JP5255342B2 - Defect detection device for light transmissive film - Google Patents

Defect detection device for light transmissive film Download PDF

Info

Publication number
JP5255342B2
JP5255342B2 JP2008166598A JP2008166598A JP5255342B2 JP 5255342 B2 JP5255342 B2 JP 5255342B2 JP 2008166598 A JP2008166598 A JP 2008166598A JP 2008166598 A JP2008166598 A JP 2008166598A JP 5255342 B2 JP5255342 B2 JP 5255342B2
Authority
JP
Japan
Prior art keywords
light
transmissive film
light transmissive
auxiliary member
specific wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008166598A
Other languages
Japanese (ja)
Other versions
JP2010008173A (en
Inventor
満夫 古川
寛基 渡辺
応和 青井
裕彦 峠山
智太郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008166598A priority Critical patent/JP5255342B2/en
Publication of JP2010008173A publication Critical patent/JP2010008173A/en
Application granted granted Critical
Publication of JP5255342B2 publication Critical patent/JP5255342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、光学用途、建築用途、車載用途などの用途において、反射防止、飛散防止、熱線防止(遮断)、断熱、防汚、耐久性(保護)などの目的で使用される光透過性フィルム(光透過性を有するフィルム)の欠陥を検出するための装置に関する。   The present invention is a light transmissive film used for the purposes of antireflection, scattering prevention, heat ray prevention (blocking), heat insulation, antifouling, durability (protection), etc. in applications such as optical applications, architectural applications, and automotive applications. The present invention relates to an apparatus for detecting a defect in a (light-transmitting film).

光学用途、建築用途、車載用途等に用いられる上記のような光透過性フィルムAとしては、例えば、ベースフィルム8に、光の反射特性や吸収特性を制御するための光特性制御膜などの1又は複数のコーティング層9を積層して形成したものが挙げられる。このような光透過性フィルムAは、例えばプラズマディスプレイや液晶ディスプレイなどのディスプレイの表面に反射防止フィルターとして使用される。   Examples of the light transmissive film A used for optical applications, architectural applications, in-vehicle applications, and the like include, for example, a light characteristic control film for controlling light reflection characteristics and absorption characteristics on the base film 8. Or what formed by laminating | stacking the some coating layer 9 is mentioned. Such a light transmissive film A is used as an antireflection filter on the surface of a display such as a plasma display or a liquid crystal display.

このようなコーティング層9を備える光透過性フィルムAの欠陥を検出するにあたっては、ベースフィルム8とコーティング層9との間に異物が入り込んで生じる欠陥(核有り欠陥)については目視でも検出し得る。しかしながら、図4に示すようにコーティング層9に厚みのばらつきが生じ、これにより周囲の色目とは微妙に違う部分が生じる欠陥(核無し欠陥)については、目視による検出がきわめて困難であり、目視検査では90%ほどの不良を見逃してしまうこともある。   In detecting the defect of the light-transmitting film A provided with such a coating layer 9, a defect (defect having a nucleus) that is caused by a foreign substance entering between the base film 8 and the coating layer 9 can be detected visually. . However, as shown in FIG. 4, the coating layer 9 has a variation in thickness, which causes defects (nuclear-free defects) in which portions slightly different from the surrounding color are detected by visual inspection. In inspection, about 90% of defects may be missed.

そこで従来、特許文献1に開示されているように、ガイドロールの表面に位置する光透過性フィルムAに対して、光透過性フィルムAに形成されたコーティング層9の表裏面で反射した光が干渉するように照明を行い、その干渉模様を撮像することで欠陥を検出することが提案されている。この場合、核有り欠陥だけでなく核無し欠陥も検出されるようになる。   Therefore, conventionally, as disclosed in Patent Document 1, the light reflected on the front and back surfaces of the coating layer 9 formed on the light transmissive film A is compared with the light transmissive film A located on the surface of the guide roll. It has been proposed to detect defects by performing illumination so as to interfere and imaging the interference pattern. In this case, not only defects with nuclei but also defects without nuclei are detected.

上記膜厚むらによる干渉模様は、図4に示すように、コーティング層9の表面側での反射光L1とコーティング層9の裏面側での反射光L2との間で光路差が生じて干渉し、特定波長域の光が強め合うと共に他の波長の光が弱め合う際、膜厚の違いが生じるとそれに応じて異なる波長の光が強め合うことにより生じる。   As shown in FIG. 4, the interference pattern due to the film thickness unevenness causes interference due to an optical path difference between the reflected light L <b> 1 on the front surface side of the coating layer 9 and the reflected light L <b> 2 on the back surface side of the coating layer 9. When the light of a specific wavelength region intensifies and the light of other wavelengths weakens, when the difference in film thickness occurs, the light of different wavelengths strengthens accordingly.

しかしながら、上記干渉模様を撮像手段にて撮像する場合には、撮像部には高い解像度が必要とされ、装置構成の複雑化や設備投資の高騰を招くという問題がある。
特開2006−208196号公報
However, when the above interference pattern is picked up by the image pickup means, there is a problem that a high resolution is required for the image pickup unit, resulting in a complicated device configuration and a high equipment investment.
JP 2006-208196 A

本発明は上記問題点に鑑みてなされたものであり、ベースフィルムの一面側にコーティング層が設けられた光透過性フィルムにおけるコーティング層の膜厚むらによる欠陥の検出を簡易な構成且つ高精度で行うことができる光透過性フィルムの欠陥検出装置を提供することを課題とする。   The present invention has been made in view of the above problems, and it is possible to detect defects due to uneven thickness of a coating layer in a light-transmitting film in which a coating layer is provided on one side of a base film with a simple configuration and high accuracy. It is an object of the present invention to provide a defect detection device for a light transmissive film that can be performed.

本発明は、ベースフィルム8の一面側にコーティング層9が設けられた光透過性フィルムAの欠陥検出を行うための欠陥検出装置であって、光透過性フィルムAを搬送する搬送手段5、前記光透過性フィルムAに一面側から光を照射する複数の照明手段6、前記複数の照明手段6から照射され、光透過性フィルムAの一面側で反射された特定波長域の光を受光して撮像する複数の撮像部1、及び前記撮像部1による撮像で得られた画像から光透過性フィルムAの欠陥を検出する検出手段3を具備する。前記複数の照明手段6を構成する各照明手段6、及び、前記複数の撮像部1を構成する各撮像部1は、搬送される経路に沿って設けられている。前記複数の撮像部1の各撮像部1は、受光する特定波長域互いに異なり、前記複数の照明手段6の各照明手段6に対応して設けられている。 The present invention is a defect detection apparatus for detecting a defect in a light transmissive film A provided with a coating layer 9 on one surface side of a base film 8, and includes a conveying means 5 for conveying the light transmissive film A, A plurality of illumination means 6 for irradiating light to the light transmissive film A from one surface side, receiving light of a specific wavelength range irradiated from the plurality of illumination means 6 and reflected on one surface side of the light transmissive film A A plurality of imaging units 1 for imaging, and detection means 3 for detecting a defect of the light transmissive film A from an image obtained by imaging by the imaging unit 1 are provided. Each illumination unit 6 constituting the plurality of illumination units 6 and each imaging unit 1 constituting the plurality of imaging units 1 are provided along a transported path. Each imaging unit 1 of the plurality of imaging units 1 is provided corresponding to each illumination unit 6 of the plurality of illumination units 6 with different specific wavelength ranges for receiving light.

このため、コーティング層9に膜厚むらの欠陥が生じ、コーティング層9の表面側で反射する光と裏面側で反射する光の干渉によって特定波長域の光が強め合った場合に、前記特定波長域を撮像部1で検出することで欠陥を検出することができ、しかも各撮像部1ごとにそれぞれ受光する特定波長域と受光する光の光透過性フィルムAからの反射角のうち少なくとも一方が異なることで、各撮像部1ごとにコーティング層9の異なる膜厚が検出され、撮像部1に要求される解像度を低減して装置構成の簡便化を図ると共に、広範な範囲で膜厚むらの欠陥を検出することができるようになる。   For this reason, when the coating layer 9 has defects in film thickness unevenness and the light in the specific wavelength region is intensified by interference between the light reflected on the front surface side and the light reflected on the back surface side, the specific wavelength The defect can be detected by detecting the area with the imaging unit 1, and at least one of the specific wavelength range for receiving each of the imaging units 1 and the reflection angle of the received light from the light-transmitting film A is By being different, a different film thickness of the coating layer 9 is detected for each image pickup unit 1, and the resolution required for the image pickup unit 1 is reduced to simplify the apparatus configuration, and the film thickness unevenness in a wide range. Defects can be detected.

また、本発明では、上記撮像部1が、特定波長域の光を通過させる波長フィルターを備えることも好ましい。   In the present invention, it is also preferable that the imaging unit 1 includes a wavelength filter that transmits light in a specific wavelength range.

この場合、簡便な構成によって撮像部1で特定波長域の光のみが検出されるようにすることができ、更なる装置の簡便化を図ることができる。   In this case, it is possible to detect only light in a specific wavelength range by the imaging unit 1 with a simple configuration, thereby further simplifying the apparatus.

また、本発明では、前記撮像部1で撮像される前記光透過性フィルムAの他面側に配され、特定波長域の光の反射率を低減する反射率低減化処理が施されている観察用補助部材2を備えることも好ましい。   In the present invention, the observation is performed on the other surface side of the light transmissive film A imaged by the imaging unit 1 and subjected to a reflectance reduction process for reducing the reflectance of light in a specific wavelength region. It is also preferable to provide the auxiliary member 2 for use.

この場合、観察用補助部材2が撮像時に光透過性フィルムAを支持することで、光透過性フィルムAにおける皺の発生が防止されると共に、撮像部1と光透過性フィルムAとの間の位置決めがなされてピントずれの発生が防止される。しかも撮像部1で受光される特定波長域の光における、観察用補助部材2からの反射光の割合が低減し、光透過性フィルムAの欠陥に起因する反射光の強度変化が明りょうになる。このため、照明手段6から照射される光の光量を増大させつつ観察用補助部材2からの反射光を低減することができ、撮像部1で撮像された画像における、コーティング層9の欠陥に起因して生じる反射光の強度変化が明りょうとなるようにして、欠陥の検出精度を向上することもできる。   In this case, the observation auxiliary member 2 supports the light transmissive film A at the time of imaging, so that generation of wrinkles in the light transmissive film A is prevented, and between the imaging unit 1 and the light transmissive film A. Positioning is performed to prevent out-of-focus. Moreover, the ratio of the reflected light from the observation auxiliary member 2 in the light in the specific wavelength range received by the imaging unit 1 is reduced, and the intensity change of the reflected light due to the defect of the light transmissive film A becomes clear. . For this reason, it is possible to reduce the reflected light from the observation auxiliary member 2 while increasing the amount of light emitted from the illuminating means 6, which is caused by a defect in the coating layer 9 in the image captured by the imaging unit 1. Thus, the defect detection accuracy can be improved by clarifying the intensity change of the reflected light.

また、本発明では、前記撮像部1で撮像される前記光透過性フィルムAの他面側に配される観察用補助部材2と、前記光透過性フィルムAの他面と前記観察用補助部材2との間に充填材4を介在させることでこの前記光透過性フィルムAと前記観察用補助部材2とを密着させる充填手段とを具備し、前記充填材4が、特定波長域の光を吸収するものであることも好ましい。   Moreover, in this invention, the auxiliary member 2 for observation distribute | arranged to the other surface side of the said light transmissive film A imaged by the said imaging part 1, the other surface of the said light transmissive film A, and the said auxiliary member for observation 2 and a filling means for bringing the light-transmissive film A and the observation auxiliary member 2 into close contact with each other by interposing a filler 4 between the filler 4 and the filler 4 for light in a specific wavelength range. It is also preferable that it absorbs.

この場合、充填材4が、特定波長域の光を吸収することで、観察用補助部材2からの特定波長域の反射光を低減することができ、更に、撮像部1による撮像時に充填材4により光透過性フィルムAを観察用補助部材2の表面に密着させ、光透過性フィルムAの観察用補助部材2側の他面A2と観察用補助部材2との間の空気を排除して、光透過性フィルムAの観察用補助部材2側の他面A2からの反射光を抑えることができ、欠陥の検出時に不要な反射光の混在を減少して欠陥の検出精度を高くすることができる。   In this case, the filler 4 absorbs light in the specific wavelength region, whereby reflected light in the specific wavelength region from the observation auxiliary member 2 can be reduced. Further, the filler 4 is captured during imaging by the imaging unit 1. By adhering the light transmissive film A to the surface of the observation auxiliary member 2, the air between the other surface A2 of the light transmission film A on the observation auxiliary member 2 side and the observation auxiliary member 2 is excluded, Reflected light from the other surface A2 on the observation auxiliary member 2 side of the light transmissive film A can be suppressed, and the detection accuracy of defects can be increased by reducing the presence of unnecessary reflected light when detecting defects. .

本発明では、複数の撮像部でそれぞれ受光する特定波長域異なることで、光透過性フィルムにおけるコーティング層の膜厚むらによる欠陥の検出を簡易な構成且つ高精度で行うことができる。 In the present invention, since the specific wavelength ranges received by the plurality of imaging units are different from each other, it is possible to detect a defect due to the uneven thickness of the coating layer in the light transmissive film with a simple configuration and high accuracy.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1に示される本実施形態に係る欠陥検出装置は、光学用途、建築用途、車載用途などの用途において、反射防止、飛散防止、熱線防止(遮断)、断熱、防汚、耐久性向上(保護)などの目的で使用される光透過性フィルム(光透過性を有するフィルム)Aの欠陥を検出するために用いられる。この光透過性フィルムAとしては、例えばポリエチレンテレフタレート製フィルム等のポリエステルフィルムなどのような無色透明なベースフィルム8に、光の反射特性や吸収特性を制御するためのコーティング層9を積層して設けたものが挙げられる。このような光透過性フィルムAとしては、例えば液晶ディスプレイなどのディスプレイの反射防止フィルム(ARフィルム)や、自動車用暗視フィルム、その他の一般的な光学制御フィルムが挙げられるが、これらに限定されない。   The defect detection apparatus according to the present embodiment shown in FIG. 1 is used in applications such as optical applications, architectural applications, and in-vehicle applications, such as antireflection, scattering prevention, heat ray prevention (blocking), heat insulation, antifouling, and durability improvement (protection). It is used to detect defects in a light transmissive film (film having light transmissive property) A used for the purpose such as). As this light transmissive film A, for example, a colorless and transparent base film 8 such as a polyester film such as a polyethylene terephthalate film is provided by laminating a coating layer 9 for controlling light reflection characteristics and absorption characteristics. Can be mentioned. Examples of such light transmissive film A include, but are not limited to, an antireflection film (AR film) for displays such as liquid crystal displays, night vision films for automobiles, and other general optical control films. .

この光透過性フィルムAの作製時には、図4に示すように、ベースフィルム8の表面におけるコンタミネーション(コンタミ)や異物の付着によるハジキ等によってコーティング剤の塗布不均一が生じてコーティング層9に膜厚むらの欠陥が生じることがある。本実施形態に係る欠陥検出装置は、前記のような欠陥を検出するために好適に用いられる。   When the light-transmitting film A is manufactured, as shown in FIG. 4, the coating agent 9 is unevenly applied due to contamination (contamination) on the surface of the base film 8, repelling due to adhesion of foreign matters, and the like. Uneven thickness defects may occur. The defect detection apparatus according to the present embodiment is preferably used for detecting such defects.

欠陥検出装置は、図1に示すように、搬送手段5、撮像部1、観察用補助部材2、照明手段6、検出手段3などを備える。   As shown in FIG. 1, the defect detection apparatus includes a conveyance unit 5, an imaging unit 1, an observation auxiliary member 2, an illumination unit 6, a detection unit 3, and the like.

搬送手段5は長尺帯状(シート状)の光透過性フィルムAを一定の速度で連続的に搬送するために設けられる。搬送手段5は、例えば光透過性フィルムAをロール状に巻き付けた繰り出しドラム12と、ドラム12を回転駆動させて光透過性フィルムAを順次繰り出すためのモータなどの駆動手段13と、欠陥検出後の光透過性フィルムAを巻き取るための巻き取りドラム14とで構成される。   The conveyance means 5 is provided in order to convey the elongate strip | belt-shaped (sheet-like) light-transmitting film A continuously at a fixed speed. The conveying means 5 includes, for example, a feeding drum 12 in which the light transmissive film A is wound in a roll shape, a driving means 13 such as a motor for rotating the drum 12 to sequentially feed the light transmissive film A, and after defect detection And a winding drum 14 for winding the light-transmitting film A.

照明手段6は光透過性フィルムAに一面A1側から光を照射するために設けられる。   The illumination means 6 is provided to irradiate the light transmissive film A with light from the one surface A1 side.

撮像部1は、光透過性フィルムAの一面A1(表面)側からの、照明手段6から照射された光の反射光を受光して撮像するために設けられる。撮像部1として、例えば、CCDカメラなどで形成され、光透過性フィルムAの外観を全幅にわたって撮像するラインカメラなどが用いられる。   The imaging unit 1 is provided to receive and image the reflected light of the light emitted from the illumination unit 6 from the one surface A1 (front surface) side of the light transmissive film A. As the imaging unit 1, for example, a line camera that is formed by a CCD camera or the like and captures the entire appearance of the light transmissive film A is used.

検出手段3は撮像部1によって得られた画像から光透過性フィルムAの欠陥を検出するために設けられる。検出手段3は例えばディスプレイを備えた汎用の電子計算機などで構成される。検出手段3は、例えば一般的に広く行われている画像処理により、撮像部1で得られた画像に演算処理を施したり、人が目視で確認したりすることにより、光透過性フィルムAの欠陥を分析して検出することができるものが用いられる。   The detection means 3 is provided for detecting a defect of the light transmissive film A from the image obtained by the imaging unit 1. The detecting means 3 is constituted by a general-purpose computer equipped with a display, for example. The detection means 3 performs, for example, a calculation process on an image obtained by the imaging unit 1 by image processing that is generally performed widely, or is visually confirmed by a person, so that the light transmissive film A is detected. What can analyze and detect a defect is used.

観察用補助部材2は撮像部1による撮像時に光透過性フィルムAの他面A2(裏面)側に配置される。この観察用補助部材2が撮像時に光透過性フィルムAを支持することで、光透過性フィルムAにおける皺の発生が防止され、また撮像部1と光透過性フィルムAとの間の位置決めがなされてピントずれの発生が防止される。観察用補助部材2は光透過性フィルムAの上記他面A2に接触しながら回転するロールで構成される。   The observation auxiliary member 2 is disposed on the other surface A2 (back surface) side of the light transmissive film A during imaging by the imaging unit 1. The observation auxiliary member 2 supports the light transmissive film A during imaging, so that wrinkles are prevented from occurring in the light transmissive film A, and the imaging unit 1 and the light transmissive film A are positioned. This prevents the occurrence of out-of-focus. The observation auxiliary member 2 is composed of a roll that rotates while contacting the other surface A2 of the light transmissive film A.

このような本実施形態に係る欠陥検査装置を用いた光透過性フィルムAの欠陥の検出工程について説明する。   The defect detection process of the light transmissive film A using the defect inspection apparatus according to this embodiment will be described.

まず、駆動手段13で繰り出しドラム12を回転駆動することで、ドラム12にロール状に巻かれた光透過性フィルムAが順次繰り出され、一定の速度で巻き取りドラム14にまで搬送される。この繰り出しドラム12と巻き取りドラム14との間で、光透過性フィルムAが観察用補助部材2の表面(外面)に接触しながら搬送される。光透過性フィルムAの搬送速度は撮像部1や搬送手段5の能力などに応じて適宜設定されるが、例えば、5〜3000m/分とすることができる。   First, by rotating the feeding drum 12 by the driving means 13, the light transmissive film A wound around the drum 12 is sequentially fed and conveyed to the winding drum 14 at a constant speed. The light transmissive film A is conveyed between the feeding drum 12 and the take-up drum 14 while being in contact with the surface (outer surface) of the observation auxiliary member 2. Although the conveyance speed of the light transmissive film A is suitably set according to the capability of the imaging part 1 or the conveyance means 5, etc., it can be set to 5-3000 m / min, for example.

このようにして搬送している光透過性フィルムAにおけるコーティング層9が形成されている一面に対して照明手段6で光を照射し、光透過性フィルムAからの反射光を撮像部1で受光して撮像する。   In this way, the illumination means 6 irradiates light on the surface of the light transmissive film A being transported on which the coating layer 9 is formed, and the imaging unit 1 receives the reflected light from the light transmissive film A. And take an image.

次に、撮像部1で撮像した光透過性フィルムAの一面A1の画像を検出手段3に取り込んでその画像に基づいて欠陥を検出する。このとき光透過性フィルムAを全長にわたって搬送することにより、光透過性フィルムAの全体の欠陥を検出することができる。   Next, an image of one surface A1 of the light transmissive film A imaged by the imaging unit 1 is taken into the detection means 3, and a defect is detected based on the image. At this time, the entire defect of the light transmissive film A can be detected by conveying the light transmissive film A over the entire length.

このような欠陥検査装置において、撮像部1は特定波長域の光を受光して検出する。撮像部1で特定波長域の光を受光して検出するためには、例えば照明手段6として前記特定波長域の光のみを照射するものが用いられ、或いは撮像部1として前記特定波長域の光のみを感知するものが用いられる。   In such a defect inspection apparatus, the imaging unit 1 receives and detects light in a specific wavelength range. In order for the imaging unit 1 to receive and detect light in a specific wavelength range, for example, an illumination unit 6 that emits only light in the specific wavelength range is used, or the imaging unit 1 uses light in the specific wavelength range. Those that sense only are used.

特定波長域の光のみを照射する照明手段6としては、例えば図1に示されるような照明具6aと、特定波長域の光のみを通過させる色調フィルター6bとの組み合わせで構成される照明手段6、赤色などの特定波長域の光を照射する有色照明灯で構成される照明手段6などが挙げられる。このように特定波長域の光のみを照射する照明手段6が設けられる場合には、撮像部1として少なくとも前記特定波長域を含む波長域の光を感知するものが設けられる。   As the illumination unit 6 that irradiates only light in a specific wavelength range, for example, an illumination unit 6 configured by a combination of an illumination tool 6a as illustrated in FIG. 1 and a color filter 6b that transmits only light in a specific wavelength range. And illumination means 6 composed of a colored illumination lamp that emits light in a specific wavelength region such as red. Thus, when the illumination means 6 which irradiates only the light of a specific wavelength range is provided, what senses the light of the wavelength range including the said specific wavelength range at least as the imaging part 1 is provided.

また、特定波長域の光のみを感知する撮像部1としては、例えば特定波長域の光のみを通過させる波長フィルターを備えた撮像部1等が挙げられる。このように特定波長域の光のみを感知する撮像部1が設けられる場合には、照明手段6として少なくとも前記特定波長域を含む波長域の光を照射するものが設けられる。   Examples of the imaging unit 1 that senses only light in a specific wavelength range include an imaging unit 1 that includes a wavelength filter that allows only light in a specific wavelength range to pass through. When the imaging unit 1 that senses only light in a specific wavelength range is provided as described above, an illumination unit 6 that emits light in a wavelength range including at least the specific wavelength range is provided.

このように撮像部1で特定波長域の光を受光して検出すると、コーティング層9に膜厚むらが生じて反射光における特定波長域の光が強められた場合に、この特定波長域の光の強度に基づいて欠陥が検出される。   As described above, when the imaging unit 1 receives and detects light in a specific wavelength region, when the coating layer 9 is uneven in film thickness and the light in the specific wavelength region in the reflected light is strengthened, the light in this specific wavelength region is detected. Defects are detected based on the intensity of.

ところで、コーティング層9の表面側での反射光L1とコーティング層9の裏面側での反射光L2とが干渉する場合、特定の波長の光が強め合うと共に他の波長の光が弱め合う。このため、撮像部1で特定波長域の光の強度向上が検出されることで、コーティング層9が前記特定波長域に対応する膜厚を有することが検出される。このとき、図4(a)に示すように光の反射角が同一であれば、コーティング層9の膜厚の変化することによって、反射光L1,L2の干渉で強め合う光の波長が変化する。一方、光の波長が同一であれば、コーティング層9の膜厚が変化することによって、図4(b)に示すように反射光L1,L2の干渉により強め合う光の反射角が変化する。   By the way, when the reflected light L1 on the front surface side of the coating layer 9 and the reflected light L2 on the back surface side of the coating layer 9 interfere with each other, light of a specific wavelength intensifies and light of other wavelengths weakens. For this reason, it is detected that the coating layer 9 has a film thickness corresponding to the specific wavelength region by detecting the improvement in the intensity of light in the specific wavelength region by the imaging unit 1. At this time, if the reflection angles of the light are the same as shown in FIG. 4A, the wavelength of the light strengthened by the interference of the reflected lights L1 and L2 changes due to the change in the film thickness of the coating layer 9. . On the other hand, if the wavelength of the light is the same, the reflection angle of the light strengthened by the interference of the reflected light L1 and L2 changes as shown in FIG.

このため、本発明では撮像部1として、受光する特定波長域と受光する光の光透過性フィルムからの反射角のうち少なくとも一方が互いに異なる複数の撮像部が設けられることで、各撮像部1ごとにコーティング層9の互いに異なる膜厚が検出され、コーティング層9の膜厚の変化が広い範囲に亘って検出される。   For this reason, in the present invention, as each imaging unit 1, each imaging unit 1 is provided by providing a plurality of imaging units having at least one of a specific wavelength range to receive light and a reflection angle of the received light from the light-transmitting film. Each time a different film thickness of the coating layer 9 is detected, a change in the film thickness of the coating layer 9 is detected over a wide range.

図1に示される本実施形態では、撮像部1として、それぞれ異なる特定波長域の光を受光して撮像する複数の撮像部1が設けられる。この複数の撮像部1は、各撮像部1に対応する複数の照明手段6と組み合わせて設けられる。すなわち、図1に示すように、光透過性フィルムAが搬送される経路に沿って、照明手段6、この照明手段6から照射される光の反射光を受光して撮像する撮像部1、並びに観察用補助部材2の組み合わせが、複数組設けられ、光透過性フィルムAが搬送されるに従って、順次異なる特定波長域の光が各撮像部1で受光されて撮像される。複数の各撮像部1は、それぞれ光透過性フィルムAから同一角度で出射する反射光を検出するように設けられている。この場合、コーティング層9の膜厚が変化すると、反射光中で強め合う光の波長域が変化し、この強め合う光がいずれかの撮像部1で検出されることで、コーティング層9の膜厚の変化が検出される。   In the present embodiment shown in FIG. 1, as the imaging unit 1, a plurality of imaging units 1 that receive and capture light in different specific wavelength ranges are provided. The plurality of imaging units 1 are provided in combination with a plurality of illumination means 6 corresponding to each imaging unit 1. That is, as shown in FIG. 1, along the path along which the light transmissive film A is conveyed, the illumination unit 6, the imaging unit 1 that receives and captures reflected light of the light emitted from the illumination unit 6, and A plurality of combinations of the auxiliary observation members 2 are provided, and as the light transmissive film A is conveyed, light in different specific wavelength ranges is sequentially received by each imaging unit 1 and imaged. Each of the plurality of imaging units 1 is provided so as to detect reflected light emitted from the light transmissive film A at the same angle. In this case, when the film thickness of the coating layer 9 changes, the wavelength range of the intensifying light in the reflected light changes, and this intensifying light is detected by one of the imaging units 1, so that the film of the coating layer 9 A change in thickness is detected.

また、図2に示される他の形態では、撮像部1として、それぞれ同一の特定波長域の光を受光して撮像する複数の撮像部1が設けられる。この複数の撮像部1は一つの照明手段6、並びに一つの観察用補助部材2と組み合わせて設けられており、各撮像部1は、照明手段6から照射される光の反射光を、それぞれ異なる反射角度で受光するように設けられている。この場合、コーティング層9の膜厚が変化すると、反射光中で強め合う特定波長の光の反射角が変化し、この強め合う光がいずれかの撮像部1で検出されることで、コーティング層9の膜厚の変化が検出される。   In the other embodiment shown in FIG. 2, a plurality of imaging units 1 that receive and image light in the same specific wavelength range are provided as the imaging unit 1. The plurality of imaging units 1 are provided in combination with one illumination unit 6 and one auxiliary auxiliary member 2 for observation, and each imaging unit 1 has a different reflected light of light emitted from the illumination unit 6. It is provided to receive light at a reflection angle. In this case, when the film thickness of the coating layer 9 changes, the reflection angle of light having a specific wavelength that strengthens in the reflected light changes, and this strengthening light is detected by any one of the imaging units 1, whereby the coating layer 9 changes in film thickness are detected.

尚、上記各実施形態では、撮像部1で受光する特定波長域と受光する光の光透過性フィルムからの反射角のうち一方を固定すると共に他方を異ならせているが、複数の各撮像部1でそれぞれ異なる膜厚が検出されるのであれば、複数の撮像部1間で受光する特定波長域と受光する光の光透過性フィルムからの反射角の両方が異なっていても良い。   In each of the above embodiments, one of the specific wavelength range received by the imaging unit 1 and the reflection angle of the received light from the light-transmitting film is fixed and the other is different. If different film thicknesses are detected in 1, both the specific wavelength range for receiving light and the reflection angle of the received light from the light-transmitting film may be different between the plurality of imaging units 1.

検出手段3は、各撮像部1による撮像結果から、欠陥の位置を特定するマップデータを作成することができる。   The detection unit 3 can create map data that identifies the position of the defect from the imaging result of each imaging unit 1.

また、上記観察用補助部材2には、この観察用補助部材2での上記特定波長域の光の反射率を低減する反射率低減化処理が施されていても良い。この場合、撮像部1で受光される特定波長域の光における、観察用補助部材2からの反射光の割合が低減し、光透過性フィルムAの欠陥に起因する特定波長域の反射光の強度変化が明りょうになる。またこの場合、照明具6から照射される光の光量を増大させつつ観察用補助部材2からの反射光を低減することができ、撮像部1で撮像された画像における、コーティング層9の欠陥に起因して生じる反射光の強度変化が明りょうとなるようにして、欠陥の検出精度を向上することができる。   In addition, the observation auxiliary member 2 may be subjected to a reflectance reduction process for reducing the reflectance of light in the specific wavelength region in the observation auxiliary member 2. In this case, the ratio of the reflected light from the observation auxiliary member 2 in the light in the specific wavelength range received by the imaging unit 1 is reduced, and the intensity of the reflected light in the specific wavelength range due to the defect of the light transmissive film A Change becomes clear. In this case, the reflected light from the observation auxiliary member 2 can be reduced while increasing the amount of light emitted from the illuminator 6, and defects in the coating layer 9 in the image captured by the imaging unit 1 can be reduced. It is possible to improve the defect detection accuracy by clarifying the intensity change of the reflected light caused thereby.

反射率低減化処理としては、例えば観察用補助部材2の表面を粗面化する粗面化処理が挙げられる。この場合、粗面化によって観察用補助部材2からの反射光が散乱することで、撮像部1で検出される観察用補助部材2からの反射光が低減する。このように観察用補助部材2の表面を粗面化すると、広範な波長域の光の反射光が低減するため、種々の特定波長域の反射光の低減が可能である。粗面化の方法としては、研磨、サンドブラスト処理等の適宜のものが選択される。粗面化処理後の観察用補助部材2の表面粗度は、光の反射率が充分に低減されるように適宜調整されるが、特に中心線平均粗さ(Ra;JIS B0601:1982)が0.4μm以上であれば、観察用補助部材2からの反射光が充分に低減される。但し、観察用補助部材2の表面の凹凸の高低差が大きくなりすぎると、撮像部1により前記凹凸が検知されたり、前記凹凸により光透過性フィルムAにキズがついたりするおそれがあり、このような不具合を防止するためには、観察用補助部材2の表面の十点平均粗さ(Rz;JIS B0601:1982)が20μm未満であり、且つ最大高さ(Rmax;JIS B0601:1982)が40μm未満であることが望ましい。   As a reflectance reduction process, the roughening process which roughens the surface of the auxiliary member 2 for observation is mentioned, for example. In this case, the reflected light from the observation auxiliary member 2 is scattered by the roughening, so that the reflected light from the observation auxiliary member 2 detected by the imaging unit 1 is reduced. When the surface of the observation auxiliary member 2 is roughened in this way, reflected light of light in a wide wavelength range is reduced, so that reflected light in various specific wavelength ranges can be reduced. As a roughening method, an appropriate method such as polishing or sandblasting is selected. The surface roughness of the observation auxiliary member 2 after the roughening treatment is appropriately adjusted so that the reflectance of light is sufficiently reduced, but the centerline average roughness (Ra; JIS B0601: 1982) is particularly high. If it is 0.4 μm or more, the reflected light from the observation auxiliary member 2 is sufficiently reduced. However, if the unevenness of the unevenness on the surface of the auxiliary member for observation 2 becomes too large, the unevenness may be detected by the imaging unit 1 or the light transmissive film A may be scratched by the unevenness. In order to prevent such a problem, the ten-point average roughness (Rz; JIS B0601: 1982) of the surface of the auxiliary member for observation 2 is less than 20 μm and the maximum height (Rmax; JIS B0601: 1982) is Desirably, it is less than 40 μm.

観察用補助部材2に上記粗面化処理が施される場合には、欠陥検出装置に、光透過性フィルムAと観察用補助部材2との間の空気を排除して光透過性フィルムAと観察用補助部材2との間に充填材4を介在させる充填手段を設けることが好ましい。   When the observation auxiliary member 2 is subjected to the surface roughening treatment, the defect detection device excludes the air between the light transmissive film A and the observation auxiliary member 2 and the light transmissive film A It is preferable to provide a filling means for interposing the filler 4 between the auxiliary member for observation 2.

充填手段としては、光透過性フィルムAの他面A2と観察用補助部材2との間に充填材4として液体を充填する液体充填手段7が挙げられる。本実施形態における液体充填手段7は、光透過性フィルムAの他面A2と観察用補助部材2との間に液体を介在させることで、光透過性フィルムAと観察用補助部材2とを密着させるために設けられる。前記液体としては、光透過性フィルムAと観察用補助部材2との間に容易に充填され、且つ光透過性フィルムAの最終品質に影響を与えない適宜の液体4が使用される。このような液体としては、例えば水(純水)、メチルエチルケトンなどの揮発性溶剤、エッセンシャルオイルなどの油脂系液体等が挙げられる。   Examples of the filling means include a liquid filling means 7 that fills a liquid as the filler 4 between the other surface A2 of the light transmissive film A and the auxiliary member for observation 2. The liquid filling means 7 in this embodiment closely contacts the light transmissive film A and the observation auxiliary member 2 by interposing a liquid between the other surface A2 of the light transmissive film A and the auxiliary observation member 2. It is provided to make it. As the liquid, an appropriate liquid 4 that is easily filled between the light transmissive film A and the observation auxiliary member 2 and does not affect the final quality of the light transmissive film A is used. Examples of such liquids include volatile solvents such as water (pure water) and methyl ethyl ketone, and oil-based liquids such as essential oils.

この液体充填手段7はロールで構成される観察用補助部材2と貯留容器20とで構成される。液体は貯留容器20に貯留され、この貯留容器20内の液体に観察用補助部材2の一部(下部)が浸漬している。   The liquid filling means 7 is constituted by an observation auxiliary member 2 constituted by a roll and a storage container 20. The liquid is stored in the storage container 20, and a part (lower part) of the observation auxiliary member 2 is immersed in the liquid in the storage container 20.

このように構成される液体充填手段7では、観察用補助部材2が回転すると、それに伴って観察用補助部材2の表面に液体4が供給され、更にこの観察用補助部材2が回転することで液体4が光透過性フィルムAと観察用補助部材2との間に充填されて、この光透過性フィルムAと観察用補助部材2とが液体を介して密着する。このため、光透過性フィルムAと観察用補助部材2との間への空気の侵入が抑制され、両者の間に隙間が生じることが抑制される。   In the liquid filling means 7 configured as described above, when the observation auxiliary member 2 is rotated, the liquid 4 is supplied to the surface of the observation auxiliary member 2, and the observation auxiliary member 2 is further rotated. The liquid 4 is filled between the light transmissive film A and the observation auxiliary member 2, and the light transmissive film A and the observation auxiliary member 2 are in close contact with each other through the liquid. For this reason, the penetration | invasion of the air between the transparent film A and the auxiliary member 2 for observation is suppressed, and it is suppressed that a clearance gap produces between both.

図3に液体充填手段7の他例を示す。この液体充填手段7は表面に上方に開口する充填槽21が設けられた観察用補助部材2の前記充填槽21に液体を充填することで構成される。光透過性フィルムAは、前記観察用補助部材2の充填槽21の開口を横切るように搬送される。このとき撮像部1は前記充填槽21の開口に配置された光透過性フィルムAからの反射光を撮像する。このような液体充填手段7では、光透過性フィルムAが撮像される際には光透過性フィルムAと観察用補助部材2との間には充填槽21内の液体4が介在し、光透過性フィルムAと観察用補助部材2との間への空気の侵入が抑制されている。   FIG. 3 shows another example of the liquid filling means 7. This liquid filling means 7 is constituted by filling the filling tank 21 of the auxiliary member for observation 2 provided with a filling tank 21 opening upward on the surface with a liquid. The light transmissive film A is conveyed so as to cross the opening of the filling tank 21 of the observation auxiliary member 2. At this time, the imaging unit 1 images reflected light from the light transmissive film A disposed in the opening of the filling tank 21. In such a liquid filling means 7, when the light transmissive film A is imaged, the liquid 4 in the filling tank 21 is interposed between the light transmissive film A and the observation auxiliary member 2, and the light transmissive film A is transmitted. Of air between the conductive film A and the auxiliary member for observation 2 is suppressed.

このように光透過性フィルムAと観察用補助部材2との間に液体等の充填材4を充填して光透過性フィルムAの観察用補助部材2側の他面A2と観察用補助部材2との間の空気を排除すると、光透過性フィルムAの観察用補助部材2側の他面A2からの反射光を抑えることができる。つまり、図5(a)に示すように、光透過性フィルムAの他面A2と観察用補助部材2の外面との隙間Sに液体等の充填材4が介在せずに空気が存在している場合は、光透過性フィルムAの一面A1で反射する光L3と、光透過性フィルムAを通過して他面A2で反射する光L4とが生じ、これらの光L3、L4が混在して互いに干渉し合いながら撮像部1に入射するために、欠陥の検出精度が低くなるおそれがある。一方、図5(b)に示すように、光透過性フィルムAの他面A2と観察用補助部材2の外面との隙間の空気を排除して液体等の充填材4を介在している場合は、光透過性フィルムAを通過した光L4は液体の方に進んで観察用補助部材2に吸収されることになって光透過性フィルムAの他面A2で反射する光がほとんど生じない。従って、光透過性フィルムAの一面A1で反射する光L3が干渉されることなく撮像部1に入射し、欠陥の検出精度が高くなる。   In this way, the filler 4 such as a liquid is filled between the light transmissive film A and the observation auxiliary member 2, and the other surface A2 on the observation auxiliary member 2 side of the light transmissive film A and the observation auxiliary member 2 are filled. If the air between the two is excluded, the reflected light from the other surface A2 of the observation auxiliary member 2 side of the light transmissive film A can be suppressed. That is, as shown in FIG. 5A, air is present in the gap S between the other surface A2 of the light transmissive film A and the outer surface of the observation auxiliary member 2 without the filler 4 such as a liquid interposed. The light L3 reflected on one surface A1 of the light transmissive film A and the light L4 reflected on the other surface A2 through the light transmissive film A are produced, and these lights L3 and L4 are mixed. Since the light enters the imaging unit 1 while interfering with each other, there is a possibility that the detection accuracy of the defect is lowered. On the other hand, as shown in FIG. 5 (b), when the air in the gap between the other surface A2 of the light transmissive film A and the outer surface of the observation auxiliary member 2 is excluded, a filler 4 such as a liquid is interposed. The light L4 that has passed through the light transmissive film A travels toward the liquid and is absorbed by the observation auxiliary member 2, so that almost no light is reflected from the other surface A2 of the light transmissive film A. Therefore, the light L3 reflected by the one surface A1 of the light transmissive film A enters the imaging unit 1 without interference, and the defect detection accuracy is increased.

特に、観察用補助部材2に粗面化処理が施されている場合には、光透過性フィルムAと観察用補助部材2との間に空気が介在して隙間が生じやすいが、このような場合に液体充填手段が設けられていると、観察用補助部材2からの反射光を低減しつつ、光透過性フィルムAの他面A2からの反射光も低減し、高い欠陥検出精度が発揮される。   In particular, when the observation auxiliary member 2 is subjected to a surface roughening treatment, air is likely to be formed between the light-transmitting film A and the observation auxiliary member 2, but such a gap is likely to occur. If the liquid filling means is provided in this case, the reflected light from the observation auxiliary member 2 is reduced, and the reflected light from the other surface A2 of the light-transmitting film A is also reduced, and high defect detection accuracy is exhibited. The

勿論、観察用補助部材2に粗面化処理以外の反射率低減化処理が施される場合であっても、欠陥検出装置に充填手段が設けられても良く、また、観察用補助部材2に反射率低減化処理が施されていない場合にも欠陥検出装置に充填手段が設けられても良い。   Of course, even when the observation auxiliary member 2 is subjected to a reflectance reduction process other than the roughening process, the defect detection device may be provided with a filling means. Even when the reflectance reduction process is not performed, the defect detection apparatus may be provided with a filling unit.

また、上記のような充填手段が設けられる場合には、反射率低減化処理として、この充填手段によって、光透過性フィルムAの他面と前記観察用補助部材2との間の空気を排除して有色の充填材4を介在させる有色充填処理が施されても良い。有色な充填材4としては、顔料等が配合されることで黒色などの有色に着色された液体等が挙げられる。この場合、充填材4を、上記特定波長域の光を吸収するように適宜の色に有色化することで、観察用補助部材2まで到達する特定波長域の光の量を低減し、その結果、観察用補助部材2からの特定波長域の反射光が低減する。特に充填材4が黒色に有色化される場合には、広範な可視領域の反射光が低減され、前記特定波長域が可視光域に含まれる場合に、特定波長域の値にかかわらず、反射光が低減される。   Further, when the filling means as described above is provided, the air between the other surface of the light transmissive film A and the observation auxiliary member 2 is excluded by the filling means as a reflectance reduction process. Further, a colored filling process in which the colored filler 4 is interposed may be performed. Examples of the colored filler 4 include a liquid colored in a colored color such as black by blending a pigment or the like. In this case, the amount of light in the specific wavelength range that reaches the observation auxiliary member 2 is reduced by coloring the filler 4 in an appropriate color so as to absorb the light in the specific wavelength range, and as a result. The reflected light in the specific wavelength region from the observation auxiliary member 2 is reduced. In particular, when the filler 4 is colored black, the reflected light in a wide visible region is reduced, and when the specific wavelength region is included in the visible light region, the reflection is performed regardless of the value of the specific wavelength region. Light is reduced.

また、反射率低減化処理としては、観察用補助部材2の表面を有色化する有色化処理も挙げられる。このような有色化処理としては、観察用補助部材2の表面を黒色等の有色の材料で形成したり、観察用補助部材2の表面に塗料を塗装することで黒色等に有色化することが挙げられる。この場合、観察用補助部材2の表面の色を、上記特定波長域の光を吸収するように適宜の色に有色化することで、観察用補助部材2からの特定波長域の反射光が低減する。特に観察用補助部材2の表面が黒色に有色化される場合には、広範な可視領域の反射光が低減され、前記特定波長域が可視光域に含まれる場合に、特定波長域の値にかかわらず、反射光が低減される。   In addition, as the reflectance reduction process, a colorization process for coloring the surface of the auxiliary observation member 2 may be used. As such a coloring process, the surface of the observation auxiliary member 2 is formed of a colored material such as black, or the surface of the observation auxiliary member 2 is painted to be black or the like. Can be mentioned. In this case, the reflected light in the specific wavelength region from the observation auxiliary member 2 is reduced by coloring the surface color of the observation auxiliary member 2 to an appropriate color so as to absorb the light in the specific wavelength region. To do. In particular, when the surface of the observation auxiliary member 2 is colored black, the reflected light in a wide visible region is reduced, and when the specific wavelength region is included in the visible light region, the value of the specific wavelength region is obtained. Regardless, the reflected light is reduced.

また、前記特定波長域の光を吸収する光吸収性の材料を含有する塗料を観察用補助部材2の表面に塗布することで、観察用補助部材2の表面からの特定波長域の反射光を低減することもできる。   In addition, by applying a paint containing a light-absorbing material that absorbs light in the specific wavelength region to the surface of the observation auxiliary member 2, reflected light in the specific wavelength region from the surface of the observation auxiliary member 2 is reflected. It can also be reduced.

上記のような反射率低減化処理は、一種類のみが施されても良く、また複数種の反射率低減化処理が組み合わされても良い。   Only one type of the reflectance reduction processing as described above may be performed, or a plurality of types of reflectance reduction processing may be combined.

本発明の実施の形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of this invention. 本発明の実施の形態の他例を示す一部の概略図である。It is a partial schematic diagram showing another example of the embodiment of the present invention. 本発明の実施の形態の更に他例を示す一部の概略図である。It is a partial schematic diagram showing still another example of the embodiment of the present invention. (a)及び(b)は、光透過性フィルムの構成の一例、及びこの光透過性フィルムに生じる欠陥の様子を示す概略の断面図である。(A) And (b) is a schematic sectional drawing which shows an example of a structure of a light transmissive film, and the mode of the defect which arises in this light transmissive film. (a)(b)は充填材の作用を示す拡大した概略図である。(A) (b) is the expanded schematic which shows the effect | action of a filler.

符号の説明Explanation of symbols

A 光透過性フィルム
1 撮像部
2 観察用補助部材
3 検出手段
4 充填材
6 照明手段
8 ベースフィルム
9 コーティング層
DESCRIPTION OF SYMBOLS A Light transmissive film 1 Imaging part 2 Observation auxiliary member 3 Detection means 4 Filler 6 Illumination means 8 Base film 9 Coating layer

Claims (4)

ベースフィルムの一面側にコーティング層が設けられた光透過性フィルムの欠陥検出を行うための欠陥検出装置であって、
光透過性フィルムを搬送する搬送手段、
前記光透過性フィルムに一面側から光を照射する複数の照明手段、
前記複数の照明手段から照射され、光透過性フィルムの一面側で反射された光を受光して撮像する複数の撮像部、及び
前記撮像部による撮像で得られた画像から光透過性フィルムの欠陥を検出する検出手段を具備し、
前記複数の照明手段を構成する各照明手段、及び、前記複数の撮像部を構成する各撮像部は、搬送される経路に沿って設けられており、
前記複数の撮像部の各撮像部は、受光する特定波長域互いに異なり、前記複数の照明手段の各照明手段に対応して設けられていることを特徴とする光透過性フィルムの欠陥検出装置。
A defect detection device for detecting defects in a light transmissive film provided with a coating layer on one side of a base film,
A conveying means for conveying the light transmissive film;
A plurality of illumination means for irradiating light from one side to the light transmissive film,
A plurality of imaging units that receive and image light received from the plurality of illumination means and reflected from one surface of the light transmissive film, and defects in the light transmissive film from images obtained by imaging by the imaging unit Comprising detecting means for detecting
Each illumination unit constituting the plurality of illumination units and each imaging unit constituting the plurality of imaging units are provided along a route to be conveyed,
Each imaging unit of the plurality of imaging units has different specific wavelength ranges for receiving light, and is provided corresponding to each illumination unit of the plurality of illumination units. .
上記撮像部が、特定波長域の光を通過させる波長フィルターを備えることを特徴とする請求項1に記載の光透過性フィルムの欠陥検出装置。   The defect detection device for a light transmissive film according to claim 1, wherein the imaging unit includes a wavelength filter that allows light in a specific wavelength range to pass therethrough. 前記撮像部で撮像される前記光透過性フィルムの他面側に配され、特定波長域の光の反射率を低減する反射率低減化処理が施されている観察用補助部材を備えることを特徴とする請求項1又は2に記載の光透過性フィルムの欠陥検出装置。   An auxiliary member for observation is provided on the other surface side of the light transmissive film to be imaged by the imaging unit and subjected to a reflectance reduction process for reducing the reflectance of light in a specific wavelength range. The defect detection apparatus of the light transmissive film of Claim 1 or 2. 前記撮像部で撮像される前記光透過性フィルムの他面側に配される観察用補助部材と、
前記光透過性フィルムの他面と前記観察用補助部材との間に充填材を介在させることでこの前記光透過性フィルムと前記観察用補助部材とを密着させる充填手段とを具備し、
前記充填材が、特定波長域の光を吸収するものであることを特徴とする請求項1乃至3のいずれか一項に記載の光透過性フィルムの欠陥検出装置。
An auxiliary member for observation arranged on the other surface side of the light transmissive film imaged by the imaging unit;
A filling means for closely attaching the light transmissive film and the observation auxiliary member by interposing a filler between the other surface of the light transmissive film and the auxiliary member for observation;
The defect detection apparatus for a light transmissive film according to claim 1, wherein the filler absorbs light in a specific wavelength region.
JP2008166598A 2008-06-25 2008-06-25 Defect detection device for light transmissive film Expired - Fee Related JP5255342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166598A JP5255342B2 (en) 2008-06-25 2008-06-25 Defect detection device for light transmissive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166598A JP5255342B2 (en) 2008-06-25 2008-06-25 Defect detection device for light transmissive film

Publications (2)

Publication Number Publication Date
JP2010008173A JP2010008173A (en) 2010-01-14
JP5255342B2 true JP5255342B2 (en) 2013-08-07

Family

ID=41588871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166598A Expired - Fee Related JP5255342B2 (en) 2008-06-25 2008-06-25 Defect detection device for light transmissive film

Country Status (1)

Country Link
JP (1) JP5255342B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272382B2 (en) * 2013-10-08 2016-03-01 The Boeing Company Automated sanding system
JP2017203622A (en) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 Color unevenness checking method, and color unevenness checking device
EP3585642B1 (en) 2017-02-21 2021-11-24 Volvo Truck Corporation A method and arrangement for balancing a battery pack
CN111316090A (en) * 2019-04-04 2020-06-19 合刃科技(深圳)有限公司 Microscopic defect detection system and method for transparent or semitransparent material
CN114295641B (en) * 2021-12-29 2023-08-01 万津实业(赤壁)有限公司 Defect detection structure and detection method for glass ink layer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429044A (en) * 1990-05-25 1992-01-31 Toyobo Co Ltd Inspecting method for long-sized structure
FR2718232B1 (en) * 1994-03-31 1996-05-24 Saint Gobain Vitrage Method and device for measuring the optical quality of the surface of a transparent object.
JP4222709B2 (en) * 2000-03-30 2009-02-12 大日本印刷株式会社 Work surface inspection device
JP2006113022A (en) * 2004-10-18 2006-04-27 Toppan Printing Co Ltd Defect detection device and method on antireflection film
JP2006201015A (en) * 2005-01-20 2006-08-03 Toppan Printing Co Ltd Inspection device using linear line like ultraviolet illumination light
JP4930748B2 (en) * 2005-01-28 2012-05-16 大日本印刷株式会社 Film inspection apparatus and method
JP4799268B2 (en) * 2005-07-29 2011-10-26 大日本スクリーン製造株式会社 Unevenness inspection apparatus and unevenness inspection method
JP5255341B2 (en) * 2008-06-25 2013-08-07 パナソニック株式会社 Defect detection device for light transmissive film
JP4950951B2 (en) * 2008-06-25 2012-06-13 パナソニック株式会社 Light transmissive film defect detection device and light transmissive film cutting device

Also Published As

Publication number Publication date
JP2010008173A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4936194B2 (en) Defect detection device for light transmissive film
JP5255342B2 (en) Defect detection device for light transmissive film
JP4950951B2 (en) Light transmissive film defect detection device and light transmissive film cutting device
JP5255341B2 (en) Defect detection device for light transmissive film
JP2012167975A (en) Defect inspection method and defect inspection device
KR20080031922A (en) Apparatus and methods for inspecting a composite structure for defects
KR20200066162A (en) Appearance inspection method and appearance inspection apparatus
JP5027946B1 (en) Inspection system
JP6616658B2 (en) Inspection method of conveyed object
JP5866691B2 (en) Inspection method for surface defects of transparent resin film
JP2010281772A (en) Defect inspection method mainly concerned with unevenness of sheet-like transparent body
JP2012026863A (en) Film inspection device, inspection method, and manufacturing method
JP4989452B2 (en) Defect detection device for light transmissive film
JP5311221B2 (en) Inspection method for volume hologram laminate and inspection apparatus for volume hologram laminate
JP7317286B2 (en) Defect detection device with rubber on topping rubber sheet
JP2010023922A (en) Method for inspecting adhesive section of film and apparatus for inspecting adhesive section of film
JP2009192307A (en) Film inspection device
JPH11264801A (en) Method and apparatus for detection of defect on surface of sheet
JP2009229173A (en) Device and method for inspecting uncoated part of thin film coating
JP4749523B2 (en) Film defect inspection equipment
WO2012165419A1 (en) Lighting system, inspection system and control system
JP3141389U (en) Reference sample for fluorescence inspection and sample container used therefor
JP2012047615A (en) Film inspection device, inspection method, and manufacturing method
JP4936195B2 (en) Defect detection device for light transmissive film
JP2005257492A (en) Detector for foreign matter in container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees