WO2012165419A1 - Lighting system, inspection system and control system - Google Patents

Lighting system, inspection system and control system Download PDF

Info

Publication number
WO2012165419A1
WO2012165419A1 PCT/JP2012/063732 JP2012063732W WO2012165419A1 WO 2012165419 A1 WO2012165419 A1 WO 2012165419A1 JP 2012063732 W JP2012063732 W JP 2012063732W WO 2012165419 A1 WO2012165419 A1 WO 2012165419A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
illumination
mark
inspection
inspected
Prior art date
Application number
PCT/JP2012/063732
Other languages
French (fr)
Japanese (ja)
Inventor
田中 修
建司 矢萩
利克 吉村
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to KR1020137019655A priority Critical patent/KR101955238B1/en
Priority to CN201280026172.5A priority patent/CN103562710B/en
Priority to JP2013518097A priority patent/JP5847176B2/en
Publication of WO2012165419A1 publication Critical patent/WO2012165419A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/909Investigating the presence of flaws or contamination in a container or its contents in opaque containers or opaque container parts, e.g. cans, tins, caps, labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources

Definitions

  • the present invention relates to an illumination system, an inspection system, and a control system.
  • FIG. 13 is a schematic diagram showing a state of the filling machine P0 that performs a process of filling a tube such as a plastic tube or a laminate tube with contents.
  • the filling machine P0 which performs the process of filling the contents in the tube is installed in the clean room R.
  • the filling machine P0 is covered with a protective cover made of metal as a base material so that dust and dust do not enter the tube.
  • This protective cover has a transparent portion such as polycarbonate. For this reason, the worker W can visually confirm the tube in the filling machine P0 with the light from the illumination L0 installed in the clean room R.
  • the tube is filled with contents, and the tube opening position is inspected after heat sealing by melting and crimping the tube opening end.
  • an operator visually inspects the position of the tube design.
  • it is necessary to perform this inspection in-line in the production process, which requires a lot of labor and labor.
  • Patent Documents 1 and 2 describe techniques for inspecting the appearance of an object to be inspected by image processing.
  • Japanese Patent Application Laid-Open No. H10-228561 describes a technique for inspecting the surface of an inspection object based on a change in reflected light by irradiating the inspection object with inspection light.
  • the filling machine is covered with a metal cover, the filling machine is bright enough to allow a person to visually observe the design of the tube in the filling machine, but to take an appropriate inspection image for image processing. Has insufficient light. For this reason, it is conceivable to illuminate the inside of the filling machine and directly irradiate the tube with light for imaging. However, when the tube surface is glossy, there is a problem that halation occurs on the tube surface and a stable inspection image cannot be acquired.
  • the present invention has been made in view of the above points, and an object of the present invention is to design a tube design by image processing even if the tube surface is glossy while preventing dust and dust from being mixed in the tube. It is an object of the present invention to provide an illumination system, an inspection system, and a control system that can capture an image capable of detecting the position of the camera.
  • An illumination system captures an image of a first surface having a mark and a glossy surface around the mark among inspection objects on which marks are printed, and based on the captured image. It is used in an inspection system for inspecting the design position of the inspection object.
  • This illumination system is disposed on the back side of the first surface of the inspection object, and has an upper end located above the inspection object and a lower end located below the mark, and emits light.
  • the illumination directly irradiates light to the back surface of the first surface of the back surface of the inspection object, and indirectly transmits light to the first surface of the inspection object via the reflecting member. Irradiate.
  • the illumination system is disposed on the opposite side of the illumination with respect to the reflecting member, and includes at least the mark and the left and right ends of the inspection object by imaging the first surface of the inspection object. You may further provide the imaging part which acquires an image.
  • the material of the reflecting surface of the reflecting member may be polytetrafluoroethylene.
  • An inspection system detects the design position of the inspection object using the illumination system.
  • the inspection system includes: an imaging unit that images the first surface of the inspection object; a determination unit that determines a range where the mark should exist in an image captured by the imaging unit; and the determination unit A detection unit that detects a design position of the inspection object based on the presence or absence of the mark in the determined range.
  • the control system determines whether the inspected product is non-defective or defective through the production line using the above-described inspection system.
  • the control system includes a control unit that determines a non-defective product or a defective product of each of the inspection objects flowing through the production line based on a detection result by the detection unit.
  • the inspection object is irradiated with illumination from the back of the first surface on which the mark is printed, and the light irradiated from the illumination is reflected by the reflecting member onto the first surface of the inspection object. For this reason, even when the surface of the inspection object is glossy, the halation can be prevented and the mark of the inspection object can be clearly imaged. This makes it possible to detect the position of the design by image processing even if the surface of the inspection object has a glossy surface while covering the filling machine to prevent dust and dust from entering the inspection object. Can be imaged.
  • the inspection object according to the present embodiment is a tube T such as a plastic tube or a laminate tube, and the printed surface around the mark I is glossy.
  • the gloss in the present embodiment refers to a characteristic such that when light from a light source is reflected by a reflecting object, a mirror image of the light source is reflected on the reflecting object surface. For example, when light is directly applied to a glossy object such as aluminum or stainless steel, a mirror image of the light source is reflected on the surface.
  • the gloss can be determined by measuring the glossiness in addition to the visual determination.
  • the glossiness is a numerical value indicating a result of regular reflection of light hitting the reflecting object surface.
  • Glossy in this embodiment means that the gloss measured by a measuring device under a predetermined measurement condition is a certain value or more (in this embodiment, 100 or more (100 or 100 OVER (reference value))). is there.
  • the glossiness of the glossy material in this embodiment is preferably 1000 or less. Therefore, the glossiness of gloss on the printed surface around the mark I is preferably 100 or more and 1000 or less.
  • the glossiness was quoted from JIS Z 8741-1997, and measured with a Grosstec (IG-320) manufactured by Horiba, Ltd. as a measuring instrument. A method for measuring glossiness will be described.
  • Measurement object “Brilliant More Fresh Spearmint”, “Dent Health Unpolished Gel”, “Dent Health SP” “Dent Health Smi Block (registered trademark)” “Hi-Tech (registered trademark)” “Hi-tech Mild” and “Systemma Sensitive” Is a laminated tube. As shown in FIG.
  • a mark I is printed on the tube T.
  • a surface having the mark I in the tube T is defined as a front surface (first surface).
  • the back surface of the surface having the mark I in the tube T is defined as the back surface.
  • the mark I is a mark for detecting a design shift (position) in the tube T.
  • the color of the mark I (for example, black) is referred to as a mark color.
  • a portion heat-sealed by thermally melting and crimping the opening is referred to as an end seal portion E.
  • the vertical direction is determined with the end seal portion E side as the upper side and the spout (cap C) side as the lower side.
  • the left-right direction when the front surface of the tube T is viewed from the front is defined as the left-right direction. That is, the tube T is composed of first and second side surfaces that are substantially plane-symmetric. The upper ends of the first and second side surfaces are joined by an end seal portion E. The left and right ends of the first and second side surfaces are continuous. The outer surfaces of the first and second side faces are substantially opposite to each other. The outer surface of the first side surface is the front surface of the tube T. The outer surface of the second side surface is the back surface of the tube T.
  • FIG. 3 is a schematic diagram illustrating an example of a filling machine P into which the control system according to the present embodiment is introduced.
  • the filling machine P is a production line for filling the tube T with contents such as a dentifrice and heat-sealing the opening of the tube T after filling.
  • a racetrack-shaped table is installed in the center of the filling machine P.
  • a number of cylindrical tube holders installed around the table are provided in an aligned state so as to be horizontally movable in the circumferential direction of the table. These tube holders are configured to move around the table by a transport mechanism (not shown) provided along the peripheral surface of the table.
  • the tube T is supplied from the supply unit 101 of the filling machine P to the tube holder, and moves to the discharge unit 112 along the peripheral surface of the table.
  • the new tube T is supplied to a tube holder in the state opened with those cap C side facing down.
  • the tube insertion unit 102 fixes the tube T to the tube holder by inserting the tube T against the tube holder.
  • the cap confirmation unit 103 confirms that the cap C is attached to the tube T by the sensor.
  • the foreign matter removing unit 104 removes foreign matter in the tube T by blowing clean air into the tube T.
  • the brick filling unit 105 fills the tube T with the contents.
  • the mark alignment unit 106 detects the mark I of the tube T by the color sensor, and aligns the tube T so that the mark I faces a predetermined direction set in advance.
  • the product type confirmation unit 107 confirms the product type of the tube T using a camera.
  • the heat seal part 108 heat-seals by heat-melting and crimping
  • the packaging lot marking unit 109 marks the packaging lot on the end seal portion E.
  • the appearance inspection unit 110 inspects the design position of the tube T.
  • the R cutter part 111 cuts the end part of the end seal part E.
  • the discharge unit 112 discharges the tube T to the subsequent process by the damper type conveyor 113.
  • FIG. 4 is a schematic diagram showing the configuration of the control system according to the present embodiment.
  • the control system inspects the design position of the tube T in the appearance inspection unit 110 in the filling machine P.
  • the control system includes an illumination 1, a reflector 2, a camera (imaging unit) 3, an image processing device 4, and a sequencer 5.
  • the illumination 1, the reflector 2, and the camera 3 are installed in the appearance inspection unit 110 in the filling machine P.
  • the illumination 1 irradiates light to the back surface of the tube T flowing through the filling machine P and the reflector.
  • the reflection plate (reflection member) 2 reflects light from the illumination 1 to the front surface of the tube T.
  • the camera 3 captures the front side of the tube T to generate an image, and outputs the generated image to the image processing device 4.
  • an illumination system a system composed of the illumination 1, the reflector 2, and the camera 3 is referred to as an illumination system. The detailed configuration of the illumination system will be described later.
  • the image processing device 4 detects a left / right shift of the design in the tube T based on the image input from the camera 3. Then, the image processing device 4 determines whether the tube T is good or defective based on the detection result, and outputs the determination result to the sequencer 5. The sequencer 5 determines whether each tube T flowing through the filling machine P is non-defective or defective based on the input determination result, and assigns status information (non-defective or defective) to each tube T and stores it. Then, the sequencer 5 outputs an operation instruction to the damper type conveyor 113 based on the status information of each tube T.
  • the sequencer 5 when the tube T is a non-defective product, the sequencer 5 outputs an operation instruction for discharging the tube T to a post-process (first direction) on the production line to the damper conveyor 113.
  • the sequencer 5 when the tube T is a defective product, the sequencer 5 outputs an operation instruction for discharging the tube T out of the production line (second direction) to the damper conveyor 113.
  • FIG. 5 is a block diagram showing a functional configuration of the inspection system according to the present embodiment.
  • the inspection system is a system that is used in the above-described control system and determines whether the tube T is a non-defective product or a defective product.
  • the inspection system includes an illumination system, an image processing device 4, an input unit 6, an illumination control unit 7, and a display unit 8. The detailed configuration of the illumination system will be described later.
  • the input unit 6 receives an input of a control value that controls the illuminance of the illumination 1.
  • the illumination control unit 7 controls the illuminance of the illumination 1 based on the control value input by the input unit 6. Specifically, the illumination control unit 7 controls the illuminance of the illumination 1 by, for example, changing the supply voltage or current to the illumination 1.
  • the display unit 8 displays an image captured by the camera 3. With this configuration, the operator can set the illuminance of the illumination 1 by the input unit 6 while confirming the image displayed on the display unit 8 when performing the inspection. Thereby, the illumination intensity of the illumination 1 can be adjusted according to the magnitude
  • An image processing apparatus 4 that determines a non-defective product or a defective product of the tube T based on an image captured by the camera 3 includes an image input unit 401, an edge detection unit 402, a window determination unit 403, a deviation detection unit 404, and a determination. 405 and a determination result output unit 406.
  • the image processing apparatus 4 determines whether the tube T is good or defective based on the position of the mark I on the tube T.
  • the image input unit 401 receives an image input from the camera 3 and outputs the input image to the display unit 8 and the edge detection unit 402.
  • the edge detection unit 402 detects the left edge of the tube T in the input image.
  • the window determination unit 403 determines a mark detection window that is a range where the mark I should be based on the leftmost edge detected by the edge detection unit 402.
  • the deviation detection unit 404 detects a design deviation of the tube T based on whether or not the mark I is present in the mark detection window determined by the window determination unit 403. Specifically, the deviation detection unit 404 counts the number of pixels of the mark color in the mark detection window, and determines that the mark I is in the mark detection window when the counted number of pixels is within a predetermined range ⁇ . .
  • the upper limit value and the lower limit value of the range ⁇ are set in advance. For example, the range ⁇ may be 80% or more of the pixels within the mark detection window.
  • the deviation detection unit 404 determines that there is no mark I in the mark detection window, and detects a design deviation of the tube T.
  • the determination unit 405 determines a non-defective product or a defective product of the tube T based on the detection result in the deviation detection unit 404. Specifically, the determination unit 405 determines that the tube T is a non-defective product when a design shift is not detected, and determines that the tube T is a defective product when a design shift is detected.
  • the determination result output unit 406 transmits the determination result by the determination unit 405 to the sequencer 5.
  • FIG. 6 is a schematic diagram showing the installation position of the illumination system according to the present embodiment.
  • the direction in which the front of the tube T is facing is defined as the front.
  • the direction in which the back surface of the tube T faces is defined as the back.
  • the illumination system includes an illumination 1, a reflection plate 2, and a camera 3.
  • the illumination system is installed in the appearance inspection unit 110 in the filling machine P.
  • a tube T is disposed between the illumination 1 and the reflector 2.
  • the illumination 1 is a surface light source such as an LED (Light Emitting Diode), and the color of the light is white.
  • the horizontal width (or vertical width) of the illumination 1 is at least larger than the horizontal width of the tube T.
  • the vertical width (or horizontal width) of the illumination 1 is at least larger than the vertical width of the mark I.
  • the illumination 1 is installed in a limited space (for example, a depth of 35 mm to 95 mm) in the filling machine P. For this reason, it is preferable to use a thin (for example, about 8 mm thick) illumination as the illumination 1.
  • the illuminator 1 is installed at a position behind the tube T with its light emitting part facing forward.
  • the illumination 1 is installed so that the reflecting plate 2 and the back surface of the tube T flowing through the filling machine P may be irradiated.
  • the illumination 1 is installed so as to irradiate the back surface of the tube T including at least the left and right ends of the tube T above the lower part of the mark I.
  • the reflecting plate 2 is a plate that reflects light.
  • the material of the reflecting surface of the reflecting plate 2 is polytetrafluoroethylene. Polytetrafluoroethylene has a higher light diffusivity than a mirror or the like. Further, the color of the reflecting surface of the reflecting plate 2 is preferably white so that the color of the reflecting plate 2 does not appear in the tube T.
  • the reflecting plate 2 is installed at a position in front of the tube T with its reflecting surface facing rearward so that the light emitted from the illumination 1 is reflected around the mark I of the tube T.
  • the angle of the reflecting surface of the reflecting plate 2 with respect to the light irradiation direction (horizontal direction) in the light source (illumination 1) is ⁇ .
  • the angle ⁇ is 30 degrees to 60 degrees, preferably 40 degrees to 50 degrees, and more preferably 45 degrees.
  • the camera 3 is a CCD (Charge Coupled Device Image Sensor) camera.
  • the camera 3 is installed at a position in front of the tube T with its optical system facing rearward. Moreover, the camera 3 is installed so that the front surface of the tube T flowing through the filling machine P can be imaged including at least the mark I and the left and right ends of the tube T.
  • CCD Charge Coupled Device Image Sensor
  • the height of the illumination 1, the reflector 2 and the camera 3, and the angle ⁇ of the reflector 2 can be adjusted. Thereby, the position of the illumination 1, the reflecting plate 2, and the camera 3 can be adjusted according to the magnitude
  • FIG. 6 shows an example of the installation positions of the illumination 1, the reflector 2, and the camera 3 with respect to the tube T having a height of 140 mm (symbol h).
  • the illumination 1 is installed 55 mm (symbol i) behind the center of the tube T and at a height of 112 mm (symbol j). That is, the illumination 1 is arranged on the back side of the tube T.
  • the upper end of the illumination 1 is located above the tube T.
  • the lower end of the illumination 1 is located below the mark I.
  • the reflecting plate 2 is inclined with respect to the light irradiation direction of the illumination 1 so as to face the first surface of the tube T.
  • the camera 3 is installed 130 mm (symbol 1) in front of the center of the tube T and 65 mm (symbol m) in front of the lower part of the reflector 2.
  • the filling machine P performs each process by setting two tubes T. Therefore, two illumination systems may be arranged side by side, and the two tubes T may be imaged and inspected substantially simultaneously. In this case, the lateral width of the illumination 1 may be increased so that the two tubes T can be irradiated with one illumination 1.
  • FIG. 7 is an image captured by the illumination system according to the present embodiment.
  • the illumination 1 irradiates the back surface of the tube T
  • the left and right ends of the tube T above the lower part of the mark I are clearly imaged. That is, as shown in FIG. 7, in the image captured by the camera 3, the illumination 1 (that is, the direct irradiation light from the illumination 1) is reflected in the background of the left and right ends of the tube T above the lower part of the mark I. ing. For this reason, the right and left ends of the tube T can be detected well. Further, since the light of the illumination 1 is diffused by the reflector 2 and applied to the mark I, halation can be prevented and the mark I can be imaged clearly.
  • FIGS. 8C and 8D are explanatory diagrams of pass / fail judgment processing in the image processing apparatus 4 according to the present embodiment.
  • the image input unit 401 acquires an image from the camera 3 (see FIG. 8A).
  • the edge detection unit 402 scans from the left to the right in the inspection window W which is a predetermined range set in advance, and detects a portion having the largest color change as the tube edge G (see FIG. 8B).
  • the window determining unit 403 determines the mark detection window M using the tube edge G as a base point (see FIGS. 8C and 8D). Specifically, the window determination unit 403 sets an area that is a predetermined pixel to the right of the tube edge G as the mark detection window M.
  • the deviation detection unit 404 counts the mark color pixels in the mark detection window M.
  • the deviation detection unit 404 detects that there is no deviation in the design of the tube T when the counted number of pixels is within the range ⁇ (see FIG. 8C).
  • the deviation detection unit 404 detects that there is a deviation in the design of the tube T when the counted number of pixels is outside the range ⁇ (FIG. 8D).
  • the determination unit 405 determines that the tube T without design deviation is a non-defective product, and determines that the tube T with design deviation is a defective product. For example, in the case of the tube T shown in FIG.
  • the image processing apparatus 4 determines that the tube T shown in FIG. 8C is a non-defective product.
  • the image processing apparatus 4 determines that the tube T illustrated in FIG. 8D is a defective product.
  • FIG. 9 is a flowchart showing a procedure of pass / fail judgment processing according to the present embodiment.
  • the edge detection unit 402 scans the inspection window W from the left to the right in the image acquired from the camera 3, and detects a portion having the largest color change as the tube edge G (step S101).
  • the window determination unit 403 determines the mark detection window M using the tube edge G as a base point (step S102).
  • the deviation detection unit 404 counts the number of pixels of the mark color in the mark detection window M (step S103).
  • the deviation detection unit 404 determines whether or not the counted number of pixels of the mark color is within the range ⁇ (the number of pixels is within a predetermined threshold) (step S104).
  • the determination unit 405 determines that the tube T is a non-defective product (OK) (step S105), and ends the process.
  • the determination unit 405 determines that the tube T is a defective product (NG) (step S106), and ends the process.
  • FIG. 10A to 10C show the imaging results of the camera 3 in the illumination system according to the present embodiment.
  • FIG. 10A shows an imaging result when the reflector 2 is made of polytetrafluoroethylene in the above-described illumination system arrangement.
  • FIG. 10B is an imaging result when the reflector 2 is a mirror in the arrangement of the illumination system described above.
  • FIG. 10C shows an imaging result when the front surface of the tube T is directly irradiated from the illumination 1.
  • the mirror has a lower light diffusivity than polytetrafluoroethylene, halation remains, and as shown in the figure, the color of the mark I may be blurred, or other colors (for example, blue) may appear in the mark color. is there. For this reason, when a mirror is used for the reflecting plate 2, the detection rate of the mark I decreases.
  • FIG. 10A when polytetrafluoroethylene is used for the reflector 2 in the illumination system according to the present embodiment, halation is prevented and the mark I and the tube edge G are imaged clearly. Can do. For this reason, a good result was obtained when the inspection was performed based on the captured image. Thereby, when the reflector 2 is made of polytetrafluoroethylene in the arrangement of the illumination system described above, the mark I can be detected with higher accuracy by image processing.
  • FIG. 11 shows the experimental results of the inspection system according to the present embodiment.
  • tube quality shows the result of having determined the quality goods or inferior goods by visual observation.
  • the inspection machine determination indicates a determination result of a non-defective product (OK) or a defective product (NG) by the inspection system.
  • the determination results obtained by the inspection system all match the visual determination results.
  • the inspection system according to the present embodiment can maintain the inspection quality when visually observed as in the conventional case.
  • FIG. 12 is a graph showing a change in illuminance at the tube T position according to the present embodiment.
  • the horizontal axis represents a control value (unit: knob volume (Vol)) for controlling the intensity (illuminance) of light emitted from the light source.
  • the vertical axis represents the illuminance at the tube T position (unit: lux (Lx)).
  • a line 201 illustrated in FIG. 12 indicates a change in illuminance when the front surface of the tube T is directly irradiated with the illumination 1.
  • a line 202 indicates a change in illuminance when a mirror is used for the reflector 2 in the illumination system according to the present embodiment.
  • a line 203 indicates a change in illuminance when polytetrafluoroethylene is used for the reflector in the illumination system according to the present embodiment.
  • the illuminance of the tube T when the illumination system according to the present embodiment is used changes gently in a substantially linear manner with respect to the control value. For this reason, illumination intensity can be adjusted more finely according to the design and shape of the tube T.
  • the illuminance when the front surface of the tube T is irradiated directly is unstable with respect to the control value, and it is difficult to adjust the illuminance.
  • the illuminance when polytetrafluoroethylene is used for the reflecting plate 2 changes more gently than when a mirror is used for the reflecting plate 2. This is because polytetrafluoroethylene has a higher light diffusion rate than a mirror. For this reason, halation is less likely to occur when polytetrafluoroethylene is used for the reflector 2 than when a mirror is used.
  • the tube T is irradiated from the back surface with the illumination 1, and the light irradiated from the illumination 1 is reflected to the front surface of the tube T by the reflection plate 2.
  • the mark I on the tube T can be imaged more clearly by preventing halation in the filling machine P that is covered to prevent dust and dust from entering. it can.
  • the non-defective product or the defective product of the tube T can be accurately determined on the production line.
  • an operator who performs the inspection can reduce the illuminance of the illumination 1 according to the design and shape of the tube T while checking the captured image. Can be adjusted.
  • the reflector 2 is made of polytetrafluoroethylene, the light of the illumination 1 is diffused and reflected, so that the illuminance of the light reflected on the front surface of the tube T can be adjusted more finely.
  • a program for realizing each step shown in FIG. 9 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may perform the process which determines a non-defective product.
  • the “computer system” may include an OS and hardware such as peripheral devices.
  • “Computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, and a storage such as a hard disk built in a computer system. Refers to the device.
  • Computer-readable recording medium refers to a volatile memory (for example, DRAM (Dynamic Random) in a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Access Memory)) is also included, which holds a program for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • a “transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. What can implement
  • the material of the reflective surface of the reflecting plate 2 is polytetrafluoroethylene, it is not limited to this. As long as the material has a high diffusivity, other materials such as polypropylene and polyethylene may be used for the reflector 2.
  • the illumination 1 is an LED, but is not limited thereto.
  • the illumination 1 may use another light source such as a fluorescent lamp or a halogen lamp.
  • the present invention can be applied to lighting systems, inspection systems, and control systems.

Abstract

A lighting system is used in an inspection system which captures an image of a first surface that is a surface having a mark of an object to be inspected on which the mark is printed and that has a shine around the mark, and, on the basis of the captured image, inspects the position of a design in the object to be inspected. This lighting system is provided with: a lighting disposed on the side of a reverse surface to the first surface of the object to be inspected, has an upper end located above the object to be inspected and a lower end located below the mark, and applies light; and a reflection member which is disposed above the object to be inspected on the first surface side of the object to be inspected, is inclined with respect to the application direction of the light of the lighting so as to face the first surface of the object to be inspected, and reflects the light from the lighting. The lighting directly applies the light to the reverse surface to the first surface of the object to be inspected, and indirectly applies the light to the first surface of the object to be inspected via the reflection member.

Description

照明システム、検査システム及び制御システムLighting system, inspection system and control system
 本発明は、照明システム、検査システム及び制御システムに関する。
 本願は、2011年5月30日に、日本に出願された特願2011-120962号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an illumination system, an inspection system, and a control system.
This application claims priority on May 30, 2011 based on Japanese Patent Application No. 2011-120962 filed in Japan, the contents of which are incorporated herein by reference.
 図13は、プラスチックチューブやラミネートチューブなどのチューブに内容物を充填する工程を行う充填機P0の様子を示す概略図である。
 通常、チューブに内容物を充填する工程を行う充填機P0は、クリーンルームR内に設置される。更に、この充填機P0は、チューブ内に埃や塵が入らないように、金属を母体とする保護用のカバーにより覆われている。この保護用のカバーにはポリカーボネート等の透明な部分がある。このため、作業員Wは、クリーンルームRに設置された照明L0からの光で目視により充填機P0内のチューブを確認することができる。
FIG. 13 is a schematic diagram showing a state of the filling machine P0 that performs a process of filling a tube such as a plastic tube or a laminate tube with contents.
Usually, the filling machine P0 which performs the process of filling the contents in the tube is installed in the clean room R. Further, the filling machine P0 is covered with a protective cover made of metal as a base material so that dust and dust do not enter the tube. This protective cover has a transparent portion such as polycarbonate. For this reason, the worker W can visually confirm the tube in the filling machine P0 with the light from the illumination L0 installed in the clean room R.
 この工程において、チューブに内容物を充填し、チューブ開口端部を熱溶融して圧着することによりヒートシールした後に、チューブデザインの位置を検査する。
 従来では、このチューブデザインの位置の検査は、作業員が目視にて行っていた。しかしながら、チューブを全数検査するためには、この検査を生産工程のインラインで行う必要があり、多大な人手を要する上に手間が掛かる。
In this process, the tube is filled with contents, and the tube opening position is inspected after heat sealing by melting and crimping the tube opening end.
Conventionally, an operator visually inspects the position of the tube design. However, in order to inspect all the tubes, it is necessary to perform this inspection in-line in the production process, which requires a lot of labor and labor.
 そこで、チューブを撮像し、撮像した検査画像を画像処理することによりチューブデザインの位置を検出することが考えられる。特許文献1及び2には、画像処理により被検査物の外観を検査する技術が記載されている。また、特許文献3には、被検査物に検査光を照射し、その反射光の変化に基づいて被検査物の表面を検査する技術が記載されている。 Therefore, it is conceivable to detect the position of the tube design by taking an image of the tube and subjecting the taken inspection image to image processing. Patent Documents 1 and 2 describe techniques for inspecting the appearance of an object to be inspected by image processing. Japanese Patent Application Laid-Open No. H10-228561 describes a technique for inspecting the surface of an inspection object based on a change in reflected light by irradiating the inspection object with inspection light.
日本国特公平6-1249号公報Japanese Patent Publication No. 6-1249 日本国特開2007-161257号公報Japanese Unexamined Patent Publication No. 2007-161257 日本国特開2005-291771号公報Japanese Unexamined Patent Publication No. 2005-291717
 しかしながら、充填機は金属のカバーにより覆われているため、充填機内は、人が充填機内のチューブのデザインを目視可能な明るさではあるが、画像処理するための適切な検査画像を撮像するには光量が不十分である。このため、充填機内に照明を設置し、チューブに光を直接照射して撮像することが考えられる。しかしながら、チューブ表面に光沢がある場合には、チューブ表面でハレーションが起こり、安定した検査画像を取得することができない、という問題がある。 However, since the filling machine is covered with a metal cover, the filling machine is bright enough to allow a person to visually observe the design of the tube in the filling machine, but to take an appropriate inspection image for image processing. Has insufficient light. For this reason, it is conceivable to illuminate the inside of the filling machine and directly irradiate the tube with light for imaging. However, when the tube surface is glossy, there is a problem that halation occurs on the tube surface and a stable inspection image cannot be acquired.
 本発明は上記の点に鑑みてなされたものであり、その目的は、埃や塵がチューブ内に混入することを防ぎつつ、チューブ表面に光沢があるチューブであっても、画像処理によりチューブデザインの位置を検出可能な画像を撮像することができる照明システム、検査システム及び制御システムを提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to design a tube design by image processing even if the tube surface is glossy while preventing dust and dust from being mixed in the tube. It is an object of the present invention to provide an illumination system, an inspection system, and a control system that can capture an image capable of detecting the position of the camera.
 本発明は上記の課題を解決するためになされた。本発明の一態様に係る照明システムは、マークの印刷された被検査物のうち前記マークのある面であって前記マーク周囲に光沢のある第1の面を撮像し、撮像した画像に基づいて前記被検査物のデザインの位置を検査する検査システムにおいて用いられる。この照明システムは、前記被検査物の前記第1の面の背面側に配置され、前記被検査物よりも上方に位置する上端と前記マークよりも下方に位置する下端とを有し、光を照射する照明と、前記被検査物の前記第1面側であって前記被検査物よりも上方に配置され、前記被検査物の第1面と対向するように前記照明の光の照射方向に対して傾斜し、前記照明からの光を反射する反射部材とを備える。前記照明は、前記被検査物の前記背面うち前記第1の面の背面に光を直接的に照射するとともに、前記反射部材を介して、前記被検査物の前記第1面に光を間接的に照射する。 The present invention has been made to solve the above problems. An illumination system according to an aspect of the present invention captures an image of a first surface having a mark and a glossy surface around the mark among inspection objects on which marks are printed, and based on the captured image. It is used in an inspection system for inspecting the design position of the inspection object. This illumination system is disposed on the back side of the first surface of the inspection object, and has an upper end located above the inspection object and a lower end located below the mark, and emits light. Illumination to be irradiated and arranged on the first surface side of the inspection object and above the inspection object, and in the irradiation direction of the light of the illumination so as to face the first surface of the inspection object And a reflecting member that is inclined with respect to the light and reflects light from the illumination. The illumination directly irradiates light to the back surface of the first surface of the back surface of the inspection object, and indirectly transmits light to the first surface of the inspection object via the reflecting member. Irradiate.
 上記の照明システムは、前記反射部材に対して前記照明とは反対側に配置され、前記被検査物の第1の面を撮像することにより、少なくとも前記マークと前記被検査物の左右両端と含む画像を得る撮像部をさらに備えていてもよい。 The illumination system is disposed on the opposite side of the illumination with respect to the reflecting member, and includes at least the mark and the left and right ends of the inspection object by imaging the first surface of the inspection object. You may further provide the imaging part which acquires an image.
 上記の照明システムにおいて、前記反射部材の反射面の材質はポリテトラフルオロエチレンであってもよい。 In the above illumination system, the material of the reflecting surface of the reflecting member may be polytetrafluoroethylene.
 本発明の一態様に係る検査システムは、上記の照明システムを用いて前記被検査物のデザインの位置を検出する。この検査システムは、前記被検査物のうち前記第1の面を撮像する撮像部と、前記撮像部により撮像された画像において、前記マークの有るべき範囲を決定する決定部と、前記決定部により決定された範囲における前記マークの有無に基づいて前記被検査物のデザインの位置を検出する検出部と、を備える。 An inspection system according to an aspect of the present invention detects the design position of the inspection object using the illumination system. The inspection system includes: an imaging unit that images the first surface of the inspection object; a determination unit that determines a range where the mark should exist in an image captured by the imaging unit; and the determination unit A detection unit that detects a design position of the inspection object based on the presence or absence of the mark in the determined range.
 本発明の一態様に係る制御システムは、上記の検査システムを用いて生産ラインを流れる被検査物の良品又は不良品を判定する。この制御システムは、前記検出部による検出結果に基づいて、前記生産ラインを流れる被検査物夫々の良品又は不良品を判定する制御部を備える。 The control system according to one aspect of the present invention determines whether the inspected product is non-defective or defective through the production line using the above-described inspection system. The control system includes a control unit that determines a non-defective product or a defective product of each of the inspection objects flowing through the production line based on a detection result by the detection unit.
 本発明によれば、マークが印刷されている第1の面の背面から被検査物を照明で照射し、照明から照射される光を反射部材で被検査物の第1の面に反射する。このため、被検査物表面に光沢がある場合であっても、ハレーションを防いで被検査物のマークを鮮明に撮像することができる。これにより、充填機にカバーをして埃や塵が被検査物内に混入することを防ぎつつ、表面に光沢がある被検査物であっても、画像処理によりデザインの位置を検出可能な画像を撮像することができる。 According to the present invention, the inspection object is irradiated with illumination from the back of the first surface on which the mark is printed, and the light irradiated from the illumination is reflected by the reflecting member onto the first surface of the inspection object. For this reason, even when the surface of the inspection object is glossy, the halation can be prevented and the mark of the inspection object can be clearly imaged. This makes it possible to detect the position of the design by image processing even if the surface of the inspection object has a glossy surface while covering the filling machine to prevent dust and dust from entering the inspection object. Can be imaged.
本発明の一実施形態による用語の定義を説明するための図である。It is a figure for demonstrating the definition of the term by one Embodiment of this invention. 被検査物における光沢度の測定結果を示す図である。It is a figure which shows the measurement result of the glossiness in a to-be-inspected object. 本実施形態による制御システムが導入される充填機の一例を示す概略図である。It is the schematic which shows an example of the filling machine with which the control system by this embodiment is introduce | transduced. 本実施形態による制御システムの構成を示す概略図である。It is the schematic which shows the structure of the control system by this embodiment. 本実施形態による検査システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the test | inspection system by this embodiment. 本実施形態による照明システムの設置位置を示す概略図である。It is the schematic which shows the installation position of the illumination system by this embodiment. 本実施形態による照明システムにより撮像された画像を示す図である。It is a figure which shows the image imaged with the illumination system by this embodiment. 本実施形態による画像処理装置における良否判定処理の説明図である。It is explanatory drawing of the quality determination process in the image processing apparatus by this embodiment. 本実施形態による画像処理装置における良否判定処理の説明図である。It is explanatory drawing of the quality determination process in the image processing apparatus by this embodiment. 本実施形態による画像処理装置における良否判定処理の説明図である。It is explanatory drawing of the quality determination process in the image processing apparatus by this embodiment. 本実施形態による画像処理装置における良否判定処理の説明図である。It is explanatory drawing of the quality determination process in the image processing apparatus by this embodiment. 本実施形態による良否判定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the quality determination process by this embodiment. 本実施形態による照明システムにおけるカメラの撮像結果を示す図である。It is a figure which shows the imaging result of the camera in the illumination system by this embodiment. 本実施形態による照明システムにおけるカメラの撮像結果を示す図である。It is a figure which shows the imaging result of the camera in the illumination system by this embodiment. 本実施形態による照明システムにおけるカメラの撮像結果を示す図である。It is a figure which shows the imaging result of the camera in the illumination system by this embodiment. 本実施形態による検査システムの実験結果を示す図である。It is a figure which shows the experimental result of the test | inspection system by this embodiment. 本実施形態によるチューブ位置における照度変化を示すグラフである。It is a graph which shows the illumination intensity change in the tube position by this embodiment. チューブに内容物を充填する工程を行う充填機の様子を示す概略図である。It is the schematic which shows the mode of the filling machine which performs the process of filling a tube with the content.
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 まず、図1を参照して以下で用いる語を次のように定義する。
 本実施形態による被検査物は、プラスチックチューブやラミネートチューブなどのチューブTであり、マークIの周囲の印刷面に光沢がある。本実施形態における光沢とは、光源からの光が反射物体により反射した際に、その反射物体表面に光源の鏡像が映るような特性のことをいう。例えば、アルミやステンレス等の光沢のあるものに直接光を当てると、その表面に光源の鏡像が映り込む。光沢は、目視判定以外に光沢度を測定することで判定できる。光沢度とは、反射物体表面に当たった光が正反射した結果を示す数値である。本実施形態における光沢のあるものとは、所定の測定条件において測定機器の測定する光沢度が、一定値以上(本実施形態では100以上(100または100 OVER(参考値)))を示すものである。本実施形態における光沢のあるものの光沢度は、1000以下であることが好ましい。よって、マークIの周囲の印刷面に光沢の光沢度は、100以上かつ1000以下であることが好ましい。光沢度は、JIS Z 8741-1997から引用し、測定機器として株式会社堀場製作所のグロスチエッカ(IG-320)で測定した。光沢度の測定方法について説明する。まず、円筒形のラミネートチューブから測定面のみを切り取り、その測定面を平らにした。次に、グロスチエッカにて測定面の表面の光沢度を測定した。光沢度の測定条件について説明する。ラミネートチューブの光沢度は、屈折率1.567のガラス板表面の光沢度を基準(100)とし、入射角60度・反射角60度にて測定した。この場合におけるガラス板の鏡面反射率は10%である。よって、鏡面反射率が100%の場合における光沢度は、1000である。
 図2は、目視で光沢がないと判定された(見た目光沢「なし」)測定対象物、及び、目視で光沢があると判定された(見た目光沢「あり」)測定対象物における光沢度の測定結果を示す。測定対象物「ブリリアントモア フレッシュスペアミント」、「デントヘルス無研磨ゲル」、「デントヘルスSP」「デントヘルスしみるブロック(登録商標)」「ハイテクト(登録商標)」「ハイテクト マイルド」及び「システマ センシティブ」はラミネートチューブである。図2に示すように、見た目光沢「あり」である「ブリリアントモア フレッシュスペアミント」「デントヘルス無研磨ゲル」「デントヘルスSP」及び「デントヘルスしみるブロック(登録商標)」における光沢度は「100 OVER」である。一方、見た目光沢「なし」である「ハイテクト(登録商標)」「ハイテクト マイルド」及び「システマ センシティブ」における光沢度は100より小さい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, referring to FIG. 1, the words used below are defined as follows.
The inspection object according to the present embodiment is a tube T such as a plastic tube or a laminate tube, and the printed surface around the mark I is glossy. The gloss in the present embodiment refers to a characteristic such that when light from a light source is reflected by a reflecting object, a mirror image of the light source is reflected on the reflecting object surface. For example, when light is directly applied to a glossy object such as aluminum or stainless steel, a mirror image of the light source is reflected on the surface. The gloss can be determined by measuring the glossiness in addition to the visual determination. The glossiness is a numerical value indicating a result of regular reflection of light hitting the reflecting object surface. Glossy in this embodiment means that the gloss measured by a measuring device under a predetermined measurement condition is a certain value or more (in this embodiment, 100 or more (100 or 100 OVER (reference value))). is there. The glossiness of the glossy material in this embodiment is preferably 1000 or less. Therefore, the glossiness of gloss on the printed surface around the mark I is preferably 100 or more and 1000 or less. The glossiness was quoted from JIS Z 8741-1997, and measured with a Grosstec (IG-320) manufactured by Horiba, Ltd. as a measuring instrument. A method for measuring glossiness will be described. First, only the measurement surface was cut from the cylindrical laminate tube, and the measurement surface was flattened. Next, the glossiness of the surface of the measurement surface was measured with a glossier. Glossiness measurement conditions will be described. The glossiness of the laminated tube was measured at an incident angle of 60 degrees and a reflection angle of 60 degrees, with the glossiness of the glass plate surface having a refractive index of 1.567 as a reference (100). In this case, the specular reflectance of the glass plate is 10%. Therefore, the glossiness when the specular reflectance is 100% is 1000.
FIG. 2 shows the measurement of the glossiness of a measurement object that was visually determined to be non-glossy (appearance gloss “none”) and a measurement object that was visually determined to be glossy (appearance gloss “present”). Results are shown. Measurement object “Brilliant More Fresh Spearmint”, “Dent Health Unpolished Gel”, “Dent Health SP” “Dent Health Smi Block (registered trademark)” “Hi-Tech (registered trademark)” “Hi-tech Mild” and “Systemma Sensitive” Is a laminated tube. As shown in FIG. 2, the glossiness of “Brilliant More Fresh Spearmint”, “Dent Health Non-Abrasive Gel”, “Dent Health SP” and “Dent Health Scrubbing Block (registered trademark)”, which has an apparent gloss of “Yes”, is “100”. OVER ". On the other hand, the glossiness of “High Tech (registered trademark)”, “High Tech Mild” and “Systemma Sensitive”, which is “None”, is less than 100.
 図1に戻り、チューブTの説明を続ける。チューブTにはマークIが印刷されている。チューブTにおいてこのマークIがある面を正面(第1の面)と定義する。また、チューブTにおいてマークIがある面の背面を裏面と定義する。マークIは、チューブTにおけるデザインのずれ(位置)を検出するためのマークである。マークIの色(例えば、黒色)をマーク色と称する。このチューブTにおいて、開口部を熱溶融して圧着することによりヒートシールした部分をエンドシール部Eと称する。チューブTが起立した状態において、エンドシール部E側を上とし、注出口(キャップC)側を下として上下方向を定める。キャップCを下にしてチューブTが起立した状態において、チューブTの正面を正面視したときの左右方向であって、上下方向に対する直交方向を左右方向と定める。
 すなわち、チューブTは、略面対称の第1および第2の側面からなる。第1および第2の側面の上端は、エンドシール部Eにより接合している。第1および第2の側面の左右両端は連続している。第1および第2の側面の外表面は、互いに略逆方向を向いている。第1の側面の外表面が、チューブTの正面である。第2の側面の外表面が、チューブTの背面である。
Returning to FIG. 1, the description of the tube T will be continued. A mark I is printed on the tube T. A surface having the mark I in the tube T is defined as a front surface (first surface). Further, the back surface of the surface having the mark I in the tube T is defined as the back surface. The mark I is a mark for detecting a design shift (position) in the tube T. The color of the mark I (for example, black) is referred to as a mark color. In this tube T, a portion heat-sealed by thermally melting and crimping the opening is referred to as an end seal portion E. In the state where the tube T is erected, the vertical direction is determined with the end seal portion E side as the upper side and the spout (cap C) side as the lower side. In the state where the tube T stands up with the cap C down, the left-right direction when the front surface of the tube T is viewed from the front is defined as the left-right direction.
That is, the tube T is composed of first and second side surfaces that are substantially plane-symmetric. The upper ends of the first and second side surfaces are joined by an end seal portion E. The left and right ends of the first and second side surfaces are continuous. The outer surfaces of the first and second side faces are substantially opposite to each other. The outer surface of the first side surface is the front surface of the tube T. The outer surface of the second side surface is the back surface of the tube T.
 図3は、本実施形態による制御システムが導入される充填機Pの一例を示す概略図である。
 充填機Pは、歯磨き剤などの内容物をチューブTに充填するとともに充填後のチューブTの開口部をヒートシールするための生産ラインである。
 充填機Pの中央にはレーストラック形状のテーブルが設置される。このテーブルの周囲に多数設置された筒形のチューブホルダーが整列状態でテーブルの円周方向に水平移動自在に設けられている。これらのチューブホルダーは、テーブルの周面に沿って設けられた搬送機構(不図示)によりテーブルの周囲を周回移動するように構成されている。
FIG. 3 is a schematic diagram illustrating an example of a filling machine P into which the control system according to the present embodiment is introduced.
The filling machine P is a production line for filling the tube T with contents such as a dentifrice and heat-sealing the opening of the tube T after filling.
In the center of the filling machine P, a racetrack-shaped table is installed. A number of cylindrical tube holders installed around the table are provided in an aligned state so as to be horizontally movable in the circumferential direction of the table. These tube holders are configured to move around the table by a transport mechanism (not shown) provided along the peripheral surface of the table.
 チューブTは、充填機Pの供給部101からチューブホルダーへ供給され、テーブルの周面に沿って排出部112まで移動する。まず、供給部101において、新しいチューブTがそれらのキャップC側を下に向けて開口された状態でチューブホルダーに供給される。次に、チューブ挿入部102が、チューブTをチューブホルダーに押し付けて挿入することにより、チューブTをチューブホルダーに固定する。次に、キャップ確認部103が、センサによりチューブTにキャップCが装着されていることを確認する。次に、異物除去部104が、チューブT内にクリーンエアを吹き付けることにより、チューブT内の異物を除去する。そして、煉充填部105が、チューブTに内容物を充填する。 The tube T is supplied from the supply unit 101 of the filling machine P to the tube holder, and moves to the discharge unit 112 along the peripheral surface of the table. First, in the supply part 101, the new tube T is supplied to a tube holder in the state opened with those cap C side facing down. Next, the tube insertion unit 102 fixes the tube T to the tube holder by inserting the tube T against the tube holder. Next, the cap confirmation unit 103 confirms that the cap C is attached to the tube T by the sensor. Next, the foreign matter removing unit 104 removes foreign matter in the tube T by blowing clean air into the tube T. Then, the brick filling unit 105 fills the tube T with the contents.
 次に、マーク位置合せ部106が、カラーセンサによりチューブTのマークIを検出し、マークIが予め設定された所定方向を向くようにチューブTを位置合せする。次に、品種確認部107が、カメラによりチューブTの品種を確認する。そして、ヒートシール部108が、チューブTの開口部を熱溶融して圧着することによりヒートシールする。次に、包装ロット刻印部109が、エンドシール部Eに包装ロットを刻印する。そして、外観検査部110が、チューブTのデザインの位置を検査する。次に、Rカッター部111が、エンドシール部Eの端部をカットする。最後に、排出部112が、ダンパー式コンベア113によりチューブTを後工程に排出する。 Next, the mark alignment unit 106 detects the mark I of the tube T by the color sensor, and aligns the tube T so that the mark I faces a predetermined direction set in advance. Next, the product type confirmation unit 107 confirms the product type of the tube T using a camera. And the heat seal part 108 heat-seals by heat-melting and crimping | bonding the opening part of the tube T. FIG. Next, the packaging lot marking unit 109 marks the packaging lot on the end seal portion E. Then, the appearance inspection unit 110 inspects the design position of the tube T. Next, the R cutter part 111 cuts the end part of the end seal part E. Finally, the discharge unit 112 discharges the tube T to the subsequent process by the damper type conveyor 113.
 図4は、本実施形態による制御システムの構成を示す概略図である。
 制御システムは、充填機P内の外観検査部110においてチューブTのデザインの位置を検査する。制御システムは、照明1と、反射板2と、カメラ(撮像部)3と、画像処理装置4と、シーケンサ5とを含んで構成される。照明1、反射板2、及び、カメラ3は、充填機P内の外観検査部110に設置される。照明1は、充填機P内を流れるチューブTの裏面及び反射板に光を照射する。反射板(反射部材)2は、照明1からの光をチューブTの正面に反射する。カメラ3は、チューブTの正面を撮像して画像を生成し、生成した画像を画像処理装置4に出力する。以下、照明1と、反射板2と、カメラ3とから構成されるシステムを照明システムと称する。照明システムの詳細な構成は後述する。
FIG. 4 is a schematic diagram showing the configuration of the control system according to the present embodiment.
The control system inspects the design position of the tube T in the appearance inspection unit 110 in the filling machine P. The control system includes an illumination 1, a reflector 2, a camera (imaging unit) 3, an image processing device 4, and a sequencer 5. The illumination 1, the reflector 2, and the camera 3 are installed in the appearance inspection unit 110 in the filling machine P. The illumination 1 irradiates light to the back surface of the tube T flowing through the filling machine P and the reflector. The reflection plate (reflection member) 2 reflects light from the illumination 1 to the front surface of the tube T. The camera 3 captures the front side of the tube T to generate an image, and outputs the generated image to the image processing device 4. Hereinafter, a system composed of the illumination 1, the reflector 2, and the camera 3 is referred to as an illumination system. The detailed configuration of the illumination system will be described later.
 画像処理装置4は、カメラ3から入力された画像に基づいてチューブTにおけるデザインの左右のずれを検出する。そして、画像処理装置4は、検出結果に基づいてチューブTの良品又は不良品を判定し、判定結果をシーケンサ5に出力する。シーケンサ5は、入力された判定結果に基づき、充填機P内を流れるチューブT夫々の良品又は不良品を判定し、各チューブTにステータス情報(良品又は不良品)付与して記憶する。そして、シーケンサ5は、各チューブTのステータス情報に基づいてダンパー式コンベア113へ動作指示を出力する。例えば、シーケンサ5は、チューブTが良品である場合には、チューブTを生産ラインの後工程(第1の方向)に排出する動作指示をダンパー式コンベア113に出力する。一方、シーケンサ5は、チューブTが不良品である場合には、チューブTを生産ラインの系外(第2の方向)に排出する動作指示をダンパー式コンベア113に出力する。 The image processing device 4 detects a left / right shift of the design in the tube T based on the image input from the camera 3. Then, the image processing device 4 determines whether the tube T is good or defective based on the detection result, and outputs the determination result to the sequencer 5. The sequencer 5 determines whether each tube T flowing through the filling machine P is non-defective or defective based on the input determination result, and assigns status information (non-defective or defective) to each tube T and stores it. Then, the sequencer 5 outputs an operation instruction to the damper type conveyor 113 based on the status information of each tube T. For example, when the tube T is a non-defective product, the sequencer 5 outputs an operation instruction for discharging the tube T to a post-process (first direction) on the production line to the damper conveyor 113. On the other hand, when the tube T is a defective product, the sequencer 5 outputs an operation instruction for discharging the tube T out of the production line (second direction) to the damper conveyor 113.
 図5は、本実施形態による検査システムの機能構成を示すブロック図である。
 検査システムは、上述した制御システムにおいて用いられ、チューブTの良品又は不良品を判定するシステムである。検査システムは、照明システムと、画像処理装置4と、入力部6と、照明制御部7と、表示部8とを含んで構成される。照明システムの詳細な構成は後述する。
FIG. 5 is a block diagram showing a functional configuration of the inspection system according to the present embodiment.
The inspection system is a system that is used in the above-described control system and determines whether the tube T is a non-defective product or a defective product. The inspection system includes an illumination system, an image processing device 4, an input unit 6, an illumination control unit 7, and a display unit 8. The detailed configuration of the illumination system will be described later.
 入力部6は、照明1の照度を制御する制御値の入力を受け付ける。照明制御部7は、入力部6により入力された制御値に基づいて、照明1の照度を制御する。具体的には、照明制御部7は、例えば、照明1への供給電圧又は電流を変化させることにより、照明1の照度を制御する。表示部8は、カメラ3が撮像した画像を表示する。この構成により、作業者は、検査を実施する際に、表示部8に表示された画像を確認しながら、入力部6により照明1の照度を設定することができる。これにより、被検査物であるチューブTの大きさや形状、デザインに応じて照明1の照度を調整することができる。 The input unit 6 receives an input of a control value that controls the illuminance of the illumination 1. The illumination control unit 7 controls the illuminance of the illumination 1 based on the control value input by the input unit 6. Specifically, the illumination control unit 7 controls the illuminance of the illumination 1 by, for example, changing the supply voltage or current to the illumination 1. The display unit 8 displays an image captured by the camera 3. With this configuration, the operator can set the illuminance of the illumination 1 by the input unit 6 while confirming the image displayed on the display unit 8 when performing the inspection. Thereby, the illumination intensity of the illumination 1 can be adjusted according to the magnitude | size, shape, and design of the tube T which is a to-be-inspected object.
 カメラ3の撮像した画像に基づいてチューブTの良品又は不良品を判定する画像処理装置4は、画像入力部401と、エッジ検出部402と、ウィンドウ決定部403と、ずれ検出部404と、判定部405と、判定結果出力部406とを含んで構成される。画像処理装置4は、チューブTのマークIの位置に基づいてチューブTの良品又は不良品を判定する。画像入力部401は、カメラ3から画像の入力を受け付け、入力された画像を表示部8とエッジ検出部402とに出力する。エッジ検出部402は、入力された画像におけるチューブTの左端のエッジを検出する。ウィンドウ決定部403は、エッジ検出部402により検出された左端のエッジに基づいて、マークIが有るべき範囲であるマーク検出ウィンドウを決定する。 An image processing apparatus 4 that determines a non-defective product or a defective product of the tube T based on an image captured by the camera 3 includes an image input unit 401, an edge detection unit 402, a window determination unit 403, a deviation detection unit 404, and a determination. 405 and a determination result output unit 406. The image processing apparatus 4 determines whether the tube T is good or defective based on the position of the mark I on the tube T. The image input unit 401 receives an image input from the camera 3 and outputs the input image to the display unit 8 and the edge detection unit 402. The edge detection unit 402 detects the left edge of the tube T in the input image. The window determination unit 403 determines a mark detection window that is a range where the mark I should be based on the leftmost edge detected by the edge detection unit 402.
 ずれ検出部404は、ウィンドウ決定部403により決定されたマーク検出ウィンドウにマークIがあるか否かに基づいて、チューブTのデザインのずれを検出する。具体的には、ずれ検出部404は、マーク検出ウィンドウにおけるマーク色の画素数を計数し、計数した画素数が所定の範囲α内である場合に、マーク検出ウィンドウにマークIがあると判定する。範囲αの上限値と下限値とは予め設定されている。例えば、範囲αは、マーク検出ウィンドウ内にある画素のうち80%以上の画素等考えられる。一方、ずれ検出部404は、計数した画素数が範囲α外である場合に、マーク検出ウィンドウにマークIがないと判定し、チューブTのデザインのずれを検出する。判定部405は、ずれ検出部404における検出結果に基づき、チューブTの良品又は不良品を判定する。具体的には、判定部405は、デザインのずれが検出されなかった場合にチューブTを良品と判定し、デザインのずれが検出された場合にチューブTを不良品と判定する。判定結果出力部406は、判定部405による判定結果をシーケンサ5に送信する。 The deviation detection unit 404 detects a design deviation of the tube T based on whether or not the mark I is present in the mark detection window determined by the window determination unit 403. Specifically, the deviation detection unit 404 counts the number of pixels of the mark color in the mark detection window, and determines that the mark I is in the mark detection window when the counted number of pixels is within a predetermined range α. . The upper limit value and the lower limit value of the range α are set in advance. For example, the range α may be 80% or more of the pixels within the mark detection window. On the other hand, when the counted number of pixels is out of the range α, the deviation detection unit 404 determines that there is no mark I in the mark detection window, and detects a design deviation of the tube T. The determination unit 405 determines a non-defective product or a defective product of the tube T based on the detection result in the deviation detection unit 404. Specifically, the determination unit 405 determines that the tube T is a non-defective product when a design shift is not detected, and determines that the tube T is a defective product when a design shift is detected. The determination result output unit 406 transmits the determination result by the determination unit 405 to the sequencer 5.
 図6は、本実施形態による照明システムの設置位置を示す概略図である。
 図6において、チューブTの正面が向いている方向を前方と定義する。また、チューブTの裏面が向いている方向を後方と定義する。
 照明システムは、照明1と、反射板2と、カメラ3とを含んで構成される。照明システムは、充填機P内の外観検査部110に設置される。照明1と反射板2との間にチューブTを配置する。
FIG. 6 is a schematic diagram showing the installation position of the illumination system according to the present embodiment.
In FIG. 6, the direction in which the front of the tube T is facing is defined as the front. Moreover, the direction in which the back surface of the tube T faces is defined as the back.
The illumination system includes an illumination 1, a reflection plate 2, and a camera 3. The illumination system is installed in the appearance inspection unit 110 in the filling machine P. A tube T is disposed between the illumination 1 and the reflector 2.
 照明1は、LED(Light Emitting Diode)等の面光源であり、その光の色は白色である。照明1の横幅(又は縦幅)は、少なくともチューブTの横幅より大きい。照明1の縦幅(又は横幅)は、少なくともマークIの縦幅より大きい。照明1は、充填機P内の限られたスペース(例えば、奥行き35mm~95mm)に設置される。このため、照明1として薄型(例えば、厚さ約8mm)の照明を用いるのが好ましい。
 照明1は、その発光部を前方に向けて、チューブTより後方の位置に設置される。また、照明1は、反射板2と、充填機P内を流れるチューブTの裏面とを照射するよう設置される。ここで、照明1は、チューブTの裏面を、少なくともマークI下部より上方にあるチューブTの左右両端を含んで照射するよう設置される。
The illumination 1 is a surface light source such as an LED (Light Emitting Diode), and the color of the light is white. The horizontal width (or vertical width) of the illumination 1 is at least larger than the horizontal width of the tube T. The vertical width (or horizontal width) of the illumination 1 is at least larger than the vertical width of the mark I. The illumination 1 is installed in a limited space (for example, a depth of 35 mm to 95 mm) in the filling machine P. For this reason, it is preferable to use a thin (for example, about 8 mm thick) illumination as the illumination 1.
The illuminator 1 is installed at a position behind the tube T with its light emitting part facing forward. Moreover, the illumination 1 is installed so that the reflecting plate 2 and the back surface of the tube T flowing through the filling machine P may be irradiated. Here, the illumination 1 is installed so as to irradiate the back surface of the tube T including at least the left and right ends of the tube T above the lower part of the mark I.
 反射板2は、光を反射する板である。反射板2の反射面の材質はポリテトラフルオロエチレンである。ポリテトラフルオロエチレンは、鏡等に比べて光の拡散率が大きい。また、反射板2の色がチューブTに映り込まないように、反射板2の反射面の色は白色が好ましい。
 反射板2は、照明1から照射される光をチューブTのマークI周囲に反射するように、その反射面を後方に向けて、チューブTより前方の位置に設置される。光源(照明1)における光の照射方向(水平方向)に対する反射板2の反射面の角度はθである。角度θは、30度から60度であり、好ましくは40度から50度であり、より好ましくは45度である。
The reflecting plate 2 is a plate that reflects light. The material of the reflecting surface of the reflecting plate 2 is polytetrafluoroethylene. Polytetrafluoroethylene has a higher light diffusivity than a mirror or the like. Further, the color of the reflecting surface of the reflecting plate 2 is preferably white so that the color of the reflecting plate 2 does not appear in the tube T.
The reflecting plate 2 is installed at a position in front of the tube T with its reflecting surface facing rearward so that the light emitted from the illumination 1 is reflected around the mark I of the tube T. The angle of the reflecting surface of the reflecting plate 2 with respect to the light irradiation direction (horizontal direction) in the light source (illumination 1) is θ. The angle θ is 30 degrees to 60 degrees, preferably 40 degrees to 50 degrees, and more preferably 45 degrees.
 カメラ3は、CCD(Charge Coupled Device Image Sensor)カメラである。
 カメラ3は、その光学系を後方に向けて、チューブTより前方の位置に設置される。また、カメラ3は、充填機P内を流れるチューブTの正面を、少なくともマークIとチューブTの左右両端とを含んで撮像できるよう設置される。
The camera 3 is a CCD (Charge Coupled Device Image Sensor) camera.
The camera 3 is installed at a position in front of the tube T with its optical system facing rearward. Moreover, the camera 3 is installed so that the front surface of the tube T flowing through the filling machine P can be imaged including at least the mark I and the left and right ends of the tube T.
 照明1、反射板2及びカメラ3の高さ並びに反射板2の角度θは調整可能である。これにより、被検査物であるチューブTの大きさや形状、デザインに応じて照明1、反射板2及びカメラ3の位置を調整することができる。 The height of the illumination 1, the reflector 2 and the camera 3, and the angle θ of the reflector 2 can be adjusted. Thereby, the position of the illumination 1, the reflecting plate 2, and the camera 3 can be adjusted according to the magnitude | size, shape, and design of the tube T which is a test object.
 図6には、高さ140mm(符号h)のチューブTに対する照明1と反射板2とカメラ3の設置位置の一例が示されている。照明1は、チューブTの中心から55mm(符号i)後方であって、高さ112mm(符号j)の位置に設置される。すなわち、照明1は、チューブTの背面側に配置される。照明1の上端は、チューブTよりも上方に位置する。照明1の下端は、マークIよりも下方に位置する。反射板2は、照明1から100mm(符号k)前方の位置に角度θ=45度で設置される。すなわち、反射板2は、チューブTの第1面側であってチューブTよりも上方に配置される。反射板2は、チューブTの第1面と対向するように、照明1の光の照射方向に対して傾斜している。また、カメラ3は、チューブTの中心から130mm(符号l)前方であって、反射板2の下部から65mm(符号m)前方の位置に設置される。 FIG. 6 shows an example of the installation positions of the illumination 1, the reflector 2, and the camera 3 with respect to the tube T having a height of 140 mm (symbol h). The illumination 1 is installed 55 mm (symbol i) behind the center of the tube T and at a height of 112 mm (symbol j). That is, the illumination 1 is arranged on the back side of the tube T. The upper end of the illumination 1 is located above the tube T. The lower end of the illumination 1 is located below the mark I. The reflector 2 is installed at an angle θ = 45 degrees at a position 100 mm (symbol k) ahead of the illumination 1. That is, the reflecting plate 2 is disposed on the first surface side of the tube T and above the tube T. The reflecting plate 2 is inclined with respect to the light irradiation direction of the illumination 1 so as to face the first surface of the tube T. The camera 3 is installed 130 mm (symbol 1) in front of the center of the tube T and 65 mm (symbol m) in front of the lower part of the reflector 2.
 充填機Pは、チューブTを2個セットにして各工程を行う。このため、この照明システムを横に2つ並べ、2個のチューブTを略同時に撮像して検査してもよい。この場合、照明1の横幅を大きくして、1つの照明1で2個のチューブTを照射できるようにしてもよい。 The filling machine P performs each process by setting two tubes T. Therefore, two illumination systems may be arranged side by side, and the two tubes T may be imaged and inspected substantially simultaneously. In this case, the lateral width of the illumination 1 may be increased so that the two tubes T can be irradiated with one illumination 1.
 図7は、本実施形態による照明システムにより撮像された画像である。
 図7に示すように、照明1がチューブTの裏面を照射しているため、マークI下部より上方にあるチューブTの左右両端が鮮明に撮像される。すなわち、図7に示すように、カメラ3が撮像した画像においては、マークI下部より上方にあるチューブTの左右両端の背景に照明1(すなわち、照明1からの直接的な照射光)が写っている。このため、チューブTの左右両端を良好に検出することができる。また、反射板2により照明1の光を拡散させてマークIに照射しているため、ハレーションを防いでマークIを鮮明に撮像することができる。
FIG. 7 is an image captured by the illumination system according to the present embodiment.
As shown in FIG. 7, since the illumination 1 irradiates the back surface of the tube T, the left and right ends of the tube T above the lower part of the mark I are clearly imaged. That is, as shown in FIG. 7, in the image captured by the camera 3, the illumination 1 (that is, the direct irradiation light from the illumination 1) is reflected in the background of the left and right ends of the tube T above the lower part of the mark I. ing. For this reason, the right and left ends of the tube T can be detected well. Further, since the light of the illumination 1 is diffused by the reflector 2 and applied to the mark I, halation can be prevented and the mark I can be imaged clearly.
 次に、画像処理装置4が、上述した照明システムにより撮像された画像から、チューブTのデザインのずれを検出する処理について説明する。
 図8A~8Dは、本実施形態による画像処理装置4における良否判定処理の説明図である。
 まず、画像入力部401が、カメラ3から画像を取得する(図8A参照)。次に、エッジ検出部402が、予め設定してある所定の範囲である検査ウィンドウWにおいて、左から右へ走査し、色の変化が最も大きい箇所をチューブエッジGとして検出する(図8B参照)。次に、ウィンドウ決定部403が、チューブエッジGを基点として、マーク検出ウィンドウMを決定する(図8C,図8D参照)。具体的には、ウィンドウ決定部403は、チューブエッジGから所定画素分右にある領域をマーク検出ウィンドウMに設定する。
Next, a process in which the image processing device 4 detects a design deviation of the tube T from an image captured by the above-described illumination system will be described.
8A to 8D are explanatory diagrams of pass / fail judgment processing in the image processing apparatus 4 according to the present embodiment.
First, the image input unit 401 acquires an image from the camera 3 (see FIG. 8A). Next, the edge detection unit 402 scans from the left to the right in the inspection window W which is a predetermined range set in advance, and detects a portion having the largest color change as the tube edge G (see FIG. 8B). . Next, the window determining unit 403 determines the mark detection window M using the tube edge G as a base point (see FIGS. 8C and 8D). Specifically, the window determination unit 403 sets an area that is a predetermined pixel to the right of the tube edge G as the mark detection window M.
 次に、ずれ検出部404が、マーク検出ウィンドウM内でマーク色の画素を計数する。
 ずれ検出部404は、計数した画素数が範囲α内である場合にチューブTのデザインにずれがないことを検出する(図8C参照)。一方、ずれ検出部404は、計数した画素数が範囲α外である場合にチューブTのデザインにずれがあることを検出する(図8D)。最後に、判定部405が、デザインにずれがないチューブTを良品と判定し、デザインにずれがあるチューブTを不良品と判定する。例えば、図8Cに示すチューブTの場合、マーク検出ウィンドウMの位置にマークIが存在するため、マーク色の画素数は範囲α内である。このため、画像処理装置4は、図8Cに示すチューブTを良品と判定する。一方、図8Dに示すチューブTの場合、マーク検出ウィンドウMの位置にマークIが存在しないため、マーク色の画素数は「0」であり、範囲α外である。このため、画像処理装置4は、図8Dに示すチューブTを不良品と判定する。
Next, the deviation detection unit 404 counts the mark color pixels in the mark detection window M.
The deviation detection unit 404 detects that there is no deviation in the design of the tube T when the counted number of pixels is within the range α (see FIG. 8C). On the other hand, the deviation detection unit 404 detects that there is a deviation in the design of the tube T when the counted number of pixels is outside the range α (FIG. 8D). Finally, the determination unit 405 determines that the tube T without design deviation is a non-defective product, and determines that the tube T with design deviation is a defective product. For example, in the case of the tube T shown in FIG. 8C, since the mark I exists at the position of the mark detection window M, the number of pixels of the mark color is within the range α. For this reason, the image processing apparatus 4 determines that the tube T shown in FIG. 8C is a non-defective product. On the other hand, in the case of the tube T shown in FIG. 8D, since the mark I does not exist at the position of the mark detection window M, the number of pixels of the mark color is “0” and out of the range α. For this reason, the image processing apparatus 4 determines that the tube T illustrated in FIG. 8D is a defective product.
 次に、図9を参照して、画像処理装置3による良否判定処理について説明する。図9は、本実施形態による良否判定処理の手順を示すフローチャートである。
 まず、エッジ検出部402が、カメラ3から取得した画像において、検査ウィンドウWを左から右へ走査し、色の変化が最も大きい箇所をチューブエッジGとして検出する(ステップS101)。次に、ウィンドウ決定部403が、チューブエッジGを基点として、マーク検出ウィンドウMを決定する(ステップS102)。次に、ずれ検出部404が、マーク検出ウィンドウMにおけるマーク色の画素数を計数する(ステップS103)。そして、ずれ検出部404は、計数したマーク色の画素数が範囲α内(画素数が所定の閾値内)であるか否かを判定する(ステップS104)。計数した画素数が範囲α内である場合(ステップS104:Yes)、判定部405は、チューブTが良品(OK)であると判定し(ステップS105)、処理を終了する。一方、計数した画素数が範囲α内でない場合(ステップS104:No)に、判定部405は、チューブTが不良品(NG)であると判定し(ステップS106)、処理を終了する。
Next, with reference to FIG. 9, the quality determination process by the image processing apparatus 3 will be described. FIG. 9 is a flowchart showing a procedure of pass / fail judgment processing according to the present embodiment.
First, the edge detection unit 402 scans the inspection window W from the left to the right in the image acquired from the camera 3, and detects a portion having the largest color change as the tube edge G (step S101). Next, the window determination unit 403 determines the mark detection window M using the tube edge G as a base point (step S102). Next, the deviation detection unit 404 counts the number of pixels of the mark color in the mark detection window M (step S103). Then, the deviation detection unit 404 determines whether or not the counted number of pixels of the mark color is within the range α (the number of pixels is within a predetermined threshold) (step S104). When the counted number of pixels is within the range α (step S104: Yes), the determination unit 405 determines that the tube T is a non-defective product (OK) (step S105), and ends the process. On the other hand, when the counted number of pixels is not within the range α (step S104: No), the determination unit 405 determines that the tube T is a defective product (NG) (step S106), and ends the process.
 次に、本実施形態による照明システムによる撮像結果と、チューブTを直接照射した場合の撮像結果とを比較する。
 図10A~10Cは、本実施形態による照明システムにおけるカメラ3の撮像結果を示す。図10Aは、上述した照明システムの配置で反射板2の材質をポリテトラフルオロエチレンとした場合の撮像結果である。図10Bは、上述した照明システムの配置で反射板2を鏡とした場合の撮像結果である。比較のため、図10Cに、照明1からチューブTの正面を直接照射した場合の撮像結果を示す。
Next, the imaging result by the illumination system according to the present embodiment is compared with the imaging result when the tube T is directly irradiated.
10A to 10C show the imaging results of the camera 3 in the illumination system according to the present embodiment. FIG. 10A shows an imaging result when the reflector 2 is made of polytetrafluoroethylene in the above-described illumination system arrangement. FIG. 10B is an imaging result when the reflector 2 is a mirror in the arrangement of the illumination system described above. For comparison, FIG. 10C shows an imaging result when the front surface of the tube T is directly irradiated from the illumination 1.
 図10Cに示すように、チューブTの正面を直接照射して撮像すると、エンドシール部Eにおいてハレーションが発生するため、マークIが消え、更に、チューブTのチューブエッジGがかすむ。このため、チューブTを直接照射すると、画像処理によりマークIを検出することができなかった。これに対して、図10Bに示すように、照明システムにおいて鏡を反射板2に用いた場合には、直接照射した場合と比べるとハレーションを抑制することができるため、マークIを撮像することができる。しかしながら、鏡はポリテトラフルオロエチレンに比べて光の拡散率が低いため、ハレーションが残り、図示するようにマークIの色がかすむ場合や他の色(例えば、青)がマーク色に写る場合がある。このため、反射板2に鏡を用いた場合には、マークIの検出率が低下する。これらに対して、図10Aに示すように、本実施形態による照明システムにおいてポリテトラフルオロエチレンを反射板2に用いた場合には、ハレーションを防ぎ、マークI及びチューブエッジGを鮮明に撮像することができる。このため、この撮像画像に基づいて検査をした場合には良好な結果が得られた。これにより、上述した照明システムの配置で反射板2をポリテトラフルオロエチレンとした場合には、画像処理によりマークIをより精度良く検出することができる。 As shown in FIG. 10C, when imaging is performed by directly irradiating the front surface of the tube T, halation occurs at the end seal portion E, so that the mark I disappears and the tube edge G of the tube T becomes hazy. For this reason, when the tube T was directly irradiated, the mark I could not be detected by image processing. On the other hand, as shown in FIG. 10B, when a mirror is used for the reflecting plate 2 in the illumination system, halation can be suppressed as compared with the case of direct irradiation. it can. However, since the mirror has a lower light diffusivity than polytetrafluoroethylene, halation remains, and as shown in the figure, the color of the mark I may be blurred, or other colors (for example, blue) may appear in the mark color. is there. For this reason, when a mirror is used for the reflecting plate 2, the detection rate of the mark I decreases. On the other hand, as shown in FIG. 10A, when polytetrafluoroethylene is used for the reflector 2 in the illumination system according to the present embodiment, halation is prevented and the mark I and the tube edge G are imaged clearly. Can do. For this reason, a good result was obtained when the inspection was performed based on the captured image. Thereby, when the reflector 2 is made of polytetrafluoroethylene in the arrangement of the illumination system described above, the mark I can be detected with higher accuracy by image processing.
 図11は、本実施形態による検査システムの実験結果を示す。
 図11に示す表において、チューブ品質は、目視により良品又は不良品を判定した結果を示す。検査機判定は、検査システムによる良品(OK)又は不良品(NG)の判定結果を示す。図11に示すように、検査システムによる判定結果は、目視による判定結果と全て一致する。このように、本実施形態による検査システムは、従来のように目視した場合の検査品質を維持することができる。
FIG. 11 shows the experimental results of the inspection system according to the present embodiment.
In the table | surface shown in FIG. 11, tube quality shows the result of having determined the quality goods or inferior goods by visual observation. The inspection machine determination indicates a determination result of a non-defective product (OK) or a defective product (NG) by the inspection system. As shown in FIG. 11, the determination results obtained by the inspection system all match the visual determination results. Thus, the inspection system according to the present embodiment can maintain the inspection quality when visually observed as in the conventional case.
 図12は、本実施形態によるチューブT位置における照度変化を示すグラフである。
 このグラフにおいて、横軸は光源が発する光の強さ(照度)を制御する制御値(単位はツマミボリューム(Vol(Volume)))である。縦軸はチューブT位置における照度(単位はルクス(Lx))である。
 図12に示す線201は、チューブTの正面を照明1で直接照射した場合の照度変化を示す。線202は、本実施形態による照明システムにおいて反射板2に鏡を用いた場合の照度変化を示す。線203は、本実施形態による照明システムにおいて反射板にポリテトラフルオロエチレンを用いた場合の照度変化を示す。
 図12に示すように、本実施形態による照明システムを用いた場合におけるチューブTの照度は、制御値に対して略直線的に緩やかに変化する。このため、チューブTのデザインや形状に応じて照度をより細かく調整することができる。一方、チューブTの正面を直接照射した場合の照度は、制御値に対して変化が不安定であり、照度の調整が困難である。
 また、反射板2にポリテトラフルオロエチレンを用いた場合の照度は、反射板2に鏡を用いた場合に比べてより穏やかに変化する。これは、ポリテトラフルオロエチレンが鏡に比べて光の拡散率が大きいためである。このため、反射板2にポリテトラフルオロエチレンを用いた方が、鏡を用いた場合に比べてハレーションがより起きにくい。
FIG. 12 is a graph showing a change in illuminance at the tube T position according to the present embodiment.
In this graph, the horizontal axis represents a control value (unit: knob volume (Vol)) for controlling the intensity (illuminance) of light emitted from the light source. The vertical axis represents the illuminance at the tube T position (unit: lux (Lx)).
A line 201 illustrated in FIG. 12 indicates a change in illuminance when the front surface of the tube T is directly irradiated with the illumination 1. A line 202 indicates a change in illuminance when a mirror is used for the reflector 2 in the illumination system according to the present embodiment. A line 203 indicates a change in illuminance when polytetrafluoroethylene is used for the reflector in the illumination system according to the present embodiment.
As shown in FIG. 12, the illuminance of the tube T when the illumination system according to the present embodiment is used changes gently in a substantially linear manner with respect to the control value. For this reason, illumination intensity can be adjusted more finely according to the design and shape of the tube T. On the other hand, the illuminance when the front surface of the tube T is irradiated directly is unstable with respect to the control value, and it is difficult to adjust the illuminance.
Further, the illuminance when polytetrafluoroethylene is used for the reflecting plate 2 changes more gently than when a mirror is used for the reflecting plate 2. This is because polytetrafluoroethylene has a higher light diffusion rate than a mirror. For this reason, halation is less likely to occur when polytetrafluoroethylene is used for the reflector 2 than when a mirror is used.
 このように、本実施形態によれば、裏面からチューブTを照明1で照射し、照明1から照射される光を反射板2でチューブTの正面に反射する。このため、チューブT表面に光沢がある場合であっても、塵や塵の混入を防ぐためにカバーされた充填機P内で、ハレーションを防いでチューブTのマークIをより鮮明に撮像することができる。これにより、生産ライン上で精度良くチューブTの良品又は不良品を判定することができる。
 また、入力部6、照明制御部7及び表示部8を備えることにより、検査を行う作業者は、撮像された画像を確認しながら、チューブTのデザインや形状に応じて照明1の照度を微調整することができる。また、反射板2をポリテトラフルオロエチレンとしたことにより、照明1の光が拡散されて反射されるため、より細かくチューブTの正面に反射される光の照度を調整することができる。
Thus, according to this embodiment, the tube T is irradiated from the back surface with the illumination 1, and the light irradiated from the illumination 1 is reflected to the front surface of the tube T by the reflection plate 2. For this reason, even when the surface of the tube T is glossy, the mark I on the tube T can be imaged more clearly by preventing halation in the filling machine P that is covered to prevent dust and dust from entering. it can. Thereby, the non-defective product or the defective product of the tube T can be accurately determined on the production line.
In addition, by providing the input unit 6, the illumination control unit 7, and the display unit 8, an operator who performs the inspection can reduce the illuminance of the illumination 1 according to the design and shape of the tube T while checking the captured image. Can be adjusted. Further, since the reflector 2 is made of polytetrafluoroethylene, the light of the illumination 1 is diffused and reflected, so that the illuminance of the light reflected on the front surface of the tube T can be adjusted more finely.
 図9に示す各ステップを実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、チューブTの良品又は不良品を判定する処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
 「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
A program for realizing each step shown in FIG. 9 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may perform the process which determines a non-defective product. Here, the “computer system” may include an OS and hardware such as peripheral devices.
“Computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, and a storage such as a hard disk built in a computer system. Refers to the device.
 「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
 上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 上記プログラムは、前述した機能の一部を実現するためのものであっても良い。
 前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
“Computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic Random) in a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Access Memory)) is also included, which holds a program for a certain period of time.
The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. A “transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
The program may be for realizing a part of the functions described above.
What can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 例えば、本実施形態では、反射板2の反射面の材質をポリテトラフルオロエチレンとしたが、これに限られない。拡散率の大きい材質であれば、例えば、ポリプロピレンやポリエチレン等の他の材質を反射板2に用いてもよい。
 また、本実施形態では、照明1をLEDとしたが、これに限られない。例えば、照明1は、蛍光灯やハロゲンランプ等他の光源を用いてもよい。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, in this embodiment, although the material of the reflective surface of the reflecting plate 2 is polytetrafluoroethylene, it is not limited to this. As long as the material has a high diffusivity, other materials such as polypropylene and polyethylene may be used for the reflector 2.
In the present embodiment, the illumination 1 is an LED, but is not limited thereto. For example, the illumination 1 may use another light source such as a fluorescent lamp or a halogen lamp.
 本発明は、照明システム、検査システム及び制御システムに適用することができる。 The present invention can be applied to lighting systems, inspection systems, and control systems.
 1      照明
 2   反射板
 3   カメラ
 4   画像処理装置
 5   シーケンサ
 6   入力部
 7   照明制御部
 8   表示部
 401      画像入力部
 402      エッジ検出部
 403      ウィンドウ決定部
 404      ずれ検出部
 405      判定部
 406      判定結果出力部
 T   チューブ(被検査物)
DESCRIPTION OF SYMBOLS 1 Illumination 2 Reflector 3 Camera 4 Image processing apparatus 5 Sequencer 6 Input part 7 Illumination control part 8 Display part 401 Image input part 402 Edge detection part 403 Window determination part 404 Deviation detection part 405 Determination part 406 Determination result output part T Tube ( Inspected)

Claims (5)

  1.  マークの印刷された被検査物のうち前記マークのある面であって前記マーク周囲に光沢のある第1の面を撮像し、撮像した画像に基づいて前記被検査物のデザインの位置を検査する検査システムにおいて用いられる照明システムであって、
     前記被検査物の前記第1の面の背面側に配置され、前記被検査物よりも上方に位置する上端と前記マークよりも下方に位置する下端とを有し、光を照射する照明と、
     前記被検査物の前記第1面側であって前記被検査物よりも上方に配置され、前記被検査物の第1面と対向するように前記照明の光の照射方向に対して傾斜し、前記照明からの光を反射する反射部材とを備え、
     前記照明は、前記被検査物のうち前記第1の面の背面に光を直接的に照射するとともに、前記反射部材を介して、前記被検査物の前記第1面に光を間接的に照射する照明システム。
    Of the inspected object on which the mark is printed, the surface having the mark and the first glossy surface around the mark are imaged, and the design position of the inspected object is inspected based on the captured image. An illumination system used in an inspection system,
    An illumination that is disposed on the back side of the first surface of the object to be inspected, has an upper end located above the object to be inspected, and a lower end located below the mark, and emits light;
    The first surface side of the inspection object is located above the inspection object, and is inclined with respect to the illumination direction of the illumination light so as to face the first surface of the inspection object, A reflective member that reflects light from the illumination,
    The illumination directly irradiates light to the back surface of the first surface of the inspection object and indirectly irradiates light to the first surface of the inspection object via the reflection member. Lighting system.
  2.  前記反射部材に対して前記照明とは反対側に配置され、前記被検査物の第1の面を撮像することにより、少なくとも前記マークと前記被検査物の左右両端と含む画像を得る撮像部
     をさらに備える請求項1に記載の照明システム。
    An imaging unit that is arranged on the opposite side of the illumination with respect to the reflecting member and obtains an image including at least the mark and the left and right ends of the inspection object by imaging the first surface of the inspection object. The lighting system according to claim 1, further comprising:
  3.  前記反射部材の反射面の材質はポリテトラフルオロエチレンである
     請求項1又は2に記載の照明システム。
    The illumination system according to claim 1, wherein a material of a reflection surface of the reflection member is polytetrafluoroethylene.
  4.  請求項1乃至3のいずれか一項に記載の照明システムを用いて前記被検査物のデザインの位置を検出する検査システムであって、
     前記被検査物のうち前記第1の面を撮像する撮像部と、
     前記撮像部により撮像された画像において、前記マークの有るべき範囲を決定する決定部と、
     前記決定部により決定された範囲における前記マークの有無に基づいて前記被検査物のデザインの位置を検出する検出部と、
     を備える検査システム。
    An inspection system that detects the position of the design of the object to be inspected using the illumination system according to claim 1,
    An imaging unit for imaging the first surface of the inspection object;
    A determination unit for determining a range of the mark in the image captured by the imaging unit;
    A detection unit that detects the position of the design of the inspection object based on the presence or absence of the mark in the range determined by the determination unit;
    An inspection system comprising:
  5.  請求項4に記載の検査システムを用いて生産ラインを流れる被検査物の良品又は不良品を判定する制御システムであって、
     前記検出部による検出結果に基づいて、前記生産ラインを流れる被検査物夫々の良品又は不良品を判定する制御部
     を備える制御システム。
    A control system for determining a non-defective product or a defective product of an inspection object flowing through a production line using the inspection system according to claim 4,
    A control system comprising: a control unit that determines a non-defective product or a defective product of each inspection object flowing through the production line based on a detection result by the detection unit.
PCT/JP2012/063732 2011-05-30 2012-05-29 Lighting system, inspection system and control system WO2012165419A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137019655A KR101955238B1 (en) 2011-05-30 2012-05-29 Lighting system, inspection system and control system
CN201280026172.5A CN103562710B (en) 2011-05-30 2012-05-29 Illuminator, check system and control system
JP2013518097A JP5847176B2 (en) 2011-05-30 2012-05-29 Lighting system, inspection system and control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-120962 2011-05-30
JP2011120962 2011-05-30

Publications (1)

Publication Number Publication Date
WO2012165419A1 true WO2012165419A1 (en) 2012-12-06

Family

ID=47259273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063732 WO2012165419A1 (en) 2011-05-30 2012-05-29 Lighting system, inspection system and control system

Country Status (4)

Country Link
JP (1) JP5847176B2 (en)
KR (1) KR101955238B1 (en)
CN (1) CN103562710B (en)
WO (1) WO2012165419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196915A (en) * 2018-05-07 2019-11-14 株式会社リブドゥコーポレーション Package inspection method and package inspection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114424046A (en) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 Inspection method, program, and inspection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161043A (en) * 1985-11-22 1987-07-17 Eisai Co Ltd Method for detecting contaminant adhered to container
JPH0643102A (en) * 1992-07-23 1994-02-18 Matsushita Electric Ind Co Ltd Observing apparatus for chip
JPH06213829A (en) * 1993-01-20 1994-08-05 Mitsubishi Electric Corp Inspecting system of defect of tube article
JP2001116703A (en) * 1999-10-21 2001-04-27 M I L:Kk Method and apparatus for discriminating flotage in container
JP2004205278A (en) * 2002-12-24 2004-07-22 Morinaga Milk Ind Co Ltd Superposed-object inspection device
JP2004340770A (en) * 2003-05-16 2004-12-02 Sankyo:Kk Imaging inspection system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938881A (en) * 1988-08-01 1990-07-03 The Lubrizol Corporation Lubricating oil compositions and concentrates
JPH05281079A (en) * 1992-04-03 1993-10-29 Kao Corp Inspection method of sealing part of fluide container and inspection apparatus
JPH06229927A (en) * 1993-02-03 1994-08-19 Nireco Corp Reflector for inspection
JPH0738950A (en) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd Position registration system in mobile communication
JPH11295034A (en) * 1998-04-09 1999-10-29 Pola Chem Ind Inc Inspecting device for vessel
JP2004012294A (en) * 2002-06-06 2004-01-15 Suntory Ltd Label inspection method and label inspection device
JP2004163267A (en) * 2002-11-13 2004-06-10 Canon Inc Apparatus for detecting mark on light transmitting medium having lustrous surface
JP4269316B2 (en) * 2003-10-16 2009-05-27 キリンテクノシステム株式会社 Label inspection equipment
JP2005134358A (en) * 2003-10-28 2005-05-26 Yoshihiko Takashima System for imaging plane and four-directional side faces by one camera, using four inclined mirrors
JP4339162B2 (en) 2004-03-31 2009-10-07 キリンテクノシステム株式会社 Surface inspection device
CN100533132C (en) * 2004-09-06 2009-08-26 欧姆龙株式会社 Substrate inspection method and apparatus
JP2006226724A (en) * 2005-02-15 2006-08-31 Nec Robotics Eng Ltd Label inspection method and label inspection device
JP2007161257A (en) 2005-12-09 2007-06-28 Nihon Tetra Pak Kk Appearance inspecting device for paper-made packaging container
JP2007240432A (en) * 2006-03-10 2007-09-20 Omron Corp Defect inspection device and defect inspection method
DE102006047150B4 (en) * 2006-10-05 2013-01-17 Krones Aktiengesellschaft Inspection device for containers
DE102007054657A1 (en) * 2006-11-15 2008-07-03 Loell Industry Solutions Gmbh Visualization and/or examination arrangement for e.g. glass bottle, has reflector system providing images of sample from different directions, where images are subjectable to image analysis and/or image comparison in image evaluation device
KR100913484B1 (en) * 2008-02-19 2009-08-25 에스엔유 프리시젼 주식회사 Dark field inspection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161043A (en) * 1985-11-22 1987-07-17 Eisai Co Ltd Method for detecting contaminant adhered to container
JPH0643102A (en) * 1992-07-23 1994-02-18 Matsushita Electric Ind Co Ltd Observing apparatus for chip
JPH06213829A (en) * 1993-01-20 1994-08-05 Mitsubishi Electric Corp Inspecting system of defect of tube article
JP2001116703A (en) * 1999-10-21 2001-04-27 M I L:Kk Method and apparatus for discriminating flotage in container
JP2004205278A (en) * 2002-12-24 2004-07-22 Morinaga Milk Ind Co Ltd Superposed-object inspection device
JP2004340770A (en) * 2003-05-16 2004-12-02 Sankyo:Kk Imaging inspection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196915A (en) * 2018-05-07 2019-11-14 株式会社リブドゥコーポレーション Package inspection method and package inspection apparatus
JP6997036B2 (en) 2018-05-07 2022-01-17 株式会社リブドゥコーポレーション Package inspection method and package inspection device

Also Published As

Publication number Publication date
KR101955238B1 (en) 2019-03-08
KR20140012967A (en) 2014-02-04
JP5847176B2 (en) 2016-01-20
CN103562710A (en) 2014-02-05
CN103562710B (en) 2015-09-16
JPWO2012165419A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6570977B2 (en) Surface inspection apparatus and surface inspection method
JP2011089978A (en) Device and method for inspecting container with label
JP4876201B1 (en) Glass bottle inspection device and telecentric lens unit
JP2016540994A (en) Wet ophthalmic lens inspection system and inspection method
KR20080031922A (en) Apparatus and methods for inspecting a composite structure for defects
CA2987968A1 (en) System and method for inspecting containers using multiple radiation sources
JP4647643B2 (en) Defect inspection device and PTP packaging machine
JP2011145182A (en) Inspection device of screw thread
JP5294427B2 (en) Glass bottle inspection equipment
JP5847176B2 (en) Lighting system, inspection system and control system
JP4950951B2 (en) Light transmissive film defect detection device and light transmissive film cutting device
JP2007033339A (en) Method and device for determining detection of fisheye
JP2017166903A (en) Defect inspection device and defect inspection method
JP6518911B2 (en) Container inspection apparatus and inspection method
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
KR100633798B1 (en) Apparatus for testing installation condition and outer shape of a semiconductor
JP2002131239A (en) Apparatus and method for inspection of foreign body
JP2004117103A (en) Label tear inspection device of vessel
JP5256507B2 (en) Multilayer preform inspection method and multilayer preform inspection apparatus
JP2021047060A (en) Device and method for inspecting container
JPH02103453A (en) Transparent-container checking apparatus
JP2008224634A (en) Detection device of foreign matter in filling liquid for specimen, and inspection method of filling liquid for specimen
KR20110117424A (en) Chip led surface inspection apparatus and method
JPH0868767A (en) Apparatus for inspecting flaw of body part of bottle
KR100544501B1 (en) Apparatus for detecting surface defects on cold rolled strip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518097

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137019655

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792279

Country of ref document: EP

Kind code of ref document: A1