JP5248022B2 - Lubricating oil composition for automatic transmission - Google Patents

Lubricating oil composition for automatic transmission Download PDF

Info

Publication number
JP5248022B2
JP5248022B2 JP2007012362A JP2007012362A JP5248022B2 JP 5248022 B2 JP5248022 B2 JP 5248022B2 JP 2007012362 A JP2007012362 A JP 2007012362A JP 2007012362 A JP2007012362 A JP 2007012362A JP 5248022 B2 JP5248022 B2 JP 5248022B2
Authority
JP
Japan
Prior art keywords
viscosity
component
automatic transmission
lubricating oil
viscosity index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007012362A
Other languages
Japanese (ja)
Other versions
JP2008179662A (en
Inventor
景子 志村
弘 栃木
隆裕 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Lubricants Co Ltd
Original Assignee
Cosmo Oil Lubricants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Lubricants Co Ltd filed Critical Cosmo Oil Lubricants Co Ltd
Priority to JP2007012362A priority Critical patent/JP5248022B2/en
Publication of JP2008179662A publication Critical patent/JP2008179662A/en
Application granted granted Critical
Publication of JP5248022B2 publication Critical patent/JP5248022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、走行初期の摩耗に影響する初期粘度を保持しつつ、省燃費性及び部品耐久性を両立させることができる自動変速機用潤滑油組成物に関する。 The present invention relates to a lubricating oil composition for an automatic transmission that can achieve both fuel economy and component durability while maintaining an initial viscosity that affects the wear at the beginning of traveling.

近年の車両用潤滑油は、省燃費性を考慮し、攪拌抵抗を減らす為、従来粘度よりも低粘度化の方向にある。自動変速機用潤滑油においても、低粘度化することでトルクコンバータやオイルポンプ等の攪拌抵抗を低減させ、燃費向上に有効であるとされている(例えば、特許文献1参照。)。
しかしながら、自動変速機油の低粘度化は耐摩耗性や部品耐久性に影響を与える可能性があるため、その性能維持の役割を、分子量が小さい粘度指数向上剤が担っている場合が多い。例えば、重量平均分子量(Mw)が40,000以下の粘度指数向上剤を用いることで、粘度特性を長期にわたって維持したり(特許文献2参照。)、また、特定の分子量範囲の粘度調整剤を選択する事で、低温操作性に影響する低温粘度特性及び摩耗に影響する高温粘度を同時に改善している(特許文献3参照。)。
In recent years, vehicle lubricating oils are in the direction of lower viscosity than conventional viscosities in order to reduce stirring resistance in consideration of fuel saving. Even in lubricating oil for automatic transmissions, it is said that by reducing the viscosity, stirring resistance of a torque converter, an oil pump or the like is reduced, and this is effective in improving fuel efficiency (see, for example, Patent Document 1).
However, lowering the viscosity of an automatic transmission fluid may affect wear resistance and component durability, and therefore, a viscosity index improver having a low molecular weight often plays a role in maintaining its performance. For example, by using a viscosity index improver having a weight average molecular weight (Mw) of 40,000 or less, the viscosity characteristics can be maintained over a long period of time (see Patent Document 2), or a viscosity modifier having a specific molecular weight range can be used. By selecting, the low temperature viscosity characteristic affecting low temperature operability and the high temperature viscosity affecting wear are simultaneously improved (see Patent Document 3).

現在、市場の自動変速機油は、100℃における動粘度が7.0mm/から9.0mm/sの間にあるものが一般的であり、多くの自動変速機はこの一般的な粘度の自動変速機油を使用することを想定して設計されている。これは、自動変速機油の高温粘度の確保が摩耗の抑制や部品耐久性を確保することが知られているので、多くの自動変速機においては、一般的粘度よりも大幅に低粘度化された自動変速機油の使用は耐摩耗性の悪化を生じる事が懸念されるためであると考えられる。特に摺動部分で比較的初期のなじみ段階で生じる初期摩耗の悪化が懸念されるため、初期のなじみ段階においては粘度がより高いことが望ましいと考えられている。 Currently, automatic transmission oils on the market generally have kinematic viscosities at 7.0 ° C. between 7.0 mm 2 /9.0 mm 2 / s, and many automatic transmissions have this general viscosity. It is designed to use automatic transmission fluid. This is because it is known that ensuring the high temperature viscosity of automatic transmission fluids will prevent wear and ensure the durability of parts, so in many automatic transmissions, the viscosity is significantly lower than the general viscosity. The use of automatic transmission oil is thought to be due to concerns about the deterioration of wear resistance. In particular, since there is a concern about deterioration of initial wear that occurs at a relatively early fitting stage in the sliding portion, it is considered that a higher viscosity is desirable in the initial fitting stage.

一方で、高い初期粘度は初期のなじみ段階での省燃費性を低下させるため、自動変速機油には適切な初期粘度が求められる。さらに、初期のなじみ後には、より優れた省燃費性を速やかに発揮するために、自動変速機油は部品耐久性が確保される範囲で速やかに粘度低下することが望ましい。そして、長期的にその粘度を維持する事が必要である。
このように、多くの自動変速機に省燃費性能を付与する自動変速機油としては、初期なじみに対応し省燃費性を発揮する初期粘度の保持、初期なじみ後に高い省燃費性を発揮するための速やかで適切な粘度低下、長期的な部品耐久性を確保するための粘度の保持が求められる。しかし、これらを併せ持つ自動変速機油は得られていなかった。
On the other hand, since a high initial viscosity reduces fuel efficiency at the initial familiarization stage, an appropriate initial viscosity is required for automatic transmission fluid. Furthermore, it is desirable that the viscosity of the automatic transmission fluid rapidly decreases within a range in which the durability of the parts is ensured in order to quickly exhibit better fuel economy after initial familiarity. And it is necessary to maintain the viscosity for a long time.
As described above, as an automatic transmission oil that imparts fuel saving performance to many automatic transmissions, it is necessary to maintain an initial viscosity that responds to initial running-in and exhibits fuel saving performance, and to exhibit high fuel saving after initial running-in. It is required to maintain viscosity in order to ensure quick and appropriate viscosity reduction and long-term component durability. However, an automatic transmission oil having both of these has not been obtained.

特開2004−169025号公報JP 2004-169025 A 特開2004−155873号公報JP 2004-155873 A 特表2002−509182号公報Special table 2002-509182 gazette

本発明は、適切な初期粘度を保持しつつ速やかに粘度低下を生じ、長期的にその粘度を維持することにより、市場の多くの自動変速機で省燃費性が得られる自動変速機油組成物を提供することを目的とする。 The present invention provides an automatic transmission oil composition that quickly decreases in viscosity while maintaining an appropriate initial viscosity and maintains the viscosity for a long period of time, thereby obtaining fuel saving performance in many automatic transmissions on the market. The purpose is to provide.

本発明者は上記状況に鑑み、鋭意研究を進めた結果、特定の性状を有する基油に2種類の特定の粘度指数向上剤を組み合わせて配合することにより、従来の自動変速機用潤滑油組成物では困難であった、初期粘度の保持と速やかな粘度低下による長期使用時の省燃費性及び部品耐久性を両立させることのできる自動変速機用潤滑油を得ることができることを見出した。 As a result of diligent research in view of the above situation, the present inventor has formulated a conventional lubricating oil composition for automatic transmissions by combining two specific viscosity index improvers in combination with a base oil having specific properties. It has been found that it is possible to obtain a lubricating oil for an automatic transmission capable of achieving both fuel saving and long-term component durability at the time of long-term use by maintaining the initial viscosity and rapidly decreasing the viscosity, which is difficult with conventional products.

すなわち、本発明は、(A)鉱油系基油を70質量%以上含有し、40℃における動粘度が9〜20mm/sの基油に、(B)重量平均分子量(ポリスチレン換算)が15,000〜70,000であるポリメタクリレート系粘度指数向上剤を0.5〜20質量%、及び(C)重量平均分子量が100,000〜500,000のポリメタクリレート系粘度指数向上剤を0.5〜15質量%含有し、(D)(C)成分に対する(B)成分の含有比率が質量比で3〜10であり、(E)組成物の100℃における動粘度が5.2〜6.5mm/sであり、(F)粘度指数が180以上であり、−40℃でのBF粘度が5,000〜8,900mPa・sあることを特徴とする自動変速機用潤滑油組成物を提供するものである。 That is, the present invention comprises (A) a mineral oil base oil of 70% by mass or more, a base oil having a kinematic viscosity at 40 ° C. of 9 to 20 mm 2 / s, and (B) a weight average molecular weight (polystyrene conversion) of 15 0.5 to 20 % by mass of a polymethacrylate viscosity index improver that is 1,000 to 70,000, and (C) a polymethacrylate viscosity index improver that has a weight average molecular weight of 100,000 to 500,000. 5 to 15 % by mass, the content ratio of the component (B) to the component (D) (C) is 3 to 10 by mass ratio, and (E) the kinematic viscosity at 100 ° C. of the composition is 5.2 to 6 A lubricating oil composition for an automatic transmission, characterized in that it is 0.5 mm 2 / s, (F) has a viscosity index of 180 or more, and has a BF viscosity at −40 ° C. of 5,000 to 8,900 mPa · s. Is to provide.

本発明の自動変速機用潤滑油組成物は、(A)成分としての基油および(B)成分、(C)成分として2種類のポリメタクリレート系粘度指数向上剤の相乗効果により、これまでは困難とされてきた走行初期の摩耗に影響する初期粘度の保持と、省燃費性及び部品耐久性を兼ね備えることができる。
また、本発明の自動変速機用潤滑油組成物をAT(Automatic Transmission、自動変速機)、CVT(Continuously
Variable Transmission、連続無断変速機)、その他の湿式クラッチを有する車両用自動変速機、パワーステアリング、一般作業用油圧作動装置、流体継手等多くの機械、特にせん断による粘度低下が発生する装置に用いることにより、初期使用時から長期使用時において、性能良好であり且つ環境負荷低減に寄与することができる。
The lubricating oil composition for an automatic transmission according to the present invention is based on the synergistic effect of the base oil as the component (A), the component (B), and the two polymethacrylate viscosity index improvers as the component (C). It is possible to combine maintenance of the initial viscosity, which has been considered difficult, and influence on wear at the initial stage of travel, fuel saving and component durability.
Further, the lubricating oil composition for an automatic transmission according to the present invention is applied to AT (Automatic Transmission), CVT (Continuously).
VARIABLE TRANSMISSION (continuous transmission), other automatic transmissions for vehicles with wet clutches, power steering, hydraulic actuators for general work, fluid couplings, etc., especially for devices that generate viscosity drop due to shear Thus, the performance is good and the environmental load can be reduced from the initial use to the long-term use.

本発明では、(A)成分として、鉱油系基油を70質量%以上含有し、40℃における動粘度が9〜20mm/sの基油を用いる。40℃における動粘度を9〜20mm/sにすることで、自動変速機用潤滑油として目的とする潤滑特性を得ることが可能である。40℃における動粘度は、より好ましくは9〜14mm/sである。
基油としては、鉱油系基油、合成系基油又はこれらの混合物が用いられる。
In the present invention, as component (A), a base oil containing 70% by mass or more of a mineral oil base oil and having a kinematic viscosity at 40 ° C. of 9 to 20 mm 2 / s is used. By setting the kinematic viscosity at 40 ° C. to 9 to 20 mm 2 / s, it is possible to obtain the desired lubrication characteristics as a lubricating oil for automatic transmissions. The kinematic viscosity at 40 ° C. is more preferably 9 to 14 mm 2 / s.
As the base oil, a mineral base oil, a synthetic base oil or a mixture thereof is used.

鉱油系基油としては、上記の性状を満たすものであればどのような精製方法や処理を施されたものでもよく、製法に制限はないが、鉱油の水素化精製油、触媒異性化油などに溶剤脱蝋または水素化脱蝋などの処理を施した、高度に精製されたパラフィン系鉱油
(高粘度指数鉱油系潤滑油基油) が好ましく使用される。また、上記以外にも様々な製造法により得られた鉱物系基油が使用できるが、例えば、鉱油系潤滑油原料をフェノール、フルフラールなどの芳香族抽出溶剤を用いた溶剤精製により得られるラフィネート、シリカ−アルミナを担体とするコバルト、モリブデンなどの水素化処理触媒を用いた水素化処理により得られる水素化処理油などが挙げられ、例えば、100ニュートラル油、150ニュートラル油、500ニュートラル油などを挙げることができる。これらの鉱油系基油は、本願で規定した性状を満たす限りそれぞれ1種単独で用いてもよいし、2種以上を任意の割合で組み合わせ混合し使用してもよい。
As the mineral base oil, any refining method or treatment may be used as long as it satisfies the above properties, and the production method is not limited, but hydrorefined mineral oil, catalyst isomerized oil, etc. A highly refined paraffinic mineral oil (high viscosity index mineral oil base oil) obtained by subjecting to a treatment such as solvent dewaxing or hydrodewaxing is preferably used. In addition to the above, mineral base oils obtained by various production methods can be used, for example, raffinate obtained by solvent purification using an aromatic extraction solvent such as phenol and furfural for mineral oil-based lubricating oil raw materials, Examples thereof include hydrotreated oils obtained by hydrotreating using a hydrotreating catalyst such as cobalt or molybdenum using silica-alumina as a carrier, and examples include 100 neutral oil, 150 neutral oil, and 500 neutral oil. be able to. These mineral oil-based base oils may be used alone or in combination of two or more at any ratio as long as the properties defined in the present application are satisfied.

合成系潤滑油基油としては、例えば、メタン等の天然ガスを原料として合成されるイソパラフィン、ポリ−α−オレフィンオリゴマー、ポリブテン、アルキルベンゼン、ポリオールエステル、ポリグリコールエステル、二塩基酸エステル、リン酸エステル、シリコン油などを挙げることができる。
(A)成分の基油は、本願で規定した性状を満たす限り、鉱油系基油及び合成系基油のそれぞれ1種単独で用いてもよいし、2種以上を任意の割合で組み合わせ混合し用いてもよい。
Synthetic lubricating base oils include, for example, isoparaffins, poly-α-olefin oligomers, polybutenes, alkylbenzenes, polyol esters, polyglycol esters, dibasic acid esters, phosphate esters synthesized from natural gas such as methane. And silicon oil.
(A) As long as the base oil of a component satisfy | fills the property prescribed | regulated by this application, you may use 1 type each of mineral base oil and synthetic base oil individually, and mix and mix 2 or more types in arbitrary ratios. It may be used.

また、本発明の基油成分である(A)成分は、上記に記載した1種又は2種以上の鉱油系潤滑油基油に、1種又は2種以上の合成系潤滑油基油を混合し用いることができる。添加剤の溶解性の観点から(A)成分のうち鉱油系基油は少なくとも70質量%以上含まれている The component (A) which is the base oil component of the present invention is a mixture of one or more synthetic lubricant base oils with one or more mineral oil base oils described above. Can be used. From the viewpoint of the solubility of the additive, at least 70% by mass or more of the mineral oil base oil is contained in the component (A) .

本発明では、(B)成分として重量平均分子量(Mw)が15,000〜70,000であるポリメタクリレート系粘度指数向上剤(以下、PMA系粘度指数向上剤ということがある。)を用いる。本発明における重量平均分子量(Mw)とはゲルパーミエーションクロマトグラフィー(GPC)で測定された分子量算定用標準ポリスチレン換算である。 In the present invention, a polymethacrylate viscosity index improver (hereinafter sometimes referred to as PMA viscosity index improver) having a weight average molecular weight (Mw) of 15,000 to 70,000 is used as the component (B). The weight average molecular weight (Mw) in the present invention is a standard polystyrene conversion for molecular weight calculation measured by gel permeation chromatography (GPC).

PMA系の粘度指数向上剤は、Mwが15,000〜70,000であれば、式(1)に例として示すような分散型でも、式(2)に例として示すような非分散型でも良く、特に制限されることなく選択される。また窒素化合物やポリアルキレングリコールエステルなどの極性モノマーの単位を含むものでも、炭化水素以外の元素成分を含むものでも良い。また、構造の一部がポリメタクリレート以外の高分子化合物であっても、ポリマーの大部分がポリメタクリレートであり、一般にPMA系粘度指数向上剤として使用されているもので、且つ本発明の目的を達成する特定の性状を有するものであれば、その商品分類に制限されることなく使用することができる。ポリマーの大部分がポリメタクリレートとは、メタクリレート単位の割合が、ポリマー全体の80モル%以上であることが好ましい。 The PMA-based viscosity index improver may be a dispersion type as exemplified in Formula (1) or a non-dispersion type as exemplified in Formula (2) as long as Mw is 15,000 to 70,000. It is well selected without any particular restrictions. Further, it may contain a polar monomer unit such as a nitrogen compound or polyalkylene glycol ester, or may contain an element component other than hydrocarbon. Further, even if a part of the structure is a polymer compound other than polymethacrylate, most of the polymer is polymethacrylate, which is generally used as a PMA viscosity index improver, and the object of the present invention is If it has the specific property to achieve, it can be used, without being restrict | limited to the goods classification. The majority of the polymer is preferably polymethacrylate, and the proportion of methacrylate units is preferably 80 mol% or more of the whole polymer.

本発明におけるPMA系粘度指数向上剤のMwは、15,000〜70,000であれば目的とする性能を得ることができるが、好ましくは20,000〜60,000、より好ましくは20,000〜55,000である。Mwを15,000以上とすることで、自動変速機用潤滑油に必要な粘度指数向上効果が得られる。また、Mwを70,000以下とすることで、機械から受けるせん断に対して初期及び長期的に安定である。また(B)成分の含有量は、0.5〜20質量%であり、さらに好ましくは3〜20質量%である。0.5質量%未満であると、例え十分な粘度指数向上効果が得られる量の(C)成分を配合したとしても、初期・中期・長期のいずれにおいても機械から受けるせん断に対して不安定であるため、必要以上の粘度低下を生じ好ましくなく、30質量%を超えると、機械から受けるせん断に対して安定であるため、初期なじみ後に十分な粘度低下が生じない。 If the Mw of the PMA viscosity index improver in the present invention is 15,000 to 70,000, the desired performance can be obtained, but preferably 20,000 to 60,000, more preferably 20,000. ~ 55,000. By setting Mw to 15,000 or more, the viscosity index improvement effect required for the lubricating oil for automatic transmission can be obtained. Moreover, by setting Mw to 70,000 or less, it is stable in the initial stage and in the long term against the shear received from the machine. The content of the component (B) is 0.5 to 20 wt%, more preferably from 3 to 20 mass%. If it is less than 0.5% by mass, it is unstable to shear from the machine in any of the initial, medium and long term, even if the component (C) is added in an amount sufficient to improve the viscosity index. Therefore, if the amount exceeds 30% by mass, it is stable against shear received from the machine, and therefore, sufficient viscosity reduction does not occur after initial conforming.

Figure 0005248022
(式中、Rは水素原子又は炭素数1〜20のアルキル基である。kは1以上の整数である。)
Figure 0005248022
(In the formula, R 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. K is an integer of 1 or more.)

Figure 0005248022
(式中、Rは水素原子又は炭素数1〜20のアルキル基であり、RはH又はCHであり、Xはアミノ基、エステル基又はスルホン酸基である。m及びnは1以上の整数である。)
Figure 0005248022
(Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R 2 is H or CH 3 , X is an amino group, an ester group or a sulfonic acid group. M and n are 1) (It is an integer above.)

本発明においては、(C)成分として重量平均分子量(Mw)が100,000〜500,000であるポリメタクリレート系粘度指数向上剤を用いる。PMA系の粘度指数向上剤は、Mwが100,000〜500,000であれば、式(1)に例として示すような分散型でも、式(2)に例として示すような非分散型でも良く、特に制限されることなく選択される。また窒素化合物やポリアルキレングリコールエステルなどの極性モノマーの単位を含むものでも、炭化水素以外の元素成分を含むものでも良い。また、構造の一部がポリメタクリレート以外の高分子化合物であっても、ポリマーの大部分がポリメタクリレートであり、一般にPMA系粘度指数向上剤として使用されているもので、且つ本発明の目的を達成する特定の性状を有するものであれば、その商品分類に制限されることなく使用することができる。 In the present invention, a polymethacrylate viscosity index improver having a weight average molecular weight (Mw) of 100,000 to 500,000 is used as the component (C). The PMA-based viscosity index improver may be a dispersion type as exemplified in Formula (1) or a non-dispersion type as exemplified in Formula (2) as long as Mw is 100,000 to 500,000. It is well selected without any particular restrictions. Further, it may contain a polar monomer unit such as a nitrogen compound or polyalkylene glycol ester, or may contain an element component other than hydrocarbon. Further, even if a part of the structure is a polymer compound other than polymethacrylate, most of the polymer is polymethacrylate, which is generally used as a PMA viscosity index improver, and the object of the present invention is If it has the specific property to achieve, it can be used, without being restrict | limited to the goods classification.

本発明におけるPMA系粘度指数向上剤のMwは、100,000〜500,000であれば目的とする性能を得ることができるが、好ましくは120,000〜500,000、より好ましくは120,000〜450,000である。Mwを100,000以上とすることで、長期使用時における省燃費性能を付与することができる。また、Mwを500,000以下とすることで、基油に対する溶解性が良好である。
また、(C)成分の含有量は0.5〜15質量%であり、さらに好ましくは1〜15質量%である。0.5質量%未満であると、例え十分な粘度指数向上効果が得られる量の(B)成分を配合したとしても、中期・長期において望まれる適度な粘度低下が得られないため好ましくなく、30質量%を超えると、機械から受けるせん断の影響が生じやすく、長期使用時の粘度保持性が悪化する。
If the Mw of the PMA viscosity index improver in the present invention is 100,000 to 500,000, the desired performance can be obtained, but preferably 120,000 to 500,000, more preferably 120,000. ~ 450,000. By setting Mw to 100,000 or more, fuel saving performance during long-term use can be imparted. Moreover, the solubility with respect to base oil is favorable because Mw shall be 500,000 or less.
The content of component (C) is 0.5 to 15 wt%, more preferably from 1 to 15 wt%. If it is less than 0.5% by mass, even if blending the component (B) in such an amount that a sufficient effect of improving the viscosity index is obtained, it is not preferable because an appropriate decrease in viscosity cannot be obtained in the medium and long term, If it exceeds 30% by mass, the effect of shearing from the machine tends to occur, and the viscosity retention during long-term use deteriorates.

(B)成分および(C)成分のPMA系粘度指数向上剤は、式(1)及び式(2)において、Rが炭素数1〜20のアルキル基の異なる各種アルキルメタクリレートの共重合体であってもよい。
また、(B)成分と(C)成分の原料モノマーや化学構造は、同じものでも、異なるものでも良いが、(B)成分と(C)成分の重量平均分子量(Mw)の差が30,000以上あるものが好ましく、より好ましくは40,000以上、最も好ましくは50,000以上である。また本発明に用いられる(B)成分および(C)成分のPMA系粘度指数向上剤は、本発明の目的を達成するためのポリメタクリレート系の構造を有するものであれば、上記の具体例に限定されることなく、一般に潤滑油用粘度指数向上剤(ポリマー)として用いられるものならば使用することができる。なお、粘度指数向上剤としては、エンジン油等でオレフィンコポリマー(OCP)も使用されているが、本発明では低温粘度が悪化するため使用できない。
(B)成分及び(C)成分であるPMA系年度指数向上剤はそれぞれ単独でも、2種以上を混合させても良い。
The PMA viscosity index improver of component (B) and component (C) is a copolymer of various alkyl methacrylates in which R 1 is an alkyl group having 1 to 20 carbon atoms in formula (1) and formula (2). There may be.
Further, the raw material monomers and chemical structures of the component (B) and the component (C) may be the same or different, but the difference in the weight average molecular weight (Mw) between the component (B) and the component (C) is 30, More than 000 is preferable, more preferably 40,000 or more, and most preferably 50,000 or more. In addition, the PMA viscosity index improvers of the component (B) and the component (C) used in the present invention have the polymethacrylate structure for achieving the object of the present invention. Without limitation, any material that is generally used as a viscosity index improver (polymer) for lubricating oils can be used. As the viscosity index improver, olefin copolymer (OCP) is also used in engine oils and the like, but in the present invention, it cannot be used because the low-temperature viscosity deteriorates.
The (B) component and the (C) component PMA year index improver may be used alone or in combination of two or more.

本発明の自動変速機用潤滑油組成物は、該組成物の100℃における動粘度が5.2〜6.5mm/s、好ましくは5.8〜6.5mm/sであり、粘度指数が180以上である。動粘度が5.2mm/s未満であると、低粘度に起因する初期摩耗の悪化が懸念され好ましくない。一方、6.5mm/sを越えると、走行初期の省燃費性が得られず好ましくない。また、粘度指数が180未満では常温域での粘度が高まるため省燃費性が低下し好ましくない。粘度指数に上限はないが、実際には230以下になる場合が多い。また、低温時の応答性から−40℃でのBF粘度は、8,900mPa・s以下であり、−40℃でのBF粘度の下限5,000mPa・s以上であるThe lubricating oil composition for an automatic transmission according to the present invention has a kinematic viscosity at 100 ° C. of 5.2 to 6.5 mm 2 / s, preferably 5.8 to 6.5 mm 2 / s. The index is 180 or more. If the kinematic viscosity is less than 5.2 mm 2 / s, there is a concern about deterioration of initial wear due to low viscosity, which is not preferable. On the other hand, if it exceeds 6.5 mm 2 / s, the fuel saving performance in the initial stage of travel cannot be obtained, which is not preferable. On the other hand, when the viscosity index is less than 180, the viscosity in the normal temperature region increases, so the fuel saving performance is lowered, which is not preferable. There is no upper limit to the viscosity index, but in practice it is often 230 or less. Moreover, the BF viscosity at -40 ℃ from the response at the time of low temperature, or less 8,900 mPa · s, the lower limit of the BF viscosity at -40 ℃ is 5,000 mPa · s or more.

また、本発明での(B)、(C)成分の合計量としては好ましくは4〜20質量%であり、最も好ましくは5〜15質量%である。この範囲とすることで、より一層の摩耗防止性と省燃費性の両立効果が得られる。
本発明においては、(C)成分に対する(B)成分の含有比率、すなわち、(B)成分の含有量/(C)成分の含有量の比率が、質量比で3〜10であり、特に好ましくは4〜7である。この範囲とすることで、より一層の省燃費性と部品耐久性の両立効果が得られる。
Moreover, as total amount of (B) and (C) component in this invention , Preferably it is 4-20 mass%, Most preferably, it is 5-15 mass%. By setting it within this range, it is possible to obtain both the effect of further preventing wear and fuel saving.
In the present invention, the content ratio of the component (B) to the component (C), that is, the ratio of the content of the component (B) / the content of the component (C) is 3 to 10 in terms of mass ratio, and is particularly preferable. Is 4-7. By setting it within this range, it is possible to obtain an effect of achieving both further fuel saving and component durability.

本発明の自動変速機用潤滑油は、上記(A)、(B)及び(C)成分のほかに、必要に応じて、公知の添加剤、例えば、無灰型分散剤、金属型清浄剤、油性剤、摩耗防止剤、極圧剤、さび止め剤、摩擦調整剤、酸化防止剤、腐食防止剤、金属不活性化剤、流動点降下剤、消泡剤、着色剤、自動変速機油用パッケージ添加剤、あるいはこれらのうち少なくとも1種を含有する各種潤滑油用パッケージ添加剤などを添加することができる。 In addition to the components (A), (B) and (C), the lubricating oil for automatic transmissions according to the present invention may contain known additives such as ashless dispersants, metal detergents as necessary. , Oiliness agent, antiwear agent, extreme pressure agent, rust inhibitor, friction modifier, antioxidant, corrosion inhibitor, metal deactivator, pour point depressant, antifoaming agent, colorant, for automatic transmission oil A package additive or a package additive for various lubricating oils containing at least one of them can be added.

上記の無灰型分散剤としては、アルケニルコハク酸イミド、アルケニルコハク酸エステル、長鎖脂肪酸とポリアミンとのアミド(アミノアミド型)、あるいはこれらのホウ素化物誘導体などが挙げられる。金属型清浄剤としては、中性、塩基性、過塩基性のスルホネート、フェネート、サリシネート、ホスホネートなどが挙げられる。油性剤としては、オレイン酸、ステアリン酸、高級アルコール、アミン、エステル、硫化油脂、酸性リン酸エステル、酸性亜リン酸エステルなどが挙げられる。摩耗防止剤としては、ジチオリン酸金属塩、チオリン酸金属塩、硫黄化合物、リン酸エステル、亜リン酸エステル、酸性リン酸エステルやそのアミン塩などが挙げられる。極圧剤としては、炭化水素硫化物、硫化油脂、ジチオリン酸亜鉛、リン酸エステル、亜リン酸エステル、塩素化パラフィン、塩素化ジフェニルなどが挙げられる。 Examples of the ashless dispersant include alkenyl succinimides, alkenyl succinates, amides of long chain fatty acids and polyamines (aminoamide type), and boride derivatives thereof. Examples of metal detergents include neutral, basic, and overbased sulfonates, phenates, salicinates, phosphonates, and the like. Examples of oil agents include oleic acid, stearic acid, higher alcohols, amines, esters, sulfurized fats and oils, acidic phosphate esters, and acidic phosphite esters. Examples of the antiwear agent include dithiophosphate metal salts, thiophosphate metal salts, sulfur compounds, phosphate esters, phosphite esters, acidic phosphate esters and amine salts thereof. Examples of extreme pressure agents include hydrocarbon sulfides, sulfurized fats and oils, zinc dithiophosphate, phosphate esters, phosphite esters, chlorinated paraffins, and chlorinated diphenyls.

さび止め剤としては、カルボン酸やそのアミン塩、エステル、スルホン酸塩、ホウ素化合物などが挙げられる。摩擦調整剤としては、有機モリブテン化合物、多価アルコール部分エステル、アミン、アミド、硫化エステル、リン酸エステル、酸性リン酸エステルやそのアミン塩などが挙げられる。酸化防止剤としては、アミン系、フェノール系、硫黄系の酸化防止剤などが挙げられる。腐食防止剤としては、ベンゾトリアゾール、アルケニルコハク酸エステルなどが挙げられる。流動点降下剤としては、ポリメタクリレート、ポリブテンなどが挙げられる。消泡剤としては、シリコン化合物、フルオロシリコン化合物、エステル系などが挙げられる。
本発明の自動変速機用潤滑油組成物は、上記(A)成分、(B)成分及び(C)成分、必要に応じて上記添加剤を配合し、混合することにより、製造することができる。
Examples of the rust inhibitor include carboxylic acid and its amine salt, ester, sulfonate, boron compound and the like. Examples of the friction modifier include organic molybdenum compounds, polyhydric alcohol partial esters, amines, amides, sulfurized esters, phosphate esters, acidic phosphate esters and amine salts thereof. Examples of the antioxidant include amine-based, phenol-based, and sulfur-based antioxidants. Examples of the corrosion inhibitor include benzotriazole and alkenyl succinate. Examples of the pour point depressant include polymethacrylate and polybutene. Examples of the antifoaming agent include silicon compounds, fluorosilicon compounds, ester-based compounds, and the like.
The lubricating oil composition for an automatic transmission of the present invention can be produced by blending and mixing the above component (A), component (B) and component (C), and if necessary, the above additives. .

次に、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these examples.

(実施例1〜3)
下記の基油及び添加剤を表1に示された配合量で混合して自動変速機用潤滑油組成物を調製した。得られた自動変速機用潤滑油組成物の性能特性を表1に示す。なお、配合は組成物の100℃粘度が6.0〜6.4mm/sで、粘度指数が180以上となるよう実施した。
(比較例1〜5)
実施例と同様に、下記の基油及び添加剤を表2に示された配合量で混合して自動変速機用潤滑油組成物を調製した。得られた自動変速機用潤滑油組成物の性能特性を表2に示す。
(Examples 1-3)
The following base oils and additives were mixed in the blending amounts shown in Table 1 to prepare a lubricating oil composition for an automatic transmission. Table 1 shows the performance characteristics of the obtained lubricating oil composition for automatic transmissions. The blending was carried out so that the composition had a 100 ° C. viscosity of 6.0 to 6.4 mm 2 / s and a viscosity index of 180 or more.
(Comparative Examples 1-5)
In the same manner as in the examples, the following base oils and additives were mixed in the blending amounts shown in Table 2 to prepare a lubricating oil composition for an automatic transmission. Table 2 shows performance characteristics of the obtained lubricating oil composition for automatic transmissions.

<基油>
基油A:水素化精製パラフィン系基油で40℃粘度が10mm/sのもの
基油B:水素化精製パラフィン系基油で40℃粘度が15mm/sのもの
基油C:高度精製鉱油系基油で40℃粘度が11mm/sのもの
基油D:高度精製鉱油系基油で40℃粘度が20mm/sのもの
基油E:ポリ−α−オレフィンで40℃粘度が17mm/sのもの
<Base oil>
Base oil A: Hydrogenated refined paraffin base oil with 40 ° C. viscosity of 10 mm 2 / s Base oil B: Hydrogenated refined paraffin base oil with 40 ° C. viscosity of 15 mm 2 / s Base oil C: Highly refined Base oil D with mineral oil base oil and 40 ° C. viscosity of 11 mm 2 / s D: Highly refined mineral oil base oil with 40 ° C. viscosity of 20 mm 2 / s Base oil E: Poly-α-olefin with 40 ° C. viscosity 17 mm 2 / s

<添加剤>
添加剤F:自動変速機油用パッケージ添加剤(実質的に粘度指数向上剤を含有しない)
添加剤G:重量平均分子量(Mw)が20,000である非分散型PMA系粘度指数向上剤
添加剤H:重量平均分子量(Mw)が52,000である非分散型PMA系粘度指数向上剤
添加剤I:重量平均分子量(Mw)が150,000である分散型PMA系粘度指数向上剤
添加剤J:重量平均分子量(Mw)が450,000である非分散型PMA系粘度指数向上剤
添加剤K:重量平均分子量(Mw)が400,000である分散型PMA系粘度指数向上剤
*なお、添加剤G、H、I、J、Kの分子量(Mw)は、分子量算定用標準ポリスチレン換算である。
<Additives>
Additive F: Package additive for automatic transmission oil (substantially free of viscosity index improver)
Additive G: Non-dispersed PMA viscosity index improver with a weight average molecular weight (Mw) of 20,000 Additive H: Non-dispersed PMA viscosity index improver with a weight average molecular weight (Mw) of 52,000 Additive I: Dispersed PMA viscosity index improver additive having a weight average molecular weight (Mw) of 150,000 J: Non-dispersed PMA viscosity index improver having a weight average molecular weight (Mw) of 450,000 Agent K: Dispersed PMA viscosity index improver having a weight average molecular weight (Mw) of 400,000 * The molecular weights (Mw) of additives G, H, I, J, and K are converted to standard polystyrene for molecular weight calculation. It is.

試験方法:
初期のなじみ段階、中期のなじみ後、長期使用時を想定したせん断安定性評価として、以下に示すせん断レベルの異なる3種類の試験方法で試験を実施した。
Test method:
The test was conducted by the following three test methods with different shear levels as an evaluation of the shear stability assuming a long-term use after an initial familiar phase and an intermediate familiar phase.

(1)せん断安定性試験1:
JPI−5S−29−88に準拠して実施した。下記の試験条件で超音波照射し、100℃粘度の低下率を求めた。この試験は、3種類のせん断試験の中で最もせん断レベルが低く、初期なじみ段階での粘度低下の指標となる。100℃粘度低下率が少なければ少ないほど、走行初期時の粘度保持性が良好とした。
試験条件の超音波出力及び照射時間は、以下のようにした。
超音波出力:ASTM標準油Aに10分間超音波を照射して、40℃粘度を15%低下させる出力、
照射時間:30分間
(1) Shear stability test 1:
It implemented based on JPI-5S-29-88. Ultrasonic irradiation was performed under the following test conditions to determine the rate of decrease in viscosity at 100 ° C. This test has the lowest shear level among the three types of shear tests, and serves as an index of viscosity reduction at the initial familiarization stage. The smaller the 100 ° C. viscosity reduction rate, the better the viscosity retention at the beginning of running.
The ultrasonic output and irradiation time of the test conditions were as follows.
Ultrasonic output: An output that reduces the viscosity at 40 ° C. by 15% by irradiating ASTM standard oil A with ultrasonic waves for 10 minutes.
Irradiation time: 30 minutes

(2)せん断安定性試験2:
JASO M347−05に準拠して実施した。下記の試験条件で超音波照射し、100℃粘度の低下率を求めた。この試験は、3種類のせん断試験の中で中間のせん断レベルであり、なじみ後の中期使用時の粘度低下の指標となる。100℃粘度低下率が9〜15%を判断基準とした。粘度低下率が9%未満では、なじみ後の速やかな粘度低下が望めず、粘度低下率が15%を超えると、異常摩耗や部品損傷が懸念される。
試験条件の超音波出力及び照射時間は、以下のようにした。
超音波出力:ASTM標準油Aに10分間超音波を照射して、100℃粘度を30%低下させる出力、
照射時間:60分
(2) Shear stability test 2:
It carried out according to JASO M347-05. Ultrasonic irradiation was performed under the following test conditions to determine the rate of decrease in viscosity at 100 ° C. This test is an intermediate shear level among the three types of shear tests, and serves as an index of viscosity reduction during the medium term use after familiarization. The criterion for determining the rate of decrease in viscosity at 100 ° C. was 9 to 15%. If the viscosity reduction rate is less than 9%, a rapid viscosity reduction after fitting cannot be expected, and if the viscosity reduction rate exceeds 15%, there is a concern about abnormal wear or component damage.
The ultrasonic output and irradiation time of the test conditions were as follows.
Ultrasonic output: Output that reduces the viscosity at 100 ° C. by 30% by irradiating ASTM standard oil A with ultrasonic waves for 10 minutes,
Irradiation time: 60 minutes

(3)せん断安定性試験3:
CEC−L−45−A−99に準拠して実施した。下記の試験条件で実施し、100℃粘度の低下率を求めた。この試験は、3種類のせん断試験の中で最もせん断レベルが高く、長期使用時の粘度低下の指標となる。100℃粘度低下率が9〜15%を判断基準とした。粘度低下率が9%未満では、十分な省燃費性が望めず、粘度低下率が15%を超えると異常摩耗や部品損傷が懸念される。
試験条件のモーター回転数、試験荷重、試験時間は、以下のようにした。
モーター回転数:1475rpm、
試験荷重:5000N、
試験時間:20時間
(3) Shear stability test 3:
It implemented based on CEC-L-45-A-99. It implemented on the following test conditions and calculated | required the decreasing rate of 100 degreeC viscosity. This test has the highest shear level among the three types of shear tests, and serves as an index for viscosity reduction during long-term use. The criterion for determining the rate of decrease in viscosity at 100 ° C. was 9 to 15%. When the viscosity reduction rate is less than 9%, sufficient fuel saving performance cannot be expected, and when the viscosity reduction rate exceeds 15%, there is a concern about abnormal wear or component damage.
The motor speed, test load, and test time of the test conditions were as follows.
Motor rotation speed: 1475 rpm,
Test load: 5000N
Test time: 20 hours

Figure 0005248022
Figure 0005248022

Figure 0005248022
Figure 0005248022

上記の実施例は、せん断安定性試験1、2及び3のいずれも、優れた結果を示しており、初期粘度を保持しつつ、省燃費性及び部品耐久性を両立させるという、目標を満足することが明らかになった。
一方、(C)成分を含有しない比較例1及び5では、せん段安定性試験1でのせん断安定性に優れるが、せん断安定性試験2及び3での粘度低下率が小さく優れた省燃費性が発揮されない。逆に(B)成分を含有しない比較例2、3では、せん断安定性試験1での粘度低下率が大きく、初期なじみ段階での耐摩耗性に劣る。さらに、せん断安定性試験2及び3での粘度低下率も大きく、省燃費効果は期待されるが、長期使用時の異常摩耗や部品損傷が懸念される。
また、(C)成分に対する(B)成分の含有比率が本発明の範囲から低く外れている比較例4でも、せん断安定性試験1〜3での粘度低下率が大きく、初期摩耗及び長期使用時の異常摩耗や部品損傷が懸念される。
The above examples show excellent results in all of the shear stability tests 1, 2, and 3, and satisfy the goal of achieving both fuel economy and component durability while maintaining the initial viscosity. It became clear.
On the other hand, Comparative Examples 1 and 5 that do not contain the component (C) are excellent in shear stability in the staircase stability test 1, but have a small viscosity reduction rate in the shear stability tests 2 and 3 and excellent fuel economy. Is not demonstrated. On the contrary, in Comparative Examples 2 and 3 that do not contain the component (B), the viscosity reduction rate in the shear stability test 1 is large, and the wear resistance at the initial familiarization stage is inferior. Furthermore, the rate of decrease in viscosity in the shear stability tests 2 and 3 is large, and a fuel saving effect is expected, but there is a concern about abnormal wear and component damage during long-term use.
Further, even in Comparative Example 4 in which the content ratio of the component (B) to the component (C) is out of the range of the present invention, the rate of decrease in the viscosity in the shear stability tests 1 to 3 is large, and initial wear and long-term use There is concern about abnormal wear and component damage.

Claims (4)

(A)鉱油系基油を70質量%以上含有し、40℃における動粘度が9〜20mm/sの基油に、
(B)重量平均分子量(ポリスチレン換算)が15,000〜70,000であるポリメタクリレート系粘度指数向上剤を0.5〜20質量%、及び
(C)重量平均分子量が100,000〜500,000のポリメタクリレート系粘度指数向上剤を0.5〜15質量%含有し、
(D)(C)成分に対する(B)成分の含有比率が質量比で3〜10であり、
(E)組成物の100℃における動粘度が5.2〜6.5mm/sであり、
(F)粘度指数が180以上であり、−40℃でのBF粘度が5,000〜8,900mPa・sである
ことを特徴とする自動変速機用潤滑油組成物。
(A) A mineral oil-based base oil is contained in an amount of 70% by mass or more, and a kinematic viscosity at 40 ° C. is 9 to 20 mm 2 / s.
(B) 0.5 to 20 % by mass of a polymethacrylate viscosity index improver having a weight average molecular weight (in terms of polystyrene) of 15,000 to 70,000, and (C) a weight average molecular weight of 100,000 to 500, 000 polymethacrylate viscosity index improver 0.5 to 15 % by mass,
(D) The content ratio of the component (B) to the component (C) is 3 to 10 by mass ratio,
(E) the composition has a kinematic viscosity at 100 ° C. of 5.2 to 6.5 mm 2 / s,
(F) A lubricating oil composition for an automatic transmission having a viscosity index of 180 or more and a BF viscosity at -40 ° C of 5,000 to 8,900 mPa · s.
前記(B)成分の含有量が1.5〜20質量%であり、(C)成分の含有量が0.5〜20/3質量%である請求項1に記載の自動変速機用潤滑油組成物。The lubricating oil for automatic transmission according to claim 1, wherein the content of the component (B) is 1.5 to 20% by mass, and the content of the component (C) is 0.5 to 20/3% by mass. Composition. 前記(F)の粘度指数が180超である請求項1又は2に記載の自動変速機用潤滑油組成物。 The lubricating oil composition for an automatic transmission according to claim 1 or 2 , wherein the viscosity index of (F) is more than 180. 前記(F)の粘度指数が185〜230である請求項1〜3のいずれかに記載の自動変速機用潤滑油組成物。 The lubricating oil composition for an automatic transmission according to any one of claims 1 to 3, wherein the viscosity index of (F) is 185 to 230.
JP2007012362A 2007-01-23 2007-01-23 Lubricating oil composition for automatic transmission Active JP5248022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012362A JP5248022B2 (en) 2007-01-23 2007-01-23 Lubricating oil composition for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012362A JP5248022B2 (en) 2007-01-23 2007-01-23 Lubricating oil composition for automatic transmission

Publications (2)

Publication Number Publication Date
JP2008179662A JP2008179662A (en) 2008-08-07
JP5248022B2 true JP5248022B2 (en) 2013-07-31

Family

ID=39723819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012362A Active JP5248022B2 (en) 2007-01-23 2007-01-23 Lubricating oil composition for automatic transmission

Country Status (1)

Country Link
JP (1) JP5248022B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629587B2 (en) * 2009-02-02 2014-11-19 出光興産株式会社 Lubricating oil composition for automatic transmission
JP5395474B2 (en) * 2009-03-13 2014-01-22 コスモ石油ルブリカンツ株式会社 Industrial hydraulic oil composition
JP5305457B2 (en) * 2009-08-31 2013-10-02 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for wet clutch
JP5789111B2 (en) * 2011-03-25 2015-10-07 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5965131B2 (en) * 2011-11-16 2016-08-03 出光興産株式会社 Lubricating oil composition for transmission
JP5897418B2 (en) 2012-07-13 2016-03-30 出光興産株式会社 Lubricating oil composition and transmission oil for automobile using the same
JP6159107B2 (en) * 2013-03-15 2017-07-05 出光興産株式会社 Lubricating oil composition
JP6879809B2 (en) * 2017-04-13 2021-06-02 Eneos株式会社 Lubricating oil composition
WO2021210068A1 (en) * 2020-04-14 2021-10-21 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for agricultural machines

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2300408C (en) * 1997-08-22 2005-08-09 Rohm Rohmax Holding Gmbh Method for improving low-temperature fluidity of lubricating oils using high- and low-molecular weight polymer additive mixtures
JP2002194371A (en) * 2000-12-25 2002-07-10 Sanyo Chem Ind Ltd Viscosity index improver and lubricating oil composition
JP4625248B2 (en) * 2002-11-07 2011-02-02 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for transmission
JP5108200B2 (en) * 2003-11-04 2012-12-26 出光興産株式会社 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
JP4536370B2 (en) * 2003-12-26 2010-09-01 三洋化成工業株式会社 Lubricating oil composition
JP2006045277A (en) * 2004-08-02 2006-02-16 Sanyo Chem Ind Ltd Viscosity index improver and lubricating oil composition
JP2006077119A (en) * 2004-09-09 2006-03-23 Nok Kluber Kk Lubricating oil composition
JP4583138B2 (en) * 2004-10-22 2010-11-17 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for transmission

Also Published As

Publication number Publication date
JP2008179662A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5248022B2 (en) Lubricating oil composition for automatic transmission
EP2537914B1 (en) Lubricant composition for continuously variable transmission
JP5329067B2 (en) Automatic transmission oil and manufacturing method thereof
JP4800635B2 (en) Lubricating oil composition for automatic transmission
JP5789111B2 (en) Lubricating oil composition
JP6519120B2 (en) Automotive transmission fluid composition for improved energy efficiency
WO2007001000A1 (en) Base oil for hydraulic oil and hydraulic oil compositions
JP2007045850A (en) Lube oil composition
KR20170063575A (en) Lubricating oil composition
CN109689844B (en) Lubricating oil composition for automatic transmission
WO2013136582A1 (en) Lubricating oil composition for transmission
JP5301305B2 (en) Lubricating oil composition for continuously variable transmission
JP5094360B2 (en) Lubricating oil composition for agricultural machinery
JP5473344B2 (en) Lubricating oil composition for continuously variable transmission
JP6936041B2 (en) Lubricating oil composition for internal combustion engine
JP5301304B2 (en) Lubricating oil composition for continuously variable transmission
JP5033610B2 (en) Lubricating oil composition for agricultural machinery
WO2013147162A1 (en) Lubricating oil composition
JP6325894B2 (en) Lubricating oil composition for internal combustion engines
KR20150020126A (en) Transmission fluid compositions for improved energy efficiency
JP7460757B2 (en) Lubricating oil composition for agricultural machinery
JP6325893B2 (en) Lubricating oil composition for internal combustion engines
JP5875952B2 (en) Lubricating oil composition for agricultural machinery
CA2859438C (en) Automotive transmission fluid compositions for improved energy efficiency
JP2017197608A (en) Lubricating oil composition for agricultural machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250