JP5251741B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP5251741B2
JP5251741B2 JP2009138900A JP2009138900A JP5251741B2 JP 5251741 B2 JP5251741 B2 JP 5251741B2 JP 2009138900 A JP2009138900 A JP 2009138900A JP 2009138900 A JP2009138900 A JP 2009138900A JP 5251741 B2 JP5251741 B2 JP 5251741B2
Authority
JP
Japan
Prior art keywords
air
temperature
target
blown
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009138900A
Other languages
Japanese (ja)
Other versions
JP2010137838A (en
Inventor
春樹 三角
拓也 片岡
伸一郎 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009138900A priority Critical patent/JP5251741B2/en
Publication of JP2010137838A publication Critical patent/JP2010137838A/en
Application granted granted Critical
Publication of JP5251741B2 publication Critical patent/JP5251741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車室内へ吹き出す空気の温度を自動で調整する自動制御方式の車両用空調装置に関する。   The present invention relates to an automatic control type vehicle air conditioner that automatically adjusts the temperature of air blown into a passenger compartment.

従来、自動制御方式の車両用空調装置では、車室内温度(内気温)を乗員の設定温度に維持するための目標吹出空気温度TAOを算出し、この目標吹出空気温度となるように、車室内若しくは車室外から導入した空気を一旦蒸発器で冷却し、冷却した空気をヒータコアで昇温している(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an automatic control type vehicle air conditioner calculates a target blown air temperature TAO for maintaining a passenger compartment temperature (inside air temperature) at a passenger's set temperature, and sets the target blown air temperature to the target blown air temperature. Alternatively, air introduced from outside the passenger compartment is once cooled by an evaporator, and the temperature of the cooled air is raised by a heater core (see, for example, Patent Document 1).

特許第3309528号公報Japanese Patent No. 3309528

しかしながら、上述のような自動制御方式の車両用空調装置では、例えば、車室内に冷風を吹き出す冷房運転中に外気温が車室内温度よりも低い低外気温状態となる場合でも、圧縮機の作動を継続させている。この場合には、外気を必要以上に蒸発器で冷却し、冷却した空気をヒータコアで目標吹出空気温度まで昇温することとなり、蒸発器で冷却した熱量が、無駄なエネルギー消費となる。   However, in the above-described automatic control type vehicle air conditioner, for example, even when the outside air temperature is lower than the vehicle interior temperature during the cooling operation in which the cool air is blown into the vehicle interior, the operation of the compressor is performed. Is continued. In this case, the outside air is cooled by the evaporator more than necessary, and the cooled air is heated to the target blown air temperature by the heater core, and the amount of heat cooled by the evaporator is wasted energy consumption.

また、特許文献1の車両用空調装置では、省燃費効果を得るために、目標吹出空気温度が外気温よりも高い場合に圧縮機の作動を停止している。しかし、目標吹出空気温度が外気温よりも低い場合は、圧縮機を作動させることになり、省燃費効果を充分に得ることができなかった。   Further, in the vehicle air conditioner disclosed in Patent Document 1, the operation of the compressor is stopped when the target blown air temperature is higher than the outside air temperature in order to obtain a fuel saving effect. However, when the target blown air temperature is lower than the outside air temperature, the compressor is operated, and the fuel saving effect cannot be sufficiently obtained.

本発明は、上記点に鑑み、車室内へ吹き出す空気の温度を自動で調整する自動制御方式の車両用空調装置において、車室内空調の省燃費効果を向上させることを目的とする。   SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to improve the fuel efficiency of a vehicle interior air conditioner in an automatic control type vehicle air conditioner that automatically adjusts the temperature of air blown into the vehicle interior.

上記目的を達成するため、請求項1に記載の発明では、車室内へ吹き出す空気の温度を自動で調整する自動制御方式の車両用空調装置において、車室内に吹き出す空気の空気通路を構成するケース(2)と、車室外の外気をケース(2)に導入する外気モードと車室内の内気をケース(2)に導入する内気モードとに切替可能な内外気切替手段(6)と、ケース(2)内に導入された空気を車室内へと送風する送風機(8)と、車室内へ吹き出す空気を冷却するための冷凍機と、車室内の内気温(Tr)が乗員により設定された設定温度(Tset)となるように、少なくとも内外気切替手段(6)、送風機(8)、冷凍機の作動を制御する温度制御手段(30)と、車室外の外気温(Tam)を検出する外気温検出手段(31)と、車室内の内気温(Tr)を検出する内気温検出手段(32)とを備え、温度制御手段(30)は、車室内へ冷風を吹き出す冷房運転中において、外気温検出手段(31)で検出した外気温(Tam)が内気温検出手段(32)で検出した内気温(Tr)よりも所定温度(α)を越えて低い低外気温状態である場合に、冷凍機の作動を停止させ、外気モードに切替えるとともに、送風機(8)の作動を制御して車室内の内気温(Tr)が設定温度(Tset)となるように車室内への外気の導入量を調整する換気制御を実行することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, in the vehicle air conditioner of the automatic control system that automatically adjusts the temperature of the air blown into the vehicle interior, a case that forms an air passage for the air blown into the vehicle interior (2) and an inside / outside air switching means (6) capable of switching between an outside air mode for introducing outside air outside the passenger compartment into the case (2) and an inside air mode for introducing inside air inside the passenger compartment into the case (2), 2) A blower (8) that blows air introduced into the vehicle interior, a refrigerator for cooling the air blown into the vehicle interior, and a setting in which the interior temperature (Tr) in the vehicle interior is set by the passenger The temperature control means (30) for controlling the operation of at least the inside / outside air switching means (6), the blower (8), and the refrigerator so that the temperature (Tset) is reached, and the outside that detects the outside air temperature (Tam) outside the passenger compartment. Air temperature detection means (31) and inside the passenger compartment An internal air temperature detection means (32) for detecting the temperature (Tr), and the temperature control means (30) detects the outside air temperature (31) detected by the external air temperature detection means (31) during the cooling operation of blowing cool air into the vehicle interior. Tam) is lower than the internal temperature (Tr) detected by the internal air temperature detecting means (32) and is lower than the predetermined temperature (α), the operation of the refrigerator is stopped and the operation is switched to the external air mode. And controlling the operation of the blower (8) to perform ventilation control for adjusting the amount of outside air introduced into the vehicle interior so that the inside air temperature (Tr) of the vehicle interior becomes a set temperature (Tset). To do.

これによれば、目標吹出空気温度が外気温(Tam)よりも低い場合であっても、外気温(Tam)が内気温(Tr)よりも所定温度(α)を超えて低い場合には、冷凍機を停止して車室内の内気温(Tr)が設定温度(Tset)となるように外気の導入量を調整するので、従来よりも車室内空調時の冷凍機の作動時間を短縮した車室内空調を行なうことができる。従って、車室内空調の省燃費効果を向上させることができる。   According to this, even when the target blowing air temperature is lower than the outside air temperature (Tam), when the outside air temperature (Tam) is lower than the inside air temperature (Tr) by a predetermined temperature (α), Since the amount of outside air introduced is adjusted so that the inside air temperature (Tr) in the vehicle interior becomes the set temperature (Tset) by stopping the refrigerator, the operation time of the refrigerator during vehicle interior air conditioning is shorter than before Indoor air conditioning can be performed. Therefore, the fuel saving effect of the air conditioning in the vehicle interior can be improved.

さらに、請求項に記載の発明では、温度制御手段(30)は、換気制御を実行する場合に、車室内に吹き出す空気の熱量が、冷凍機を作動させた場合における車室内に吹き出す空気の熱量となるように送風機(8)の作動を制御するように制御することを特徴とする。 Furthermore, in the invention according to claim 1, temperature control means (30), when executing the ventilation control, the amount of heat of air blown into the passenger compartment, blown into the passenger compartment in the case of actuating the refrigerator air It controls to control the operation of the blower (8) so that the amount of heat becomes.

これによれば、低外気温状態である場合に冷凍機の作動を停止したとしても、冷凍機を作動させた状態と停止させた状態とで車室内に吹き出す空気の熱量を同等にすることができるので、車室内に吹き出す空気の温度の温度制御を適切に行なうことができる。   According to this, even if the operation of the refrigerator is stopped in the low outside air temperature state, the amount of heat of the air blown into the vehicle interior can be made equal between the state where the refrigerator is operated and the state where the refrigerator is stopped. Therefore, it is possible to appropriately control the temperature of the air blown into the vehicle interior.

具体的には、請求項に記載の発明のように、請求項に記載の発明において、車室内に吹き出す空気の目標温度である目標吹出空気温度(TAO)を算出する吹出空気温度算出手段と、目標吹出空気温度(TAO)に応じて送風機(8)の第1目標送風量(V)を算出する第1目標送風量算出手段と、前記換気制御を実行する場合の送風機(8)の第2目標送風量(Vkk)を算出する第2目標送風量算出手段とを備え、第2目標送風量算出手段は、第2目標送風量(Vkk)を下記数式
Vkk={(Tr−TAO)/(Tr−TAOam)}×V
(但し、Vkk:第2目標送風量、V:第1目標送風量、Tr:内気温、TAO:目標吹出空気温度、TAOam:外気温+α、α:所定温度)により算出し、温度制御手段(30)は、換気制御を実行する場合に、車室内に吹き出す空気の送風量が第2目標送風量(Vkk)となるように送風機(8)を制御することができる。
Specifically, as in the invention according to claim 2 , in the invention according to claim 1 , the blown air temperature calculating means for calculating a target blown air temperature (TAO) which is a target temperature of the air blown into the vehicle interior. And a first target air volume calculating means for calculating a first target air volume (V) of the blower (8) according to the target blown air temperature (TAO), and a fan (8) for executing the ventilation control. A second target airflow rate calculating means for calculating a second target airflow rate (Vkk), and the second target airflow rate calculating means calculates the second target airflow rate (Vkk) by the following formula: Vkk = {(Tr−TAO) / (Tr-TAOam)} × V
(Where Vkk: second target air flow rate, V: first target air flow rate, Tr: inside air temperature, TAO: target air temperature, TAOam: outside air temperature + α, α: predetermined temperature), and temperature control means ( 30) can control the blower (8) so that the amount of air blown into the passenger compartment becomes the second target air flow rate (Vkk) when performing ventilation control.

ここで、送風機(8)の送風量が大きいと、乗員に不快感や違和感を与えてしまう場合があるため、請求項に記載の発明では、請求項に記載の発明において、温度制御手段(30)は、第2目標送風量算出手段で算出された第2目標送風量(Vkk)が、予め設定された最大換気風量(Vkkmax)より小さい場合に、換気制御を実行することを特徴とする。 Here, when a large air volume of the blower (8), there are cases where uncomfortable feeling and sense of discomfort to the passenger, in the invention according to claim 3, in the invention described in claim 2, the temperature control means (30) is characterized in that ventilation control is executed when the second target airflow rate (Vkk) calculated by the second target airflow rate calculating means is smaller than a preset maximum ventilation airflow rate (Vkkmax). To do.

これによれば、第2目標送風量(Vkk)が予め設定された最大換気風量(Vkkmax)より小さい場合に、換気制御を実行するため、送風量の増大による乗員の不快感や違和感を低減することができる。   According to this, when the second target airflow rate (Vkk) is smaller than the preset maximum ventilation airflow rate (Vkkmax), the ventilation control is executed, so that the passengers' discomfort and discomfort due to the increase in the airflow rate are reduced. be able to.

また、換気制御に移行する前に、第1目標送風量(V)が第2目標送風量(Vkk)より小さい場合、換気制御に移行する際に送風機(8)の送風量が急変して、乗員に不快感や違和感を与えてしまう虞がある。   Moreover, before shifting to ventilation control, when 1st target ventilation volume (V) is smaller than 2nd target ventilation volume (Vkk), when shifting to ventilation control, the ventilation volume of an air blower (8) changes suddenly, There is a risk of discomfort or discomfort to the passenger.

そこで、請求項に記載の発明では、請求項に記載の発明において、温度制御手段(30)は、第2目標送風量算出手段で算出された第2目標送風量(Vkk)が、最大換気風量(Vkkmax)以上で、第1目標送風量(V)が、最大換気風量(Vkkmax)より小さい場合に、車室内に吹き出す空気の送風量が第1目標送風量(V)よりも多く、最大換気風量(Vkkmax)以下となるように送風機(8)の作動を制御する移行制御を実行することを特徴とする。 Therefore, in the invention according to claim 4 , in the invention according to claim 3 , the temperature control means (30) has the second target airflow rate (Vkk) calculated by the second target airflow rate calculating means being the maximum. When the ventilation air volume (Vkkmax) is equal to or larger than the first target airflow volume (V) and smaller than the maximum ventilation airflow volume (Vkkmax), the airflow volume of the air blown into the vehicle interior is larger than the first target airflow volume (V). Transition control for controlling the operation of the blower (8) so as to be equal to or less than the maximum ventilation air volume (Vkkmax) is performed.

このように、換気制御に移行する前に、移行制御を実行することで、換気制御に移行する際の送風機(8)の送風量の急変を抑制することができ、乗員の不快感や違和感を低減することができる。   As described above, by executing the transition control before shifting to the ventilation control, it is possible to suppress a sudden change in the blower amount of the blower (8) when shifting to the ventilation control, and to make the passenger feel uncomfortable or uncomfortable. Can be reduced.

移行制御では、車室内に吹き出す空気の送風量を増大させることで、車室内に吹き出す空気の熱量が増大し、車室内が冷えすぎてしまうことが懸念されるため、請求項に記載の発明のように、請求項に記載の発明において、温度制御手段(30)が移行制御を実行する場合に、吹出空気温度算出手段によって算出された目標吹出空気温度(TAO)よりも高い目標温度となるように内外気切替手段(6)、冷凍機の作動を制御してもよい。 The transition control, to increase the blowing amount of air blown into the passenger compartment, heat of the air is increased to be blown into the passenger compartment, since that excessively cold passenger compartment is concerned, the invention according to claim 5 Thus, in the invention according to claim 4 , when the temperature control means (30) performs the transition control, the target temperature higher than the target blown air temperature (TAO) calculated by the blown air temperature calculation means The operation of the inside / outside air switching means (6) and the refrigerator may be controlled as described above.

これにより、移行制御を実行する際の送風量の増大に伴う車室内に吹き出す空気の熱量の増大を、目標吹出空気温度(TAO)を高くすることでバランスさせることができる。これにより移行制御へと移行する際の温感的な変化を抑制することができ、乗員の不快感や違和感をより低減することができる。   As a result, the increase in the amount of heat of the air blown into the passenger compartment accompanying the increase in the amount of blown air when executing the transition control can be balanced by increasing the target blown air temperature (TAO). As a result, it is possible to suppress a sense of warm change when shifting to the shift control, and to further reduce the discomfort and discomfort of the occupant.

具体的には、請求項の記載の発明のように、請求項に記載の発明において、温度制御手段(30)が移行制御を実行する場合に、車室内に吹き出す空気の熱量が、第1目標送風量(V)となるように送風機(8)の作動を制御させた場合における前記車室内に吹き出す空気の熱量となるように、内外気切替手段(6)、冷凍機の作動を制御することで、車室内に吹き出す空気の熱量をバランスさせることができる。 Specifically, as in the invention described in claim 6 , when the temperature control means (30) executes the transition control in the invention described in claim 5 , the amount of heat of the air blown into the vehicle interior is The operation of the inside / outside air switching means (6) and the refrigerator is controlled so that the amount of heat of the air blown into the vehicle interior when the operation of the blower (8) is controlled so as to become one target ventilation amount (V). By doing so, it is possible to balance the amount of heat of the air blown into the passenger compartment.

また、請求項に記載の発明のように、請求項ないしのいずれか1つに記載の発明において、温度制御手段(30)が移行制御を実行する場合に、車室内に吹き出す空気の送風量が、最大換気風量(Vkkmax)となるように送風機(8)の作動を制御するようにしてもよい。 It is preferable as defined in claim 7, in the invention described in any one of claims 4 to 6, when the temperature control means (30) performs the transition control, the air blown into the passenger compartment You may make it control the action | operation of an air blower (8) so that ventilation volume may turn into maximum ventilation volume (Vkkmax).

また、請求項に記載の発明のように、請求項1ないしのいずれか1つに記載の発明において、冷凍機を、車室内に吹き出す空気を冷却する冷房用熱交換器(9)と、冷房用熱交換器(9)の冷却状態を作り出す圧縮機(11)とを含んで構成される蒸気圧縮式冷凍機(10)とし、温度制御手段(30)によって、圧縮機(11)の作動を制御することで冷房用熱交換器(9)の冷却機能を調整するような構成とすることができる。
Further, as in the invention described in claim 8 , in the invention described in any one of claims 1 to 7 , a cooling heat exchanger (9) that cools the air blown out into the passenger compartment, and And a vapor compression refrigerator (10) including a compressor (11) for creating a cooling state of the cooling heat exchanger (9), and the temperature control means (30) of the compressor (11). By controlling the operation, the cooling function of the cooling heat exchanger (9) can be adjusted.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態に係る車両用空調装置の全体システム構成図である。1 is an overall system configuration diagram of a vehicle air conditioner according to a first embodiment. 第1実施形態に係る空調自動制御の概要を示すフローチャ−トである。It is a flowchart which shows the outline | summary of the air-conditioning automatic control which concerns on 1st Embodiment. 第1実施形態に係る通常制御時における送風機制御の特性図である。It is a characteristic view of the fan control at the time of the normal control which concerns on 1st Embodiment. 第1実施形態に係る空調自動制御を実行した際の状態変化を説明する説明図である。It is explanatory drawing explaining the state change at the time of performing the air-conditioning automatic control which concerns on 1st Embodiment. 第2実施形態に係る空調自動制御の概要を示すフローチャ−トである。It is a flowchart which shows the outline | summary of the air-conditioning automatic control which concerns on 2nd Embodiment. 第2実施形態に係る空調自動制御を実行した際の状態変化を説明する説明図である。It is explanatory drawing explaining the state change at the time of performing the air-conditioning automatic control which concerns on 2nd Embodiment.

(第1実施形態)
以下、本発明の第1実施形態について図1〜図3に基づいて説明する。図1は、本実施形態に係る車両用空調装置の全体構成の概要を示している。車両用空調装置は、車室内へ吹き出す空気の温度を自動で調整する自動制御方式である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an overview of the overall configuration of a vehicle air conditioner according to this embodiment. The vehicle air conditioner is an automatic control system that automatically adjusts the temperature of air blown into the passenger compartment.

図1に示すように、車両用空調装置は車室内最前部の計器盤(図示せず)の内側部に配設される室内空調ユニット1を備えている。この室内空調ユニット1はケース2を有し、このケース2内に車室内へ向かって空気が送風される空気通路を構成する。   As shown in FIG. 1, the vehicle air conditioner includes an indoor air conditioning unit 1 that is disposed inside an instrument panel (not shown) at the foremost part of the vehicle interior. This indoor air-conditioning unit 1 has a case 2 and constitutes an air passage through which air is blown toward the vehicle interior.

このケース2の空気通路の最上流部に内気導入口3および外気導入口4を有する内外気切替箱5を配置している。この内外気切替箱5内に、内外気切替手段としての内外気切替ドア6を回転自在に配置している。   An inside / outside air switching box 5 having an inside air introduction port 3 and an outside air introduction port 4 is arranged at the most upstream part of the air passage of the case 2. Inside / outside air switching box 5, an inside / outside air switching door 6 as inside / outside air switching means is rotatably arranged.

この内外気切替ドア6はサーボモータ7によって駆動されるもので、内気導入口3より内気(車室内空気)を導入する内気モードと外気導入口4より外気(車室外空気)を導入する外気モードとを切替可能に構成されている。   The inside / outside air switching door 6 is driven by a servo motor 7, and an inside air mode for introducing inside air (vehicle compartment air) from the inside air introduction port 3 and an outside air mode for introducing outside air (vehicle compartment outside air) from the outside air introduction port 4. And can be switched.

内外気切替箱5の下流側には車室内に向かう空気流を発生させる電動式の送風機8を配置している。この送風機8は、遠心式の送風ファン8aをモータ8bにより駆動するようになっている。送風機8の下流側にはケース2内を流れる空気を冷却する蒸発器9を配置している。この蒸発器9は、送風機8の送風空気を冷却する冷房用熱交換器で、蒸気圧縮式冷凍サイクル装置(蒸気圧縮式冷凍機)10を構成する要素の一つである。   On the downstream side of the inside / outside air switching box 5, an electric blower 8 that generates an air flow toward the vehicle interior is disposed. The blower 8 is configured to drive a centrifugal blower fan 8a by a motor 8b. An evaporator 9 that cools the air flowing in the case 2 is disposed on the downstream side of the blower 8. The evaporator 9 is a cooling heat exchanger that cools the air blown from the blower 8 and is one of the elements constituting the vapor compression refrigeration cycle apparatus (vapor compression refrigeration machine) 10.

なお、冷凍サイクル装置10は、圧縮機11の吐出側から、凝縮器12、受液器13および減圧手段をなす膨張弁14を介して蒸発器9に冷媒が循環するように形成された周知のものである。凝縮器12には電動式の冷却ファン12aによって室外空気(冷却空気)が送風される。   Note that the refrigeration cycle apparatus 10 is a well-known configuration in which refrigerant is circulated from the discharge side of the compressor 11 to the evaporator 9 via a condenser 12, a liquid receiver 13, and an expansion valve 14 serving as a pressure reducing means. Is. Outdoor air (cooling air) is blown to the condenser 12 by an electric cooling fan 12a.

冷凍サイクル装置10において、圧縮機11は、冷房用熱交換器である蒸発器9の冷却状態を作り出すもので、電磁クラッチ11aを介して車両エンジン(図示せず)により駆動される。従って、電磁クラッチ11aの通電の断続により圧縮機11の作動を断続制御することで、蒸発器9の冷却機能を調整することができる。また、蒸発器9は、膨張弁14にて減圧された後の低温低圧の気液2相状態の冷媒が送風機8の送風空気から吸熱して蒸発することにより、送風空気を冷却する。   In the refrigeration cycle apparatus 10, the compressor 11 creates a cooled state of the evaporator 9, which is a heat exchanger for cooling, and is driven by a vehicle engine (not shown) via an electromagnetic clutch 11a. Therefore, the cooling function of the evaporator 9 can be adjusted by intermittently controlling the operation of the compressor 11 by intermittently energizing the electromagnetic clutch 11a. Further, the evaporator 9 cools the blown air by the low-temperature and low-pressure gas-liquid two-phase refrigerant that has been decompressed by the expansion valve 14 absorbs heat from the blown air of the blower 8 and evaporates.

一方、室内空調ユニット1において、蒸発器9の下流側にはケース2内を流れる空気を加熱するヒータコア15を配置している。このヒータコア15は車両エンジンの温水(エンジン冷却水)を熱源として、蒸発器9通過後の空気(冷風)を加熱する暖房用熱交換器である。ヒータコア15の側方にはバイパス通路16が形成され、このバイパス通路16をヒータコア15のバイパス空気が流れる。   On the other hand, in the indoor air conditioning unit 1, a heater core 15 that heats the air flowing in the case 2 is disposed on the downstream side of the evaporator 9. The heater core 15 is a heating heat exchanger that heats the air (cold air) that has passed through the evaporator 9 using warm water (engine cooling water) of the vehicle engine as a heat source. A bypass passage 16 is formed on the side of the heater core 15, and the bypass air of the heater core 15 flows through the bypass passage 16.

蒸発器9とヒータコア15との間に温度調整手段をなすエアミックスドア17を回転自在に配置してある。このエアミックスドア17はサーボモータ18により駆動されて、その回転位置(開度)が連続的に調整可能になっている。   Between the evaporator 9 and the heater core 15, an air mix door 17 serving as a temperature adjusting means is rotatably arranged. The air mix door 17 is driven by a servo motor 18 so that its rotational position (opening degree) can be continuously adjusted.

このエアミックスドア17の開度によりヒータコア15を通る空気量(温風量)と、バイパス通路16を通過してヒータコア15をバイパスする空気量(冷風量)との割合を調節し、これにより、車室内に吹き出す空気の温度を調整するようになっている。   The ratio of the amount of air passing through the heater core 15 (warm air amount) and the amount of air passing through the bypass passage 16 and bypassing the heater core 15 (cold air amount) is adjusted by the opening degree of the air mix door 17. The temperature of the air blown into the room is adjusted.

ケース2の空気通路の最下流部には、車両の前面窓ガラスWに向けて空調風を吹き出すためのデフロスタ吹出口19、乗員の顔部に向けて空調風を吹き出すためのフェイス吹出口20、および乗員の足元部に向けて空調風を吹き出すためのフット吹出口21の計3種類の吹出口が設けられている。   At the most downstream part of the air passage of the case 2, a defroster outlet 19 for blowing conditioned air toward the front window glass W of the vehicle, a face outlet 20 for blowing conditioned air toward the face of the occupant, A total of three types of air outlets 21 are provided, which are foot outlets 21 for blowing air-conditioned air toward the feet of passengers.

これら吹出口19〜21の上流部にはデフロスタドア22、フェイスドア23およびフットドア24が回転自在に配置されている。これらのドア22〜24は、図示しないリンク機構を介して共通のサーボモータ25によって開閉操作される。   A defroster door 22, a face door 23, and a foot door 24 are rotatably disposed upstream of the air outlets 19 to 21. The doors 22 to 24 are opened and closed by a common servo motor 25 via a link mechanism (not shown).

次に、本実施形態の電気制御部の概要を説明すると、空調制御装置30は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この空調制御装置30は、そのROM内に空調制御のための制御プログラムを記憶しており、その制御プログラムに基づいて各種演算、処理を行う。   Next, the outline of the electric control unit according to the present embodiment will be described. The air conditioning control device 30 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The air conditioning control device 30 stores a control program for air conditioning control in its ROM, and performs various calculations and processes based on the control program.

空調制御装置30の入力側にはセンサ群31〜35からセンサ検出信号が入力され、また、車室内前部の計器盤(図示せず)付近に配置される空調パネル36から各種操作信号が入力される。   Sensor detection signals are input from the sensor groups 31 to 35 to the input side of the air conditioning control device 30, and various operation signals are input from the air conditioning panel 36 disposed near the instrument panel (not shown) in the front of the vehicle interior. Is done.

センサ群としては、具体的には、外気温(車室外温度)Tamを検出する外気センサ31、内気温(車室内温度)Trを検出する内気センサ32、車室内に入射する日射量Tsを検出する日射センサ33、蒸発器9の空気吹出部に配置されて蒸発器吹出空気温度Teを検出する蒸発器温度センサ34、ヒータコア15に流入する温水(エンジン冷却水)温度Twを検出する水温センサ35等が設けられる。なお、外気センサ31が本発明の外気温検出手段に相当し、内気センサ32が本発明の内気温検出手段に相当している。   Specifically, the sensor group detects an outside air sensor 31 that detects an outside air temperature (outside temperature) Tam, an inside air sensor 32 that detects an inside temperature (inside temperature) Tr, and an amount of solar radiation Ts incident on the inside of the vehicle. A solar radiation sensor 33 that is disposed, an evaporator temperature sensor 34 that is disposed in an air blowing portion of the evaporator 9 and detects an evaporator blowing air temperature Te, and a water temperature sensor 35 that detects a warm water (engine cooling water) temperature Tw flowing into the heater core 15. Etc. are provided. The outside air sensor 31 corresponds to the outside air temperature detecting means of the present invention, and the inside air sensor 32 corresponds to the inside air temperature detecting means of the present invention.

また、空調パネル36には各種操作スイッチとして、車室内温度を設定する温度設定手段をなす温度設定スイッチ37、吹出モードドア22〜24により切り替わる吹出モードをマニュアル設定する吹出モードスイッチ38、内外気切替ドア6による内気モードと外気モードをマニュアル設定する内外気切替スイッチ39、圧縮機11の作動指令信号(電磁クラッチ11aのON信号)を出すエアコンスイッチ40、送風機8の風量切替をマニュアル設定する送風機作動スイッチ41、空調自動制御状態の指令信号を出すオートスイッチ42等が設けられる。   Further, the air conditioning panel 36 has various operation switches, such as a temperature setting switch 37 serving as a temperature setting means for setting the vehicle interior temperature, a blowing mode switch 38 for manually setting a blowing mode switched by the blowing mode doors 22 to 24, and an inside / outside air switching. An inside / outside air changeover switch 39 for manually setting the inside air mode and the outside air mode by the door 6, an air conditioner switch 40 for issuing an operation command signal for the compressor 11 (ON signal of the electromagnetic clutch 11a), and a fan operation for manually setting the air volume switching of the blower 8. A switch 41, an auto switch 42 for outputting a command signal for the air conditioning automatic control state, and the like are provided.

空調制御装置30の出力側には、圧縮機11の電磁クラッチ11a、各機器の電気駆動手段をなすサーボモータ7、18、25、送風機8のモータ8b、凝縮器冷却ファン12aのモータ12b等が接続され、これらの機器の作動が空調制御装置30の出力信号により制御される。そのため、空調制御装置30が、本発明の温度制御手段として機能している。   On the output side of the air conditioning control device 30, there are an electromagnetic clutch 11a of the compressor 11, servo motors 7, 18, 25 serving as electric drive means for each device, a motor 8b of the blower 8, a motor 12b of the condenser cooling fan 12a, and the like. The operation of these devices is controlled by the output signal of the air conditioning control device 30. Therefore, the air conditioning control device 30 functions as the temperature control means of the present invention.

次に、上記構成において本実施形態の作動を説明する。最初に、室内空調ユニット1の作動の概要を説明すると、送風機8を作動させることにより、内気導入口3または外気導入口4より導入された空気がケース2内を車室内に向かって送風される。また、電磁クラッチ11aに通電して電磁クラッチ11aを接続状態とし、圧縮機11を車両エンジンにて駆動することにより、冷凍サイクル装置10内を冷媒が循環する。   Next, the operation of this embodiment in the above configuration will be described. First, the outline of the operation of the indoor air conditioning unit 1 will be described. By operating the blower 8, the air introduced from the inside air introduction port 3 or the outside air introduction port 4 is blown through the case 2 toward the vehicle interior. . Also, the refrigerant is circulated in the refrigeration cycle apparatus 10 by energizing the electromagnetic clutch 11a to bring the electromagnetic clutch 11a into a connected state and driving the compressor 11 with a vehicle engine.

送風機8の送風空気は、先ず蒸発器9を通過して冷却、除湿され、この冷風は次にエアミックスドア17の回転位置(開度)に応じてヒータコア15を通過する流れとバイパス通路16を通過する流れとに分けられる。ヒータコア15を通過する流れは加熱されて温風となり、バイパス通路16を通過する流れは冷風のままである。   The blown air from the blower 8 first passes through the evaporator 9 to be cooled and dehumidified, and this cold air then flows through the heater core 15 and the bypass passage 16 according to the rotational position (opening) of the air mix door 17. It is divided into the flow that passes. The flow passing through the heater core 15 is heated to become hot air, and the flow passing through the bypass passage 16 remains cold air.

従って、エアミックスドア17の開度によりヒータコア15を通る空気量(温風量)と、バイパス通路16を通過する空気量(冷風量)との割合を調節し、これにより、車室内に吹き出す空気の温度を調節できる。そして、この温度調節された空調風が、ケース2の空気通路の最下流部に位置するデフロスタ吹出口19、フェイス吹出口20およびフット吹出口21のうち、いずれか1つまたは複数の吹出口から車室内へ吹き出して、車室内の空調および車両の前面窓ガラスWの曇り止めを行う。   Therefore, the ratio of the amount of air passing through the heater core 15 (warm air amount) and the amount of air passing through the bypass passage 16 (cold air amount) is adjusted by the opening degree of the air mix door 17, and thereby the air blown into the vehicle interior The temperature can be adjusted. And this temperature-controlled conditioned air is supplied from any one or more of the defroster air outlet 19, the face air outlet 20 and the foot air outlet 21 located at the most downstream part of the air passage of the case 2. It blows out into the passenger compartment and performs air conditioning in the passenger compartment and fogging prevention of the front window glass W of the vehicle.

次に、本実施形態による空調自動制御を図2、図3に基づいて説明する。図2は、本実施形態に係る空調自動制御の概要を示すフローチャートである。なお、図2は、空調制御装置30のマイクロコンピュータにより実行される制御ルーチンを示し、この制御ルーチンは、図示しない車両エンジンのイグニッションスイッチの投入状態においてオートスイッチ42が投入されるとスタートする。   Next, the air conditioning automatic control according to the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart showing an outline of the air conditioning automatic control according to the present embodiment. FIG. 2 shows a control routine executed by the microcomputer of the air-conditioning control device 30. This control routine starts when the auto switch 42 is turned on in an on state of an ignition switch of a vehicle engine (not shown).

オートスイッチ42の投入によって制御ルーチンがスタートすると、先ず、ステップS10にて、各種カウンタやフラグ等を初期化する。そして、ステップS20でセンサ群30〜35の検出信号、空調パネル36からの各種操作信号等を読み込む。   When the control routine is started by turning on the auto switch 42, first, in step S10, various counters, flags and the like are initialized. In step S20, detection signals from the sensor groups 30 to 35, various operation signals from the air conditioning panel 36, and the like are read.

次に、ステップS30にて、通常制御(通常時の空調自動制御)時の車室内への吹出空気の目標吹出温度TAOを算出する。この目標吹出温度TAOは空調熱負荷変動にかかわらず、空調パネル36の温度設定スイッチ37により乗員が設定した設定温度Tsetに車室内温度を維持するために必要な車室内吹出空気温度である。このTAOは設定温度Tset、外気温Tam、内気温Tr、日射量Tsに基づいて下記数式(F1)により算出する。   Next, in step S30, a target blowing temperature TAO of the blowing air into the vehicle compartment during normal control (normal air conditioning automatic control) is calculated. This target blowout temperature TAO is a vehicle cabin blowout air temperature required to maintain the vehicle cabin temperature at the set temperature Tset set by the occupant by the temperature setting switch 37 of the air conditioning panel 36 regardless of the air conditioning thermal load fluctuation. This TAO is calculated by the following formula (F1) based on the set temperature Tset, the outside air temperature Tam, the inside air temperature Tr, and the solar radiation amount Ts.

TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
但し Kset、Kr、Kam、Ks:制御ゲイン
C:補正用の定数
次に、ステップS40にて、通常制御時の目標蒸発器吹出温度TEOを算出する。ここで、目標蒸発器吹出温度TEOは、車室内吹出空気の温度制御等のために決定される制御値であって、周知のごとく目標吹出温度TAO、外気温Tam、車室内湿度等に応じて算出される。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Where Kset, Kr, Kam, Ks: Control gain
C: Correction Constant Next, in step S40, the target evaporator outlet temperature TEO during normal control is calculated. Here, the target evaporator outlet temperature TEO is a control value determined for controlling the temperature of the air blown into the passenger compartment, etc., and, as is well known, according to the target outlet temperature TAO, the outside air temperature Tam, the passenger compartment humidity, etc. Calculated.

次に、ステップS50にて、通常制御時における送風機8により送風される空気の第1目標送風量Vを上記TAOに基づいて算出する。この第1目標送風量Vの算出方法は周知であり、図3に示すように、上記TAOの高温側(最大暖房側)および低温側(最大冷房側)で目標送風量を大きくし、上記TAOの中間温度域で目標送風量を小さくする。そして、送風機8のモータ8bの回転数は、この第1目標送風量Vが得られるように空調制御装置30の出力により制御される。なお、送風機8の目標風量はより具体的には、送風機モータ8bに印加する電圧レベル(ブロワレベル)として決定している。   Next, in step S50, the first target airflow rate V of the air blown by the blower 8 during normal control is calculated based on the TAO. The calculation method of the first target air flow rate V is well known. As shown in FIG. 3, the target air flow rate is increased on the high temperature side (maximum heating side) and the low temperature side (maximum cooling side) of the TAO, and the TAO The target air flow rate is reduced in the intermediate temperature range. And the rotation speed of the motor 8b of the air blower 8 is controlled by the output of the air-conditioning control apparatus 30 so that this 1st target ventilation volume V is obtained. More specifically, the target air volume of the blower 8 is determined as the voltage level (blower level) applied to the blower motor 8b.

ところで、車室内に冷風を吹き出す冷房運転中において、外気温Tamが内気温Trよりも所定温度αを超えて低い低外気温状態となる場合には、車室内への吹出空気を蒸発器9で冷却しなくとも、車室内へ外気を導入することで車室内温度を低下させることができる。つまり、冷凍サイクル装置10の圧縮機11を作動させず、車室内への外気の導入量(送風量)を調整する換気制御を実行することで車室内空調を行なうことが可能である。   By the way, during the cooling operation in which the cool air is blown into the passenger compartment, when the outside air temperature Tam is lower than the inside air temperature Tr by a predetermined temperature α and is in a low outside air temperature state, the air blown into the passenger compartment is discharged by the evaporator 9. Even without cooling, the vehicle interior temperature can be lowered by introducing outside air into the vehicle interior. That is, it is possible to perform vehicle interior air conditioning by executing ventilation control that adjusts the amount of outside air introduced into the vehicle interior (air flow rate) without operating the compressor 11 of the refrigeration cycle apparatus 10.

ここで、所定温度αは、外気が空調ユニットのケース2内等を通過する際に周囲の熱の影響により昇温することを考慮して付加した補正用の定数である。なお、外気が空調ユニットのケース2内等を通過する際に周囲の熱の影響をほとんど受けない場合には、所定温度αを0℃に設定してもよい。   Here, the predetermined temperature α is a correction constant added in consideration that the temperature rises due to the influence of ambient heat when the outside air passes through the case 2 of the air conditioning unit. Note that the predetermined temperature α may be set to 0 ° C. when the outside air is hardly affected by ambient heat when passing through the case 2 of the air conditioning unit or the like.

本実施形態では、図2のステップS60にて、換気制御を実行する場合における送風機8で送風する空気の第2目標送風量Vkkを算出する。ここで、第2目標送風量Vkkは、冷房運転時において、外気温Tamが内気温Trよりも所定温度αを越えて低い低外気温状態の場合(換気制御を実行する場合)に、外気を導入する導入量を調整するために決定される制御値である。   In the present embodiment, in step S60 of FIG. 2, the second target air volume Vkk of the air blown by the blower 8 when performing ventilation control is calculated. Here, the second target air flow rate Vkk is obtained when the outside air temperature Tam is lower than the inside air temperature Tr by a predetermined temperature α and is in a low outside air temperature state (when ventilation control is executed) during the cooling operation. This is a control value determined to adjust the introduction amount to be introduced.

この第2目標送風量Vkkは、換気制御を実行する場合における車室内への吹出空気の熱量Q1が、圧縮機11を作動させて蒸発器9にて吹出空気を冷却する通常制御時の熱量Q2となるように決定する。具体的には、第2目標送風量Vkkは、内気温Tr、目標吹出空気温度TAO、外気温Tam、第1目標送風量Vに基づいて下記数式F2〜数式F4により算出する。   The second target blast volume Vkk is equal to the heat quantity Q2 during normal control in which the heat quantity Q1 of the blown air into the vehicle compartment when the ventilation control is performed operates the compressor 11 to cool the blown air by the evaporator 9. To be determined. Specifically, the second target airflow rate Vkk is calculated by the following formulas F2 to F4 based on the inside air temperature Tr, the target blown air temperature TAO, the outside air temperature Tam, and the first target airflow rate V.

Q1=Q2…(F2)
(Tr−TAOam)×Vkk=(Tr−TAO)×V…(F3)
Vkk={(Tr−TAO)/(Tr−TAOam)}×V…(F4)
但し、TAOam:外気温+所定温度α
ここで、車室内に冷風を吹き出す冷房運転中は、内気温Trが目標吹出空気温度TAOよりも低温となることがないため、数式F4における分子(Tr−TAO)は正の値となる。また、送風機8の送風量については、常に0より大きい正の値となるため、第2目標送風量Vkkが0よりも大きい場合(Vkk>0)は、数式(F4)における分母(Tr−TAOam)が0よりも大きい値となる。つまり、第2目標送風量Vkkが0よりも大きい場合(Vkk>0)は、外気温Tamが内気温よりも所定温度αを越えて低い低外気温状態と判断することができる。
Q1 = Q2 (F2)
(Tr−TAOam) × Vkk = (Tr−TAO) × V (F3)
Vkk = {(Tr−TAO) / (Tr−TAOam)} × V (F4)
However, TAOam: outside air temperature + predetermined temperature α
Here, during the cooling operation in which the cool air is blown into the vehicle interior, the internal temperature Tr does not become lower than the target blown air temperature TAO, so the numerator (Tr-TAO) in the formula F4 becomes a positive value. Further, since the air flow rate of the blower 8 is always a positive value larger than 0, when the second target air flow rate Vkk is larger than 0 (Vkk> 0), the denominator (Tr-TAOam) in the formula (F4). ) Is greater than 0. That is, when the second target air flow rate Vkk is larger than 0 (Vkk> 0), it can be determined that the outside air temperature Tam is a low outside air temperature state that is lower than the inside air temperature by exceeding the predetermined temperature α.

なお、図2には記載していないが、数式F4に基づいて第2目標送風量Vkkを算出する前(ステップS60の前)には、予め数式F4の分母が0とならないか否か(Tr−TAOam≠0?)を判定し、分母が0とならない場合に第2目標送風量Vkkを算出している。   Although not shown in FIG. 2, before calculating the second target air flow rate Vkk based on the formula F4 (before step S60), it is determined whether or not the denominator of the formula F4 does not become 0 in advance (Tr -TAOam ≠ 0?) Is determined, and the second target airflow rate Vkk is calculated when the denominator does not become zero.

次に、ステップS70にて、第2目標送風量Vkkが、0よりも大きく、予め設定された最大換気風量Vkkmaxよりも小さい範囲(0<Vkk<Vkkmax)であるか否かを判定している。なお、最大換気風量Vkkmaxは、実験等を通して、車室内の乗員に不快感や違和感を与えないように実験等を通して決定された制御値である。   Next, in step S70, it is determined whether or not the second target airflow rate Vkk is in a range greater than 0 and smaller than a preset maximum ventilation airflow rate Vkkmax (0 <Vkk <Vkkmax). . Note that the maximum ventilation air volume Vkkmax is a control value determined through experiments and the like so as not to give discomfort and discomfort to the passengers in the vehicle interior through experiments and the like.

ステップS70における第2目標送風量Vkkが0よりも大きいか否かの判定(Vkk>0?)では、外気温Tamが内気温Trよりも所定温度αを越えて低い低外気温状態(Tr−TAOam>0)か否かを判断している。なお、Vkk>0となるか否かの判定をTr−TAOam>0となるか否かの判定に置き換えてもよい。   In the determination of whether or not the second target air flow rate Vkk is larger than 0 (Vkk> 0?) In step S70, the outside air temperature Tam is lower than the inside air temperature Tr by a predetermined temperature α (Tr− It is determined whether or not TAOam> 0). Note that the determination of whether Vkk> 0 may be replaced with the determination of whether Tr-TAOam> 0.

また、ステップS70における第2目標送風量Vkkが最大換気風量Vkkmaxよりも小さいか否かの判定(Vkk<Vkkmax?)は、送風機8の送風量が大風量となると、乗員に不快感や違和感を与えてしまう場合があることを考慮して設けられている。つまり、第2目標送風量Vkkが最大換気風量Vkkmaxよりも小さいか否か(Vkk<Vkkmax?)を判定することで、第2目標送風量Vkkが乗員の空調フィーリングを悪化させるような大風量とならないか否かを判断している。   Further, whether or not the second target airflow rate Vkk is smaller than the maximum ventilation airflow rate Vkkmax in step S70 (Vkk <Vkkmax?) Makes the passenger feel uncomfortable or uncomfortable when the airflow rate of the blower 8 becomes a large airflow rate. It is provided in consideration of the fact that it may be given. That is, by determining whether or not the second target air volume Vkk is smaller than the maximum ventilation air volume Vkkmax (Vkk <Vkkmax?), The large air volume that causes the second target air volume Vkk to deteriorate the air conditioning feeling of the occupant. It is judged whether or not.

ステップS70の判定処理において、第2目標送風量Vkkが、0以下、若しくは、最大換気風量Vkkmax以上と判定された場合(ステップS70:NO)、ステップS80に移行して通常制御を行なう。   In the determination process of step S70, when it is determined that the second target airflow rate Vkk is 0 or less or the maximum ventilation airflow rate Vkkmax or more (step S70: NO), the process proceeds to step S80 and normal control is performed.

次に、ステップS80にて内外気吸入モードを目標吹出空気温度TAO等に基づいて選択する。具体的には、目標吹出空気温度TAOが低温側から高温側へと変化するにつれて内外気吸入モードを内気モード→外気モードと切り替える。また、目標吹出温度TAOが低温側から高温側へと変化するにつれて内外気吸入モードを内気モード→内外気混入モード→外気モードと切り替えてもよい。なお、乗員が空調パネル36の内外気切替スイッチ39を操作した場合は、乗員操作によるモードを内外気吸入モードとして選択する。   Next, in step S80, the inside / outside air intake mode is selected based on the target blown air temperature TAO or the like. Specifically, the inside / outside air intake mode is switched from the inside air mode to the outside air mode as the target blown air temperature TAO changes from the low temperature side to the high temperature side. Further, as the target blowing temperature TAO changes from the low temperature side to the high temperature side, the inside / outside air intake mode may be switched from the inside air mode → the inside / outside air mixing mode → the outside air mode. When the occupant operates the inside / outside air changeover switch 39 of the air conditioning panel 36, the mode by the occupant operation is selected as the inside / outside air intake mode.

次に、ステップS90にてエアミックスドア17の目標開度SWを、目標吹出空気温度TAO、蒸発器温度センサ34により検出される蒸発器吹出空気温度Te、水温センサ35により検出される温水温度Twに基づいて下記数式F5により算出する。   Next, in step S90, the target opening degree SW of the air mix door 17 is set to the target blowing air temperature TAO, the evaporator blowing air temperature Te detected by the evaporator temperature sensor 34, and the hot water temperature Tw detected by the water temperature sensor 35. Is calculated by the following formula F5.

SW={(TAO−Te)/(Tw−Te)}×100(%)…(F5)
そして、エアミックスドア17の開度を数式F5により算出した目標開度SWとなるように制御する。なお、SW=0(%)は、エアミックスドア17の最大冷房位置であり、バイパス通路16を全開し、ヒータコア15側の通風路を全閉する。これに対し、SW=100(%)は、エアミックスドア17の最大暖房位置であり、バイパス通路16を全閉し、ヒータコア15側の通風路を全開する。
SW = {(TAO−Te) / (Tw−Te)} × 100 (%) (F5)
And it controls so that the opening degree of the air mix door 17 becomes the target opening degree SW calculated by Formula F5. SW = 0 (%) is the maximum cooling position of the air mix door 17, and the bypass passage 16 is fully opened and the ventilation path on the heater core 15 side is fully closed. On the other hand, SW = 100 (%) is the maximum heating position of the air mix door 17 and fully closes the bypass passage 16 and fully opens the ventilation path on the heater core 15 side.

次に、ステップS100にて圧縮機11の能力制御を行う。具体的には、圧縮機11の電磁クラッチ11aの通電ON−OFFを制御する。すなわち、本実施形態では、圧縮機11として常に一定の吐出容量で作動する固定容量型圧縮機を用いているので、蒸発器9の実際の吹出空気温度Teが目標蒸発器吹出温度TEOまで低下すると、電磁クラッチ11aへの通電を遮断して圧縮機11を停止状態とする。   Next, capacity control of the compressor 11 is performed in step S100. Specifically, the energization ON / OFF of the electromagnetic clutch 11a of the compressor 11 is controlled. That is, in this embodiment, since the fixed capacity type compressor which always operates with a fixed discharge capacity is used as the compressor 11, if the actual blowing air temperature Te of the evaporator 9 falls to the target evaporator blowing temperature TEO. Then, the energization to the electromagnetic clutch 11a is cut off, and the compressor 11 is stopped.

次に、ステップS110にて、車室内への吹出空気の送風量が、ステップS50で目標吹出空気温度TAOに基づいて算出した第1目標送風量Vとなるように送風機8のモータ8bを制御する。そして、ステップS120で制御周期τを経過したか否かを判定し、制御周期τを経過した場合に、ステップS20に戻る。   Next, in step S110, the motor 8b of the blower 8 is controlled so that the blown amount of the blown air into the passenger compartment becomes the first target blown amount V calculated based on the target blown air temperature TAO in step S50. . Then, in step S120, it is determined whether or not the control cycle τ has elapsed. When the control cycle τ has elapsed, the process returns to step S20.

一方、ステップS70の判定処理において、第2目標送風量Vkkが、0よりも大きく、かつ、最大換気風量Vkkmaxよりも小さいと判定された場合(ステップS70:YES)、ステップS130に移行して換気制御を行なう。   On the other hand, in the determination process of step S70, when it is determined that the second target air volume Vkk is larger than 0 and smaller than the maximum ventilation air volume Vkkmax (step S70: YES), the process proceeds to step S130 and ventilation is performed. Take control.

次にステップS130にて、内外気切替ドア6を内外気吸入モードの外気モードに切替える。なお、ステップS70の判定前から内外気切替ドア6を外気モードに設定されていた場合には、外気モードを維持すればよい。   Next, in step S130, the inside / outside air switching door 6 is switched to the outside air mode of the inside / outside air suction mode. If the inside / outside air switching door 6 has been set to the outside air mode before the determination in step S70, the outside air mode may be maintained.

そして、ステップS140にて、エアミックスドア17の目標開度SWを0(%)、つまり、バイパス通路16を全開し、ヒータコア15側の通風路を全閉する最大冷房位置となるように制御する。エアミックスドア17を最大冷房位置に制御することで、外部から導入した外気をヒータコアで昇温させることなく車室内に吹き出すことができる。   In step S140, the target opening degree SW of the air mix door 17 is controlled to 0 (%), that is, the bypass passage 16 is fully opened, and the maximum cooling position is set to fully close the air passage on the heater core 15 side. . By controlling the air mix door 17 to the maximum cooling position, the outside air introduced from the outside can be blown out into the vehicle interior without being heated by the heater core.

次に、ステップS150にて、圧縮機11の電磁クラッチ11aへの通電を遮断して圧縮機11を作動停止状態にする。さらに、ステップS160にて、室内への吹出空気の送風量が、ステップS60で数式F2〜数式F4に基づいて算出した第2目標送風量Vkkとなるように送風機8のモータ8bを制御する。   Next, in step S150, the energization of the compressor 11 to the electromagnetic clutch 11a is interrupted, and the compressor 11 is brought into a stopped state. Further, in step S160, the motor 8b of the blower 8 is controlled so that the blown amount of the blown air into the room becomes the second target blown amount Vkk calculated based on the formulas F2 to F4 in step S60.

ここで、数式F4によれば、TAO≦Tam+αとなる場合には、Tr−TAO≧Tr−TAOam、つまりVkk≧Vとなる。従って、この場合の送風機8の制御は、圧縮機11の作動停止による熱量不足を補うために車室内への外気の送風量を増加させるように制御することとなる。   Here, according to Formula F4, when TAO ≦ Tam + α, Tr−TAO ≧ Tr−TAOam, that is, Vkk ≧ V. Therefore, the control of the blower 8 in this case is performed so as to increase the amount of outside air blown into the vehicle interior in order to compensate for the shortage of heat due to the stop of the operation of the compressor 11.

一方、TAO>Tam+αとなる場合には、Tr−TAO<Tr−TAOam、つまりVkk<Vとなる。従って、この場合の送風機8の制御は、圧縮機11の作動停止による熱量増加を調整するために車室内への外気の送風量を減少させるように制御することとなる。   On the other hand, when TAO> Tam + α, Tr−TAO <Tr−TAOam, that is, Vkk <V. Therefore, the control of the blower 8 in this case is performed so as to reduce the blown amount of the outside air into the vehicle interior in order to adjust the increase in the heat amount due to the stop of the operation of the compressor 11.

なお、上述のステップS30における目標吹出空気温度TAOの算出処理が、吹出空気温度算出手段に相当する。また、ステップS50における第1目標送風量の算出処理が、第1目標送風量算出手段に相当し、ステップS60における第2目標送風量算出処理が、第2目標送風量算出手段に相当する。   The calculation process of the target blown air temperature TAO in step S30 described above corresponds to the blown air temperature calculation unit. Moreover, the calculation process of the 1st target ventilation volume in step S50 is equivalent to a 1st target ventilation volume calculation means, and the 2nd target ventilation volume calculation process in step S60 is equivalent to a 2nd target ventilation volume calculation means.

以上説明した本実施形態によれば、換気制御を実行している場合には、目標吹出空気温度TAOが外気温Tamよりも低い場合であっても、外気温Tamが内気温Trよりも所定温度αを超えて低い場合には、圧縮機11の作動を停止して車室内の内気温Trが設定温度Tsetとなるように外気の導入量を調整する。これにより、従来よりも車室内空調時の圧縮機11の作動時間を短縮することができ、車室内空調の省燃費効果を向上させることができる。   According to the present embodiment described above, when the ventilation control is being executed, even if the target blown air temperature TAO is lower than the outside air temperature Tam, the outside air temperature Tam is a predetermined temperature higher than the inside air temperature Tr. When α is lower than α, the operation of the compressor 11 is stopped, and the amount of outside air introduced is adjusted so that the inside air temperature Tr in the passenger compartment becomes the set temperature Tset. Thereby, the operation time of the compressor 11 at the time of vehicle interior air conditioning can be shortened compared with the past, and the fuel-saving effect of vehicle interior air conditioning can be improved.

また、換気制御を実行している場合に車室内に吹き出す空気の熱量Q1が圧縮機11を作動させた場合の熱量Q2となるように、送風機8で外気の導入量を調整しているので、車室内に吹き出す空気の温度の温度制御を適切に行なうことができる。   Further, since the amount of heat Q1 of the air blown into the passenger compartment when the ventilation control is being performed becomes the amount of heat Q2 when the compressor 11 is operated, the amount of outside air introduced is adjusted by the blower 8, It is possible to appropriately control the temperature of the air blown into the passenger compartment.

また、送風機8の送風量の第2目標送風量(Vkk)が最大換気風量Vkkmaxよりも小さい場合に、換気制御を実行するため、送風量の増大による乗員の不快感や違和感を低減することができる。   Further, when the second target airflow rate (Vkk) of the airflow rate of the blower 8 is smaller than the maximum ventilation airflow rate Vkkmax, the ventilation control is executed, so that it is possible to reduce passenger discomfort and discomfort due to an increase in the airflow rate. it can.

(第2実施形態)
次に、本発明の第2実施形態について図4〜図6に基づいて説明する。上記第1実施形態と同様または均等な部分について同一の符号を付し、その説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. Parts that are the same as or equivalent to those in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.

まず、第1実施形態の空調自動制御を実行した場合の状態変化を説明する。図4は、低外気温状態に第1実施形態の空調自動制御を実行した場合の状態変化を説明する説明図である。なお、図4では、冷房運転を行なっている際の内気温Tr、目標吹出空気温度TAO、送風機8の風量の状態変化を示しており、各状態変化は、図中右側から左側へと推移する。   First, the state change at the time of performing the air-conditioning automatic control of 1st Embodiment is demonstrated. FIG. 4 is an explanatory diagram for explaining a state change when the air conditioning automatic control of the first embodiment is executed in a low outside air temperature state. FIG. 4 shows changes in the internal air temperature Tr, the target blown air temperature TAO, and the air volume of the blower 8 during the cooling operation, and each change in the state changes from the right side to the left side in the figure. .

図4に示すように、第1実施形態において低外気温状態に空調自動制御を実行した場合、開始段階では、通常制御(通常時の空調自動制御)が行なわれる。この通常制御の開始段階では、内気温Trが高く、目標吹出空気温度TAOが高い温度に設定されるため、送風機8の風量が高い状態(V>Vkkmax)となる。その後、内気温Trが低下するとともに、目標吹出空気温度TAOが高くなり、送風機8の送風量も低下する。   As shown in FIG. 4, when the air conditioning automatic control is executed in the low outside air temperature state in the first embodiment, normal control (normal air conditioning automatic control) is performed at the start stage. At the start stage of this normal control, the internal air temperature Tr is high and the target blown air temperature TAO is set to a high temperature, so that the air volume of the blower 8 is high (V> Vkkmax). Thereafter, the internal air temperature Tr decreases, the target blown air temperature TAO increases, and the air flow rate of the blower 8 also decreases.

第1実施形態では、第1目標送風量Vが最大換気風量Vkkmaxを下回った場合でも換気制御に移行しないので、第1目標送風量Vが最大換気風量Vkkmaxを下回っても送風機8の送風量が低下し続ける。そして、第2目標送風量Vkkが最大換気風量Vkkmaxより小さくなった場合に、通常制御から換気制御に移行して、送風機8の送風量の目標風量を第1目標送風量Vから第2目標送風量Vkkに変更する。   In the first embodiment, even if the first target airflow rate V falls below the maximum ventilation airflow rate Vkkmax, the control does not shift to the ventilation control. Therefore, even if the first target airflow amount V falls below the maximum ventilation airflow rate Vkkmax, the airflow rate of the blower 8 It continues to decline. When the second target air volume Vkk becomes smaller than the maximum ventilation air volume Vkkmax, the control shifts from the normal control to the ventilation control, and the target air volume of the air flow of the blower 8 is changed from the first target air volume V to the second target air supply. Change to air volume Vkk.

ここで、通常制御から換気制御への移行時には、第2目標送風量Vkkが最大換気風量Vkkmax程度となり、第1目標送風量Vに比べて大風量となるので、送風機8の送風量の急激に増大することになる。この送風機8の急変は、車室内の乗員に不快感や違和感を与えてしまう虞がある。   Here, at the time of transition from the normal control to the ventilation control, the second target airflow rate Vkk is about the maximum ventilation airflow rate Vkkmax, which is larger than the first target airflow rate V, so the airflow rate of the blower 8 is rapidly increased. Will increase. This sudden change in the blower 8 may cause discomfort or discomfort to the passengers in the passenger compartment.

そこで、本実施形態の空調自動制御は、通常制御から移行制御を介して換気制御へと移行させることで、乗員の不快感や違和感の低減を図る。本実施形態の移行制御は、第1目標送風量Vが最大換気風量Vkkmaxを下回ると、最大換気風量Vkkmaxを維持するように送風機8の作動を制御することで、通常制御から換気制御へと移行する際の送風機8の送風量の急変を抑制するものである。   Therefore, the air conditioning automatic control according to the present embodiment is intended to reduce occupant discomfort and discomfort by shifting from normal control to ventilation control via transition control. When the first target airflow rate V falls below the maximum ventilation airflow rate Vkkmax, the transition control of the present embodiment shifts from normal control to ventilation control by controlling the operation of the blower 8 so as to maintain the maximum ventilation airflow rate Vkkmax. This suppresses a sudden change in the amount of air blown by the blower 8.

次に、移行制御を含む本実施形態の空調自動制御を図5、図6に基づいて説明する。図5は本実施形態に係る空調自動制御の概要を示すフローチャートである。なお、以下説明する本実施形態の空調自動制御では、第1実施形態の空調自動制御と同様な部分について説明を省略する。   Next, the air conditioning automatic control of the present embodiment including the shift control will be described with reference to FIGS. FIG. 5 is a flowchart showing an outline of the air conditioning automatic control according to the present embodiment. In the air conditioning automatic control of the present embodiment described below, the description of the same parts as the air conditioning automatic control of the first embodiment is omitted.

上述のように本実施形態の移行制御では、送風機8の送風量を最大換気風量Vkkmaxに維持する。送風機8の送風量を最大換気風量に維持した状態で通常制御時の目標吹出空気温度TAOを適用すると、車室内への吹出空気の熱量が増大し、車室内が冷えすぎてしまうことが懸念される。   As described above, in the transition control of the present embodiment, the air volume of the blower 8 is maintained at the maximum ventilation air volume Vkkmax. If the target blown air temperature TAO during normal control is applied while the blower 8 is kept at the maximum ventilation flow rate, there is a concern that the amount of heat of the blown air into the passenger compartment increases and the passenger compartment gets too cold. The

そのため、本実施形態では、移行制御時に通常制御時の目標吹出空気温度TAOよりも高い目標温度を設定して、車室内への吹出空気の熱量をバランスさせている。   For this reason, in the present embodiment, a target temperature higher than the target blown air temperature TAO during normal control is set during transition control to balance the amount of heat of blown air into the vehicle interior.

具体的に、本実施形態の空調自動制御では、ステップS30´にて、通常制御時の車室内への吹出空気の目標吹出空気温度TAOを算出するとともに、移行制御時の車室内への吹出空気の目標温度(目標吹出空気温度)TAOikを算出する。   Specifically, in the air conditioning automatic control of the present embodiment, in step S30 ′, the target blown air temperature TAO of the blown air into the vehicle interior during normal control is calculated, and the blown air into the vehicle compartment during transition control is calculated. Target temperature (target blown air temperature) TAOik is calculated.

この移行制御時の目標温度TAOikは、移行制御を実行する場合の熱量Q3が、通常制御時の車室内への吹出空気の熱量Q4となるように決定する。すなわち、移行制御時の目標温度TAOikは、内気温Tr、目標吹出空気温度TAO、第1目標送風量V、最大換気風量Vkkmaxに基づいて下記数式F5〜F7により算出する。   The target temperature TAOik at the time of the transition control is determined so that the heat amount Q3 when the transition control is executed becomes the heat amount Q4 of the air blown into the vehicle interior at the time of the normal control. That is, the target temperature TAOik at the time of transition control is calculated by the following formulas F5 to F7 based on the internal air temperature Tr, the target blown air temperature TAO, the first target airflow rate V, and the maximum ventilation airflow rate Vkkmax.

Q3=Q4…(F5)
(Tr−TAOik)×Vkkmax=(Tr−TAO)×V…(F6)
TAOik=Tr−(Tr−TAO)×(V/Vkkmax)…(F7)
次に、ステップS40´にて、通常制御時の目標蒸発器吹出温度TEO、および移行制御時の目標蒸発器吹出温度TEOikを算出する。ここで、移行制御時の目標蒸発器吹出温度TEOikは、移行制御時の目標吹出空気温度TAOik、外気温Tam、車室内湿度等に応じて算出される。
Q3 = Q4 (F5)
(Tr−TAOik) × Vkkmax = (Tr−TAO) × V (F6)
TAOik = Tr− (Tr−TAO) × (V / Vkkmax) (F7)
Next, in step S40 ′, the target evaporator outlet temperature TEO during normal control and the target evaporator outlet temperature TEOik during transition control are calculated. Here, the target evaporator outlet temperature TEOik during the transition control is calculated according to the target outlet air temperature TAOik, the outside air temperature Tam, the vehicle interior humidity, etc. during the transition control.

次に、ステップS50にて第1目標送風量Vを算出し、ステップS60にて第2目標送風量Vkkを算出する。そして、ステップS70にて第2目標送風量Vkkが、0よりも大きく、最大換気風量Vkkmaxよりも小さい範囲(0<Vkk<Vkkmax)であるか否かを判定する。   Next, the first target air flow rate V is calculated in step S50, and the second target air flow rate Vkk is calculated in step S60. Then, in step S70, it is determined whether or not the second target air flow rate Vkk is in a range larger than 0 and smaller than the maximum ventilation air flow rate Vkkmax (0 <Vkk <Vkkmax).

ステップS70の判定の結果が、第2目標送風量Vkkが、0よりも大きく、最大換気風量Vkkmaxよりも小さい範囲(0<Vkk<Vkkmax)である場合(ステップS70:YES)、ステップ130に進み換気制御を行なう。   When the result of determination in step S70 is a range where the second target airflow rate Vkk is greater than 0 and smaller than the maximum ventilation airflow rate Vkkmax (0 <Vkk <Vkkmax) (step S70: YES), the process proceeds to step 130. Provide ventilation control.

一方、ステップS70の判定結果が、第2目標送風量Vkkが0以下、又は最大換気風量Vkkmax以上である場合(ステップS70:NO)、ステップS70Aに進む。   On the other hand, if the determination result in step S70 is that the second target airflow rate Vkk is 0 or less or the maximum ventilation airflow rate Vkkmax or more (step S70: NO), the process proceeds to step S70A.

ステップS70Aでは、第2目標送風量Vkkが最大換気風量Vkkmax以上、かつ、第1目標送風量Vが最大換気風量Vkkmaxより小さいか否か(V<Vkkmax≦Vkk)を判定する。なお、ステップS70Aの判定は、通常制御から移行制御へと移行可能か否かを判定する第1移行判定である。   In step S70A, it is determined whether or not the second target airflow rate Vkk is equal to or greater than the maximum ventilation airflow rate Vkkmax and the first target airflow rate V is smaller than the maximum ventilation airflow rate Vkkmax (V <Vkkmax ≦ Vkk). Note that the determination in step S70A is a first transition determination that determines whether or not transition from normal control to transition control is possible.

ステップS70Aにて、第2目標送風量Vkkが最大換気風量Vkkmaxより小さい、又は、第1目標送風量Vが最大換気風量Vkkmax以上と判定された場合(ステップS70A:NO)には、ステップS80に進み、通常制御を行う。なお、第2目標送風量Vkkが最大換気風量Vkkmaxより小さい場合、ステップS70の判定との関係から第2目標送風量Vkk<0となる。この場合、外気温Tamが内気温Trよりも高くなり低外気温状態とならないので通常制御を継続する。   If it is determined in step S70A that the second target airflow rate Vkk is smaller than the maximum ventilation airflow rate Vkkmax or the first target airflow rate V is greater than or equal to the maximum ventilation airflow rate Vkkmax (step S70A: NO), the process proceeds to step S80. Proceed and perform normal control. When the second target airflow rate Vkk is smaller than the maximum ventilation airflow rate Vkkmax, the second target airflow rate Vkk <0 from the relationship with the determination in step S70. In this case, the outside temperature Tam is higher than the inside temperature Tr and does not enter a low outside temperature state, so normal control is continued.

一方、ステップS70Aにて、第2目標送風量Vkkが最大換気風量Vkkmax以上、かつ、第1目標送風量Vが最大換気風量Vkkmaxより小さいと判定された場合(ステップS70A:YES)には、ステップS70Bに進む。   On the other hand, if it is determined in step S70A that the second target airflow rate Vkk is greater than or equal to the maximum ventilation airflow rate Vkkmax and the first target airflow rate V is smaller than the maximum ventilation airflow rate Vkkmax (step S70A: YES), step Proceed to S70B.

ここで、内気温Trが設定温度Tsetに収束して車室内温度が安定状態となった際の送風機8の送風量が、最大換気風量Vkkmaxよりも大きいと、換気制御を行う際の送風量Vkkが、安定状態時に必要とされる送風機8の送風量を充分に確保できない。換言すれば、換気制御を行う際の送風量Vkkを、安定状態時に必要とされる送風機8の送風量を充分に確保するためには、最大換気風量を大きくする必要が生じ、送風量増大等によって乗員に不快感や違和感を与えてしまう虞がある。   Here, if the air flow rate of the blower 8 when the inside air temperature Tr converges to the set temperature Tset and the vehicle interior temperature becomes stable is greater than the maximum ventilation air flow rate Vkkmax, the air flow rate Vkk when performing ventilation control. However, it is not possible to ensure a sufficient amount of air blown from the blower 8 that is required in a stable state. In other words, it is necessary to increase the maximum ventilation air volume in order to sufficiently secure the air volume Vkk when the ventilation control is performed, in order to sufficiently secure the air volume of the blower 8 that is required in the stable state. May cause discomfort or discomfort to the passenger.

そこで、ステップS70Bでは、内気温Trが設定温度Tsetに収束して車室内温度が安定状態となった際の送風機8の推定送風量Vkkcが最大換気風量Vkkmaxよりも小さいか否かを判定する。なお、ステップS70Bの判定が、通常制御から移行制御へと移行可能か否かを判定する第2移行判定である。   Therefore, in step S70B, it is determined whether or not the estimated air volume Vkkc of the blower 8 when the inside air temperature Tr converges to the set temperature Tset and the vehicle interior temperature becomes stable is smaller than the maximum ventilation air volume Vkkmax. Note that the determination in step S70B is a second transition determination that determines whether or not transition from normal control to transition control is possible.

車室内温度が安定状態となった際の送風機8の推定送風量Vkkcは、目標吹出空気温度TAOを算出する数式F1、および第2目標送風量Vkkを算出する数式F4における内気温Trを設定温度Tsetに置き換えることで算出する。具体的には下記数式F8、F9により算出する。   The estimated air flow Vkkc of the blower 8 when the vehicle interior temperature is in a stable state is the set temperature based on the internal temperature Tr in the mathematical formula F1 for calculating the target blown air temperature TAO and the mathematical formula F4 for calculating the second target blown air volume Vkk. Calculated by replacing with Tset. Specifically, it is calculated by the following formulas F8 and F9.

TAOc=Kset×Tset−Kr×Tset−Kam×Tam−Ks×Ts+C…(F8)
Vkkc={(Tset−TAO)/(Tset−TAOc)}×V…(F9)
そして、ステップS70Bにて、推定送風量Vkkcが最大換気風量Vkkmax以上と判定された場合(ステップS70B:NO)、ステップS80に進み、通常制御を継続する。一方、ステップS70Bにて、推定送風量Vkkcが最大換気風量Vkkmaxよりも小さいと判定された場合(ステップS70B:YES)、ステップS170に進み、移行制御を行う。
TAOc = Kset × Tset−Kr × Tset−Kam × Tam−Ks × Ts + C (F8)
Vkkc = {(Tset−TAO) / (Tset−TAOc)} × V (F9)
If it is determined in step S70B that the estimated air flow Vkkc is equal to or greater than the maximum ventilation airflow Vkkmax (step S70B: NO), the process proceeds to step S80 and normal control is continued. On the other hand, if it is determined in step S70B that the estimated airflow rate Vkkc is smaller than the maximum ventilation airflow rate Vkkmax (step S70B: YES), the process proceeds to step S170 and transition control is performed.

ステップS170にて、内外気吸入モードを移行制御時の目標吹出空気温度TAOik等に基づいて選択する。次に、ステップS180にて、エアミックスドア17の目標開度SWを、移行制御時の目標吹出空気温度TAOik等に基づいて算出し、目標開度SWとなるように制御する。   In step S170, the inside / outside air intake mode is selected based on the target blown air temperature TAOik during the transition control. Next, in step S180, the target opening degree SW of the air mix door 17 is calculated based on the target blown air temperature TAOik at the time of transition control, and controlled so as to become the target opening degree SW.

次に、ステップS190にて、圧縮機11を蒸発器9の実際の吹出空気温度Teが、移行制御時の目標蒸発器吹出温度TEOikとなるように制御する。そして、ステップS200にて、室内への吹出空気の送風量が、最大換気風量Vkkmaxとなるように送風機8のモータ8bを制御する。   Next, in step S190, the compressor 11 is controlled so that the actual blown air temperature Te of the evaporator 9 becomes the target evaporator blown temperature TEOik during the transition control. In step S200, the motor 8b of the blower 8 is controlled so that the blown amount of the blown air into the room becomes the maximum ventilation air amount Vkkmax.

なお、本実施形態における通常制御は、ステップS80〜ステップS110にて行う制御であり、換気制御は、ステップS130〜ステップS160にて行う制御であり、移行制御は、ステップS170〜ステップS200にて行う制御である。   The normal control in the present embodiment is control performed in steps S80 to S110, the ventilation control is control performed in steps S130 to S160, and the transition control is performed in steps S170 to S200. Control.

次に、本実施形態の空調自動制御を実行した場合の状態変化を説明する。図6は、低外気温状態に本実施形態の空調自動制御を実行した場合の状態変化を説明する説明図である。ここで、図6では、冷房運転を行なっている際の内気温Tr、目標吹出空気温度TAO、送風機8の風量の状態変化を示しており、各状態変化は、図中右側から左側へと推移する。なお、図6では、内気温Trが設定温度Tsetに収束して車室内温度が安定状態となった際の送風機8の送風量が、最大換気風量Vkkmaxよりも小さい場合の状態変化を示している。また、図中の点線は、第1実施形態の空調自動制御を実行した場合の状態変化を示している。   Next, the state change at the time of performing the air-conditioning automatic control of this embodiment is demonstrated. FIG. 6 is an explanatory diagram for explaining a change in state when the air conditioning automatic control of the present embodiment is executed in a low outside air temperature state. Here, FIG. 6 shows changes in the state of the internal temperature Tr, the target blown air temperature TAO, and the air volume of the blower 8 during the cooling operation, and each state change changes from the right side to the left side in the figure. To do. FIG. 6 shows a state change when the air flow rate of the blower 8 is smaller than the maximum ventilation air flow rate Vkkmax when the inside air temperature Tr converges to the set temperature Tset and the vehicle interior temperature becomes stable. . Moreover, the dotted line in a figure has shown the state change at the time of performing the air-conditioning automatic control of 1st Embodiment.

図6に示すように、本実施形態において低外気温状態に空調自動制御を実行した場合、開始段階では、通常制御(通常時の空調自動制御)が行なわれ、内気温Trが低下し、目標吹出空気温度TAOが上昇する。送風機8の風量は、目標吹出空気温度TAOの上昇に伴い低下する。   As shown in FIG. 6, when the air conditioning automatic control is executed in the low outside air temperature state in this embodiment, normal control (normal air conditioning automatic control) is performed at the start stage, the internal temperature Tr decreases, and the target The blown air temperature TAO rises. The air volume of the blower 8 decreases as the target blown air temperature TAO increases.

そして、第1目標送風量Vが最大換気風量Vkkmaxを下回ると、通常制御から移行制御に移行し、送風機8の送風量を最大換気風量Vkkmaxとする。これにより、通常制御から移行制御へと移行する前後の送風機8の送風量は、最大換気風量Vkkmaxとなり、送風機8の送風量が急変することなく通常制御から移行制御に移行する。   When the first target airflow rate V falls below the maximum ventilation airflow rate Vkkmax, the control shifts from normal control to transition control, and the airflow rate of the blower 8 is set to the maximum ventilation airflow rate Vkkmax. As a result, the air flow rate of the blower 8 before and after the transition from the normal control to the transition control becomes the maximum ventilation air volume Vkkmax, and the transition from the normal control to the transition control is performed without a sudden change in the air flow rate of the blower 8.

また、移行制御中は、移行制御時の車室内への吹出空気の熱量は、通常制御時の車室内への吹出空気の熱量と同等になるように、目標吹出温度TAOよりも高い目標温度TAOikとしているので、車室内への吹出空気の熱量が急変せずにバランスする。   Further, during the transition control, the target air temperature TAOik that is higher than the target air temperature TAOik so that the amount of heat of the air blown into the vehicle compartment during the transition control is equal to the amount of heat of the air blown into the vehicle interior during the normal control. Therefore, the heat quantity of the air blown into the passenger compartment is balanced without sudden change.

さらに、内気温Trが低下して目標温度TAOikが上昇すると、第2目標送風量Vkkも低下する。そして、第2目標送風量が最大換気風量Vkkmaxを下回ると、移行制御から換気制御へと移行し、圧縮機1の作動を停止させることになるが、送風機8の送風量は、最大換気風量Vkkmaxと同程度となる。つまり、移行制御から換気制御へと移行する前後の送風機8の送風量は、同程度であるため、送風機8の送風量が急変することなく移行制御から換気制御に移行する。   Further, when the internal temperature Tr decreases and the target temperature TAOik increases, the second target airflow rate Vkk also decreases. And if the 2nd target ventilation volume falls below the maximum ventilation air volume Vkkmax, it will transfer from transition control to ventilation control, and operation of compressor 1 will be stopped, but the ventilation volume of air blower 8 is the maximum ventilation air volume Vkkmax. And the same level. That is, since the air flow rate of the blower 8 before and after the shift from the transition control to the ventilation control is approximately the same, the flow shifts from the transfer control to the ventilation control without a sudden change in the air flow rate of the blower 8.

以上説明した本実施形態によれば、通常制御から換気制御へと移行する前に、移行制御を実行することで、通常制御から換気制御に移行する際に送風機8の送風量が急変することを抑制することができる。従って、第1実施形態の空調自動制御に比べて、送風機8の送風量の急変による乗員の不快感や違和感を低減することができる。   According to this embodiment described above, by performing the transition control before shifting from the normal control to the ventilation control, the amount of air blown from the blower 8 changes suddenly when shifting from the normal control to the ventilation control. Can be suppressed. Therefore, compared with the air conditioning automatic control of the first embodiment, it is possible to reduce passenger discomfort and discomfort due to a sudden change in the air flow rate of the blower 8.

また、本実施形態の移行制御では、移行制御を実行する場合の熱量Q3が、通常制御時の車室内への吹出空気の熱量Q4となるように決定した目標温度TAOikに基づいて圧縮機1等を制御するため、車室内に吹き出す空気の熱量をバランスさせることができる。   Further, in the transition control of the present embodiment, the compressor 1 and the like based on the target temperature TAOik determined so that the heat amount Q3 when executing the transition control becomes the heat amount Q4 of the air blown into the vehicle interior during the normal control. Therefore, it is possible to balance the amount of heat of the air blown into the vehicle interior.

従って、通常制御から移行制御へと移行する際に、温感的な変化を抑制することができ、乗員の不快感や違和感をより低減することができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
Therefore, when shifting from the normal control to the transition control, a warm change can be suppressed, and the passenger's discomfort and discomfort can be further reduced.
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows.

(1)上述の実施形態では、省動力制御中に車室内に吹き出す空気の熱量Q1が圧縮機11を作動させた場合の熱量Q2となるように、送風機8で外気の導入量を調整しているが、これに限定されるものではない。例えば、車室内の内気温Trと車室内の設定温度Tsetの温度差等に応じて、車室内の内気温Trが車室内の設定温度Tsetに近づくように車室内への外気の送風量を調整してもよい。   (1) In the above-described embodiment, the amount of outside air introduced is adjusted by the blower 8 so that the heat amount Q1 of the air blown into the vehicle interior during the power saving control becomes the heat amount Q2 when the compressor 11 is operated. However, it is not limited to this. For example, the amount of outside air blown into the vehicle interior is adjusted so that the vehicle interior temperature Tr approaches the vehicle interior set temperature Tset according to the temperature difference between the vehicle interior air temperature Tr and the vehicle interior set temperature Tset. May be.

(2)上述の実施形態では、冷凍機として蒸気圧縮式冷凍サイクル装置(蒸気圧縮式冷凍機)10を用いる例について説明したが、これに限定させるものではない。例えば、吸収式冷凍機、ベルチェ素子のベルチェ効果により吹出空気を冷却するような冷凍機等を採用することができる。ここで、吸着式冷凍機は、周知のごとく、シリカゲル等の吸着剤が水蒸気を吸着する作用を利用したものあり、具体的には、略真空状態に保たれた吸着器内に封入された水等の液相冷媒が気化する際の吸熱により冷凍能力を得るとともに、気化した蒸気冷媒を吸着剤にて吸着して液相冷媒を連続的に気化させるものである。   (2) In the above-described embodiment, the example in which the vapor compression refrigeration cycle apparatus (vapor compression refrigeration machine) 10 is used as the refrigerator has been described. However, the present invention is not limited to this. For example, it is possible to employ an absorption refrigerator, a refrigerator that cools the blown air due to the Beltier effect of the Beltier element, and the like. Here, as is well known, the adsorption refrigerator uses a function in which an adsorbent such as silica gel adsorbs water vapor, and specifically, water enclosed in an adsorber maintained in a substantially vacuum state. The refrigerating capacity is obtained by absorbing heat when the liquid phase refrigerant such as is vaporized, and the vaporized vapor refrigerant is adsorbed by an adsorbent to continuously vaporize the liquid phase refrigerant.

(3)上述の実施形態では冷凍サイクル装置10の圧縮機11として、常に一定の吐出容量で作動する固定容量型圧縮機を用いる場合について説明したが、圧縮機11として吐出容量を調整可能な可変容量型圧縮機や回転数が調整可能な電動圧縮機を用いてもよい。   (3) In the above-described embodiment, the case where a fixed displacement compressor that always operates at a constant discharge capacity is used as the compressor 11 of the refrigeration cycle apparatus 10 has been described. However, the compressor 11 is variable so that the discharge capacity can be adjusted. You may use a capacity type compressor and the electric compressor which can adjust rotation speed.

(4)上述の実施形態では、車室内吹出空気の温度調整のためにエアミックスドア17を用いているが、ヒータコア15に流入する温水の流量や温度を調整する周知の温水弁を用いてもよい。   (4) In the above-described embodiment, the air mix door 17 is used to adjust the temperature of the air blown into the passenger compartment, but a known hot water valve that adjusts the flow rate and temperature of the hot water flowing into the heater core 15 may be used. Good.

(5)上述の第2実施形態では、移行制御時の送風機8の送風量を最大換気風量Vkkmaxとしている。確かに、移行制御時の送風機8の送風量を最大換気風量Vkkmaxとすることが望ましいが、これに限定されるものではない。移行制御時の送風機8の送風量は、第1目標送風量よりも多く、最大換気風量Vkkmaxよりも小さい範囲の送風量にしてもよい。これによっても、少なくとも移行制御を行わずに通常制御から換気制御へと移行する場合に比較して、送風機8の送風量の急変を抑制することができる。   (5) In the above-described second embodiment, the air volume of the blower 8 at the time of transition control is set to the maximum ventilation air volume Vkkmax. Certainly, it is desirable that the air flow rate of the blower 8 at the time of transition control be the maximum ventilation air flow rate Vkkmax, but this is not a limitation. The amount of air blown by the blower 8 at the time of the transition control may be larger than the first target airflow amount and may be within a range smaller than the maximum ventilation airflow rate Vkkmax. Also by this, compared with the case where it transfers to normal control from ventilation control at least, without performing transfer control, the sudden change of the ventilation volume of the air blower 8 can be suppressed.

2…ケース
6…内外気切替手段
8…送風機
9…蒸発器(冷房用熱交換器)
10…蒸気圧縮式冷凍機(冷凍サイクル装置)
11…圧縮機
30…空調制御装置(温度制御手段)
31…外気センサ(外気温検出手段)
32…内気センサ(内気温検出手段)
2 ... Case 6 ... Inside / outside air switching means 8 ... Blower 9 ... Evaporator (cooling heat exchanger)
10 ... Vapor compression refrigerator (refrigeration cycle equipment)
11 ... Compressor 30 ... Air conditioning control device (temperature control means)
31 ... Outside air sensor (outside air temperature detecting means)
32. Inside air sensor (inside air temperature detecting means)

Claims (8)

車室内へ吹き出す空気の温度を自動で調整する自動制御方式の車両用空調装置において、
前記車室内に吹き出す空気の空気通路を構成するケース(2)と、
車室外の外気を前記ケース(2)に導入する外気モードと前記車室内の内気を前記ケース(2)に導入する内気モードとに切替可能な内外気切替手段(6)と、
前記ケース(2)内に導入された空気を車室内へと送風する送風機(8)と、
前記車室内へ吹き出す空気を冷却するための冷凍機と、
前記車室内の内気温(Tr)が乗員により設定された設定温度(Tset)となるように、少なくとも前記内外気切替手段(6)、前記送風機(8)、前記冷凍機の作動を制御する温度制御手段(30)と、
前記車室外の外気温(Tam)を検出する外気温検出手段(31)と、
前記車室内の内気温(Tr)を検出する内気温検出手段(32)とを備え、
前記温度制御手段(30)は、前記車室内へ冷風を吹き出す冷房運転中において、前記外気温検出手段(31)で検出した外気温(Tam)が前記内気温検出手段(32)で検出した内気温(Tr)よりも所定温度(α)を越えて低い低外気温状態である場合に、前記冷凍機の作動を停止させ、前記外気モードに切替えるとともに、前記送風機(8)の作動を制御して前記車室内の内気温(Tr)が前記設定温度(Tset)となるように前記車室内への外気の導入量を調整する換気制御を実行し、
さらに、前記温度制御手段(30)は、前記換気制御を実行する場合に、前記車室内に吹き出す空気の熱量が、前記冷凍機を作動させた場合における前記車室内に吹き出す空気の熱量となるように前記送風機(8)の作動を制御することを特徴とする車両用空調装置。
In an air conditioner for an automatic control system that automatically adjusts the temperature of air blown into the passenger compartment,
A case (2) constituting an air passage for air blown into the vehicle interior;
An inside / outside air switching means (6) capable of switching between an outside air mode for introducing outside air into the case (2) and an inside air mode for introducing inside air into the case (2);
A blower (8) for blowing the air introduced into the case (2) into the vehicle interior;
A refrigerator for cooling the air blown into the passenger compartment;
Temperature that controls at least the operation of the inside / outside air switching means (6), the blower (8), and the refrigerator so that the inside air temperature (Tr) in the passenger compartment becomes a set temperature (Tset) set by a passenger. Control means (30);
An outside air temperature detecting means (31) for detecting the outside air temperature (Tam) outside the vehicle compartment;
An internal air temperature detecting means (32) for detecting an internal air temperature (Tr) in the vehicle interior,
The temperature control means (30) is an internal air temperature (Tam) detected by the outside air temperature detecting means (31) detected by the inside air temperature detecting means (32) during the cooling operation of blowing cool air into the vehicle interior. When the outside air temperature is lower than the temperature (Tr) by a predetermined temperature (α), the operation of the refrigerator is stopped and switched to the outside air mode, and the operation of the blower (8) is controlled. Ventilation control for adjusting the amount of outside air introduced into the vehicle interior so that the inside air temperature (Tr) in the vehicle interior becomes the set temperature (Tset) ,
Furthermore, when the temperature control means (30) performs the ventilation control, the amount of heat of the air blown into the vehicle compartment becomes the amount of heat of the air blown into the vehicle compartment when the refrigerator is operated. The air conditioner for vehicles is characterized by controlling the operation of the blower (8) .
前記車室内に吹き出す空気の目標温度である目標吹出空気温度(TAO)を算出する吹出空気温度算出手段と、
前記目標吹出空気温度(TAO)に応じて前記送風機(8)の第1目標送風量(V)を算出する第1目標送風量算出手段と、
前記換気制御を実行する場合の前記送風機(8)の第2目標送風量(Vkk)を算出する第2目標送風量算出手段とを備え、
前記第2目標送風量算出手段は、前記第2目標送風量(Vkk)を下記数式
Vkk={(Tr−TAO)/(Tr−TAOam)}×V
(但し、Vkk:第2目標送風量、V:第1目標送風量、Tr:内気温、TAO:目標吹出空気温度、TAOam:外気温+α、α:所定温度)
により算出し、
前記温度制御手段(30)は、前記換気制御を実行する場合に、前記車室内に吹き出す空気の送風量が前記第2目標送風量(Vkk)となるように前記送風機(8)を制御することを特徴とする請求項に記載の車両用空調装置。
A blown air temperature calculating means for calculating a target blown air temperature (TAO) which is a target temperature of air blown into the vehicle interior;
First target air volume calculating means for calculating a first target air volume (V) of the blower (8) according to the target air temperature (TAO);
A second target air volume calculating means for calculating a second target air volume (Vkk) of the blower (8) when the ventilation control is executed,
The second target airflow rate calculation means calculates the second target airflow rate (Vkk) by the following formula: Vkk = {(Tr−TAO) / (Tr−TAOam)} × V
(However, Vkk: 2nd target ventilation volume, V: 1st target ventilation volume, Tr: Inside air temperature, TAO: Target blowing air temperature, TAOam: Outside air temperature + α, α: Predetermined temperature)
Calculated by
When the temperature control means (30) executes the ventilation control, the temperature control means (30) controls the blower (8) so that the amount of air blown into the vehicle interior becomes the second target air volume (Vkk). The vehicle air conditioner according to claim 1 .
前記温度制御手段(30)は、前記第2目標送風量算出手段で算出された前記第2目標送風量(Vkk)が、予め設定された最大換気風量(Vkkmax)より小さい場合に、前記換気制御を実行することを特徴とする請求項に記載の車両用空調装置。 The temperature control means (30) is configured to control the ventilation control when the second target airflow rate (Vkk) calculated by the second target airflow rate calculating means is smaller than a preset maximum ventilation airflow rate (Vkkmax). The vehicle air conditioner according to claim 2 , wherein: 前記温度制御手段(30)は、前記第2目標送風量算出手段で算出された前記第2目標送風量(Vkk)が、前記最大換気風量(Vkkmax)以上で、前記第1目標送風量(V)が、前記最大換気風量(Vkkmax)より小さい場合に、前記車室内に吹き出す空気の送風量が前記第1目標送風量(V)よりも大きく、前記最大換気風量(Vkkmax)以下となるように前記送風機(8)の作動を制御する移行制御を実行することを特徴とする請求項に記載の車両用空調装置。 The temperature control means (30) is configured such that the second target airflow rate (Vkk) calculated by the second target airflow rate calculating means is equal to or greater than the maximum ventilation airflow rate (Vkkmax), and the first target airflow rate (V ) Is smaller than the maximum ventilation airflow (Vkkmax), the airflow of the air blown into the vehicle interior is larger than the first target airflow (V) and less than the maximum ventilation airflow (Vkkmax). The vehicle air conditioner according to claim 3 , wherein a transition control for controlling the operation of the blower (8) is executed. 前記温度制御手段(30)は、前記移行制御を実行する場合に、前記吹出空気温度算出手段によって算出された前記目標吹出空気温度(TAO)よりも高い目標温度となるように前記内外気切替手段(6)、前記冷凍機の作動を制御することを特徴とする請求項に記載の車両用空調装置。 The temperature control means (30), when executing the transition control, the inside / outside air switching means such that the target temperature is higher than the target blowing air temperature (TAO) calculated by the blowing air temperature calculation means. (6) The vehicle air conditioner according to claim 4 , wherein the operation of the refrigerator is controlled. 前記温度制御手段(30)は、前記移行制御を実行する場合に、前記車室内に吹き出す空気の熱量が、前記第1目標送風量(V)となるように送風機(8)の作動を制御させた場合における前記車室内に吹き出す空気の熱量となるように、前記内外気切替手段(6)、前記冷凍機の作動を制御することを特徴とする請求項に記載の車両用空調装置。 The temperature control means (30) controls the operation of the blower (8) so that the amount of heat of the air blown into the vehicle interior becomes the first target blown amount (V) when executing the transition control. 6. The vehicle air conditioner according to claim 5 , wherein the operation of the inside / outside air switching means (6) and the refrigerator is controlled so that the amount of heat of the air blown into the vehicle interior in the case of the above is obtained. 前記温度制御手段(30)は、前記移行制御を実行する場合に、前記車室内に吹き出す空気の送風量が、前記最大換気風量(Vkkmax)となるように前記送風機(8)の作動を制御することを特徴とする請求項ないしのいずれか1つに記載の車両用空調装置。 The temperature control means (30) controls the operation of the blower (8) so that the amount of air blown into the vehicle interior becomes the maximum ventilation air volume (Vkkmax) when executing the transition control. The vehicular air conditioner according to any one of claims 4 to 6 . 前記冷凍機は、前記車室内に吹き出す空気を冷却する冷房用熱交換器(9)と、前記冷房用熱交換器(9)の冷却状態を作り出す圧縮機(11)とを含んで構成される蒸気圧縮式冷凍機(10)であって、
前記温度制御手段(30)は、前記圧縮機(11)の作動を制御することで前記冷房用熱交換器(9)の冷却機能を調整することを特徴とする請求項1ないしのいずれか1つに記載の車両用空調装置。
The refrigerator includes a cooling heat exchanger (9) that cools the air blown into the passenger compartment, and a compressor (11) that creates a cooling state of the cooling heat exchanger (9). A vapor compression refrigerator (10),
Said temperature control means (30), any one of claims 1 to 7, characterized in that adjusting the cooling capability of the compressor (11) the cooling heat exchanger by controlling the operation of (9) The vehicle air conditioner as described in one.
JP2009138900A 2008-11-11 2009-06-10 Air conditioner for vehicles Expired - Fee Related JP5251741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138900A JP5251741B2 (en) 2008-11-11 2009-06-10 Air conditioner for vehicles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008288657 2008-11-11
JP2008288657 2008-11-11
JP2009138900A JP5251741B2 (en) 2008-11-11 2009-06-10 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2010137838A JP2010137838A (en) 2010-06-24
JP5251741B2 true JP5251741B2 (en) 2013-07-31

Family

ID=42348343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138900A Expired - Fee Related JP5251741B2 (en) 2008-11-11 2009-06-10 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP5251741B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008861A (en) * 2012-06-29 2014-01-20 Denso Corp Air conditioner for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270648A (en) * 1993-03-16 1994-09-27 Nippondenso Co Ltd Air-conditioning device
JP2000016048A (en) * 1998-07-01 2000-01-18 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2002067675A (en) * 2000-08-28 2002-03-08 Zexel Valeo Climate Control Corp Air conditioner for vehicle
JP4561014B2 (en) * 2001-08-20 2010-10-13 株式会社デンソー Air conditioner for vehicles
JP2005335414A (en) * 2004-05-24 2005-12-08 Suzuki Motor Corp Air-conditioning control device for vehicle

Also Published As

Publication number Publication date
JP2010137838A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5920133B2 (en) Air conditioner for vehicles
JP5663849B2 (en) Air conditioner for vehicles
JP5533637B2 (en) Air conditioner for vehicles
JP5423181B2 (en) Air conditioner for vehicles
US9573439B2 (en) Air conditioner for vehicle
JP2007308133A (en) Air conditioning device for vehicle
WO2014045528A1 (en) Vehicle air-conditioning device
JP5316264B2 (en) Air conditioner for vehicles
JP2004131033A (en) Air-conditioner
JP3275410B2 (en) Heat pump type air conditioner for vehicles
JP2006224705A (en) Air-conditioner for vehicle
JP4407368B2 (en) Air conditioner for vehicles
JP5251741B2 (en) Air conditioner for vehicles
JP5472015B2 (en) Vehicle operation mode input device
JP2015089710A (en) Air conditioner for vehicle
JP5954059B2 (en) Air conditioner for vehicles
JP2002331820A (en) Air conditioner for vehicle
JP5472412B2 (en) Air conditioner for vehicles
JP5526675B2 (en) Air conditioner for vehicles
JP3301209B2 (en) Heat pump type air conditioner for vehicles
JP2014054932A (en) Vehicle air conditioner
JP2002301928A (en) Air conditioner for vehicle
JP3931438B2 (en) Air conditioner for vehicles
JP4218550B2 (en) Air conditioner for vehicles
JPH06191253A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees