯体の酸化第二銅(CuO)への反応が十分に行われることにより、粒度の均一性の高いフレーク銅粉が得られ易いため好ましい。   In the second step, an alkali hydroxide is added to the aqueous copper salt solution to prepare the first slurry, and then it is usually further stirred for 10 minutes to 60 minutes, preferably 20 minutes to 40 minutes. If stirring is continued even after the addition of the alkali hydroxide in this way, the reaction of the Cu complex to cupric oxide (CuO) is sufficiently performed, so that flake copper powder with high particle size uniformity is easily obtained. preferable.

(第3工程)
第3工程では、上記第1スラリーに、酸化第二銅を酸化第一銅に還元し得る第1還元剤を添加して酸化第一銅を含む第2スラリーを調製する。本発明において第2スラリーとは、上記第1スラリーに第1還元剤を添加して得られる、液中に酸化第一銅(CuO)が析出した状態のスラリーをいう。第1スラリーへの第1還元剤の添加方法としては、例えば、第1スラリーを攪拌した状態にしておき、これに第1還元剤の水溶液を添加して攪拌する方法が挙げられる。また、第2スラリーの調製の際、液温は、通常50℃〜90℃、好ましくは60℃〜80℃である。液温が該範囲内にあると、一次粒子の凝集が少ない粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。
(Third step)
In the third step, a first slurry containing cuprous oxide is prepared by adding a first reducing agent capable of reducing cupric oxide to cuprous oxide to the first slurry. In the present invention, the second slurry refers to a slurry obtained by adding a first reducing agent to the first slurry and having cuprous oxide (Cu 2 O) precipitated in the liquid. Examples of the method for adding the first reducing agent to the first slurry include a method in which the first slurry is kept in a stirred state, and an aqueous solution of the first reducing agent is added thereto and stirred. In preparing the second slurry, the liquid temperature is usually 50 ° C. to 90 ° C., preferably 60 ° C. to 80 ° C. When the liquid temperature is within this range, it is preferable because a flake copper powder having a high particle size with a small primary particle aggregation is easily obtained.

本発明で用いられる第1還元剤は、本発明において第1スラリー中の酸化第二銅(CuO)を酸化第一銅(CuO)に還元する作用を有するものである。該第1還元剤としては、例えば、還元糖、ヒドラジン等を用いることができる。また、還元糖としては、例えば、グルコース、フルクトース、ラクトース等を用いることができる。このうち、グルコースは、反応を制御し易いため好ましい。第1還元剤は、1種単独で又は2種以上組み合わせて用いることができる。また、第1還元剤は、水溶液の状態にしておくと、第1還元剤を第1スラリーに添加したときに、第1スラリー中における酸化第二銅(CuO)の酸化第一銅(CuO)への還元反応が速やかに行われて、フレーク銅粉の粒径のバラツキが小さくなり易いため好ましい。 First reducing agent used in the present invention has an effect of reducing the cupric oxide in the first slurry in the present invention (CuO) a cuprous oxide (Cu 2 O). As the first reducing agent, for example, reducing sugar, hydrazine and the like can be used. Moreover, as reducing sugar, glucose, fructose, lactose etc. can be used, for example. Among these, glucose is preferable because the reaction is easily controlled. A 1st reducing agent can be used individually by 1 type or in combination of 2 or more types. In addition, when the first reducing agent is in an aqueous solution state, cupric oxide (Cu 2 ) of cupric oxide (CuO) in the first slurry when the first reducing agent is added to the first slurry. O) is preferable because the reduction reaction to O) is performed quickly and the variation in the particle size of the flake copper powder tends to be small.

第2スラリーは、第1スラリーに含まれる銅塩1モルに対し、第1還元剤を、通常0.1モル〜3.0モル、好ましくは0.3モル〜1,5モル含む。銅塩に対する第1還元剤の配合比率が該範囲内にあると、酸化第二銅(CuO)の酸化第一銅(CuOへの還元反応が十分に行われ、合成されるフレーク銅粉が一次粒子の凝集の低いものとなり易いため好ましい。 A 2nd slurry contains 0.1 mol-3.0 mol of 1st reducing agents normally with respect to 1 mol of copper salts contained in a 1st slurry, Preferably 0.3 mol-1,5 mol. When the blending ratio of the first reducing agent with respect to the copper salt is within the range, the cupric oxide (CuO) is sufficiently reduced to cuprous oxide (Cu 2 O to be synthesized, and the flake copper powder is synthesized. Is preferable because it tends to have a low aggregation of primary particles.

第3工程は、第1スラリーに第1還元剤を添加して第2スラリーを調製した後、さらに通常10分〜60分、好ましくは20分〜40分攪拌することが望ましい。本発明においては、このように水酸化アルカリの添加後も攪拌を続けることにより、酸化第二銅(CuO)の酸化第一銅(CuO)への還元反応が十分に行わせると、合成されるフレーク銅粉が一次粒子の凝集の低いものとなり易いため好ましい。 In the third step, after the first reducing agent is added to the first slurry to prepare the second slurry, it is further usually stirred for 10 minutes to 60 minutes, preferably 20 minutes to 40 minutes. In the present invention, if the reduction reaction of cupric oxide (CuO) to cuprous oxide (Cu 2 O) is sufficiently performed by continuing stirring even after the addition of alkali hydroxide in this way, synthesis is performed. The flake copper powder to be used is preferable because it tends to have a low aggregation of primary particles.

(第4工程)
第4工程では、上記第2スラリーに、酸化第一銅を銅に還元し得る第2還元剤を添加してフレーク銅粉を得る。ただし、本発明では、リン酸及びその塩を前記第1工程〜第3工程の少なくとも1つの工程において添加すること、及び/又は第4工程において第2スラリーに添加することを行うため、第4工程において第2還元剤を添加する際には第2スラリー中に必ずリン酸及びその塩が存在することになる。
(4th process)
In the fourth step, a flake copper powder is obtained by adding a second reducing agent capable of reducing cuprous oxide to copper to the second slurry. However, in the present invention, phosphoric acid and its salt are added in at least one of the first to third steps and / or added to the second slurry in the fourth step. When the second reducing agent is added in the process, phosphoric acid and its salt are always present in the second slurry.

本発明においてリン酸及びその塩とは、水存在以下でオルトリン酸イオン、ピロリン酸イオン、メタリン酸イオン等のリン酸イオンを供給可能な物質を意味し、本発明において得られるフレーク銅粉中にPを含有せしめるものであり、フレーク銅粉の粒径を小さくし、結晶子径を大きくする作用を有すると推測されるものである。本発明で用いられるリン酸及びその塩としては、例えば、リン酸、ピロリン酸等のポリリン酸、トリメタリン酸等のメタリン酸;リン酸ナトリウム、リン酸カリウム等のリン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のポリリン酸塩、トリメタリン酸ナトリウム、トリメタリン酸カリウム等のメタリン酸塩等が挙げられる。   In the present invention, phosphoric acid and its salt mean a substance capable of supplying phosphate ions such as orthophosphate ion, pyrophosphate ion, metaphosphate ion or the like in the presence of water or less, and in the flake copper powder obtained in the present invention P is contained, and it is presumed that the flake copper powder has the effect of reducing the particle size and increasing the crystallite size. Examples of phosphoric acid and salts thereof used in the present invention include polyphosphoric acid such as phosphoric acid and pyrophosphoric acid, metaphosphoric acid such as trimetaphosphoric acid; phosphate such as sodium phosphate and potassium phosphate, sodium pyrophosphate, and pyrolin. Examples thereof include polyphosphates such as potassium acid, and metaphosphates such as sodium trimetaphosphate and potassium trimetaphosphate.

また、第1工程〜第3工程の少なくとも1つの工程においてリン酸及びその塩を添加する、及び/又は第4工程において第2スラリーに添加するリン酸及びその塩の全添加量は、該リン酸及びその塩中のP(リン)換算量が、前記銅塩水溶液、第1スラリー又は第2スラリー中に含まれる銅1モルに対し、通常0.001モル〜3モル、好ましくは0.01モル〜1モルである。該全添加量のP換算量が該範囲内にあると、得られるフレーク銅粉の耐酸化性が高くなり易いため好ましい。一方、該P換算量が0.001モル未満であると得られるフレーク銅粉の耐酸化性が十分でなくなり易かったり、フレーク銅粉が扁平化し難くなったりするため好ましくない。また、該P換算量が3モルを超えるとフレーク銅粉の抵抗が高くなり易いため好ましくない。   In addition, the total amount of phosphoric acid and its salt added in at least one of the first to third steps and / or its salt added in the fourth slurry in the fourth step is P (phosphorus) conversion amount in the acid and its salt is usually 0.001 mol to 3 mol, preferably 0.01 with respect to 1 mol of copper contained in the copper salt aqueous solution, the first slurry or the second slurry. Mol to 1 mol. It is preferable that the P conversion amount of the total addition amount is within this range because the oxidation resistance of the obtained flake copper powder tends to be high. On the other hand, when the P conversion amount is less than 0.001 mol, the oxidation resistance of the obtained flake copper powder is likely to be insufficient, or the flake copper powder is difficult to flatten. Moreover, since the resistance of flake copper powder will become high easily when this P conversion amount exceeds 3 mol, it is unpreferable.

第2スラリーへの第2還元剤の添加方法としては、例えば、第2スラリーを攪拌した状態にしておき、これに第2還元剤の水溶液を添加して攪拌する方法が挙げられる。また、第4工程では、第2スラリーに第2還元剤を添加する際、液温は、通常50℃〜90℃、好ましくは60℃〜80℃である。液温が該範囲内にあると、一次粒子の凝集が少ない粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。   Examples of the method for adding the second reducing agent to the second slurry include a method in which the second slurry is kept in a stirred state, and an aqueous solution of the second reducing agent is added thereto and stirred. Moreover, at the 4th process, when adding a 2nd reducing agent to a 2nd slurry, liquid temperature is 50 to 90 degreeC normally, Preferably it is 60 to 80 degreeC. When the liquid temperature is within this range, it is preferable because a flake copper powder having a high particle size with a small primary particle aggregation is easily obtained.

本発明で用いられる第2還元剤は、本発明において第2スラリー中の酸化第一銅(CuO)をCuに還元する作用を有するものである。該第2還元剤としては、例えば、ヒドラジン、水和ヒドラジン(N・HO)、硫酸ヒドラジン、炭酸ヒドラジン及び塩酸ヒドラジンからなる群より選択される少なくとも1種を用いることができる。 The second reducing agent used in the present invention has an action of reducing cuprous oxide (Cu 2 O) in the second slurry to Cu in the present invention. As the second reducing agent, for example, at least one selected from the group consisting of hydrazine, hydrated hydrazine (N 2 H 4 .H 2 O), hydrazine sulfate, hydrazine carbonate, and hydrazine hydrochloride can be used.

また、第2還元剤を第1スラリーに添加する際は、一挙に添加するのでなく、時間をかけて少量ずつ徐々に添加すると、得られるフレーク銅粉の粒径を上記本発明に係るフレーク銅粉の粒径の範囲内にし易いため好ましい。該添加に要する時間としては、通常1分〜60分、好ましくは3分〜40分とする。   Moreover, when adding a 2nd reducing agent to a 1st slurry at once, when adding gradually little by little over time, the particle size of the obtained flake copper powder is made into the flake copper which concerns on the said invention. Since it is easy to make it within the range of the particle size of the powder, it is preferable. The time required for the addition is usually 1 minute to 60 minutes, preferably 3 minutes to 40 minutes.

第4工程において、第2スラリーに含まれる銅塩1モルに対し、第2還元剤を、通常0.5モル〜6.0モル、好ましくは0.8モル〜3.0モル含む。銅塩に対する第2還元剤の配合比率が該範囲内にあると、酸化第一銅(CuO)のCuへの還元反応が十分に行われることにより、粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。 4th process WHEREIN: A 2nd reducing agent is 0.5 mol-6.0 mol normally with respect to 1 mol of copper salts contained in a 2nd slurry, Preferably 0.8 mol-3.0 mol are included. When the mixing ratio of the second reducing agent to the copper salt is within the above range, the reduction reaction of cuprous oxide (Cu 2 O) to Cu is sufficiently performed, so that the flake copper having a high particle size uniformity is obtained. It is preferable because powder is easily obtained.

第4工程は、第2スラリーに第2還元剤を添加した後、さらに通常20分〜2時間、好ましくは40分〜1.5時間攪拌することが望ましい。このように第2還元剤の添加後も攪拌を続けると、酸化第一銅(CuO)のCuへの還元反応が十分に行われることにより、より一次粒子の凝集の少ないフレーク銅粉が得られ易いため好ましい。 In the fourth step, after the second reducing agent is added to the second slurry, it is usually further stirred for 20 minutes to 2 hours, preferably 40 minutes to 1.5 hours. Thus, if stirring is continued even after the addition of the second reducing agent, the reduction reaction of cuprous oxide (Cu 2 O) to Cu is sufficiently performed, so that flake copper powder with less aggregation of primary particles can be obtained. Since it is easy to obtain, it is preferable.

第4工程を行うと、スラリー中にフレーク銅粉が生成する。該フレーク銅粉は、例えばスラリーを、ヌッチェ等を用いて濾過した後、濾滓を純水で洗浄し、さらにオレイン酸等を含むメタノール溶液等で洗浄し、乾燥する方法により得られる。なお、本発明において還元作用を行うだけでフレーク銅粉が得られるメカニズムは不明であるが、本発明では第4工程で用いられる第2還元剤を添加する前の第2スラリー中にリン酸及びその塩が存在していればフレーク銅粉が得られるため、酸化第一銅が銅に還元される際にリン酸及びその塩が何らかの作用を引き起こしてフレーク銅粉が形成されているものと推測される。   When the fourth step is performed, flake copper powder is generated in the slurry. The flake copper powder can be obtained, for example, by filtering the slurry using a Nutsche or the like, then washing the filter cake with pure water, washing with a methanol solution containing oleic acid or the like, and drying. In addition, although the mechanism by which flake copper powder is obtained only by performing a reducing action in the present invention is unclear, in the present invention phosphoric acid and the second slurry before adding the second reducing agent used in the fourth step If the salt is present, flake copper powder is obtained, so it is assumed that when copper oxide is reduced to copper, phosphoric acid and its salt cause some action to form flake copper powder. Is done.

また、フレーク銅粉の表面に有機表面処理層を形成する場合、該層を形成する方法としては、例えば、乾式法、湿式法等公知の方法を用いて上記有機化合物をフレーク銅粉の表面に被覆させる方法が挙げられる。   Moreover, when forming an organic surface treatment layer on the surface of flake copper powder, as a method of forming the layer, for example, the organic compound is applied to the surface of the flake copper powder using a known method such as a dry method or a wet method. The method of making it coat | cover is mentioned.

(本発明に係るフレーク銅粉の製造方法で得られたフレーク銅粉)
次に、本発明に係るフレーク銅粉の製造方法で得られたフレーク銅粉について説明する。
本発明に係るフレーク銅粉の製造方法で得られたフレーク銅粉は、その粒子の微視的形状がフレーク状の粉体である。本発明においてフレーク状を呈する粉体とは銅粉の一次粒子がフレーク状を呈しているということであり、該一次粒子が凝集して生じた二次粒子の性状を指すものではない。
( Flake copper powder obtained by the method for producing flake copper powder according to the present invention)
Next, the flake copper powder obtained by the method for producing flake copper powder according to the present invention will be described.
The flake copper powder obtained by the method for producing flake copper powder according to the present invention is a powder in which the microscopic shape of the particles is flake-like. In the present invention, the powder having a flaky shape means that the primary particles of the copper powder have a flaky shape, and does not indicate the properties of the secondary particles produced by aggregation of the primary particles.

当該フレーク銅粉は、D50が、通常0.3μm〜7μm、好ましくは0.5μm〜5μm、さらに好ましくは0.5μm〜4μmである。D50が該範囲内にあると、フレーク銅粉を用いて作製した導電性ペーストの充填性が良好になり易いため好ましい。一方、D50が0.3μm未満であると導電性ペーストの粘度が高くなり易いため好ましくなく、7μmを超えると導電性ペーストから形成される銅厚膜の薄層化又はファインライン化が困難になり易いため好ましくない。なお、本発明において用いるD10、D50及びD90とは、それぞれ、レーザー回折散乱式粒度分布測定法による累積体積10容量%、50容量%及び90容量%における体積累積粒径(μm)を示す。 The flaky copper powder is, D 50 is usually 0.3Myuemu~7myuemu, preferably 0.5 m to 5 m, more preferably from 0.5Myuemu~4myuemu. If D 50 is within the range, preferred liable filling of the conductive paste prepared by using the flaky copper powder are improved. On the other hand, if D 50 is less than 0.3 μm, the viscosity of the conductive paste tends to increase, which is not preferable. If it exceeds 7 μm, it is difficult to make the copper thick film formed from the conductive paste thinner or fine line. Since it becomes easy to become, it is not preferable. Note that D 10 , D 50 and D 90 used in the present invention are the cumulative volume particle diameters (μm) at 10 volume%, 50 volume% and 90 volume%, respectively, according to the laser diffraction scattering particle size distribution measurement method. Show.

当該フレーク銅粉は、結晶子径が25nm以上、好ましくは35nm以上である。結晶子径が該範囲内にあると、該フレーク銅粉を用いた導電性ペーストによる銅厚膜の生成前後で銅厚膜の寸法変化が生じることによる銅厚膜の熱収縮を起こして銅厚膜がセラミック基板から剥離したりセラミック基板が銅厚膜の寸法変化につられて変形したりし難く、また導電性ペーストからのペーストの脱媒時のフレーク銅粉の耐酸化性が高くなり易いため好ましい。一方、結晶子径が25nm未満であると、該フレーク銅粉を用いた導電性ペーストによる銅厚膜の生成前後で銅厚膜の寸法変化が生じることによる銅厚膜の熱収縮を起こして銅厚膜がセラミック基板から剥離したりセラミック基板が銅厚膜の寸法変化につられて変形したりし易く、また導電性ペーストからのペーストの脱媒時のフレーク銅粉の耐酸化性が低くなり易いため好ましくない。なお、結晶子径とは、フレーク銅粉試料に対しX線回折を行って得られる、各結晶面の回折角のピークの半価幅から求められる結晶子径の平均値をいう。 The flake copper powder has a crystallite diameter of 25 nm or more, preferably 35 nm or more. If the crystallite diameter is within this range, the copper thick film undergoes thermal contraction due to a dimensional change of the copper thick film before and after the formation of the copper thick film by the conductive paste using the flake copper powder. It is difficult for the film to peel off from the ceramic substrate or to deform due to the dimensional change of the copper thick film, and the oxidation resistance of the flake copper powder tends to be high when the paste is removed from the conductive paste. preferable. On the other hand, if the crystallite diameter is less than 25 nm, the copper thick film undergoes thermal contraction due to a dimensional change of the copper thick film before and after the formation of the copper thick film by the conductive paste using the flake copper powder. The thick film is likely to peel off from the ceramic substrate, or the ceramic substrate is easily deformed by the dimensional change of the copper thick film, and the oxidation resistance of the flake copper powder tends to be low when the paste is removed from the conductive paste. Therefore, it is not preferable. Note that the binding crystallite diameter, to flaky copper powder sample obtained by performing X-ray diffraction means the average crystallite diameter obtained from the half width of the peak of the diffraction angle of each crystal face.

当該フレーク銅粉は、結晶子径/DIAが、通常0.01以上、好ましくは0.015以上である。結晶子径/DIAが該範囲内にあると、該フレーク銅粉を用いた導電性ペーストによる銅厚膜の生成前後で銅厚膜の寸法変化が生じることによる銅厚膜の熱収縮を起こし難く、また導電性ペーストからのペーストの脱媒時のフレーク銅粉の耐酸化性が高くなり易いため好ましい。一方、結晶子径/DIAが0.01未満であると、該フレーク銅粉を用いた導電性ペーストによる銅厚膜の生成前後で銅厚膜の寸法変化が生じることによる銅厚膜の熱収縮を起こし易く、また導電性ペーストからのペーストの脱媒時のフレーク銅粉の耐酸化性が低くなり易いため好ましくない。 The flaky copper powder had a crystallite diameter / D IA is usually 0.01 or more, preferably 0.015 or more. If the crystallite diameter / DIA is within this range, the copper thick film undergoes thermal contraction due to the dimensional change of the copper thick film before and after the formation of the copper thick film by the conductive paste using the flake copper powder. This is preferable because it is difficult and the oxidation resistance of the flake copper powder tends to be high when the paste is removed from the conductive paste. On the other hand, if the crystallite diameter / DIA is less than 0.01, the heat of the copper thick film due to the dimensional change of the copper thick film before and after the formation of the copper thick film by the conductive paste using the flake copper powder. This is not preferable because it tends to shrink and the oxidation resistance of the flake copper powder tends to be low when the paste is removed from the conductive paste.

本発明に係るフレーク銅粉は、DIAが、通常0.3μm〜8μmである。DIAが該範囲内にあると、フレーク銅粉を用いて作製した導電性ペーストの充填性が良好になり易いため好ましい。一方、DIAが0.3μm未満であると導電性ペーストの粘度が高くなり易いため好ましくなく、8μmを超えると導電性ペーストから形成される銅厚膜の薄層化又はファインライン化が困難になり易いため好ましくない。なお、本明細書において用いるDIAとは、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径(μm)である上記D50と異なり、走査型電子顕微鏡(SEM)を用い5000倍〜20000倍で直接観察して得られるSEM像から測定した個々のフレーク状銅粉(フレーク状銅粉の測定サンプル数は10個以上)の長径(μm)の平均粒径(μm)を示す。 Flaky copper powder according to the present invention, D IA is usually 0.3Myuemu~8myuemu. When D IA are within the range, preferred liable filling of the conductive paste prepared by using the flaky copper powder are improved. On the other hand, if the DIA is less than 0.3 μm, the viscosity of the conductive paste tends to increase, which is not preferable. If the DIA exceeds 8 μm, it is difficult to make the copper thick film formed from the conductive paste thinner or fine line. Since it becomes easy to become, it is not preferable. Note that the D IA As used herein, unlike the D 50 is the volume-cumulative particle diameter ([mu] m) in cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method, a scanning electron microscope (SEM) The average particle diameter (μm) of the major axis (μm) of each flaky copper powder (the number of measurement samples of the flaky copper powder is 10 or more) measured from the SEM image obtained by direct observation at 5000 to 20000 times Indicates.

当該フレーク銅粉は、DIAをフレーク銅粉の厚さt(μm)で除して求められるアスペクト比(DIA/t)が、通常2〜50、好ましくは2〜20、さらに好ましくは3〜10である。アスペクト比(DIA/t)が該範囲内にあると、導電性ペースト中における銅粉同士の接触面積を大きくすることができ、銅厚膜を低抵抗化し易いため好ましい。一方、アスペクト比(DIA/t)が2未満であると、導電性ペースト中における銅粉同士の接触面積が十分に大きくなく、銅厚膜を低抵抗化し難いおそれがあり、また、50を超えると導電性ペーストの粘度が急激に上昇し易いおそれがある。なお、本発明において、フレーク銅粉の厚さt(μm)とは、走査型電子顕微鏡写真の直接観察で測定される平均厚さを意味する。 The flaky copper powder has an aspect ratio obtained by dividing the D IA with thickness of the flake copper powder t (μm) (D IA / t) is usually 2 to 50, preferably 2 to 20, more preferably 3 -10. When the aspect ratio (D IA / t) is within this range, it is preferable because the contact area between the copper powders in the conductive paste can be increased and the resistance of the copper thick film can be easily reduced. On the other hand, if the aspect ratio (D IA / t) is less than 2, the contact area between the copper powders in the conductive paste is not sufficiently large, and it is difficult to reduce the resistance of the copper thick film. When it exceeds, there exists a possibility that the viscosity of an electrically conductive paste may rise rapidly. In the present invention, the thickness t (μm) of the flake copper powder means an average thickness measured by direct observation of a scanning electron micrograph.

当該フレーク銅粉は、フレーク銅粉中にPを含む。フレーク銅粉中のPの含有量は、通常10ppm〜200ppm、好ましくは30ppm〜100ppm、さらに好ましくは50ppm〜80ppmである。Pの含有量が該範囲内にあると、フレーク銅粉の耐酸化性が高くなり易いため好ましい。一方、Pの含有量が10ppm未満であると、フレーク銅粉の耐酸化性が十分でなかったり、フレーク銅粉が扁平化し難くなったりするため好ましくない。また、Pの含有量が200ppmを超えるとフレーク銅粉の抵抗が高くなり易いため好ましくない。本明細書においてppmとは重量基準の百万分率をいう。 The said flake copper powder contains P in flake copper powder. Content of P in flake copper powder is 10 ppm-200 ppm normally, Preferably it is 30 ppm-100 ppm, More preferably, it is 50 ppm-80 ppm. It is preferable for the P content to fall within this range since the oxidation resistance of the flake copper powder tends to be high. On the other hand, if the content of P is less than 10 ppm, the oxidation resistance of the flake copper powder is not sufficient, or the flake copper powder is difficult to flatten. Further, if the P content exceeds 200 ppm, the resistance of the flake copper powder tends to increase, such being undesirable. In this specification , ppm means parts per million by weight.

当該フレーク銅粉は、SD/D50が通常0.45以下、好ましくは0.4以下である。SD/D50が該範囲内にあると、フレーク銅粉の粒度分布がシャープであることにより、フレーク銅粉を用いて作製した導電性ペーストの充填性が良好になり易いため好ましい。SD/D50が上記範囲外であると、フレーク銅粉の粒度分布がブロードであることにより、フレーク銅粉を用いて作製した導電性ペーストの充填性が低下し易いため好ましくない。なお、本明細書において、SDとは、レーザー回折散乱式粒度分布測定法で得られた粒度分布の標準偏差(μm)を示す。 The flake copper powder usually has an SD / D 50 of 0.45 or less, preferably 0.4 or less. When the SD / D 50 is within the above range, the particle size distribution of the flake copper powder is sharp, which is preferable because the filling property of the conductive paste produced using the flake copper powder tends to be good. When the SD / D 50 is out of the above range, the particle size distribution of the flake copper powder is broad, which is not preferable because the filling property of the conductive paste produced using the flake copper powder tends to decrease. In the present specification , SD indicates the standard deviation (μm) of the particle size distribution obtained by the laser diffraction / scattering particle size distribution measuring method.

当該フレーク銅粉は、D90/D10が通常3.0以下、好ましくは2.5以下である。一方、D90/D10が上記範囲外であると、フレーク銅粉の粒度分布がブロードであることにより、フレーク銅粉を用いて作製した導電性ペーストの充填性が低下し易いため好ましくない。 The flaky copper powder is, D 90 / D 10 is usually 3.0 or less, preferably 2.5 or less. On the other hand, if D 90 / D 10 is out of the above range, the particle size distribution of the flake copper powder is broad, which is not preferable because the filling property of the conductive paste prepared using the flake copper powder tends to be lowered.

当該フレーク銅粉は、比表面積が通常0.2m/g〜4.0m/g、好ましくは0.3m/g〜2.2m/gである。該比表面積が4.0m/gを超えると、フレーク銅粉から形成した導電性ペーストの粘度が高くなりすぎるおそれがあるため好ましくない。本明細書において比表面積とは、BET比表面積をいう。 The flaky copper powder has a specific surface area of usually 0.2m 2 /g~4.0m 2 / g, preferably 0.3m 2 /g~2.2m 2 / g. When the specific surface area exceeds 4.0 m 2 / g, the viscosity of the conductive paste formed from the flake copper powder may be too high, which is not preferable. In this specification , the specific surface area refers to the BET specific surface area.

当該フレーク銅粉は、タップ密度が通常2.0g/cm以上、好ましくは3.3g/cm〜5.0g/cmである。タップ密度が該範囲内にあると、導電性ペーストの作製の際にフレーク銅粉のペースト中での分散性が良好で導電性ペーストの作製が容易であり、また導電性ペーストの塗膜形成の際にフレーク銅粉間に適度な空隙が形成されることにより塗膜を焼成する際に塗膜からの溶媒の除去が容易に行われて焼成膜密度が向上し、この結果銅厚膜の抵抗が低くなり易いため好ましい。 The flaky copper powder had a tap density of typically 2.0 g / cm 3 or more, preferably 3.3g / cm 3 ~5.0g / cm 3 . When the tap density is within the above range, the dispersibility of the flake copper powder in the paste is good during the preparation of the conductive paste, and the preparation of the conductive paste is easy. When the coating film is baked due to the formation of appropriate gaps between the flake copper powders, the removal of the solvent from the coating film is facilitated and the density of the baked film is improved, resulting in the resistance of the copper thick film. Is preferred because it tends to be low.

当該フレーク銅粉は、その表面にさらに有機表面処理層を形成したものであると、導電性ペーストの塗膜を焼成して銅厚膜を形成する際にペースト中のフレーク銅粉の表面が焼成雰囲気中の酸素により酸化されて表面に酸化銅の皮膜が形成されることを防止することができ、これにより銅厚膜の電気抵抗の経時的変化による上昇を防止することができるため好ましい。 If the surface of the flake copper powder is further formed with an organic surface treatment layer, the surface of the flake copper powder in the paste is baked when the conductive paste film is baked to form a copper thick film. It is preferable that a copper oxide film can be prevented from being oxidized on the surface by being oxidized by oxygen in the atmosphere, thereby preventing an increase in electrical resistance of the copper thick film over time.

該有機表面処理層は、有機化合物をフレーク銅粉の表面に被覆させることにより形成される。ここで用いられる有機化合物としては、例えば、飽和脂肪酸、不飽和脂肪酸、窒素含有有機化合物、硫黄含有有機化合物及びシランカップリング剤等を用いることができる。 The organic surface treatment layer is formed by coating an organic compound on the surface of the flake copper powder. Examples of the organic compound used here include saturated fatty acids, unsaturated fatty acids, nitrogen-containing organic compounds, sulfur-containing organic compounds, and silane coupling agents.

和脂肪酸としては、例えば、エナント酸(C13COOH)、カプリル酸(C15COOH)、ペラルゴン酸(C17COOH)、カプリン酸(C19COOH)、ウンデシル酸(C1021COOH)、ラウリン酸(C1123COOH)、トリデシル酸(C1225COOH)、ミリスチン酸(C1327COOH)、ペンタデシル酸(C1429COOH)、パルミチン酸(C1531COOH)、ヘプタデシル酸(C1633COOH)、ステアリン酸(C1735COOH)、ノナデカン酸(C1837COOH)、アラキン酸(C1939COOH)及びベヘン酸(C2143COOH)等が挙げられる。 The saturated fatty acids, for example, enanthate (C 6 H 13 COOH), caprylic acid (C 7 H 15 COOH), pelargonic acid (C 8 H 17 COOH), capric acid (C 9 H 19 COOH), undecylic acid (C 10 H 21 COOH), lauric acid (C 11 H 23 COOH), tridecylic acid (C 12 H 25 COOH), myristic acid (C 13 H 27 COOH), pentadecylic acid (C 14 H 29 COOH), palmitic acid (C 15 H 31 COOH), heptadecyl acid (C 16 H 33 COOH), stearic acid (C 17 H 35 COOH), nonadecanoic acid (C 18 H 37 COOH), arachidic acid (C 19 H 39 COOH) and behenic acid (C 21 H 43 COOH) and the like.

本発明で用いられる不飽和脂肪酸としては、例えば、アクリル酸(CH=CHCOOH)、クロトン酸(CHCH=CHCOOH)、イソクロトン酸(CHCH=CHCOOH)、ウンデシレン酸(CH=CH(CHCOOH)、オレイン酸(C1733COOH)、エライジン酸(CH(CHCH=CH(CHCOOH)、セトレイン酸(CH(CHCH=CH(CHCOOH)、ブラシジン酸(C2141COOH)、エルカ酸(C2141COOH)、ソルビン酸(CCOOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)及びアラキドン酸(C1331COOH)等が挙げられる。 Examples of unsaturated fatty acids used in the present invention include acrylic acid (CH 2 ═CHCOOH), crotonic acid (CH 3 CH═CHCOOH), isocrotonic acid (CH 3 CH═CHCOOH), undecylenic acid (CH 2 ═CH ( CH 2 ) 9 COOH), oleic acid (C 17 H 33 COOH), elaidic acid (CH 3 (CH 2 ) 7 CH═CH (CH 2 ) 7 COOH), setoleic acid (CH 3 (CH 2 ) 9 CH═ CH (CH 2 ) 9 COOH), brassic acid (C 21 H 41 COOH), erucic acid (C 21 H 41 COOH), sorbic acid (C 5 H 7 COOH), linoleic acid (C 17 H 31 COOH), linolenic acid (C 17 H 29 COOH) and arachidonic acid (C 13 H 31 COOH), and the like.

素含有有機化合物としては、例えば、1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等の置換基を有するトリアゾール化合物等が挙げられる。 The nitrogen-containing organic compounds, for example, 1,2,3-benzotriazole, carboxybenzotriazole, N ', N'-bis (benzotriazolyl methyl) urea, IH-1,2,4-triazole and 3 -Triazole compounds having a substituent such as amino-1H-1,2,4-triazole and the like.

黄含有有機化合物としては、例えば、硫黄含有有機化合物には、メルカプトベンゾチアゾール、チオシアヌル酸及び2−ベンズイミダゾールチオール等が挙げられる。 The sulfur-containing organic compounds, for example, the sulfur-containing organic compounds, mercaptobenzothiazole, thiocyanuric acid and 2-benzimidazole thiol, and the like.

ランカップリング剤としては、例えば、ビニルトリメトキシシランカップリング剤、アミノシランカップリング剤、テトラメトキシシランカップリング剤、メチルトリメトキシシランカップリング剤、ジフェニルジメトキシシランカップリング剤等が挙げられる。 The silane-coupling agent, for example, vinyl trimethoxy silane coupling agent, aminosilane coupling agent, tetramethoxy silane coupling agent, methyl trimethoxysilane coupling agents, such as diphenyl dimethoxy silane coupling agent.

記有機化合物のうち、オレイン酸、カプリン酸又はステアリン酸を用いると、フレーク銅粉の耐酸化性及び該フレーク銅粉から作製した導電性ペーストの充填性が高くなり易いため好ましい。有機化合物は、上記飽和脂肪酸、不飽和脂肪酸、窒素含有有機化合物、硫黄含有有機化合物及びシランカップリング剤等のうち、1種単独で又は2種以上混合して用いることができる。 These types Symbol organic compounds, oleic acid, the use of capric acid or stearic acid, liable increases the filling of the conductive paste produced from oxidation resistance and the flaky copper powder of flake copper powder preferred. Organic compounds, the saturated fatty acids, unsaturated fatty acids, nitrogen-containing organic compounds, among such sulfur-containing organic compounds and silane coupling agents may be used singly or in combination of two or more thereof.

当該フレーク銅粉は、前記有機表面処理層の被覆率が、フレーク銅粉に対して通常0.05重量%〜2重量%、好ましくは0.1重量%〜1重量%である。本明細書において有機表面処理層の被覆率とは、有機表面処理層を形成していない未処理のフレーク銅粉の重量に対する有機表面処理層の重量の比率を意味する。上記有機表面処理層の被覆率が上記範囲内にあると、導電性ペーストの耐酸化性が向上し易いため優れ、また、フレーク銅粉の耐酸化性が向上し易いため好ましい。一方、上記有機表面処理層の被覆率が2重量%を超えると、導電性ペーストの粘度の経時安定性が低くなり易いため好ましくない。 In the flake copper powder, the organic surface treatment layer has a coverage of usually 0.05% by weight to 2% by weight, preferably 0.1% by weight to 1% by weight, based on the flake copper powder. In this specification, the coverage of the organic surface treatment layer means the ratio of the weight of the organic surface treatment layer to the weight of the untreated flake copper powder not forming the organic surface treatment layer. It is preferable that the coverage of the organic surface treatment layer is in the above range because the oxidation resistance of the conductive paste is easily improved, and the oxidation resistance of the flake copper powder is easily improved. On the other hand, when the coverage of the organic surface treatment layer exceeds 2% by weight, it is not preferable because the temporal stability of the viscosity of the conductive paste tends to be low.

当該フレーク銅粉は、前記有機表面処理層を形成した場合、比表面積が通常0.1m/g〜3.5m/g、好ましくは0.2m/g〜2.0m/gである。該比表面積が3.5m/gを超えると、フレーク銅粉から形成した導電性ペーストの粘度が高くなりすぎるおそれがあるため好ましくない。 The flaky copper powder, when the formation of the organic surface treatment layer, typically 0.1m specific surface area 2 /g~3.5m 2 / g, preferably 0.2m 2 /g~2.0m 2 / g is there. When the specific surface area exceeds 3.5 m 2 / g, the viscosity of the conductive paste formed from the flake copper powder may be too high, which is not preferable.

当該フレーク銅粉は、前記有機表面処理層を形成した場合、タップ密度が通常3.0g/cm以上、好ましくは3.5g/cm〜5.5g/cmである。タップ密度が該範囲内にあると、導電性ペーストの作製の際にフレーク銅粉のペースト中での分散性が良好で導電性ペーストの作製が容易であり、また導電性ペーストの塗膜形成の際にフレーク銅粉間に適度な空隙が形成されることにより塗膜を焼成する際に塗膜からの溶媒の除去が容易に行われて焼成膜密度が向上し、この結果銅厚膜の抵抗が低くなり易いため好ましい。 The flaky copper powder, when the formation of the organic surface treatment layer, a tap density of typically 3.0 g / cm 3 or more, preferably 3.5g / cm 3 ~5.5g / cm 3 . When the tap density is within the above range, the dispersibility of the flake copper powder in the paste is good during the preparation of the conductive paste, and the preparation of the conductive paste is easy. When the coating film is baked due to the formation of appropriate gaps between the flake copper powders, the removal of the solvent from the coating film is facilitated and the density of the baked film is improved, resulting in the resistance of the copper thick film. is not preferred because tends to be low.

上述の本発明に係るフレーク銅粉の製造方法で得られたフレーク銅粉を用いた導電性ペーストについて説明する。当該導電性ペーストは、上記フレーク銅粉と樹脂とを含むものである。この導電性ペーストに用いられる樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、エチルセルロース、カルボキシエチルセルロース等が挙げられる。 The conductive paste using the flake copper powder obtained by the above-described method for producing flake copper powder according to the present invention will be described. The said conductive paste contains the said flake copper powder and resin. Examples of the resin used in the conductive paste, for example, acrylic resin, epoxy resin, ethyl cellulose, carboxymethyl cellulose and the like.

また、当該導電性ペーストは、フレーク銅粉の含有量が、通常30重量%〜98重量%、好ましくは40重量%〜90重量%であることが望ましい。フレーク銅粉の含有量が該範囲内にあると形成される銅配線の比抵抗が低くなり易いため好ましい。 Moreover, the conductive paste, the content of off Lake copper powder, typically 30% to 98% by weight, it is desirable that preferably 40% to 90% by weight. It is preferable that the content of the flake copper powder is within the range because the specific resistance of the formed copper wiring tends to be low.

記フレーク銅粉は、それ自体で又は他の球形粉等と混合して、焼成用途の電極の原料、導電性ペーストの原料等の用途に使用することができる。また、当該フレーク銅粉は、例えば、導電性ペーストの製造に用いられる公知のペーストと混合することにより、フレーク銅粉が分散した導電性ペーストが得られる。該導電性ペーストは、例えば、プリント配線板の回路形成、セラミックコンデンサの外部電極等の電気的導通確保、EMI対策のために用いられる銅ペーストとして使用することができる。 Upper notated Lake copper powder can be mixed with itself or other spherical powder or the like, using a raw material of sintered applications of the electrode, the application of the material such as conductive paste. Moreover, the flaky copper powder, for example, by mixing with known paste used in the preparation of the conductive paste, conductive paste flaky copper powder is dispersed is obtained. The conductive paste can be used, for example, as a copper paste used for circuit formation of a printed wiring board, ensuring electrical continuity of an external electrode of a ceramic capacitor, and EMI countermeasures.

以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。   Examples are shown below, but the present invention is not construed as being limited thereto.

70℃の純水6Lに、硫酸銅5水和物4kg、アミノ酢酸120g、リン酸ナトリウム50gを添加し攪拌し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、100重量%水和ヒドラジン(N・HO)1kgを5分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。
得られたフレーク銅粉について、下記測定方法により、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
Add 6 kg of copper sulfate pentahydrate, 120 g of aminoacetic acid and 50 g of sodium phosphate to 6 L of pure water at 70 ° C. and stir, and then add pure water to adjust the amount of the aqueous solution to 8 L, and stir for 30 minutes. Continued.
Next, with the aqueous solution being stirred, 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added to the aqueous solution, and then stirring was continued for 30 minutes. After adding 1.5 kg of glucose, stirring was continued for 30 minutes. .
Next, with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 5 minutes, and stirring was continued for 1 hour to complete the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was dried to obtain flake copper powder.
The obtained flaky copper powder, the following measurement method, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.

(粒径D10、D50、D90、Dmax、SDの測定方法):まず、銅粉試料0.2gを、SNディスパーサント5468の0.1重量%水溶液(サンノブコ株式会社製)及び和光純薬工業株式会社製非イオン性界面活性剤トリトンX−100(ポリオキシエチレンオクチルフェニルエーテル)と混合し、超音波ホモジナイザ(日本精機製作所株式会社製US−300T)で5分間分散させた。次に、日機装株式会社製マイクロトラックHRA9320−X100型(Leeds+Northrup株式会社製)を用いて、レーザー回折散乱法で求められる累積体積が10%、50%、90%及び100%の時点における粒径(μm)を、それぞれD10、D50、D90、Dmaxとし、これらの測定の際に得られた粒度分布の標準偏差(μm)をSDとした。
(粒径DIAの測定方法):銅粉試料をSEMで直接観察(倍率:5000倍〜20000倍)して銅粉試料中の銅粉粒子の円板の長径(μm)を銅粉粒子200個について測定し、長径の平均値を求めた。
(結晶子径の測定方法):リガク株式会社製X線回折装置RINT200Vを用い、結晶子解析ソフトにより求めた。
(P含有率の測定方法):試料粉体を希硝酸に溶解し、該溶液について、ICP発光分析装置を用いてPの濃度を測定し、該濃度から粉末中のP含有率を算出した。
(アスペクト比の測定方法):走査型電子顕微鏡を用いて粉末の平均厚さ(t(μm))を測定し、上記DIAを該tで除した値をアスペクト比とした。
(Measuring method of particle size D 10 , D 50 , D 90 , D max , SD): First, 0.2 g of a copper powder sample was added to a 0.1 wt% aqueous solution of SN Dispersant 5468 (manufactured by Sannobuco Co., Ltd.) and It was mixed with a nonionic surfactant Triton X-100 (polyoxyethylene octylphenyl ether) manufactured by Kojunkaku Kogyo Co., Ltd. and dispersed for 5 minutes with an ultrasonic homogenizer (US-300T manufactured by Nippon Seiki Seisakusho Co., Ltd.). Next, using Nikkiso Co., Ltd. Microtrac HRA9320-X100 (Leeds + Northrup Co., Ltd.), the particle size at the time when the cumulative volume determined by the laser diffraction scattering method is 10%, 50%, 90% and 100% ( μm) was D 10 , D 50 , D 90 and D max , respectively, and the standard deviation (μm) of the particle size distribution obtained during these measurements was SD.
(Measurement method of particle size D IA): observed copper powder sample directly SEM (magnification: 5000 times ~20000 times) copper powder particles 200 a major axis ([mu] m) of the circular plate of the copper powder particles of the copper powder in the sample Each piece was measured and the average value of the major axis was obtained.
(Measurement method of crystallite diameter): Determined by crystallite analysis software using Rigaku Corporation X-ray diffraction apparatus RINT200V.
(Measurement method of P content): The sample powder was dissolved in dilute nitric acid, the P concentration of the solution was measured using an ICP emission analyzer, and the P content in the powder was calculated from the concentration.
(Measurement method of aspect ratio): measuring the average thickness of the powder using a scanning electron microscope (t ([mu] m)), and the above D IA and aspect ratio divided by the t.

70℃の純水6Lに、硫酸銅5水和物4kg、アミノ酢酸120g、リン酸ナトリウム75gを添加し攪拌し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、100重量%水和ヒドラジン(N・HO)1kgを30分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。得られたフレーク銅粉について、実施例1と同様にして、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
また、得られたフレーク銅粉について、下記方法に従って熱重量測定(TG)を行い、酸化開始温度を測定した。結果を表3に示す。
(TGの測定方法):銅粉を大気雰囲気中において昇温速度10℃/minで加熱して、銅粉の重量変化を測定した。
Add 6 kg of copper sulfate pentahydrate, 120 g of aminoacetic acid, and 75 g of sodium phosphate to 6 L of pure water at 70 ° C., stir, and then add pure water to adjust the volume of the aqueous solution to 8 L, and stir for 30 minutes. Continued.
Next, with the aqueous solution being stirred, 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added to the aqueous solution, and then stirring was continued for 30 minutes. After adding 1.5 kg of glucose, stirring was continued for 30 minutes. .
Next, with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 30 minutes, and then the stirring was continued for 1 hour to complete the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was dried to obtain flake copper powder. The obtained flaky copper powder, in the same manner as in Example 1, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.
Moreover, about the obtained flake copper powder, the thermogravimetry (TG) was performed according to the following method, and the oxidation start temperature was measured. The results are shown in Table 3.
(Measuring method of TG): The copper powder was heated in the air atmosphere at a heating rate of 10 ° C./min, and the weight change of the copper powder was measured.

70℃の純水6Lに、硫酸銅5水和物4kg、アミノ酢酸120g、リン酸ナトリウム75gを添加し攪拌し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、100重量%水和ヒドラジン(N・HO)1kgを30分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を、オレイン酸1gをメタノール3Lに溶解させて得られたメタノール溶液に1時間浸漬した後、メタノールで洗浄し、乾燥してフレーク銅粉を得た。
ヌッチェ内の底部にろ紙を敷き、該ろ紙上に上記フレーク銅粉を載置し、これにメタノール1lにオレイン酸1gを分散させた溶液を添加して30分放置した後、吸引ポンプを稼動して吸引濾過した。
ガラスろ紙上に残ったフレーク銅粉を取り出し、70℃で5時間乾燥して表面にオレイン酸がコートされたフレーク銅粉を得た。
得られたフレーク銅粉について、実施例1と同様にして、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
Add 6 kg of copper sulfate pentahydrate, 120 g of aminoacetic acid, and 75 g of sodium phosphate to 6 L of pure water at 70 ° C., stir, and then add pure water to adjust the volume of the aqueous solution to 8 L, and stir for 30 minutes. Continued.
Next, with the aqueous solution being stirred, 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added to the aqueous solution, and then stirring was continued for 30 minutes. After adding 1.5 kg of glucose, stirring was continued for 30 minutes. .
Next, with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 30 minutes, and then the stirring was continued for 1 hour to complete the reaction.
After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was immersed in a methanol solution obtained by dissolving 1 g of oleic acid in 3 L of methanol for 1 hour, washed with methanol, and dried to obtain flake copper powder.
Place filter paper on the bottom of Nutsche, place the flake copper powder on the filter paper, add a solution of 1 g of oleic acid in 1 liter of methanol and leave it for 30 minutes, then operate the suction pump. And filtered with suction.
The flake copper powder remaining on the glass filter paper was taken out and dried at 70 ° C. for 5 hours to obtain flake copper powder whose surface was coated with oleic acid.
The obtained flaky copper powder, in the same manner as in Example 1, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.

70℃の純水6Lに、硫酸銅5水和物4kg、アミノ酢酸120gを添加し攪拌し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液にリン酸ナトリウム75gを添加し、さらに25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、100重量%水和ヒドラジン(N・HO)1kgを30分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。
得られたフレーク銅粉について、実施例1と同様にして、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
また、得られたフレーク銅粉について、実施例2と同様にして熱重量測定(TG)を行い、酸化開始温度を測定した。結果を表3に示す。
To 6 L of pure water at 70 ° C., 4 kg of copper sulfate pentahydrate and 120 g of aminoacetic acid were added and stirred. Further, pure water was added to adjust the amount of the aqueous solution to 8 L, and stirring was continued for 30 minutes.
Next, with the aqueous solution being stirred, 75 g of sodium phosphate was added to the aqueous solution, and then 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added, followed by stirring for 30 minutes and further addition of 1.5 kg of glucose. Then, stirring was continued for 30 minutes.
Next, with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 30 minutes, and then the stirring was continued for 1 hour to complete the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was dried to obtain flake copper powder.
The obtained flaky copper powder, in the same manner as in Example 1, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.
Further, the obtained flake copper powder was subjected to thermogravimetry (TG) in the same manner as in Example 2 to measure the oxidation start temperature. The results are shown in Table 3.

70℃の純水6Lに、硫酸銅5水和物4kg、アミノ酢酸120gを添加し攪拌し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、リン酸ナトリウム75gを添加し、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、100重量%水和ヒドラジン(N・HO)1kgを30分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。
得られたフレーク銅粉について、実施例1と同様にして、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
また、得られたフレーク銅粉について、実施例2と同様にして熱重量測定(TG)を行い、酸化開始温度を測定した。結果を表3に示す。
To 6 L of pure water at 70 ° C., 4 kg of copper sulfate pentahydrate and 120 g of aminoacetic acid were added and stirred. Further, pure water was added to adjust the amount of the aqueous solution to 8 L, and stirring was continued for 30 minutes.
Next, with stirring the aqueous solution, 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added to the aqueous solution, and then stirring was continued for 30 minutes, 75 g of sodium phosphate was added, and 1.5 kg of glucose was further added. Thereafter, stirring was continued for 30 minutes.
Next, with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 30 minutes, and then the stirring was continued for 1 hour to complete the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was dried to obtain flake copper powder.
The obtained flaky copper powder, in the same manner as in Example 1, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.
Further, the obtained flake copper powder was subjected to thermogravimetry (TG) in the same manner as in Example 2 to measure the oxidation start temperature. The results are shown in Table 3.

70℃の純水6Lに、硫酸銅5水和物4kg及びアミノ酢酸120gを添加し攪拌し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、リン酸ナトリウム75gを添加した後、100重量%水和ヒドラジン(N・HO)1kgを30分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。
得られたフレーク銅粉について、実施例1と同様にして、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
また、得られたフレーク銅粉について、実施例2と同様にして熱重量測定(TG)を行い、酸化開始温度を測定した。結果を表3に示す。
[比較例1]
To 6 L of pure water at 70 ° C., 4 kg of copper sulfate pentahydrate and 120 g of aminoacetic acid were added and stirred. Further, pure water was added to adjust the amount of the aqueous solution to 8 L, and stirring was continued for 30 minutes.
Next, with the aqueous solution being stirred, 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added to the aqueous solution, and then stirring was continued for 30 minutes. After adding 1.5 kg of glucose, stirring was continued for 30 minutes. .
Next, after adding 75 g of sodium phosphate with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 30 minutes, followed by stirring for 1 hour. To finish the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was dried to obtain flake copper powder.
The obtained flaky copper powder, in the same manner as in Example 1, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.
Further, the obtained flake copper powder was subjected to thermogravimetry (TG) in the same manner as in Example 2 to measure the oxidation start temperature. The results are shown in Table 3.
[Comparative Example 1]

70℃の純水6Lに、硫酸銅5水和物4kg、アミノ酢酸120gを添加し、さらに純水を注いで水溶液の液量を8Lに調整し、このまま30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に25重量%水酸化ナトリウム水溶液5.8kgを添加した後、30分間攪拌を続け、さらにグルコース1.5kgを添加した後、30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、100重量%水和ヒドラジン(N・HO)1kgを30分間かけて徐々に添加した後、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーについてヌッチェを用いて濾過した後、濾滓を純水で洗浄し、さらにメタノールで洗浄した。該濾滓を、オレイン酸1gをメタノール3Lに溶解させて得られたメタノール溶液に1時間浸漬した後、メタノールで洗浄し、乾燥して銅粉を得た。
該銅粉を、媒体分散ミルとしてWilly A. Bachofen AG Maschinenfabrik製ダイノーミルKDL、メディアとして0.7mmのジルコニアビーズ、溶媒としてメタノールを用いて、60分間処理を行って銅粉を塑性変形させた。得られた銅粉について、実施例1と同様にして、D10、D50、D90、Dmax、SD、結晶子径、P含有率及びアスペクト比を測定した。また、SD/D50及び結晶子径/DIAも算出した。結果を表2及び表3に示す。
また、得られたフレーク銅粉について、実施例2と同様にして熱重量測定(TG)を行い、酸化開始温度を測定した。結果を表3に示す。
4 kg of copper sulfate pentahydrate and 120 g of aminoacetic acid were added to 6 L of pure water at 70 ° C., and pure water was added to adjust the amount of the aqueous solution to 8 L, and stirring was continued for 30 minutes.
Next, with the aqueous solution being stirred, 5.8 kg of a 25 wt% aqueous sodium hydroxide solution was added to the aqueous solution, and then stirring was continued for 30 minutes. After adding 1.5 kg of glucose, stirring was continued for 30 minutes. .
Next, with stirring the aqueous solution, 1 kg of 100 wt% hydrated hydrazine (N 2 H 4 .H 2 O) was gradually added over 30 minutes, and then the stirring was continued for 1 hour to complete the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, and the filter cake was washed with pure water and further washed with methanol. The filter cake was immersed for 1 hour in a methanol solution obtained by dissolving 1 g of oleic acid in 3 L of methanol, washed with methanol, and dried to obtain copper powder.
Using the copper powder as a medium dispersion mill, The copper powder was plastically deformed by a treatment for 60 minutes using a dyno mill KDL manufactured by Bachofen AG Maskinfabrik, 0.7 mm zirconia beads as media, and methanol as a solvent. The obtained copper powder, in the same manner as in Example 1, D 10, D 50, D 90, D max, SD, crystallite diameter was measured P content and aspect ratio. SD / D 50 and crystallite diameter / D IA were also calculated. The results are shown in Tables 2 and 3.
Further, the obtained flake copper powder was subjected to thermogravimetry (TG) in the same manner as in Example 2 to measure the oxidation start temperature. The results are shown in Table 3.

Figure 0005255580
Figure 0005255580

Figure 0005255580
Figure 0005255580

Figure 0005255580
Figure 0005255580

表1〜表3より、原料としてリン酸及びその塩を配合して製造した銅粉は、微粒で、粒度分布がシャープであり、結晶子径が大きく、しかも、比較例1のような塑性変形処理を行うことなくフレーク状を呈することが判る。なお、比較例1の結晶子径が小さくなっているのは塑性変形処理を行ったことによるものである。   From Tables 1 to 3, the copper powder produced by blending phosphoric acid and its salt as a raw material is fine, has a sharp particle size distribution, a large crystallite size, and plastic deformation as in Comparative Example 1. It can be seen that flakes are formed without any treatment. In addition, the crystallite diameter of the comparative example 1 is small because the plastic deformation process was performed.

本発明に係るフレーク銅粉の製造方法は、例えば、プリント配線板の回路形成、セラミックコンデンサの外部電極等の電気的導通確保のために用いられる銅ペースト又はその原料を提供することができる。 Method for producing a flaky copper powder of the present invention, for example, the circuit formation of the printed wiring board, it is possible to provide a copper paste or a raw material used for electrical conduction securing external electrodes or the like of the ceramic capacitor.

Claims (5)

銅塩及び錯化剤を含む水溶液を調製する第1工程、
該水溶液に水酸化アルカリを添加して酸化第二銅を含む第1スラリーを調製する第2工程、
該第1スラリーに、酸化第二銅を酸化第一銅に還元し得る第1還元剤として、還元糖を添加して、酸化第一銅を含む第2スラリーを調製する第3工程、
及び該第2スラリーに、酸化第一銅を銅に還元し得る第2還元剤として、ヒドラジン、水和ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン及び塩酸ヒドラジンからなる群より選択される少なくとも1種を添加してフレーク銅粉を得る第4工程を有するフレーク銅粉の製造方法であって、
前記第1工程〜第3工程の少なくとも1つの工程においてリン酸及びその塩を添加すること、及び/又は第4工程において前記第2スラリーにリン酸及びその塩を添加することを特徴とするフレーク銅粉の製造方法。
A first step of preparing an aqueous solution comprising a copper salt and a complexing agent;
A second step of preparing a first slurry containing cupric oxide by adding alkali hydroxide to the aqueous solution;
A third step of preparing a second slurry containing cuprous oxide by adding reducing sugar as a first reducing agent capable of reducing cupric oxide to cuprous oxide to the first slurry;
And at least one selected from the group consisting of hydrazine, hydrated hydrazine, hydrazine sulfate, hydrazine carbonate, and hydrazine hydrochloride as a second reducing agent capable of reducing cuprous oxide to copper. A method for producing flake copper powder having a fourth step of obtaining flake copper powder,
Flakes characterized by adding phosphoric acid and salts thereof in at least one of the first to third steps and / or adding phosphoric acid and salts thereof to the second slurry in the fourth step. A method for producing copper powder.
前記第1工程〜第3工程の少なくとも1つの工程において添加する前記リン酸及びその塩、及び/又は、第4工程において前記第2スラリーに添加する前記リン酸及びその塩の全添加量は、該リン酸及びその塩中のP換算量が、前記第2スラリー中に含まれる銅1モルに対し、0.001モル〜3モルとする請求項1に記載のフレーク銅粉の製造方法。 The total addition amount of the phosphoric acid and salt thereof added in at least one of the first step to the third step and / or the phosphoric acid and salt thereof added to the second slurry in the fourth step is: The manufacturing method of the flake copper powder of Claim 1 which makes P conversion amount in this phosphoric acid and its salt 0.001 mol-3 mol with respect to 1 mol of copper contained in a said 2nd slurry. 前記第1スラリーが、前記銅塩1当量に対し、前記水酸化アルカリ1.05当量〜1.50当量を含むものとする請求項1又は請求項2に記載のフレーク銅粉の製造方法。 The method for producing flake copper powder according to claim 1 or 2, wherein the first slurry contains 1.05 equivalents to 1.50 equivalents of the alkali hydroxide with respect to 1 equivalent of the copper salt. 前記錯化剤が、アミノ酸であることを特徴とする請求項1〜請求項3のいずれかに記載のフレーク銅粉の製造方法。 The said complexing agent is an amino acid, The manufacturing method of the flake copper powder in any one of Claims 1-3 characterized by the above-mentioned. 前記水溶液が、前記水溶液、第1スラリー又は第2スラリー中に含まれる銅1モルに対し、前記錯化剤0.005モル〜10モルを含むことを特徴とする請求項1〜請求項4のいずれかに記載のフレーク銅粉の製造方法。 The said aqueous solution contains 0.005 mol-10 mol of said complexing agents with respect to 1 mol of copper contained in the said aqueous solution, a 1st slurry, or a 2nd slurry. The manufacturing method of the flake copper powder in any one.
JP2010027984A 2010-02-10 2010-02-10 Method for producing flake copper powder Expired - Fee Related JP5255580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027984A JP5255580B2 (en) 2010-02-10 2010-02-10 Method for producing flake copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027984A JP5255580B2 (en) 2010-02-10 2010-02-10 Method for producing flake copper powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004134689A Division JP4868716B2 (en) 2004-04-28 2004-04-28 Flake copper powder and conductive paste

Publications (2)

Publication Number Publication Date
JP2010138494A JP2010138494A (en) 2010-06-24
JP5255580B2 true JP5255580B2 (en) 2013-08-07

Family

ID=42348858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027984A Expired - Fee Related JP5255580B2 (en) 2010-02-10 2010-02-10 Method for producing flake copper powder

Country Status (1)

Country Link
JP (1) JP5255580B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518323B2 (en) * 2012-11-26 2019-12-31 Mitsui Mining & Smelting Co., Ltd. Copper power and method for producing same
CN103878388B (en) * 2014-04-19 2016-08-03 中国船舶重工集团公司第七一二研究所 A kind of preparation method of superfine cupper powder
JP6857453B2 (en) * 2016-05-20 2021-04-14 京セラ株式会社 Manufacturing method of copper fine particles, copper fine particles, paste composition, semiconductor devices and electrical / electronic parts
CN106363165B (en) * 2016-09-05 2019-02-15 国核电力规划设计研究院 A kind of sheet of copper particle and preparation method thereof, catalyst, electrode
JP7380256B2 (en) * 2020-01-28 2023-11-15 三菱マテリアル株式会社 Joining sheet
WO2022209267A1 (en) * 2021-03-30 2022-10-06 三井金属鉱業株式会社 Copper particles and method for manufacturing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166273A (en) * 1993-12-15 1995-06-27 Sumitomo Metal Mining Co Ltd Powder metallurgical product of injection molded copper
JP3570591B2 (en) * 1996-03-22 2004-09-29 株式会社村田製作所 Production method of copper powder
JPH11264001A (en) * 1998-03-16 1999-09-28 Mitsui Mining & Smelting Co Ltd Flake copper powder and its production
JP4244466B2 (en) * 1999-10-13 2009-03-25 株式会社村田製作所 Conductive paste and semiconductor ceramic electronic component using the same
JP2002110444A (en) * 2000-09-26 2002-04-12 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic part
JP4061462B2 (en) * 2001-01-31 2008-03-19 信越化学工業株式会社 Composite fine particles, conductive paste and conductive film
JP4195581B2 (en) * 2002-05-27 2008-12-10 三井金属鉱業株式会社 Copper powder manufacturing method and copper powder obtained by the method
JP4178374B2 (en) * 2002-08-08 2008-11-12 三井金属鉱業株式会社 Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP4868716B2 (en) * 2004-04-28 2012-02-01 三井金属鉱業株式会社 Flake copper powder and conductive paste

Also Published As

Publication number Publication date
JP2010138494A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4868716B2 (en) Flake copper powder and conductive paste
JP5872063B2 (en) Copper powder
EP3034202B1 (en) Metal powder paste and method for producing same
JP5937730B2 (en) Method for producing copper powder
JP5255580B2 (en) Method for producing flake copper powder
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
EP3034201B1 (en) Method for producing surface-treated metal powder
JP2015168878A (en) copper powder
TWI825594B (en) copper powder
JPWO2017038465A1 (en) Silver coated copper powder
TW201232563A (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
JP6234075B2 (en) Multilayer ceramic capacitor internal electrode layer forming paste and multilayer ceramic capacitor
JP2009046708A (en) Silver powder
JP2004330247A (en) Nickel powder, conductive paste, laminate ceramic electronic component
JP6278969B2 (en) Silver coated copper powder
TWI487581B (en) Low carbon copper particles and methods for producing the same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP2012140661A (en) Flat copper particle
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP2016216824A (en) Silver powder and manufacturing method therefor
JP5785433B2 (en) Low carbon copper particles
JP7498378B1 (en) Method for producing copper powder, copper paste containing the same, and conductive film
TWI544977B (en) Copper powder for conductive paste and method for producing same
JP2021088756A (en) Production method of copper particle
JP2018135564A (en) Tin-coated copper powder, method for manufacturing the same, and conductive paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees