JP5254265B2 - Resin composition for sealing electronic parts and lid for sealing electronic parts using the same - Google Patents

Resin composition for sealing electronic parts and lid for sealing electronic parts using the same Download PDF

Info

Publication number
JP5254265B2
JP5254265B2 JP2010053697A JP2010053697A JP5254265B2 JP 5254265 B2 JP5254265 B2 JP 5254265B2 JP 2010053697 A JP2010053697 A JP 2010053697A JP 2010053697 A JP2010053697 A JP 2010053697A JP 5254265 B2 JP5254265 B2 JP 5254265B2
Authority
JP
Japan
Prior art keywords
electronic component
resin composition
semi
sealing
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010053697A
Other languages
Japanese (ja)
Other versions
JP2011184639A (en
Inventor
允義 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2010053697A priority Critical patent/JP5254265B2/en
Publication of JP2011184639A publication Critical patent/JP2011184639A/en
Application granted granted Critical
Publication of JP5254265B2 publication Critical patent/JP5254265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は固体撮像素子、水晶振動子、またはレーザーピックアップ等の電子部品素子を中空のパッケージに収納して気密封止する際に用いられる電子部品封止用樹脂組成物及びそれを用いた電子部品封止用蓋体に関する。   The present invention relates to a resin composition for encapsulating an electronic component that is used when an electronic component element such as a solid-state imaging device, a crystal resonator, or a laser pickup is housed in a hollow package and hermetically sealed, and an electronic component using the same The present invention relates to a sealing lid.

従来より、固体撮像素子、水晶振動子等の電子部品素子を、セラミック等のパッケージに収納し、これを有機系接着剤または無機系接着剤からなる電子部品封止用樹脂組成物を用いて蓋材で気密封止することが行われている。
すなわち、電子部品素子は、パッケージ本体に収納した後、パッケージ本体と蓋材との間に電子部品封止用樹脂組成物を介在させ、パッケージ本体と蓋材とを加圧しながら加熱して該樹脂組成物を溶かし、パッケージ本体と蓋材とを接着して気密封止させるものである。
Conventionally, electronic component elements such as solid-state imaging devices and crystal resonators are housed in a package such as ceramic, and this is covered with a resin composition for sealing electronic components made of an organic adhesive or an inorganic adhesive. The material is hermetically sealed.
That is, after the electronic component element is housed in the package body, the resin composition for sealing the electronic component is interposed between the package body and the lid material, and the package body and the lid material are heated while being pressed to apply the resin. The composition is melted, and the package body and the lid are bonded and hermetically sealed.

従来から電子部品封止用樹脂組成物としては、エポキシ樹脂を主体とした半硬化状の接着剤が使用されていた(例えば、特許文献1及び特許文献2参照)。このような従来の半硬化状の接着剤は、硬化温度が150℃以上を必要とし、硬化時間も3時間以上を要していた。
しかし、近年固体撮像素子や半導体レーザー用のパッケージ本体と蓋材とを接着して気密封止させる電子部品封止用樹脂組成物は、基材の耐熱性または素子の耐熱性の問題及びアウトガスによる汚染の問題から、硬化温度が低く短時間で硬化が完結し、かつ低アウトガスであるものが要求されている。
低温短時間硬化には硬化剤または硬化促進剤をより低温で反応が進行するものを使用する事で解決可能である。しかし、この手法では硬化速度が速いため樹脂組成物の半硬化状態を制御、維持する事ができず、上記電子部品用封止蓋材として用いることができない。
一方、上記のような要求を満たす気密封止用の接着剤として紫外線硬化型接着剤が使用される場合があった。しかし、パッケージ本体と蓋材との気密性の問題から十分に満足できる紫外線硬化型接着剤がいまだ得られていないのが現状である。
Conventionally, a semi-cured adhesive mainly composed of an epoxy resin has been used as a resin composition for sealing an electronic component (see, for example, Patent Document 1 and Patent Document 2). Such a conventional semi-cured adhesive requires a curing temperature of 150 ° C. or more, and a curing time of 3 hours or more.
However, in recent years, the resin composition for electronic component sealing that seals and seals the package body for a solid-state imaging device or a semiconductor laser and a lid material is caused by problems of heat resistance of the substrate or heat resistance of the device and outgas. Due to the problem of contamination, there is a demand for a curing temperature that is low and that curing can be completed in a short time and has low outgas.
The low-temperature and short-time curing can be solved by using a curing agent or a curing accelerator whose reaction proceeds at a lower temperature. However, since this method has a high curing rate, the semi-cured state of the resin composition cannot be controlled and maintained, and cannot be used as the sealing lid material for electronic parts.
On the other hand, an ultraviolet curable adhesive may be used as an airtight sealing adhesive that satisfies the above requirements. However, under the present circumstances, an ultraviolet curable adhesive that can be fully satisfied has not yet been obtained due to the problem of airtightness between the package body and the lid.

特開平1−310565号公報JP-A-1-310565 特開平8−143646号公報JP-A-8-143646

本発明は前記事情を考慮したものであり、電子部品素子を収納するパッケージ本体と蓋材とを十分な信頼性をもって気密封止することができ、半硬化制御及び維持保存が可能でありながら且つ従来のものよりも低アウトガス、低温、短時間で硬化することが可能な電子部品封止用樹脂組成物及びそれを用いた電子部品封止用蓋体を提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and the package body for housing the electronic component element and the lid member can be hermetically sealed with sufficient reliability, while being able to be semi-cured and maintained and stored. An object of the present invention is to provide an electronic component sealing resin composition that can be cured at a lower outgas, lower temperature, and shorter time than conventional ones, and an electronic component sealing lid using the same.

本発明の電子部品封止用樹脂組成物は、エポキシ樹脂からなる熱硬化性樹脂、芳香族アミン類または脂環式アミン類からなる半硬化剤、イミダゾール系のアダクト型潜在性硬化剤、ホウ酸エステル化合物からなる安定化剤を含有することを特徴とする
また、更にエラストマーやイミダゾール類からなる反応促進剤を含有させたことが好ましい
電子部品封止用蓋体は、上記電子部品封止用樹脂組成物が、半硬化状態で基体上に任意の形状に形成されていることを特徴とする。
The resin composition for encapsulating electronic components of the present invention comprises a thermosetting resin composed of an epoxy resin , a semi-curing agent composed of an aromatic amine or an alicyclic amine, an imidazole-based adduct-type latent curing agent , boric acid It contains a stabilizer comprising an ester compound .
Further, it is preferable to contain a reaction accelerator consisting of a further in e elastomer and imidazoles.
The electronic component sealing lid is characterized in that the resin composition for sealing an electronic component is formed in an arbitrary shape on a substrate in a semi-cured state.

本発明によれば、電子部品素子を収納するパッケージ本体と蓋材とを十分な信頼性をもって気密封止することができ、半硬化制御及び維持保存が可能でありながら且つ従来のものよりも低アウトガス、低温、短時間で硬化することが可能な電子部品封止用樹脂組成物及びそれを用いた電子部品封止用蓋体を提供することができる。   According to the present invention, it is possible to hermetically seal the package main body and the lid member for housing the electronic component element with sufficient reliability, and while being capable of semi-curing control and maintenance storage, it is lower than the conventional one. It is possible to provide an electronic component sealing resin composition that can be cured in an outgas, low temperature, and short time, and an electronic component sealing lid using the same.

本発明の電子部品封止用蓋体を示した説明図である。It is explanatory drawing which showed the electronic component sealing lid body of this invention. 本発明の別の電子部品封止用蓋体を示した説明図である。It is explanatory drawing which showed another electronic component sealing lid body of this invention. 本発明の別の電子部品封止用蓋体を示した説明図である。It is explanatory drawing which showed another electronic component sealing lid body of this invention. 本発明の別の電子部品封止用蓋体を示した説明図である。It is explanatory drawing which showed another electronic component sealing lid body of this invention.

以下、本発明を詳細に説明する。
本発明でいう熱硬化性樹脂としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ユリア樹脂、メラミン樹脂等が挙げられる。この中でも特にエポキシ樹脂が好ましい。本発明でいうエポキシ樹脂としては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、グリシジルアミンから選ばれた1種または2種以上の液状エポキシ樹脂が好ましい。
これらの樹脂のうち、室温で液状のものがパッケージ本体や蓋材などの基体に塗布しやすいので好ましい。しかしながら、固形のエポキシ樹脂でも、例えば、液状のエポキシ樹脂と混合したり、あるいは、反応性希釈剤を添加することによって、使用することが可能である。
また、塗布する際の温度を上昇させることによって、使用する樹脂の粘度を下げて使用すれば、室温で固形のエポキシ樹脂を用いることができ、さらに液状硬化剤や反応性希釈剤に固形のエポキシ樹脂を分散して用いることもできる。
熱硬化性樹脂の含有量は、電子部品封止用樹脂組成物中、1〜80質量%であることが好ましい。熱硬化性樹脂の量が1質量%より少ないと十分な耐熱性が得られない場合があり、80質量%より多いと内部応力が大きくなりすぎて脆くなり耐熱信頼性が劣り、作業性も悪くなる場合がある。また、更に熱硬化性樹脂の含有量は1〜60質量%が好ましく、1〜60質量%にすることによって、内部応力が比較的小さくかつガラス転移温度が高いものが得られるため、優れた耐熱信頼性の樹脂組成物を得ることができる。
Hereinafter, the present invention will be described in detail.
Examples of the thermosetting resin in the present invention include phenol resin, furan resin, epoxy resin, unsaturated polyester resin, polyimide resin, urea resin, and melamine resin. Among these, an epoxy resin is particularly preferable. As the epoxy resin referred to in the present invention, one or two or more liquid epoxy resins selected from bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and glycidylamine are preferable.
Among these resins, those that are liquid at room temperature are preferable because they are easily applied to a substrate such as a package body or a lid. However, solid epoxy resins can be used, for example, by mixing with liquid epoxy resins or by adding a reactive diluent.
In addition, if the viscosity of the resin used is lowered by increasing the temperature at the time of application, a solid epoxy resin can be used at room temperature, and solid epoxy can be used as a liquid curing agent or reactive diluent. A resin can be dispersed and used.
It is preferable that content of a thermosetting resin is 1-80 mass% in the resin composition for electronic component sealing. When the amount of the thermosetting resin is less than 1% by mass, sufficient heat resistance may not be obtained. When the amount is more than 80% by mass, the internal stress becomes excessively brittle, resulting in poor heat resistance reliability and poor workability. There is a case. Further, the content of the thermosetting resin is preferably 1 to 60% by mass, and by setting the content to 1 to 60% by mass, a product having a relatively low internal stress and a high glass transition temperature can be obtained. A reliable resin composition can be obtained.

本発明においては、エポキシ樹脂成分を半硬化させる目的で潜在性硬化剤とは異なる別の半硬化剤を含有させる。半硬化させる際に潜在性硬化剤を活性化させてはならず、潜在性を維持する温度範囲下で使用できる半硬化剤に限られる。そのような半硬化剤として、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン類もしくは脂環式アミン類が好ましく、より低温で半硬化とするために芳香族アミン及びその誘導体を用いることが好ましい。
熱硬化性樹脂に対する半硬化剤の含有割合は、当量比0.2〜1.0の範囲が耐熱性や作業性の面から好適である。当量比が0.2より小さいと半硬化状態を得るのに時間がかかり、1.0より多いと半硬化状態を得るのが困難となる。
In the present invention, another semi-curing agent different from the latent curing agent is contained for the purpose of semi-curing the epoxy resin component. The latent curing agent must not be activated during the semi-curing, and is limited to a semi-curing agent that can be used in a temperature range that maintains the potential. As such a semi-curing agent, aromatic amines or alicyclic amines such as diaminodiphenylmethane and diaminodiphenylsulfone are preferable, and aromatic amines and derivatives thereof are preferably used in order to achieve semi-curing at a lower temperature.
The content ratio of the semi-curing agent to the thermosetting resin is preferably in the range of an equivalent ratio of 0.2 to 1.0 from the viewpoint of heat resistance and workability. If the equivalent ratio is less than 0.2, it takes time to obtain a semi-cured state, and if it is more than 1.0, it is difficult to obtain a semi-cured state.

本発明でいう潜在性硬化剤は加熱したときに、熱硬化性樹脂を完全硬化するものである。潜在性硬化剤としては、さまざまな潜在性硬化剤を一種または複数種選択して使用することができる。特にアミン系のアダクト型潜在性硬化剤またはイミダゾール系のアダクト型潜在性硬化剤が好ましく、潜在性を有するアミン化合物、およびアミンアダクト類等の変性アミン類が挙げられる。変性アミン類には、アミン化合物またはアミンアダクト類のコアの表面をアミンの変性物(表面のアダクト化等)のシェルが囲むコアシェル型の硬化剤(マイクロカプセル)、およびそれらがエポキシ樹脂と混合された状態にあるマスターバッチ型の硬化剤が含まれる。   The latent curing agent as used in the present invention completely cures the thermosetting resin when heated. As the latent curing agent, one or a plurality of various latent curing agents can be selected and used. In particular, amine-based adduct-type latent curing agents or imidazole-based adduct-type latent curing agents are preferable, and examples thereof include latent amine compounds and modified amines such as amine adducts. The modified amines include a core-shell type curing agent (microcapsule) in which the surface of the core of an amine compound or amine adducts is surrounded by a shell of a modified amine (such as surface adduct), and these are mixed with an epoxy resin. A masterbatch-type curing agent in a heated state is included.

本発明でいう安定化剤としては、ホウ酸のアルキルまたはアリールエステルを単独あるいはこれにフェノール樹脂を組み合わせて用いられる。ホウ酸エステルはホウ酸のアルキルまたはアリールエステルであり、具体的にはホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリフェニルなどである。本発明において、熱硬化性樹脂100質量部に対し、ホウ酸エステルの含有量は5.0〜15.0質量部の範囲とすることが反応性、物性面から好ましい。特に、これより配合量が少ないと保存安定性改善効果が得られないし、この量を超えると硬化反応性が極端に低下したり、逆に保存安定性が悪くなることがあるので好ましくない。   As the stabilizer referred to in the present invention, an alkyl or aryl ester of boric acid is used alone or in combination with a phenol resin. The boric acid ester is an alkyl or aryl ester of boric acid, specifically, trimethyl borate, triethyl borate, tributyl borate, triphenyl borate and the like. In the present invention, the boric acid ester content is preferably in the range of 5.0 to 15.0 parts by mass with respect to 100 parts by mass of the thermosetting resin from the viewpoint of reactivity and physical properties. In particular, if the blending amount is less than this, the effect of improving the storage stability cannot be obtained, and if this amount is exceeded, the curing reactivity may be extremely lowered, or conversely, the storage stability may be deteriorated.

本発明では基材との接着性、密着性および接着時における基材間に発生する応力を緩和させる目的としてエラストマーを含有させることが好ましい。エラストマーとしては、特に規定されないが、例えば、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、二トリルゴム、ブチルゴム、エチレン−プロピレンゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、多硫化ゴムなどのゴム類、また、熱可塑性エラストマー(以下、TPEと略称する)としてスチレン系TPE、オレフィン系TPE、ウレタン系TPE、エステル系TPE、アミド系TPE、天然ゴム系TPE、ポリ塩化ビニル(PVC)系TPEを挙げることができる。これらのエラストマーは、単独もしくは併用して用いることができる。本発明において、熱硬化性樹脂100質量部に対し、エラストマー含有量は5.0〜15.0質量部の範囲とすることが反応性、物性面から好ましい。   In the present invention, it is preferable to contain an elastomer for the purpose of relieving the adhesiveness and adhesion to the substrate and the stress generated between the substrates at the time of adhesion. The elastomer is not particularly defined, but for example, isoprene rubber, butadiene rubber, styrene butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, acrylic rubber, silicone rubber, fluorine rubber, urethane rubber, polysulfide rubber, etc. Styrene-type TPE, olefin-type TPE, urethane-type TPE, ester-type TPE, amide-type TPE, natural rubber-type TPE, polyvinyl chloride (PVC) type as thermoplastic elastomers and thermoplastic elastomers (hereinafter abbreviated as TPE) Mention may be made of TPE. These elastomers can be used alone or in combination. In the present invention, the elastomer content is preferably in the range of 5.0 to 15.0 parts by mass with respect to 100 parts by mass of the thermosetting resin in terms of reactivity and physical properties.

本発明の電子部品封止用樹脂組成物には、反応性希釈剤、反応促進剤、充填剤、カップリング剤等を含有させてもよい。
反応性希釈剤としては、電子部品封止用樹脂組成物の粘度調整を行うことができ、パッケージを封止する際にガス化して収納された電子部品素子の特性に影響を与えないものであれば、いかなるものでも使用することができる。
反応促進剤としては、高温下において短時間硬化を目的とする場合に、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール等のイミダゾール類、m−フェニルレンジアミン、ジアミノジフェニルエーテル、三フッ化ホウ素モノエチルアミン錯塩等のアミン類、トリフェニルフォスフィン、カルボン酸等が挙げられる。
充填剤としては、シリカ、石英粉、アルミナ、炭酸カルシウム、酸化マグネシウム、酸化亜鉛等が挙げられる。
また、本発明における前記電子部品封止用樹脂組成物の粘度は、室温にて液状のものが好ましく、特に25℃において1〜1000000センチポイズの範囲が好ましい。しかしながら、室温において固形であっても加熱して液状になるものであれば、本発明において使用可能である。
The resin composition for sealing an electronic component of the present invention may contain a reactive diluent, a reaction accelerator, a filler, a coupling agent and the like.
As the reactive diluent, it is possible to adjust the viscosity of the resin composition for encapsulating an electronic component, and it does not affect the characteristics of the electronic component element that is gasified and stored when the package is sealed. Anything can be used.
Examples of the reaction accelerator include imidazoles such as 2-ethyl-4-methylimidazole and 2-undecylimidazole, m-phenylrangeamine, diaminodiphenyl ether, and trifluoride for the purpose of curing at high temperature for a short time. Examples include amines such as boron monoethylamine complex salt, triphenylphosphine, carboxylic acid and the like.
Examples of the filler include silica, quartz powder, alumina, calcium carbonate, magnesium oxide, and zinc oxide.
The viscosity of the resin composition for sealing an electronic component in the present invention is preferably liquid at room temperature, and particularly preferably in the range of 1 to 1000000 centipoise at 25 ° C. However, even if it is solid at room temperature, it can be used in the present invention as long as it becomes liquid upon heating.

本発明の電子部品封止用蓋体は、上述の電子部品封止用樹脂組成物を半硬化状態で基体上に任意の形状に形成されて得られるものである。ここでいう半硬化状態とはBステージ状態ともいわれている状態のことをいう。この状態は、熱硬化性樹脂と半硬化剤において2次元的に反応が進行し、直鎖状の高分子量体として存在する状態をいう。この状態は熱硬化性樹脂でありながら、一方で熱可塑性樹脂の性質を持ち、加熱により溶融するとともに、一定温度以上で別の硬化剤と反応し、3次元的架橋反応が進み不溶不融の硬化物となる。
本発明の電子部品封止用蓋体は、例えば、図1に示すように四角形状の基体1上に内部に空間を有する四角形状の電子部品封止用樹脂組成物2が形成されたものを挙げることができる。また、図2に示すように円形の基体1上に内部に空間を有する円形の電子部品封止用樹脂組成物2が形成されたものを挙げることができる。また、図3に示すように四角形状の基体1上に内部に空間を有さない四角形状の電子部品封止用樹脂組成物2が形成されたものを挙げることができる。本発明でいう基体としては、図1〜3のような平面体に限らず、固体撮像素子、水晶振動子やレーザーピックアップ等の電子部品素子3を中空の内部に有する図3のような基体1でもよい。図3においては、基体1の枠上に電子部品封止用樹脂組成物2が形成されている。
基体1上に電子部品封止用樹脂組成物2を形成させる方法としては、スクリーン印刷法、ディスペンサ法等が挙げられるが、寸法精度、塗布形状を制御できれば、何れの方法でもよい。
以下、実施例に基づき本発明を説明する。
The lid for sealing an electronic component of the present invention is obtained by forming the above-described resin composition for sealing an electronic component in an arbitrary shape on a substrate in a semi-cured state. The semi-cured state here refers to a state called a B-stage state. This state refers to a state where the reaction proceeds two-dimensionally in the thermosetting resin and the semi-curing agent and exists as a linear high molecular weight substance. While this state is a thermosetting resin, it has the properties of a thermoplastic resin and melts by heating, and reacts with another curing agent at a temperature above a certain temperature, leading to a three-dimensional crosslinking reaction and insoluble and infusible. It becomes a cured product.
The electronic component sealing lid of the present invention is, for example, one in which a rectangular electronic component sealing resin composition 2 having a space inside is formed on a rectangular substrate 1 as shown in FIG. Can be mentioned. Moreover, as shown in FIG. 2, the thing in which the resin composition 2 for circular electronic component sealing which has a space inside was formed on the circular base | substrate 1 can be mentioned. Moreover, as shown in FIG. 3, the thing in which the resin composition 2 for the square-shaped electronic component sealing which does not have a space inside on the square-shaped base | substrate 1 can be mentioned. The substrate referred to in the present invention is not limited to a planar body as shown in FIGS. 1 to 3, but a substrate 1 as shown in FIG. 3 having an electronic component element 3 such as a solid-state imaging device, a crystal resonator, or a laser pickup in a hollow interior. But you can. In FIG. 3, an electronic component sealing resin composition 2 is formed on the frame of the substrate 1.
Examples of the method for forming the resin composition 2 for encapsulating an electronic component on the substrate 1 include a screen printing method and a dispenser method. Any method may be used as long as the dimensional accuracy and the coating shape can be controlled.
Hereinafter, the present invention will be described based on examples.

参考例1〜2、実施例3及び比較例1〜2]
表1に示す材料を使用して3本ロールミルで混練後、真空脱泡を行い、本発明の電子部品封止用樹脂組成物及び比較用の電子部品封止用樹脂組成物を得た。なお、表1の配合量は質量部を示す。
[ Reference Examples 1-2, Example 3 and Comparative Examples 1-2]
After the materials shown in Table 1 were kneaded by a three-roll mill, vacuum degassing was performed to obtain an electronic component sealing resin composition of the present invention and a comparative electronic component sealing resin composition. In addition, the compounding quantity of Table 1 shows a mass part.

Figure 0005254265
Figure 0005254265

上記表1における材料の具体的な化合物は次の通りである。
・エポキシ樹脂:ビスフェノールA型エポキシ樹脂
・芳香族アミン:ジアミノジフェニルメタン
・変性アミン:尿素型アダクト変性アミン
・アミンアダクト:エポキシアミンアダクト
・イミダゾールアダクト:エポキシイミダゾールアダクト
・ホウ酸エステル化合物:エポキシフェノールホウ酸エステル配合物
・イミダゾールA:2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−S−トリアジンイソシアヌル酸付加物
・イミダゾールB:2−エチル−4−メチルイミダゾール
・シランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
・エラストマー:ポリイソプレン無水マレイン酸付加物
・フィラー:シリカ
Specific compounds of the materials in Table 1 are as follows.
・ Epoxy resin: Bisphenol A type epoxy resin ・ Aromatic amine: Diaminodiphenylmethane ・ Modified amine: Urea type adduct modified amine ・ Amine adduct: Epoxy amine adduct ・ Imidazole adduct: Epoxy imidazole adduct ・ Boric acid ester compound: Epoxy phenol borate ester Compound-Imidazole A: 2,4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-S-triazine isocyanuric acid adduct-Imidazole B: 2-ethyl-4-methylimidazole-Silane Coupling agent: 3-glycidoxypropyltrimethoxysilane Elastomer: Polyisoprene maleic anhydride adduct Filler: Silica

表1に示す電子部品封止用樹脂組成物の半硬化制御、半硬化状態の安定性、完全硬化温度について試験した結果を表2に示す。
(a)半硬化制御
○は、半硬化制御が可能である事を示す。
×は、半硬化制御ができず、完全硬化してしまう事を示す。
(b)半硬化状態の安定性
○は、室温にて半硬化状態が安定して維持できる事を示す。
△は、室温にて半硬化状態を維持するも、反応が進行して長期安定性に劣る事を示す。
表2において、参考例1及び参考例2は潜在性硬化剤単独で使用した例である。この参考例1及び参考例2は、半硬化制御及び完全硬化の低温化は可能であるものの、実施例3に比較して半硬化状態の安定性に劣る。
実施例3は潜在性硬化剤に加えて安定化剤を加えた例である。この実施例3は、半硬化制御及び半硬化状態の安定性ともに良好な結果が得られた。また、完全硬化温度が低く低温で硬化できることが確認された。
比較例1は半硬化制御および安定性に優れるが、完全硬化させるためには高温度の加熱が必要である。比較例2は完全硬化過程でより低温で反応が進行するイミダゾール系を使用した例であり、完全硬化の低温化は可能なものの、半硬化制御が不可能であった。
Table 2 shows the results of testing the semi-curing control, the semi-cured state stability, and the complete curing temperature of the electronic component sealing resin composition shown in Table 1.
(A) Semi-curing control ○ indicates that semi-curing control is possible.
X indicates that semi-curing cannot be controlled and complete curing occurs.
(B) Stability of semi-cured state ○ indicates that the semi-cured state can be stably maintained at room temperature.
Δ indicates that although the semi-cured state is maintained at room temperature, the reaction proceeds and the long-term stability is poor.
In Table 2, Reference Example 1 and Reference Example 2 are examples in which the latent curing agent was used alone. Although Reference Example 1 and Reference Example 2 are capable of controlling semi-curing and reducing the temperature of complete curing, they are inferior in stability in a semi-cured state as compared with Example 3.
Example 3 is an example in which a stabilizer is added in addition to the latent curing agent. In Example 3, good results were obtained for both the semi-curing control and the stability of the semi-cured state. Moreover, it was confirmed that the complete curing temperature is low and curing can be performed at a low temperature.
Comparative Example 1 is excellent in semi-curing control and stability, but high-temperature heating is necessary for complete curing. Comparative Example 2 is an example using an imidazole system in which the reaction proceeds at a lower temperature in the complete curing process, and although it is possible to lower the temperature of complete curing, semi-curing control is impossible.

Figure 0005254265
Figure 0005254265

次に実施例3ついて中空パッケージ評価としてホウケイ酸ガラス及びアルミナセラミック製キャップ(6.34×6.24mm、t:1.5mm)を使用した。アルミナセラミック製キャップの周縁部に0.5mm幅に実施例3の電子部品封止用樹脂組成物を塗布し、加熱乾燥して半硬化状態にして本発明の電子部品封止用蓋体を得た。該蓋体をホウケイ酸ガラスに搭載し、2kgの荷重をかけながら90℃で1時間加熱して樹脂組成物を完全硬化させ、気密封止を行った。比較例1についても同様に電子部品封止用蓋体を作製し、110℃30分、続けて150℃1時間加熱して気密封止を行った。   Next, a borosilicate glass and an alumina ceramic cap (6.34 × 6.24 mm, t: 1.5 mm) were used as a hollow package evaluation for Example 3. The resin composition for encapsulating electronic components of Example 3 was applied to the peripheral portion of the alumina ceramic cap to a width of 0.5 mm, dried by heating and semi-cured to obtain the lid for encapsulating electronic components of the present invention. It was. The lid was mounted on borosilicate glass and heated at 90 ° C. for 1 hour while applying a load of 2 kg to completely cure the resin composition, and hermetically sealed. Similarly, a lid for sealing an electronic component was produced for Comparative Example 1 and hermetically sealed by heating at 110 ° C. for 30 minutes and then at 150 ° C. for 1 hour.

封止したパッケージの気密性は、顕微鏡外観検査、グロスリークテスト及びヘリウムリークテストにより確認を行い、これらの試験で気密封止がされている事を確認した後、接着力試験、信頼性試験を行った。接着力試験としてせん断力試験、信頼性評価としてリフロー試験、高温試験、低温試験、高温高湿試験、熱衝撃試験をそれぞれ行い、各信頼性試験後の気密性を評価した。その結果を表3に記載した。
各検査及び各試験については次に説明する通りである。
(1)顕微鏡外観検査
電子部品素子を中空のパッケージに収納して気密封止する際、加熱によるパッケージ内圧上昇により内部空気が外部へ逃げようとする力が働き、樹脂封止面にこの力による空気層の一部もしくは完全貫通が起こる事がある。この状態ではパッケージの気密性に劣り、充分な信頼性を得られないため、外観で封止面を検査した。○は外観検査にて封止面に気泡、抜け等がなかった事を示す。
(2)グロスリークテスト
125℃フロリナート中に気密封止されたパッケージを浸漬させ、1分の間に気泡の発生の有無を確認した。○は気泡の発生がなかったことを示す。
(3)ヘリウムリークテスト
気密封止されたパッケージをヘリウム雰囲気チャンバー内で0.5Mpaの圧力で30分間加圧した後、開放して大気下30分放置した後、へリウムディテクターを用いて前記加圧中にパッケージ内に侵入したヘリウムガスを検知した。微細なリーク箇所があった場合、ヘリウムが検知される試験である。○はヘリウムガスを検知しなかったことを示す。
(4)接着力試験
気密封止されたパッケージのガラス部を固定し、アルミナセラミック製キャップにツメを引っ掛けて水平方向へ50mm/minの速度で引っ張り荷重をかけ(せん断)、破壊された際の力を接着力として求めた。
The airtightness of the sealed package is confirmed by microscopic appearance inspection, gross leak test and helium leak test. After confirming that these packages are airtightly sealed, an adhesive strength test and a reliability test are performed. went. A shear force test was performed as an adhesion test, and a reflow test, a high temperature test, a low temperature test, a high temperature and high humidity test, and a thermal shock test were performed as reliability evaluations, and the airtightness after each reliability test was evaluated. The results are shown in Table 3.
Each inspection and each test is as described below.
(1) Microscope appearance inspection When an electronic component element is housed in a hollow package and hermetically sealed, a force that causes internal air to escape to the outside due to an increase in internal pressure of the package due to heating acts, and this force is applied to the resin sealing surface. Part or complete penetration of the air layer may occur. In this state, the airtightness of the package is inferior, and sufficient reliability cannot be obtained. ○ indicates that there was no air bubble or missing on the sealing surface in the appearance inspection.
(2) Gross Leak Test A hermetically sealed package was immersed in 125 ° C. Fluorinert, and the presence or absence of bubbles was confirmed in 1 minute. ○ indicates that no bubbles were generated.
(3) Helium leak test A hermetically sealed package was pressurized in a helium atmosphere chamber at a pressure of 0.5 Mpa for 30 minutes, then opened and left in the atmosphere for 30 minutes. Helium gas that entered the package was detected during pressure. This is a test in which helium is detected when there is a minute leak. ○ indicates that helium gas was not detected.
(4) Adhesive strength test When the glass part of the hermetically sealed package is fixed, a claw is hooked on an alumina ceramic cap and a tensile load is applied (shear) in the horizontal direction at a speed of 50 mm / min. The force was determined as the adhesive strength.

(5)リフロー試験
気密封止されたパッケージを260℃リフロー槽内で30秒保持することを3回行い、その後のパッケージの状態を観察した。○はリフロー後のグロスリークテストにて気泡の発生がなかった事を示す。
(6)高温試験
気密封止されたパッケージを120℃槽内で1000時間放置し、その後のパッケージの状態を観察した。○は高温試験後のグロスリークテストにて気泡の発生がなかった事を示す。
(7)低温試験
気密封止されたパッケージを−40℃槽内で1000時間放置し、その後のパッケージの状態を観察した。○は低温試験後のグロスリークテストにて気泡の発生がなかった事を示す。
(8)高温高湿試験
気密封止されたパッケージを85℃、85%槽内で1000時間放置し、その後のパッケージの状態を観察した。○は高温高湿試験後のグロスリークテストにて気泡の発生がなかった事を示す。また、△は一部発生があった事を示す。
(9)熱衝撃試験
気密封止されたパッケージを120℃及び−40℃槽内を各30分交互に投入させ、それを1000回繰り返し、その後のパッケージの状態を観察した。○は熱衝撃試験後のグロスリークテストにて気泡の発生がなかった事を示す。
(5) Reflow test Holding the hermetically sealed package in a 260 ° C. reflow bath for 30 seconds was performed three times, and then the state of the package was observed. ○ indicates that no bubbles were generated in the gross leak test after reflow.
(6) High temperature test The hermetically sealed package was left in a 120 ° C. tank for 1000 hours, and then the state of the package was observed. ○ indicates that no bubbles were generated in the gross leak test after the high temperature test.
(7) Low temperature test The hermetically sealed package was left in a -40 ° C bath for 1000 hours, and then the state of the package was observed. ○ indicates that no bubbles were generated in the gross leak test after the low temperature test.
(8) High-temperature and high-humidity test The hermetically sealed package was left in an 85 ° C., 85% tank for 1000 hours, and then the state of the package was observed. ○ indicates that no bubbles were generated in the gross leak test after the high temperature and high humidity test. Also, Δ indicates that there was a partial occurrence.
(9) Thermal Shock Test The hermetically sealed package was alternately placed in a 120 ° C. and −40 ° C. bath for 30 minutes each, and this was repeated 1000 times, and the state of the subsequent package was observed. ○ indicates that no bubbles were generated in the gross leak test after the thermal shock test.

Figure 0005254265
Figure 0005254265

表3から明らかなように、本発明の電子部品封止用樹脂組成物である実施例3においては、気密性、接着性ともに実用上問題のない結果であった。高温高湿試験においては比較例1では一部気密性不足・接着力低下が見られるが、実施例3では問題なく信頼性を維持している結果となった。これはエラストマーを含有させる事による接着性、密着性改善効果だと推定される。   As is apparent from Table 3, in Example 3, which is the resin composition for sealing an electronic component of the present invention, both the airtightness and adhesiveness were practically satisfactory. In the high-temperature and high-humidity test, in Comparative Example 1, a part of the airtightness was insufficient and the adhesive strength was lowered, but in Example 3, the reliability was maintained without any problem. This is presumed to be an effect of improving adhesion and adhesion by containing an elastomer.

また、実施例3、比較例1の電子部品封止用樹脂組成物について硬化時、硬化後の両面からアウトガス性を評価した。測定にはパージ&トラップGC−MS法を用い、硬化時のアウトガスについてはそれぞれの硬化温度で、硬化後のアウトガスについては前記硬化温度で処理した後に200℃加熱下でのアウトガスを測定した。その結果を表4に示す。なお、測定条件は次の通りである。
硬化時アウトガス測定条件:実施例3は90℃30分、比較例1は150℃30分
硬化後アウトガス測定条件:実施例3、比較例1ともに200℃30分
Moreover, the outgas property was evaluated from the both surfaces after hardening about the resin composition for electronic component sealing of Example 3 and the comparative example 1 at the time of hardening. The purge and trap GC-MS method was used for the measurement. The outgas at the time of curing was measured at each curing temperature, and the outgas after curing was treated at the curing temperature, and then the outgas under heating at 200 ° C. was measured. The results are shown in Table 4. The measurement conditions are as follows.
Curing outgas measurement conditions: Example 3 is 90 ° C. for 30 minutes, and Comparative Example 1 is 150 ° C. for 30 minutes.

Figure 0005254265
Figure 0005254265

表4に示すとおり、本発明の電子部品封止用樹脂組成物である実施例3は比較例1より、硬化時のアウトガスは1/3、硬化後のアウトガスは1/5に低減されており、硬化温度の低温化によるアウトガス低減効果に加えて、本発明の樹脂組成物自体が低アウトガス性であることを示す結果となった。   As shown in Table 4, Example 3 which is a resin composition for encapsulating electronic parts of the present invention has a reduced outgas at the time of curing to 1/3 and an outgas after curing to 1/5 from Comparative Example 1. In addition to the effect of reducing the outgassing due to the lowering of the curing temperature, the results show that the resin composition of the present invention itself has a low outgassing property.

1 基体
2 電子部品封止用樹脂組成物
3 電子部品素子
DESCRIPTION OF SYMBOLS 1 Base | substrate 2 Resin composition for electronic component sealing 3 Electronic component element

Claims (4)

エポキシ樹脂からなる熱硬化性樹脂、芳香族アミン類または脂環式アミン類からなる半硬化剤、イミダゾール系のアダクト型潜在性硬化剤、ホウ酸エステル化合物からなる安定化剤を含有することを特徴とする電子部品封止用樹脂組成物。 It contains a thermosetting resin made of epoxy resin , a semi-curing agent made of aromatic amines or alicyclic amines, an imidazole-based adduct-type latent curing agent , and a stabilizer made of a boric acid ester compound. An electronic component sealing resin composition. 更にエラストマーを含有させたことを特徴とする請求項1に記載の電子部品封止用樹脂組成物   The resin composition for sealing an electronic component according to claim 1, further comprising an elastomer. 更にイミダゾール類からなる反応促進剤を含有させたことを特徴とする請求項1又は請求項2に記載の電子部品封止用樹脂組成物  The resin composition for sealing an electronic component according to claim 1 or 2, further comprising a reaction accelerator comprising imidazoles. 請求項1乃至請求項のいずれかの電子部品封止用樹脂組成物が、半硬化状態で基体上に形成されていることを特徴とする電子部品封止用蓋体。 One of the electronic component sealing resin composition for electronic component encapsulation lid, characterized in that it is formed on a substrate in a semi-cured state of claims 1 to 3.
JP2010053697A 2010-03-10 2010-03-10 Resin composition for sealing electronic parts and lid for sealing electronic parts using the same Active JP5254265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053697A JP5254265B2 (en) 2010-03-10 2010-03-10 Resin composition for sealing electronic parts and lid for sealing electronic parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053697A JP5254265B2 (en) 2010-03-10 2010-03-10 Resin composition for sealing electronic parts and lid for sealing electronic parts using the same

Publications (2)

Publication Number Publication Date
JP2011184639A JP2011184639A (en) 2011-09-22
JP5254265B2 true JP5254265B2 (en) 2013-08-07

Family

ID=44791296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053697A Active JP5254265B2 (en) 2010-03-10 2010-03-10 Resin composition for sealing electronic parts and lid for sealing electronic parts using the same

Country Status (1)

Country Link
JP (1) JP5254265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115144B1 (en) * 2012-11-30 2020-05-26 린텍 가부시키가이샤 Adhesive agent composition, adhesive sheet, and electronic device
DE102015121979B4 (en) * 2015-12-16 2022-08-18 Rf360 Technology (Wuxi) Co., Ltd. Housing for an electrical component and method for manufacturing a housing for an electrical component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584335A (en) * 1978-12-21 1980-06-25 Kuraray Co Ltd Hardenable composition
JPS6154653A (en) * 1984-08-25 1986-03-18 Kyocera Corp Sealing body for electronics parts and its manufacturing method
JPH06240111A (en) * 1993-02-15 1994-08-30 Matsushita Electric Ind Co Ltd Epoxy resin composition for sealing electronic part
JP3480527B2 (en) * 1995-04-17 2003-12-22 日立化成工業株式会社 Molding material for sealing electronic parts and semiconductor device using the same
JP2001100224A (en) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
JP4517969B2 (en) * 2005-07-26 2010-08-04 パナソニック電工株式会社 Epoxy resin composition and semiconductor device
JP2007091899A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Highly stable curing agent for epoxy resin and epoxy resin composition

Also Published As

Publication number Publication date
JP2011184639A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP6534189B2 (en) Resin composition
CN101747590B (en) Photocurable resin composition for sealing organic EL device
KR101618397B1 (en) Liquid crystal sealing agent for liquid crystal dropping method and liquid crystal display cell using same
JP6216345B2 (en) Resin composition
JP5592081B2 (en) Sealant for liquid crystal dropping method and method for producing liquid crystal display device
JP6742027B2 (en) Resin composition
JP6482568B2 (en) Reworkable epoxy resins and cured mixtures for low thermal expansion applications
TWI576360B (en) A liquid crystal sealant and a liquid crystal display cell using the liquid crystal sealant
JP6013906B2 (en) Liquid epoxy resin composition
JP5254265B2 (en) Resin composition for sealing electronic parts and lid for sealing electronic parts using the same
JP5592111B2 (en) Manufacturing method of liquid crystal display device
JP2014173008A (en) Curable resin composition
KR101374369B1 (en) Organic EL display device and an adhesive composition for the same
JPWO2018159564A1 (en) Resin composition
JP2013253195A (en) Epoxy resin composition
KR101397692B1 (en) Organic EL display device and an adhesive composition for the same
JP2017190396A (en) Sealing resin sheet and method of manufacturing electronic component device
JP2008177521A (en) Sealing material for mounting and semiconductor device
JP2008138148A (en) Adhesive composition and use of the composition
JP2008115338A (en) Heat-curable and ultraviolet-curable epoxy resin composition and sealing material composed of cured product thereof
JP2007332319A (en) Sealing agent for vacuum panel basal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5254265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250