JP5108200B2 - Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil - Google Patents

Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil Download PDF

Info

Publication number
JP5108200B2
JP5108200B2 JP2004321157A JP2004321157A JP5108200B2 JP 5108200 B2 JP5108200 B2 JP 5108200B2 JP 2004321157 A JP2004321157 A JP 2004321157A JP 2004321157 A JP2004321157 A JP 2004321157A JP 5108200 B2 JP5108200 B2 JP 5108200B2
Authority
JP
Japan
Prior art keywords
oil
lubricating
base oil
lubricating oil
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004321157A
Other languages
Japanese (ja)
Other versions
JP2005154760A (en
Inventor
明示 田中
正司 中村
俊彦 市橋
宏 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004321157A priority Critical patent/JP5108200B2/en
Publication of JP2005154760A publication Critical patent/JP2005154760A/en
Application granted granted Critical
Publication of JP5108200B2 publication Critical patent/JP5108200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物に関し、さらに詳しくは、粘度指数が高く、低温流動性に優れた潤滑油基油及びその製造方法、並びに該基油を用いた粘度指数、せん断安定性などに優れた潤滑油組成物に関する。   The present invention relates to a lubricating base oil and a method for producing the same, and a lubricating oil composition containing the base oil, and more specifically, a lubricating base oil having a high viscosity index and excellent low-temperature fluidity, and a method for producing the same. The present invention also relates to a lubricating oil composition using the base oil and having excellent viscosity index and shear stability.

一般に潤滑油は、本質的には粘度を保持し、接触部材の摩耗を防止して潤滑性を付与することを目的に種々の分野で用いられている。この潤滑油は、特に高温での適切な粘度と低温での流動性を保持することが性能上重要なことである。また、最近では、摩擦を発生しない領域で一層の低粘度を図り、攪拌抵抗を低減することにより、省エネルギーや省燃費を図ることが潤滑油組成物に求められている。
近年、このような省エネルギータイプのエンジンオイルの基油として、粘度指数が120以上の高粘度指数基油が使用されるようになってきた。粘度指数が高くなれば、相対的に酸化安定性は向上することは従来から知られていたが、高粘度指数基油は、一般に溶剤脱ろう法で製造されており、低温流動性に劣るという欠点があった。例えば、特許文献1には、粘度指数が120以上、好ましくは140以上の高粘度指数基油が開示されているが、低い流動点にするのは難しいことが記載されている。したがって、高粘度指数を有し、低温流動性に優れた潤滑油基油が求められている。
In general, lubricating oils are used in various fields for the purpose of essentially maintaining viscosity and preventing wear of contact members to impart lubricity. It is important for the performance of this lubricating oil to maintain an appropriate viscosity at a high temperature and fluidity at a low temperature. In addition, recently, there has been a demand for lubricating oil compositions to achieve energy and fuel savings by further reducing viscosity in a region where friction is not generated and reducing stirring resistance.
In recent years, high-viscosity index base oils having a viscosity index of 120 or more have been used as base oils for such energy-saving engine oils. It has been conventionally known that if the viscosity index is high, the oxidation stability is relatively improved. However, the high viscosity index base oil is generally produced by a solvent dewaxing method and is inferior in low-temperature fluidity. There were drawbacks. For example, Patent Document 1 discloses a high viscosity index base oil having a viscosity index of 120 or more, preferably 140 or more, but it is described that it is difficult to achieve a low pour point. Accordingly, there is a need for a lubricating base oil having a high viscosity index and excellent low temperature fluidity.

一方、鉱油系潤滑油基油は、主に酸化安定性と省エネルギーとの観点より、溶剤精製基油(API分類GI)から、水素化精製基油(API分類GII)、水素化分解基油(API分類GIII)へと改良され、また、合成基油ではポリアルファオレフィン(API分類GIV)が開発されてきた。
しかし、従来の鉱油系潤滑油基油においては、粘度指数が不足する場合には、粘度指数向上剤を多量配合して見かけの高温粘度を上げる手法が行われてきた。この粘度指数向上剤は、通常、高分子のポリメタクリレートやオレフィンコポリマーであることから、これらを配合した潤滑油組成物は、長期にわたり使用すると粘度指数向上剤が、熱的、機械的せん断を受けて粘度低下を引き起こし、その結果、潤滑油の本質的目的である粘度保持による摩耗の防止や、潤滑の保持が困難となる。
また、他の手段としては高価な合成基油を用いて粘度指数を向上することも試みられているが、限定された用途に適用されるのみであった。
また、最近では、溶剤抽出で得られたワックスを水素化異性化脱ロウ処理により、粘度指数140前後の高粘度指数の潤滑油基油が生産され、内燃機関用潤滑油に用いることが提案されている(特許文献2参照)。
On the other hand, mineral-based lubricating base oils are mainly from the viewpoint of oxidation stability and energy saving, from solvent refined base oil (API classification GI), hydrorefined base oil (API classification GII), hydrocracked base oil ( API class GIII) and polyalphaolefins (API class GIV) have been developed for synthetic base oils.
However, in the conventional mineral oil base oil, when the viscosity index is insufficient, a method of increasing the apparent high temperature viscosity by blending a large amount of a viscosity index improver has been performed. Since this viscosity index improver is usually a high-molecular polymethacrylate or olefin copolymer, when used for a long time, the viscosity index improver is subjected to thermal and mechanical shearing. As a result, a decrease in viscosity is caused, and as a result, it becomes difficult to prevent wear due to viscosity retention, which is an essential purpose of the lubricating oil, and to maintain lubrication.
As another means, attempts have been made to improve the viscosity index using an expensive synthetic base oil, but it has been applied only to limited applications.
Recently, a high-viscosity index lubricant base oil having a viscosity index of around 140 has been produced by hydroisomerization dewaxing of the wax obtained by solvent extraction, and it has been proposed to be used as a lubricant for internal combustion engines. (See Patent Document 2).

特開昭54−70305号公報JP-A-54-70305 特開2004−137317号公報JP 2004-137317 A

本発明は、このような状況下でなされたものであり、高粘度指数を有し、低温流動性に優れた潤滑油基油及びその製造方法を提供することを目的とする。また、本発明は、機械的せん断、熱的せん断を受けても粘度低下を起こさず、熱負荷条件下においても当初の粘度特性を長期にわたり保持し、粘度低下に起因する摩耗や潤滑不良、及び粘度上昇に起因する機械の作動不良や誤動作などを防止する潤滑油組成物を提供することを目的とする。さらに、本発明は、高粘度指数、高せん断安定性、高酸化安定性、及び高引火点を有し、かつ低密度で省エネルギーに有利な潤滑油組成物を提供することを目的とするものである。   The present invention has been made under such circumstances, and an object thereof is to provide a lubricating base oil having a high viscosity index and excellent low-temperature fluidity, and a method for producing the same. In addition, the present invention does not cause a decrease in viscosity even when subjected to mechanical shearing or thermal shearing, and retains the original viscosity characteristics over a long period of time even under thermal load conditions. It is an object of the present invention to provide a lubricating oil composition that prevents malfunction or malfunction of a machine due to an increase in viscosity. Furthermore, an object of the present invention is to provide a lubricating oil composition having a high viscosity index, high shear stability, high oxidation stability, and high flash point, and having a low density and advantageous for energy saving. is there.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定のワックス留分を、異性化脱ろう工程及び水素化仕上げ工程を含む工程で処理することにより、潤滑油基油として、その目的に適合し得る基油が得られることを見出した。また、該基油を用い、さらに適切な潤滑油添加剤を選択して配合することによって、高せん断安定性、高酸化安定性を有する潤滑油組成物が得られことを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明の要旨は下記のとおりである。
1.炭化水素系の潤滑油基油であって、
粘度指数が140以上であり、環分析によるパラフィン分(%CP)が90%以上、ナフテン分(%C n )が3%以下であり、かつ−35℃におけるCCS粘度が2,200mPa・s以下であり、
さらに、100℃における動粘度が3〜6mm2/sの範囲で、蒸留試験における5%留出温度が380℃以上であり、かつNoack値が12質量%以下であることを特徴とする潤滑油基油、
.硫黄分含有量が30質量ppm以下である前記1に記載の潤滑油基油、
.2,6−ジ−t−ブチル−p−クレゾールを0.5質量%添加したときのRBOT値(150℃)が480分以上である前記1又は2に記載の潤滑油基油、
.粘度指数180以上のワックス留分を、異性化脱ろう工程、減圧蒸留工程、水素化仕上げ工程、減圧蒸留工程の順に処理することを特徴とする前記1〜のいずれかに記載の潤滑油基油の製造方法、
.前記1〜のいずれかに記載の潤滑油基油を含有する潤滑油組成物、
.粘度指数向上剤として、平均分子量が40,000以下のポリメタクリレートを配合したことを特徴とする前記に記載の潤滑油組成物、
.フェノール系及び/又はアミン系の酸化安定剤、無灰系防錆剤、及び流動点降下剤を配合したことを特徴とする前記又はに記載の潤滑油組成物、
.潤滑油組成物が、自動変速機用潤滑油組成物、無段変速機用潤滑油組成物、又は油圧作動油組成物である前記又はに記載の潤滑油組成物、
.潤滑油組成物が、油圧作動油組成物である前記に記載の潤滑油組成物、
を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have processed a specific wax fraction in a process including an isomerization dewaxing process and a hydrofinishing process, thereby providing a lubricating base oil. As a result, it was found that a base oil suitable for the purpose can be obtained. Moreover, it discovered that the lubricating oil composition which has high shear stability and high oxidation stability was obtained by selecting and mix | blending an appropriate lubricating oil additive further using this base oil. The present invention has been completed based on such findings.
That is, the gist of the present invention is as follows.
1. A hydrocarbon-based lubricant base oil,
Viscosity index is 140 or more, paraffin content (% C P ) by ring analysis is 90% or more , naphthene content (% C n ) is 3% or less , and CCS viscosity at −35 ° C. is 2,200 mPa · s or less,
Furthermore, the kinematic viscosity at 100 ° C. is in the range of 3 to 6 mm 2 / s, the 5% distillation temperature in the distillation test is 380 ° C. or more, and the Noack value is 12% by mass or less. Oil base oil,
2 . The lubricating base oil according to 1 above, wherein the sulfur content is 30 mass ppm or less,
3 . 3. The lubricating base oil according to 1 or 2 above, wherein the RBOT value (150 ° C.) when 2,6-di-t-butyl-p-cresol is added by 0.5% by mass is 480 minutes or more,
4 . 4. The lubricating oil base according to any one of 1 to 3 , wherein a wax fraction having a viscosity index of 180 or more is processed in the order of an isomerization dewaxing step, a vacuum distillation step, a hydrofinishing step, and a vacuum distillation step. Oil production method,
5 . A lubricating oil composition comprising the lubricating base oil according to any one of 1 to 3 above,
6 . The lubricating oil composition as described in 5 above, wherein a polymethacrylate having an average molecular weight of 40,000 or less is blended as a viscosity index improver,
7 . The lubricating oil composition as described in 5 or 6 above, wherein a phenol-based and / or amine-based oxidation stabilizer, an ashless rust inhibitor, and a pour point depressant are blended,
8 . The lubricating oil composition according to 5 or 6 , wherein the lubricating oil composition is a lubricating oil composition for an automatic transmission, a lubricating oil composition for a continuously variable transmission, or a hydraulic fluid composition,
9 . The lubricating oil composition according to 7 above, wherein the lubricating oil composition is a hydraulic fluid composition,
Is to provide.

本発明によれば、高粘度指数を有し、かつ低温流動性に優れた潤滑油基油及びその製造方法を提供することができる。また、本発明によれば、高粘度指数、高せん断安定性、高酸化安定性を有する潤滑油組成物が得られる。また、本発明によれば、高粘度指数、高せん断安定性、高酸化安定性、及び高引火点を有し、かつ低密度で省エネルギーに有利な潤滑油組成物を提供することができる。したがって、本発明の潤滑油組成物は、自動車用エンジンオイル、パワステアリングオイル、自動変速機油(ATF)、無段変速機油(CVTF)、油圧作動油、タービン油、圧縮機油、工作機械用潤滑油、切削油、歯車油、流体軸受け油、転がり軸受け油などに広く適用することができる。   According to the present invention, it is possible to provide a lubricating base oil having a high viscosity index and excellent low temperature fluidity and a method for producing the same. Further, according to the present invention, a lubricating oil composition having a high viscosity index, high shear stability, and high oxidation stability can be obtained. In addition, according to the present invention, it is possible to provide a lubricating oil composition having a high viscosity index, high shear stability, high oxidation stability, and a high flash point, and having a low density and advantageous for energy saving. Therefore, the lubricating oil composition of the present invention includes automotive engine oil, power steering oil, automatic transmission oil (ATF), continuously variable transmission oil (CVTF), hydraulic fluid, turbine oil, compressor oil, machine tool lubricating oil. It can be widely applied to cutting oil, gear oil, fluid bearing oil, rolling bearing oil, and the like.

本発明の潤滑油基油は、炭化水素系の潤滑油基油であって、粘度指数が130以上であり、環分析によるパラフィン分(%CP)が90%以上であり、かつ−35℃におけるCCS粘度が3,000mPa・s以下である。
粘度指数が130未満であると、低温流動性が低下することがある。また粘度指数が130未満であると、前記−35℃におけるCCS粘度が3,000mPa・sを超える可能性がある。好ましい粘度指数は、140以上、さらに150以上、特に160以上である。なお、上記の粘度指数はJIS K 2283に従って測定されたものである。
また、環分析によるパラフィン分(%CP)は90%以上である。%CPが90%未満であると、酸化安定性が低下することがある。なお、%CPはASTM D−3238に従って測定されたものである。
また、−35℃におけるCCS粘度(SAEによるコールド・クランキング・シミュレータ粘度)は3,000mPa・s以下である。−35℃におけるCCS粘度が3,000mPa・sを超えると、低温流動性が低下し、例えば低温でのエンジンの始動性が悪化するなどの弊害を生ずる恐れがある。好ましい−35℃におけるCCS粘度は2,200mPa・s以下、特に2,100mPa・s以下である。なお、上記のCCS粘度はJIS K 2010に従って測定されたものである。
The lubricating base oil of the present invention is a hydrocarbon-based lubricating base oil having a viscosity index of 130 or more, a paraffin content (% C P ) by ring analysis of 90% or more, and −35 ° C. The CCS viscosity at 3,000 mPa · s or less.
If the viscosity index is less than 130, the low temperature fluidity may decrease. If the viscosity index is less than 130, the CCS viscosity at −35 ° C. may exceed 3,000 mPa · s. The preferred viscosity index is 140 or more, more preferably 150 or more, particularly 160 or more. The above viscosity index is measured according to JIS K 2283.
The paraffin content (% C P ) by ring analysis is 90% or more. When% CP is less than 90%, the oxidation stability may be lowered. Note that the% C P is a value measured in accordance with ASTM D-3238.
Further, the CCS viscosity at −35 ° C. (cold cranking simulator viscosity by SAE) is 3,000 mPa · s or less. When the CCS viscosity at −35 ° C. exceeds 3,000 mPa · s, the low-temperature fluidity is deteriorated, and there is a risk that the engine startability at a low temperature is deteriorated. The CCS viscosity at −35 ° C. is preferably 2,200 mPa · s or less, particularly 2,100 mPa · s or less. In addition, said CCS viscosity is measured according to JISK2010.

さらに、本願発明の潤滑油基油は、次の性状を有するものが好ましい。
100℃における動粘度は2〜10mm2/sの範囲にあることが好ましい。さらには3〜8mm2/sの範囲、特におよそ3〜6mm2/sの範囲である。この動粘度はJIS K 2283に従って測定されたものである。
また、蒸留試験における5%留出温度は380℃以上が好ましい。5%留出温度が380℃以上であると、耐蒸発性が向上し、オイル消費量を減少することができる。より好ましくは、385〜500℃の範囲である。なお、上記の蒸留試験における5%留出温度はJIS K 2254(ガスクロマトグラフ法)に従って測定されたものである。
Further, the lubricating base oil of the present invention preferably has the following properties.
The kinematic viscosity at 100 ° C. is preferably in the range of 2 to 10 mm 2 / s. Even at the scope of 3 to 8 mm 2 / s, in particular about 3 to 6 mm 2 / s. This kinematic viscosity is measured according to JIS K 2283.
The 5% distillation temperature in the distillation test is preferably 380 ° C. or higher. When the 5% distillation temperature is 380 ° C. or higher, the evaporation resistance is improved and the oil consumption can be reduced. More preferably, it is the range of 385-500 degreeC. The 5% distillation temperature in the above distillation test was measured according to JIS K 2254 (gas chromatographic method).

また、Noack値(250℃)は、12質量%以下が好ましい。12質量%以下であると耐蒸発性が著しく改善される。さらに好ましくは10質量%以下である。Noack値とは蒸発性を示す指標であり、ASTM D−5800に従って測定されたものである。
また、酸化安定性として、2、6−ジ−t−ブチル−p−クレゾールを0.5質量%添加したときの回転ボンベ酸化試験(RBOT試験)でRBOT値(150℃)が480以上であることが好ましい。このRBOT値が480分以上であれば、酸化寿命を著しく延長できる。より好ましくは、RBOT値が500分以上である。RBOT値はJIS K 2514により測定される。
環分析によるナフテン分(%Cn)に関しては、7%以下であることが好ましく、3%以下であることがより好ましい。%Cnが7%以下であれば、良好な酸化安定性を得ることができる。
The Noack value (250 ° C.) is preferably 12% by mass or less. When the content is 12% by mass or less, the evaporation resistance is remarkably improved. More preferably, it is 10 mass% or less. The Noack value is an index indicating evaporability and is measured according to ASTM D-5800.
Moreover, as oxidation stability, the RBOT value (150 ° C.) is 480 or more in a rotary cylinder oxidation test (RBOT test) when 0.5 mass% of 2,6-di-t-butyl-p-cresol is added. It is preferable. If this RBOT value is 480 minutes or more, the oxidation life can be significantly extended. More preferably, the RBOT value is 500 minutes or more. The RBOT value is measured according to JIS K 2514.
The naphthene content (% C n ) by ring analysis is preferably 7% or less, more preferably 3% or less. % C If n is less than 7%, it is possible to obtain a good oxidation stability.

また、硫黄分含有量に関しては、30質量ppm以下、さらには20質量ppm以下、特に10質量ppm以下であることが好ましい。硫黄分含有量が30質量ppm以下であれば、腐食を招く恐れがない。
また、引火点は、通常、基油の(動)粘度によって変化するが、本発明の潤滑油基油は、従来公知の基油に比較して引火点が高い。例えば、150ニュートラル相当の動粘度の場合、本発明の潤滑油基油の引火点は240℃以上が好ましく、さらには250℃以上、特に260℃以上が好ましい。
さらに、密度については、引火点の場合と同様、基油の(動)粘度によって変化するが、本発明の潤滑油基油は、従来公知の基油に比較して密度が低い。例えば、150ニュートラル相当の動粘度の場合でいえば、本発明の潤滑油基油の密度は、0.85g/cm3以下、さらに0.84g/cm3以下、特に0.83g/cm3以下が好ましい。
The sulfur content is preferably 30 ppm by mass or less, more preferably 20 ppm by mass or less, and particularly preferably 10 ppm by mass or less. If the sulfur content is 30 mass ppm or less, there is no possibility of causing corrosion.
In addition, the flash point usually varies depending on the (dynamic) viscosity of the base oil, but the lubricating base oil of the present invention has a higher flash point than conventionally known base oils. For example, in the case of a kinematic viscosity equivalent to 150 neutral, the flash point of the lubricating base oil of the present invention is preferably 240 ° C. or higher, more preferably 250 ° C. or higher, and particularly preferably 260 ° C. or higher.
Further, the density varies depending on the (dynamic) viscosity of the base oil as in the case of the flash point, but the lubricating base oil of the present invention has a lower density than the conventionally known base oil. For example, speaking in the case of kinematic viscosity of 150 neutral equivalent, the density of the lubricating base oils of the present invention, 0.85 g / cm 3 or less, further 0.84 g / cm 3 or less, in particular 0.83 g / cm 3 or less Is preferred.

上記のような性状を有する本発明の潤滑油基油は、API(アメリカン・ペトロリウム・インステイテュート)グループIIIの規格を満たすことができるものである。
上記潤滑油基油は、エンジン油,ATF、油圧作動油の用途を始め、目的に応じて、その他の潤滑油基油や各種の添加剤を配合して使用することができる。すなわち、本発明の潤滑油基油は、それ自体でも潤滑油として使用可能であるが、通常は、目的に応じて他の潤滑油基油、各種添加剤を配合してそれぞれの用途に適合した潤滑油として使用するのがよい。
The lubricating base oil of the present invention having the above properties can satisfy the API (American Petroleum Institute) Group III standard.
The lubricating base oil can be used in combination with other lubricating base oils and various additives depending on the purpose, including the use of engine oil, ATF, and hydraulic fluid. That is, the lubricating base oil of the present invention can be used as a lubricating oil by itself, but it is usually suitable for each application by blending other lubricating base oils and various additives depending on the purpose. It should be used as a lubricating oil.

次に、前記潤滑油基油の製造方法について説明する。
本発明におけるは潤滑油基油の製造方法特に制限されるものではないが、好ましくは、粘度指数180以上のワックスを、下記の如く(a)異性化脱ろう工程、(b)減圧蒸留工程、(c)水素化仕上げ工程、(d)減圧蒸留工程の順に処理することにより製造することができる。
(a)異性化脱ろう工程
原料として、粘度指数180以上のワックスを使用する。さらに、100℃における動粘度が4〜20mm2/s、蒸留試験における10%留出温度が380℃以上のものが好ましい。具体的には、減圧軽油を水素化分解して得られるボトム油を溶剤脱ろうして得られるワックス留分、或いはフィッシャー・トロプッシュ合成によるものなどを使用することができる。
この異性化脱ろうは、SAPO(シリカアルミノフォスフェート)やゼオライト等の担体にPtやPd等の貴金属を担持した水素化異性化触媒の存在下、水素化処理を行うことにより実施される。
水素分圧については、通常10MPa以上、好ましくは13〜22MPa、より好ましくは15〜21MPaである。反応温度については、通常250〜500℃、好ましくは280〜480℃、より好ましくは300〜450℃である。液時空間速度(LHSV)については、通常0.1〜10hr-1、好ましくは0.3〜8hr-1、より好ましくは0.5〜2hr-1である。供給水素ガスの割合については、供給油1キロリットルに対して、通常100〜1,000Nm3、好ましくは200〜800Nm3、より好ましくは250〜650Nm3である。
Next, a method for producing the lubricating base oil will be described.
In the present invention, the method for producing a lubricating base oil is not particularly limited. Preferably, a wax having a viscosity index of 180 or more is converted into a (a) isomerization dewaxing step, (b) a vacuum distillation step, as follows: It can manufacture by processing in order of (c) hydrofinishing process and (d) vacuum distillation process.
(A) Isomerization dewaxing step Wax having a viscosity index of 180 or more is used as a raw material. Furthermore, it is preferable that the kinematic viscosity at 100 ° C. is 4 to 20 mm 2 / s and the 10% distillation temperature in the distillation test is 380 ° C. or higher. Specifically, a wax fraction obtained by dewaxing a bottom oil obtained by hydrocracking a vacuum gas oil, a product obtained by Fischer-Tropsch synthesis, or the like can be used.
This isomerization dewaxing is performed by performing a hydrogenation treatment in the presence of a hydroisomerization catalyst in which a noble metal such as Pt or Pd is supported on a support such as SAPO (silica aluminophosphate) or zeolite.
About hydrogen partial pressure, it is 10 MPa or more normally, Preferably it is 13-22 MPa, More preferably, it is 15-21 MPa. About reaction temperature, it is 250-500 degreeC normally, Preferably it is 280-480 degreeC, More preferably, it is 300-450 degreeC. About liquid hourly space velocity (LHSV), it is 0.1-10 hr < -1 > normally, Preferably it is 0.3-8 hr < -1 >, More preferably, it is 0.5-2 hr < -1 >. The ratio of feed hydrogen gas, the supply Oil 1 kiloliter usually 100~1,000Nm 3, preferably 200 to 800 nm 3, more preferably 250~650Nm 3.

(b)減圧蒸留工程
前工程の生成油を減圧蒸留により、引火点200〜210℃となるように軽質留分を除去する。
(c)水素化仕上げ工程
この水素化仕上げは、前工程で得られた生成油について、シリカ/アルミナ、アルミナ等の非晶質やゼオライト等の結晶質担体にNi/Mo、Co/Mo、Ni/W等の金属酸化物やPt,Pd等の貴金属を担持した水素化触媒の存在下、水素化処理を行うことにより実施される。
水素分圧については、通常10MPa以上、好ましくは13〜22MPa、より好ましくは15〜21MPaである。反応温度については、通常200〜350℃、好ましくは250〜330℃、より好ましくは280〜320℃である。液時空間速度(LHSV)については、通常0.1〜10hr-1、好ましくは0.2〜5hr-1、より好ましくは0.4〜2hr-1である。供給水素ガスの割合については、供給油1kLに対して、通常100〜1,000Nm3、好ましくは200〜800Nm3、より好ましくは250〜650Nm3である。
(d)減圧蒸留工程
前工程の生成油を減圧蒸留にて100℃における動粘度が2.0〜10.0mm2/sとなるように調整する。
以上の四工程によって、本発明における好ましい性状を有する潤滑油基油を効率よく低コストで製造することができる。
(B) Vacuum distillation step The light oil fraction is removed by vacuum distillation of the product oil from the previous step so that the flash point is 200 to 210 ° C.
(C) Hydrofinishing step This hydrofinishing is carried out by using Ni / Mo, Co / Mo, Ni, etc. on the amorphous oil such as silica / alumina and alumina and the crystalline carrier such as zeolite. This is carried out by performing a hydrogenation treatment in the presence of a hydrogenation catalyst carrying a metal oxide such as / W or a noble metal such as Pt or Pd.
About hydrogen partial pressure, it is 10 MPa or more normally, Preferably it is 13-22 MPa, More preferably, it is 15-21 MPa. About reaction temperature, it is 200-350 degreeC normally, Preferably it is 250-330 degreeC, More preferably, it is 280-320 degreeC. About liquid hourly space velocity (LHSV), it is 0.1-10 hr < -1 > normally, Preferably it is 0.2-5 hr < -1 >, More preferably, it is 0.4-2 hr < -1 >. The ratio of feed hydrogen gas, the supply oil 1 kl, usually 100~1,000Nm 3, preferably 200 to 800 nm 3, more preferably 250~650Nm 3.
(D) Vacuum distillation step The oil produced in the previous step is adjusted by vacuum distillation so that the kinematic viscosity at 100 ° C. is 2.0 to 10.0 mm 2 / s.
Through the above four steps, a lubricating base oil having preferred properties in the present invention can be produced efficiently and at low cost.

本発明における潤滑油組成物は、前記潤滑油基油を含有する潤滑油組成物である。この潤滑油は、前記潤滑油基油の特性、すなわち高粘度指数を有し、かつ低温流動性、高酸化安定性を有する潤滑油組成物を得ることができる。また、公知の潤滑油基油と比較して、密度が低い省エネルギー潤滑油を得ることができる。
本発明の潤滑油組成物においては、潤滑油基油として、上記本発明の潤滑油基油を用いるが、目的に応じて、他の潤滑油基油を混合して用いても良い。その場合、潤滑油組成物の潤滑油基油のうち、本発明の前記潤滑油基油の含有割合は、潤滑油基油全量基準で60質量%以上であることが好ましく、さらに80質量%以上、特に90質量%以上であることが好ましい。本発明の潤滑油基油を潤滑油基油全体の60質量%以上含有すれば、本発明の潤滑油基油の特性を十分に生かした組成物を得ることができる。
The lubricating oil composition in the present invention is a lubricating oil composition containing the lubricating base oil. This lubricating oil can provide a lubricating oil composition having the characteristics of the lubricating base oil, that is, having a high viscosity index, low temperature fluidity, and high oxidation stability. In addition, an energy-saving lubricating oil having a lower density than that of a known lubricating base oil can be obtained.
In the lubricating oil composition of the present invention, the lubricating base oil of the present invention is used as the lubricating base oil, but other lubricating base oils may be mixed and used depending on the purpose. In that case, in the lubricating base oil of the lubricating oil composition, the content of the lubricating base oil of the present invention is preferably 60% by mass or more based on the total amount of the lubricating base oil, and more preferably 80% by mass or more. In particular, it is preferably 90% by mass or more. When the lubricating base oil of the present invention is contained in an amount of 60% by mass or more of the entire lubricating base oil, a composition that makes full use of the characteristics of the lubricating base oil of the present invention can be obtained.

前記本発明の潤滑油基油以外の潤滑油基油としては、特に限定されず、従来から使用されている鉱油や合成油が使用でき、用途などに応じて適宜選定すればよい。
鉱油としては、例えばパラフィン系鉱油,ナフテン系鉱油,中間基系鉱油などが挙げられ、具体例としては、溶剤精製または水添精製による軽質ニュートラル油,中質ニュートラル油,重質ニュートラル油,ブライトストックなどを挙げることができる。一方合成油としては、例えば、ポリ−α−オレフィン,α−オレフィンコポリマー,ポリブテン,アルキルベンゼン,ポリオールエステル,二塩基酸エステル,多価アルコールエステル,ポリオキシアルキレングリコール,ポリオキシアルキレングリコールエステル,ポリオキシアルキレングリコールエーテル、シクロアルカン系化合物などを挙げることができる。
The lubricant base oil other than the lubricant base oil of the present invention is not particularly limited, and a conventionally used mineral oil or synthetic oil can be used, and may be appropriately selected according to the use.
Examples of mineral oils include paraffinic mineral oils, naphthenic mineral oils, intermediate base mineral oils, and specific examples include light neutral oil, medium neutral oil, heavy neutral oil, bright stock by solvent refining or hydrogenation refining. And so on. On the other hand, as synthetic oil, for example, poly-α-olefin, α-olefin copolymer, polybutene, alkylbenzene, polyol ester, dibasic acid ester, polyhydric alcohol ester, polyoxyalkylene glycol, polyoxyalkylene glycol ester, polyoxyalkylene Examples include glycol ethers and cycloalkane compounds.

本発明の潤滑油組成物の具体的態様の例として、前記潤滑油基油に粘度指数向上剤として、平均分子量が40,000以下のポリメタクリレートを配合した潤滑油組成物が挙げられる。この潤滑油組成物は、特に高い粘度指数と高度なせん断安定性の双方が得られるため、自動車潤滑油等あらゆる潤滑油組成物として有効であり、特にATF、CVTF、及び油圧作動油として好適である。
上記ポリメタクリレートの平均分子量は10、000〜40,000が好ましく、16,000〜30,000のポリメタクリレートがより好ましい。なお、ここでいう平均分子量は、重量平均分子量である。また、上記ポリメタクリレートの配合量は、組成物全量基準で0.2〜15質量%が好ましく、0.5〜10質量%、さらには1〜5質量%が好ましい。上記ポリメタクリレートの配合量が、組成物全量基準で0.2〜15質量%であれば、粘度指数をさらに高め、高度なせん断安定性を保つ効果が得られる。せん断安定性については、KRLせん断試験DIN51650(CECL45)における粘度低下が5%以下、特に3%以下であることが好ましい。
上記潤滑油組成物には、所望により、通常のATF或いはCVTF用添加剤、市販の添加剤パッケージ、或いは後述の如き他の一般添加剤を含むことができる。
本発明における前記潤滑油組成物は、機械的せん断、熱的せん断を受けても粘度低下は殆どなく、熱負荷条件下においても当初の粘度特性を長期にわたり保持し、粘度低下に起因する摩耗や潤滑不良、及び粘度上昇に起因する機械の作動不良や誤動作などを防止することができる。
An example of a specific embodiment of the lubricating oil composition of the present invention includes a lubricating oil composition in which a polymethacrylate having an average molecular weight of 40,000 or less is blended as a viscosity index improver with the lubricating base oil. Since this lubricating oil composition has both a particularly high viscosity index and a high degree of shear stability, this lubricating oil composition is effective as any lubricating oil composition such as automobile lubricating oil, and particularly suitable as ATF, CVTF, and hydraulic fluid. is there.
The average molecular weight of the polymethacrylate is preferably 10,000 to 40,000, more preferably 16,000 to 30,000. In addition, the average molecular weight here is a weight average molecular weight. Moreover, the blending amount of the polymethacrylate is preferably 0.2 to 15% by mass, preferably 0.5 to 10% by mass, and more preferably 1 to 5% by mass based on the total amount of the composition. When the blending amount of the polymethacrylate is 0.2 to 15% by mass based on the total amount of the composition, an effect of further increasing the viscosity index and maintaining high shear stability can be obtained. Regarding the shear stability, it is preferable that the viscosity decrease in the KRL shear test DIN 51650 (CECL45) is 5% or less, particularly 3% or less.
If desired, the lubricating oil composition may contain conventional ATF or CVTF additives, commercially available additive packages, or other general additives as described below.
The lubricating oil composition of the present invention has almost no decrease in viscosity even when subjected to mechanical shearing or thermal shearing, and retains the original viscosity characteristics over a long period of time even under heat load conditions. It is possible to prevent malfunction and malfunction of the machine due to poor lubrication and increased viscosity.

本発明における潤滑油組成物の別の具体的態様の例としては、前記潤滑油基油に、フェノール系及び/又はアミン系の酸化安定剤、無灰系防錆剤、及び流動点降下剤を配合した潤滑油組成物が挙げられる。
このような潤滑油組成物は、特に、油圧作動油、タービン油、圧縮機油、工作機械用潤滑油、歯車油、流体軸受け油、転がり軸受け油などの工業用潤滑油に好適に用いることができる。
As an example of another specific embodiment of the lubricating oil composition in the present invention, a phenol-based and / or amine-based oxidation stabilizer, an ashless rust inhibitor, and a pour point depressant are added to the lubricating base oil. A blended lubricating oil composition may be mentioned.
Such a lubricating oil composition can be suitably used particularly for industrial lubricating oils such as hydraulic fluids, turbine oils, compressor oils, machine tool lubricants, gear oils, fluid bearing oils and rolling bearing oils. .

前記酸化安定剤のうちフェノール系化合物の例としては、2,6−ジ−t−ブチルフェノール;2,6−ジ−t−ブチル−p−クレゾール;4,4'−メチレンビス−(2,6−ジ−t−ブチルフェノール);4,4’−ビス(2−メチル−6−t−ブチルフェノール);2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール);2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール);4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール);4,4’−イソプロピリデンビス(2,6−ジ−t−ブチルフェノール);2,2’−メチレンビス(4−メチル−6−t−ノニルフェノール);2,2’−イソブチリレンビス(4,6−ジメチルフェノール);2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール);2,6−ジ−t−ブチル−4−メチルフェノール;2,6−ジ−t−ブチル−4−エチルフェノール;2,4−ジメチル−6−t−ブチルフェノール;2,6−ジ−t−アミル−p−クレゾール;2,6−ジ−t−ブチル−4−(N,N’−ジメチルアミノメチルフェノール);4,4’−チオビス(2−メチル−6−t−ブチルフェノール);4,4’−チオビス(3−メチル−6−t−ブチルフェノール);2,2’−チオビス(4−メチル−6−t−ブチルフェノール);ビス(3−メチル−4−ヒドロキシ−5−t−ブチルベンジル)スルフィド;ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)スルフィド;n−オクタデシル−3−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)プロピオネート;2,2’−チオ〔ジエチル−ビス−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕などが挙げられる。これらの中で、特にビスフェノール系及びエステル基含有フェノール系のものが好適である。
また、アミン系化合物の例としては、アルキル化ジフェニルアミン,フェニル−α−ナフチルアミンなどが挙げられる。
これらの酸化安定剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。酸化安定剤の配合量は、組成物全量基準で0.01〜5.0質量%が好ましく、0.1〜3.0質量%がさらに好ましい。
Examples of the phenol-based compound among the oxidation stabilizers include 2,6-di-t-butylphenol; 2,6-di-t-butyl-p-cresol; 4,4′-methylenebis- (2,6- Di-t-butylphenol); 4,4'-bis (2-methyl-6-t-butylphenol); 2,2'-methylenebis (4-ethyl-6-t-butylphenol); 2,2'-methylenebis ( 4-methyl-6-tert-butylphenol); 4,4′-butylidenebis (3-methyl-6-tert-butylphenol); 4,4′-isopropylidenebis (2,6-di-tert-butylphenol); 2 2,2′-methylenebis (4-methyl-6-tert-nonylphenol); 2,2′-isobutylenebis (4,6-dimethylphenol); 2,2′-methylenebis (4-methyl-6-cyclohexene) 2,6-di-tert-butyl-4-methylphenol; 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; Di-t-amyl-p-cresol; 2,6-di-t-butyl-4- (N, N'-dimethylaminomethylphenol);4,4'-thiobis (2-methyl-6-t-butylphenol) 4,4′-thiobis (3-methyl-6-tert-butylphenol); 2,2′-thiobis (4-methyl-6-tert-butylphenol); bis (3-methyl-4-hydroxy-5-) t-butylbenzyl) sulfide; bis (3,5-di-t-butyl-4-hydroxybenzyl) sulfide; n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate 2,2'-thio [diethyl - bis-3- (3,5-di -t- butyl-4-hydroxyphenyl) propionate] and the like. Among these, bisphenol-based and ester group-containing phenol-based ones are particularly preferable.
Examples of the amine compound include alkylated diphenylamine and phenyl-α-naphthylamine.
One of these oxidation stabilizers may be used alone, or two or more thereof may be used in combination. The blending amount of the oxidation stabilizer is preferably 0.01 to 5.0% by mass, more preferably 0.1 to 3.0% by mass based on the total amount of the composition.

前記無灰系防錆剤は、例えばアルキルこはく酸、アルケニルこはく酸、これらの部分エステルなどが挙げられる。本発明においては、これらを一種を単独で用いてもよく、二種以上を組み合わせて用いもよい。無灰系防錆剤はの配合量は組成物全量基準で、0.01〜1.0質量%が好ましく、0.01〜0.5質量%がさらに好ましい。
前記流動点降下剤は、例えばポリアルキルメタクリレート,ポリブテン,ポリアルキルスチレン,ポリビニルアセテート,ポリアルキルアクリレート,エチレン−酢酸ビニル系共重合体,エチレン−アルキルアクリレート系共重合体,塩素化ポリエチレン,アルケニルこはく酸アミド系化合物等が挙げられる。これらの流動点降下剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。流動点降下剤の配合量は、組成物全量基準で0.1〜2.0質量%が好ましく、0.1〜1.0質量%がさらに好ましい。
Examples of the ashless rust preventive include alkyl succinic acid, alkenyl succinic acid, and partial esters thereof. In this invention, these may be used individually by 1 type and may be used in combination of 2 or more types. The amount of the ashless rust inhibitor is preferably 0.01 to 1.0 mass%, more preferably 0.01 to 0.5 mass%, based on the total amount of the composition.
Examples of the pour point depressant include polyalkyl methacrylate, polybutene, polyalkyl styrene, polyvinyl acetate, polyalkyl acrylate, ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer, chlorinated polyethylene, alkenyl succinic acid. Examples include amide compounds. One of these pour point depressants may be used alone, or two or more thereof may be used in combination. The blending amount of the pour point depressant is preferably 0.1 to 2.0% by mass and more preferably 0.1 to 1.0% by mass based on the total amount of the composition.

このように、前記潤滑油基油に、酸化安定剤、無灰系防錆剤、及び流動点降下剤を配合した潤滑油組成物は以下の利点を有する。
本発明の潤滑油組成物は、通常の二次水素化基油を用いた場合に比べ、極めて高い粘度指数が得られるので、粘度指数向上剤を特に添加する必要はなく、或いは添加しても少量でよい。そのため、良好なせん断安定性が得られる。この効果、は粘度指数150以上の潤滑油基油を用いる場合に、特に著しい。
また、引火点については、ISO VG32グレード(40℃動粘度;28.8〜35.2)において、250℃以上のものが得られる。これは、通常の二次水素化基油を用いた潤滑油よりは高引火点であり難燃性である。
さらに、通常の二次水素化基油を用いた場合より高酸化安定性である。また、低密度であるために、圧力損失が小さく省エネルギーの点でも優れている。
また、流動点は−35℃以下であり、低温特性などにも優れている。
さらに、酸価(指示薬法)は0.12mgKOH/g以下であり、色(JIS K 2580)は1.0以下である。
このような潤滑油組成物は、あらゆる潤滑油組成物、中でも各種工業用潤滑油、特に油圧作動油として好適に用いることができる。
Thus, the lubricating oil composition in which the lubricating base oil is blended with an oxidation stabilizer, an ashless rust inhibitor, and a pour point depressant has the following advantages.
Since the lubricating oil composition of the present invention provides a very high viscosity index as compared with the case of using a normal secondary hydrogenated base oil, it is not necessary to add a viscosity index improver or it may be added. A small amount is sufficient. Therefore, good shear stability can be obtained. This effect is particularly remarkable when a lubricating base oil having a viscosity index of 150 or higher is used.
As for the flash point, ISO VG32 grade (40 ° C. kinematic viscosity; 28.8 to 35.2) having a temperature of 250 ° C. or higher is obtained. This is a higher flash point and flame retardant than a lubricating oil using an ordinary secondary hydrogenated base oil.
Furthermore, it has higher oxidative stability than when a normal secondary hydrogenated base oil is used. In addition, because of the low density, the pressure loss is small and it is excellent in terms of energy saving.
Further, the pour point is −35 ° C. or lower, and the low temperature characteristics are excellent.
Furthermore, the acid value (indicator method) is 0.12 mg KOH / g or less, and the color (JIS K 2580) is 1.0 or less.
Such a lubricating oil composition can be suitably used as any lubricating oil composition, in particular, various industrial lubricating oils, particularly hydraulic hydraulic oils.

さらに、本発明における潤滑油組成物には、本発明の目的を損じない範囲で、前記以外の添加剤を配合して使用することができる。例えば清浄分散剤、耐摩耗剤、極圧剤、金属不活性剤、摩擦低減剤、粘度指数向上剤、抗乳化剤、消泡剤等を配合することができる。
清浄分散剤としては、例えばアルカリ土類金属スルホネート,アルカリ土類金属フェネート,アルカリ土類金属サリチレート,アルカリ土類金属ホスホネート等の金属系清浄剤;アルケニルコハク酸イミド,ベンジルアミン,アルキルポリアミン,アルケニルコハク酸エステル等の無灰系分散剤が挙げられる。
耐摩耗剤としては、例えば硫化オキシジチオリン酸モリブデン(MoDTP)、硫化オキシジチオカルバミン酸モリブデン(MoDTC)などなどの有機モリブデン化合物、ジチオリン酸亜鉛(ZnDTP)、ジチオカルバミン酸亜鉛(ZnDTC)などの有機亜鉛化合物、アルキルメルカプチルボレートなどの有機ホウ素化合物、グラファイト,二硫化モリブデン,硫化アンチモン,ホウ素化合物,ポリテトラフルオロエチレンなどの固体潤滑剤などを挙げることができる。
Furthermore, additives other than those described above can be blended and used in the lubricating oil composition of the present invention within a range that does not impair the object of the present invention. For example, detergent dispersants, antiwear agents, extreme pressure agents, metal deactivators, friction reducers, viscosity index improvers, demulsifiers, antifoaming agents, and the like can be blended.
Examples of the detergent dispersant include metal detergents such as alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicylate, alkaline earth metal phosphonate, etc .; alkenyl succinimide, benzylamine, alkyl polyamine, alkenyl succinate Examples include ashless dispersants such as acid esters.
Examples of the antiwear agent include organic molybdenum compounds such as molybdenum sulfide oxydithiophosphate (MoDTP) and molybdenum sulfide oxydithiocarbamate (MoDTC), organic zinc compounds such as zinc dithiophosphate (ZnDTP) and zinc dithiocarbamate (ZnDTC), Examples thereof include organic boron compounds such as alkyl mercaptyl borate, solid lubricants such as graphite, molybdenum disulfide, antimony sulfide, boron compounds, and polytetrafluoroethylene.

極圧剤としては、硫黄系極圧剤やリン系極圧剤を用いることができる。硫黄系極圧剤としては、例えば硫化油脂、硫化脂肪酸、硫化エステル、ポリサルファイド、硫化オレフィン、チオカーバメート類、チオテルペン類、ジアルキルチオジプロピオネート類などを挙げることができる。これらの中で硫化油脂、ポリサルファイド及び硫化オレフィンが好適である。リン系極圧剤としては、例えばリン酸エステル、(モノ、ジ、トリ)チオリン酸エステル、酸性リン酸エステルのアミン塩、(モノ、ジ)チオリン酸エステルのアミン塩、亜リン酸エステル、(モノ、ジ、トリ)チオ亜リン酸エステルなどを挙げることができる。   As the extreme pressure agent, a sulfur-based extreme pressure agent or a phosphorus-based extreme pressure agent can be used. Examples of sulfur-based extreme pressure agents include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, polysulfides, sulfurized olefins, thiocarbamates, thioterpenes, and dialkylthiodipropionates. Of these, sulfurized fats and oils, polysulfide and sulfurized olefins are preferred. Examples of the phosphorous extreme pressure agent include phosphoric acid esters, (mono, di, tri) thiophosphoric acid esters, acidic phosphoric acid ester amine salts, (mono, di) thiophosphoric acid ester amine salts, phosphorous acid esters, ( And mono, di, tri) thiophosphite.

金属不活性剤としては、例えばベンゾトリアゾール,チアジアゾール,アルケニルコハク酸エステルやその誘導体等が挙げられる。
摩擦低減剤としては、例えば脂肪族アルコール、脂肪酸、脂肪酸エステル、脂肪族アミン、脂肪族アミン塩、脂肪族アミド等が挙げられる。
粘度指数向上剤としては、前記以外に,ポリイソブチレン系,エチレン−プロピレン共重合体系,スチレン−イソプレン共重合体系,スチレン−ブタジエン水添共重合体系などを併用することができる。
抗乳化剤としては、例えばひまし油の硫酸エステル塩、石油スルホン酸塩、エアロゾルOT型などのアニオン活性剤;第四級アンモニウム塩、イミダゾリン型などのカチオン活性剤;アルキレンオキシドなどの非イオン活性剤等が挙げられる。
消泡剤として、例えばジメチルポリシロキサン,ポリアクリレート等が挙げられる。
Examples of the metal deactivator include benzotriazole, thiadiazole, alkenyl succinate and derivatives thereof.
Examples of the friction reducing agent include aliphatic alcohols, fatty acids, fatty acid esters, aliphatic amines, aliphatic amine salts, and aliphatic amides.
As the viscosity index improver, in addition to the above, polyisobutylene, ethylene-propylene copolymer, styrene-isoprene copolymer, styrene-butadiene hydrogenated copolymer, and the like can be used in combination.
Examples of demulsifiers include anion activators such as castor oil sulfate ester, petroleum sulfonate, aerosol OT type; cation activators such as quaternary ammonium salt and imidazoline type; and nonionic activators such as alkylene oxide. Can be mentioned.
Examples of the antifoaming agent include dimethylpolysiloxane and polyacrylate.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
減圧軽油を水素化分解して得られたボトム油を溶剤脱ろうして得られたワックス1を原料(原料1、第1表)として水素化異性化触媒(Pt/ゼオライト)を用いて、反応温度330℃、水素分圧16MPa、水素/油比800Nm3/kL、LHSV1.0hr-1の条件で異性化脱ろうした。得られた生成油を減圧蒸留にて引火点200〜210℃となるように軽質分を除去した。この軽質分を除去した生成油を、Ni,W/アルミナ触媒を使用して、反応温度290℃、水素分圧20MPa、水素/油比1,000Nm3/kL、LHSV0.5hr-1の条件で水素化仕上げを行った。得られた生成油を減圧蒸留にて100℃における動粘度4.0〜5.0mm2/sとなるように調整し基油1を得た。得られた基油1はパラフィン分(%CP)が97.0%と非常に高い値を示した。この基油に酸化安定剤DBPC(2,6−ジ−t−ブチル−p−クレゾール)を0.5質量%添加してRBOT酸化試験を行った。基油1の性状を第2表に示す。
実施例2
粘度指数の異なるワックス2を原料(原料2、第1表)として、実施例1と同じ条件で水素化異性化脱ろう、減圧蒸留、水素化仕上げ、減圧蒸留を行い基油2を得た。この基油に酸化安定剤DBPCを0.5質量%添加したもののRBOT酸化試験を行った。基油1の性状を第2表に示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
Using a hydroisomerization catalyst (Pt / zeolite) as a raw material (raw material 1, Table 1), wax 1 obtained by dewaxing bottom oil obtained by hydrocracking vacuum gas oil, reaction temperature The isomerization dewaxing was performed under the conditions of 330 ° C., hydrogen partial pressure 16 MPa, hydrogen / oil ratio 800 Nm 3 / kL, LHSV 1.0 hr −1 . The resulting product oil was subjected to vacuum distillation to remove light components so that the flash point was 200 to 210 ° C. Using this Ni, W / alumina catalyst, the product oil from which this light component has been removed is subjected to a reaction temperature of 290 ° C., a hydrogen partial pressure of 20 MPa, a hydrogen / oil ratio of 1,000 Nm 3 / kL, and an LHSV of 0.5 hr −1 . Hydrofinishing was performed. The obtained product oil was adjusted to a kinematic viscosity of 4.0 to 5.0 mm 2 / s at 100 ° C. by distillation under reduced pressure to obtain a base oil 1. The obtained base oil 1 had a very high paraffin content (% C P ) of 97.0%. An RBOT oxidation test was conducted by adding 0.5% by mass of an oxidation stabilizer DBPC (2,6-di-t-butyl-p-cresol) to this base oil. The properties of the base oil 1 are shown in Table 2.
Example 2
Base oil 2 was obtained by performing hydroisomerization dewaxing, vacuum distillation, hydrofinishing, and vacuum distillation under the same conditions as in Example 1 using wax 2 having a different viscosity index as raw material (raw material 2, Table 1). An RBOT oxidation test was performed on this base oil to which 0.5% by mass of an oxidation stabilizer DBPC was added. The properties of the base oil 1 are shown in Table 2.

比較例1
ワックスの代わりにワックスにワキシーオイルを混合し、粘度指数を調整したものを原料(原料3、第1表)として実施例1と同じ条件で水素化異性化脱ろうし、その後実施例1と同様に減圧蒸留し、次いで反応温度250℃、水素分圧20MPa、水素/油比1,000Nm3/kL、LHSV1.0hr-1の条件で水素化仕上げを行った。その後、実施例1と同じ条件で減圧蒸留を行い比較基油Iを得た。この基油に酸化安定剤DBPCを0.5質量%添加したもののRBOT酸化試験を行った。比較基油Iの性状を第2表に示す。
Comparative Example 1
Hydrowaxing dewaxing under the same conditions as in Example 1 using a waxy oil mixed with wax instead of wax and adjusting the viscosity index as a raw material (raw material 3, Table 1), followed by the same procedure as in Example 1 Distillation under reduced pressure was followed by hydrofinishing under conditions of a reaction temperature of 250 ° C., a hydrogen partial pressure of 20 MPa, a hydrogen / oil ratio of 1,000 Nm 3 / kL, and LHSV of 1.0 hr −1 . Thereafter, distillation under reduced pressure was performed under the same conditions as in Example 1 to obtain a comparative base oil I. An RBOT oxidation test was performed on this base oil to which 0.5% by mass of an oxidation stabilizer DBPC was added. The properties of Comparative Base Oil I are shown in Table 2.

Figure 0005108200
Figure 0005108200

Figure 0005108200
Figure 0005108200

実施例3〜7及び比較例2〜6
下記により、ATF/CVTF用潤滑油組成物を調製して評価試験を行った。
(1) 基油
原料1を原料として、実施例1と同じ条件で水素化異性化脱ろう、減圧蒸留、水素化仕上げ、減圧蒸留を行い、基油3(70ニュートラル、以下「70N」と略す),基油4(100ニュートラル、以下「100N」と略す)及び基油5(150ニュートラル、以下「150N」と略す)を得た。また、比較のために、従来の鉱物系の比較基油II〜IV(各々70N,100N,150N)及び比較基油V(ポリ−α−オレフィン、以下「PAO」と略す)を準備した。これら基油の性状を第3表に示す。
Examples 3-7 and Comparative Examples 2-6
According to the following, a lubricating oil composition for ATF / CVTF was prepared and evaluated.
(1) Base oil Using raw material 1 as the raw material, hydroisomerization dewaxing, vacuum distillation, hydrofinishing, and vacuum distillation were performed under the same conditions as in Example 1, and base oil 3 (70 neutral, hereinafter abbreviated as “70N”). ), Base oil 4 (100 neutral, hereinafter abbreviated as “100 N”) and base oil 5 (150 neutral, hereinafter abbreviated as “150 N”). For comparison, conventional comparative mineral base oils II to IV (70N, 100N and 150N, respectively) and comparative base oil V (poly-α-olefin, hereinafter abbreviated as “PAO”) were prepared. Table 3 shows the properties of these base oils.

Figure 0005108200
Figure 0005108200

(2)潤滑油組成物の調製と評価試験
上記による基油3〜5及び比較基油II〜Vを用い、第4表及び第5表の処方により添加剤を配合してATF/CVTF用潤滑油組成物を調製した。なお、実施例5,7及び比較例3,5,6では、平均分子量3万のポリメタクリレート(PMA)を所定量配合した。これらの組成物について、粘度特性、粘度指数、低温粘度、KRL剪断粘度低下、及び酸化安定性としての粘度変化と酸化上昇を測定した。その結果を、第4表及び第5表に示す。
(2) Preparation and evaluation test of lubricating oil composition Using base oils 3 to 5 and comparative base oils II to V as described above, additives were blended according to the formulations shown in Tables 4 and 5 and lubrication for ATF / CVTF An oil composition was prepared. In Examples 5 and 7 and Comparative Examples 3, 5, and 6, a predetermined amount of polymethacrylate (PMA) having an average molecular weight of 30,000 was blended. These compositions were measured for viscosity characteristics, viscosity index, low temperature viscosity, KRL shear viscosity reduction, and viscosity change and oxidation increase as oxidation stability. The results are shown in Tables 4 and 5.

Figure 0005108200
Figure 0005108200

(注)
*1 粘度特性:JIS K2283に準拠。
*2 粘度指数:JIS K2283に準拠。
*3 低温粘度:−40℃におけるブルックフィールド粘度。
*4 KRLせん断粘度低下:KRLせん断試験DIN51350(CECL45)にかけた後、その初期値に対する粘度低下の割合(%)で示す。その値は小さいほど良好である。
*5 酸化安定性:JIS K2514に準拠し、150℃で480時間の条件で行った。
** ATF/CVTF用添加剤:金属不活性剤、酸化安定剤、清浄剤、分散剤、耐摩耗剤、消泡剤等。
(note)
* 1 Viscosity characteristics: Conforms to JIS K2283.
* 2 Viscosity index: Conforms to JIS K2283.
* 3 Low temperature viscosity: Brookfield viscosity at -40 ° C.
* 4 KRL shear viscosity reduction: Shown as a percentage (%) of viscosity reduction relative to its initial value after being subjected to KRL shear test DIN 51350 (CECL45). The smaller the value, the better.
* 5 Oxidation stability: Measured according to JIS K2514 at 150 ° C. for 480 hours.
** ATF / CVTF additives: metal deactivators, oxidation stabilizers, detergents, dispersants, antiwear agents, antifoaming agents, etc.

Figure 0005108200
Figure 0005108200

(注)第4表の脚注に同じ。
上記において、基油3を用いた実施例3は、粘度指数が高く、KRL試験による機械的せん断による粘度低下も極めて少ない。また、150℃で480時間曝される酸化安定性試験による、粘度変化や油中の酸性成分の増加(酸価上昇)も少ない。これに対して従来の粘度指数の高い基油を用いた比較例2は、粘度指数122でと低いと共に、酸化安定性試験における粘度変化、酸価上昇が実施例3よりかなり大きくい(粘度増加が実施例3の3.8倍、酸価上昇が5.2倍)。
基油4を用いた実施例4は、ATF/CVTF用潤滑油として極めて好適な例であり、粘度指数が高いと共に、機械的安定性、熱及び酸化安定性に優れている。これに対して、従来の粘度指数の高い基油を用いた比較例3は、粘度指数が低く、低温粘度も50,000mPa・S以上であり、通常のATFの規格である20,000mPa・S以下を満足することはできない。
実施例5は、汎用性のあるATF/CVTF用潤滑油の例であり、基油3と基油5の混合油にPMAを配合したものである。これは高い粘度指数を有し、機械的せん断、及び熱・酸化安定性に優れている。一方、比較例4は、従来の基油を用いて同様な粘度特性を有する組成物の例である。しかし、十分に高い粘度指数を有しないことから、低温で流動性を失い(固化)、また、熱・酸化安定性も実施例5に比べて大幅に劣っている。
(Note) Same as footnote in Table 4.
In the above, Example 3 using the base oil 3 has a high viscosity index, and the viscosity decrease due to mechanical shearing by the KRL test is extremely small. In addition, there is little change in viscosity and increase in acidic components in the oil (acid value increase) due to the oxidation stability test exposed at 150 ° C. for 480 hours. In contrast, Comparative Example 2 using a conventional base oil having a high viscosity index has a low viscosity index of 122, and the viscosity change and acid value increase in the oxidation stability test are considerably larger than those of Example 3 (increased viscosity increase). Is 3.8 times that of Example 3, and the acid value increase is 5.2 times).
Example 4 using the base oil 4 is an extremely suitable example as a lubricating oil for ATF / CVTF, and has a high viscosity index and excellent mechanical stability, thermal and oxidative stability. In contrast, Comparative Example 3 using a conventional base oil having a high viscosity index has a low viscosity index and a low-temperature viscosity of 50,000 mPa · S or more, and is 20,000 mPa · S, which is a normal ATF standard. The following cannot be satisfied.
Example 5 is an example of a general-purpose ATF / CVTF lubricating oil, in which PMA is blended with a mixed oil of the base oil 3 and the base oil 5. It has a high viscosity index and is excellent in mechanical shear and thermal / oxidative stability. On the other hand, Comparative Example 4 is an example of a composition having the same viscosity characteristics using a conventional base oil. However, since it does not have a sufficiently high viscosity index, it loses fluidity (solidifies) at a low temperature, and its heat / oxidation stability is significantly inferior to that of Example 5.

実施例6は、十分に高い粘度指数を有し、機械的せん断及び熱・酸化安定性に優れている。これに対して、比較例5は、従来の高粘度指数基油を用いた例であり、前記実施例5と同程度の粘度特性を付与するためにPMAを10質量%配合している。このため、機械的せん断は大きく10%以上の粘度低下があり、また、熱・酸化安定性も実施例6に比べて大幅に悪化している。
実施例7は、基油4に平均分子量30,000のPMAを2質量%配合した例であり、粘度指数は180以上で非常に高く同時に機械的せん断も3%以下に抑制されている。一方、比較例6は、合成基油として、ポリアルファオレフィン(PAO)を用いた例である。PAOは、高粘度指数ではあるが、実施例7と同程度の粘度特性を得るためには、PMAの配合を必要とし、その結果、機械的せん断による粘度低下は10%と大きい。
上記の如く、本発明における基油3〜5はいずれも高粘度指数で、かつ機械的せん断を受けにくく、熱・酸化安定性に優れた潤滑油組成物として好適なことが分かる。
Example 6 has a sufficiently high viscosity index and is excellent in mechanical shear and thermal / oxidative stability. On the other hand, the comparative example 5 is an example using the conventional high viscosity index base oil, and in order to provide the viscosity characteristic comparable as the said Example 5, 10 mass% of PMA is mix | blended. For this reason, the mechanical shear is large, the viscosity is reduced by 10% or more, and the thermal / oxidation stability is greatly deteriorated as compared with Example 6.
Example 7 is an example in which 2% by mass of PMA having an average molecular weight of 30,000 is blended with the base oil 4, and the viscosity index is 180 or higher, and the mechanical shear is suppressed to 3% or less at the same time. On the other hand, Comparative Example 6 is an example using polyalphaolefin (PAO) as a synthetic base oil. PAO has a high viscosity index, but in order to obtain a viscosity characteristic comparable to that of Example 7, it requires the blending of PMA, and as a result, the viscosity drop due to mechanical shear is as large as 10%.
As described above, it can be seen that all of the base oils 3 to 5 in the present invention are suitable as a lubricating oil composition having a high viscosity index and being hardly subjected to mechanical shearing and having excellent thermal and oxidation stability.

実施例8
(1)基油
前記第1表に示す原料1を用いて、実施例1と同じ条件で水素化異性化脱ろう、減圧蒸留、水素化仕上げ、減圧蒸留を行い基油6を得た。基油6の性状を第6表に示す。なお、比較のために、従来の鉱物系基油(比較基油VI)及び合成基油としてのPAO(比較基油VII)の性状を併記した。
基油6を、従来の比較基油VI及びVIIと比べれば、高粘度指数、高引火点で、かつ低密度のものであることが分かる。
Example 8
(1) Base oil The base oil 6 was obtained by performing hydroisomerization dewaxing, vacuum distillation, hydrofinishing, and vacuum distillation under the same conditions as in Example 1 using the raw material 1 shown in Table 1. The properties of the base oil 6 are shown in Table 6. For comparison, the properties of conventional mineral base oil (comparative base oil VI) and PAO (comparative base oil VII) as a synthetic base oil are also shown.
When the base oil 6 is compared with the conventional comparative base oils VI and VII, it can be seen that it has a high viscosity index, a high flash point, and a low density.

Figure 0005108200
Figure 0005108200

(2)潤滑油組成物の調製
上記の基油6を用い、第7表の処方により添加剤を配合して実施例8の油圧作動油組成物を調製した。
また、比較例7として、(i)2次水素化精製鉱油(比較基油VI)と(ii)2次水素化異性化脱ろう鉱油(比較基油VIII)の混合油を用い、第7表の処方により添加剤を配合して通常の耐摩耗型、高粘度指数を有する油圧作動油を調製した。
実施例8及び比較例7の組成物についての各性状を測定した結果を第8表に示す。
(2) Preparation of Lubricating Oil Composition Using the base oil 6 described above, an additive was added according to the formulation shown in Table 7 to prepare a hydraulic fluid composition of Example 8.
Further, as Comparative Example 7, a mixed oil of (i) secondary hydrorefined mineral oil (comparative base oil VI) and (ii) secondary hydroisomerization dewaxed mineral oil (comparative base oil VIII) was used. The hydraulic fluid having a normal wear-resistant type and a high viscosity index was prepared by blending the additive according to the following formula.
Table 8 shows the results obtained by measuring the properties of the compositions of Example 8 and Comparative Example 7.

Figure 0005108200
Figure 0005108200

Figure 0005108200
Figure 0005108200

(注)
*6 −30℃におけるブルックフィールド粘度。
*7 せん断安定性(超音波):超音波によるせん断安定性試験、周波数10KHz,振幅28μ,時間30分,油量30mLの条件で測定した。
上記の結果、本発明による基油6を用いた実施例8の組成物は、粘度指数は160以上、引火点は260℃以上であると共に、高せん断安定性、高酸化安定性を有し、しかも低密度であるため省エネルギーに有利な油圧作動油であることが分かる。
(note)
* 6 Brookfield viscosity at -30 ° C.
* 7 Shear stability (ultrasonic wave): Measured under the conditions of shear stability test using ultrasonic waves, frequency 10 KHz, amplitude 28 μ, time 30 minutes, oil amount 30 mL.
As a result, the composition of Example 8 using the base oil 6 according to the present invention has a viscosity index of 160 or higher, a flash point of 260 ° C. or higher, high shear stability, and high oxidation stability. Moreover, it can be seen that the hydraulic fluid is advantageous for energy saving because of its low density.

本発明における潤滑油基油は、高粘度指数を有し、低温流動性等に優れた基油であり、この基油を含有する本願発明の潤滑油組成物は、自動車用エンジン油、自動変速機油、無断変速機油、油圧作動油、タービン油、圧縮機油、工作機械用潤滑油、切削油、歯車油、流体軸受け油、転がり軸受け油などに適用することができる。

The lubricating base oil in the present invention is a base oil having a high viscosity index and excellent low-temperature fluidity, and the lubricating oil composition of the present invention containing this base oil includes an engine oil for automobiles and an automatic transmission. It can be applied to machine oil, continuously variable transmission oil, hydraulic fluid, turbine oil, compressor oil, machine tool lubricant, cutting oil, gear oil, fluid bearing oil, rolling bearing oil, and the like.

Claims (9)

炭化水素系の潤滑油基油であって、
粘度指数が140以上であり、環分析によるパラフィン分(%CP)が90%以上、ナフテン分(%C n )が3%以下であり、かつ−35℃におけるCCS粘度が2,200mPa・s以下であり、
さらに、100℃における動粘度が3〜6mm2/sの範囲で、蒸留試験における5%留出温度が380℃以上であり、かつNoack値が12質量%以下であることを特徴とする潤滑油基油。
A hydrocarbon-based lubricant base oil,
Viscosity index is 140 or more, paraffin content (% C P ) by ring analysis is 90% or more , naphthene content (% C n ) is 3% or less , and CCS viscosity at −35 ° C. is 2,200 mPa · s or less,
Furthermore, the kinematic viscosity at 100 ° C. is in the range of 3 to 6 mm 2 / s, the 5% distillation temperature in the distillation test is 380 ° C. or more, and the Noack value is 12% by mass or less. Oil base oil.
硫黄分含有量が30質量ppm以下である請求項1に記載の潤滑油基油。 The lubricating base oil according to claim 1, wherein the sulfur content is 30 mass ppm or less. 2,6−ジ−t−ブチル−p−クレゾールを0.5質量%添加したときのRBOT値(150℃)が480分以上である請求項1又は2に記載の潤滑油基油。 The lubricating base oil according to claim 1 or 2 , which has an RBOT value (150 ° C) of 480 minutes or more when 0.5 mass% of 2,6-di-t-butyl-p-cresol is added. 減圧軽油を水素化分解して得られたボトム油を溶剤脱ろうして得られた粘度指数180以上のワックス留分を、異性化脱ろう工程、減圧蒸留工程、水素化仕上げ工程、減圧蒸留工程の順に処理することを特徴とする請求項1〜のいずれかに記載の潤滑油基油の製造方法。 A wax fraction having a viscosity index of 180 or more obtained by dewaxing the bottom oil obtained by hydrocracking the vacuum gas oil is subjected to an isomerization dewaxing step, a vacuum distillation step, a hydrofinishing step, and a vacuum distillation step. It processes in order, The manufacturing method of the lubricating base oil in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜のいずれかに記載の潤滑油基油を含有する潤滑油組成物。 The lubricating oil composition containing the lubricating base oil in any one of Claims 1-3 . 粘度指数向上剤として、平均分子量が40,000以下のポリメタクリレートを配合したことを特徴とする請求項に記載の潤滑油組成物。 6. The lubricating oil composition according to claim 5 , wherein polymethacrylate having an average molecular weight of 40,000 or less is blended as a viscosity index improver. フェノール系及び/又はアミン系の酸化安定剤、無灰系防錆剤、及び流動点降下剤を配合したことを特徴とする請求項又はに記載の潤滑油組成物。 The lubricating oil composition according to claim 5 or 6 , wherein a phenol-based and / or amine-based oxidation stabilizer, an ashless rust inhibitor, and a pour point depressant are blended. 潤滑油組成物が、自動変速機用潤滑油組成物、無段変速機用潤滑油組成物、又は油圧作動油組成物である請求項又はに記載の潤滑油組成物。 The lubricating oil composition according to claim 5 or 6 , wherein the lubricating oil composition is a lubricating oil composition for an automatic transmission, a lubricating oil composition for a continuously variable transmission, or a hydraulic fluid composition. 潤滑油組成物が、油圧作動油組成物である請求項に記載の潤滑油組成物。 The lubricating oil composition according to claim 7 , wherein the lubricating oil composition is a hydraulic fluid composition.
JP2004321157A 2003-11-04 2004-11-04 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil Active JP5108200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321157A JP5108200B2 (en) 2003-11-04 2004-11-04 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003374241 2003-11-04
JP2003374241 2003-11-04
JP2004321157A JP5108200B2 (en) 2003-11-04 2004-11-04 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012143932A Division JP5576437B2 (en) 2003-11-04 2012-06-27 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil

Publications (2)

Publication Number Publication Date
JP2005154760A JP2005154760A (en) 2005-06-16
JP5108200B2 true JP5108200B2 (en) 2012-12-26

Family

ID=34741348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321157A Active JP5108200B2 (en) 2003-11-04 2004-11-04 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil

Country Status (1)

Country Link
JP (1) JP5108200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180535A (en) * 2003-11-04 2012-09-20 Idemitsu Kosan Co Ltd Lubricant base oil and method for producing the same, and lubricant composition containing the same
EP3375852A4 (en) * 2015-11-13 2019-04-03 Idemitsu Kosan Co.,Ltd. Lubricant composition and lubricating method

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907074B2 (en) * 2004-10-22 2012-03-28 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for transmission
WO2006043709A1 (en) * 2004-10-22 2006-04-27 Nippon Oil Corporation Lubricant composition for transmission
JP4583137B2 (en) * 2004-10-22 2010-11-17 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for transmission
JP4800635B2 (en) * 2005-02-14 2011-10-26 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for automatic transmission
US7662271B2 (en) * 2005-12-21 2010-02-16 Chevron U.S.A. Inc. Lubricating oil with high oxidation stability
US7547666B2 (en) * 2005-12-21 2009-06-16 Chevron U.S.A. Inc. Ashless lubricating oil with high oxidation stability
EP1908816B1 (en) 2005-06-29 2015-04-29 Nippon Oil Corporation Base oil for hydraulic oil and hydraulic oil compositions
JP5390737B2 (en) * 2005-07-08 2014-01-15 出光興産株式会社 Lubricating oil composition
JP5249492B2 (en) * 2005-08-31 2013-07-31 出光興産株式会社 Hydraulic fluid composition
JP4850472B2 (en) * 2005-09-21 2012-01-11 出光興産株式会社 Process oil production method
JP5260823B2 (en) * 2005-10-13 2013-08-14 昭和シェル石油株式会社 Hydraulic fluid
JP5301078B2 (en) * 2005-11-15 2013-09-25 出光興産株式会社 Pressure medium oil
US20070197410A1 (en) * 2006-02-21 2007-08-23 Rohmax Additives Gmbh Energy efficiency in hydraulic systems
JP5265087B2 (en) * 2006-03-31 2013-08-14 Jx日鉱日石エネルギー株式会社 Rust prevention oil composition
JP5213310B2 (en) 2006-04-20 2013-06-19 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP4865429B2 (en) * 2006-07-06 2012-02-01 Jx日鉱日石エネルギー株式会社 Metalworking oil composition
JP4865428B2 (en) * 2006-07-06 2012-02-01 Jx日鉱日石エネルギー株式会社 Compressor oil composition
JP4972353B2 (en) * 2006-07-06 2012-07-11 Jx日鉱日石エネルギー株式会社 Hydraulic fluid composition
JP5379345B2 (en) * 2006-07-06 2013-12-25 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP4865430B2 (en) * 2006-07-06 2012-02-01 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for machine tools
EP2423297B1 (en) 2006-07-06 2013-06-05 Nippon Oil Corporation Hydraulic oil composition
JP5350583B2 (en) * 2006-08-03 2013-11-27 出光興産株式会社 Lubricating oil composition and method for improving metal fatigue of automobile transmission using the same
JP2008074933A (en) * 2006-09-20 2008-04-03 Japan Energy Corp Lubricating oil composition
JP5296545B2 (en) * 2006-09-25 2013-09-25 出光興産株式会社 Hydraulic fluid composition
JP5248022B2 (en) * 2007-01-23 2013-07-31 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for automatic transmission
JP5352053B2 (en) * 2007-01-23 2013-11-27 出光興産株式会社 Lubricating oil composition for oil-cooled screw air compressor and oil-cooled screw air compressor filled with the same
US7867957B2 (en) 2007-03-30 2011-01-11 Nippon Oil Corporation Lubricating oil composition
SG179416A1 (en) 2007-03-30 2012-04-27 Nippon Oil Corp Lubricant base oil, method for production thereof, and lubricant oil composition
US20080302422A1 (en) * 2007-06-07 2008-12-11 Rohmax Additives Gmbh Power output in hydraulic systems
US8058214B2 (en) * 2007-06-28 2011-11-15 Chevron U.S.A. Inc. Process for making shock absorber fluid
US8022024B2 (en) * 2007-06-28 2011-09-20 Chevron U.S.A. Inc. Functional fluid compositions
JP2010537035A (en) * 2007-08-31 2010-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Use of lubricating oil for internal combustion engines
BRPI0817727A2 (en) * 2007-09-27 2017-05-16 Chevron Usa Inc grease composition, and method for preparing a grease composition
CN106190503A (en) 2007-12-05 2016-12-07 捷客斯能源株式会社 Lubricant oil composite
JP5483662B2 (en) 2008-01-15 2014-05-07 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5231053B2 (en) * 2008-03-14 2013-07-10 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5330716B2 (en) * 2008-03-17 2013-10-30 出光興産株式会社 Lubricating oil composition
JP5800448B2 (en) 2008-03-25 2015-10-28 Jx日鉱日石エネルギー株式会社 Lubricating oil base oil, method for producing the same, and lubricating oil composition
JP5800449B2 (en) 2008-03-25 2015-10-28 Jx日鉱日石エネルギー株式会社 Lubricating oil base oil, method for producing the same, and lubricating oil composition
WO2010032781A1 (en) * 2008-09-19 2010-03-25 出光興産株式会社 Lubricating oil composition for internal combustion engine
WO2010041689A1 (en) 2008-10-07 2010-04-15 新日本石油株式会社 Lubricant base oil and a process for producing the same, and lubricating oil composition
JP2010090251A (en) 2008-10-07 2010-04-22 Nippon Oil Corp Lubricant base oil, method for producing the same, and lubricating oil composition
EP2343357B1 (en) 2008-10-07 2019-12-04 JX Nippon Oil & Energy Corporation Method for producing a lubricant composition
WO2010064347A1 (en) * 2008-12-01 2010-06-10 新日本石油株式会社 Flame retardant hydraulic oil composition
JP5303339B2 (en) 2009-03-31 2013-10-02 Jx日鉱日石エネルギー株式会社 Method for producing lubricating base oil
CN103396866B (en) 2009-06-04 2016-07-06 吉坤日矿日石能源株式会社 Lubricant oil composite
US9404062B2 (en) 2009-06-04 2016-08-02 Jx Nippon Oil & Energy Corporation Lubricant oil composition
CN103525515A (en) 2009-06-04 2014-01-22 吉坤日矿日石能源株式会社 A lubricating oil composition and a method for manufacturing same
JP5689592B2 (en) 2009-09-01 2015-03-25 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5727713B2 (en) * 2010-03-19 2015-06-03 出光興産株式会社 Lubricating oil composition for internal combustion engines
JP5965131B2 (en) * 2011-11-16 2016-08-03 出光興産株式会社 Lubricating oil composition for transmission
JP5892800B2 (en) * 2012-02-06 2016-03-23 Jx日鉱日石エネルギー株式会社 Hydraulic fluid composition
WO2013147302A1 (en) 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 Lubricant base oil and method for producing same
JP5957516B2 (en) 2012-03-30 2016-07-27 Jxエネルギー株式会社 Lubricating base oil and method for producing the same
JP5731435B2 (en) * 2012-03-30 2015-06-10 住友重機械工業株式会社 Reducer for refrigerated warehouse
JP2012211338A (en) * 2012-07-13 2012-11-01 Idemitsu Kosan Co Ltd Lubricant base oil and method of producing the same, and lubricant composition that contains the base oil
JP2014185288A (en) * 2013-03-25 2014-10-02 Jx Nippon Oil & Energy Corp Hydraulic oil composition
JP6182028B2 (en) * 2013-09-11 2017-08-16 昭和シェル石油株式会社 Heat medium oil composition
JP6130799B2 (en) * 2014-02-28 2017-05-17 三菱日立パワーシステムズ株式会社 Turbine oil, turbine assembly oil, and method for producing the assembly oil
JP5847892B2 (en) * 2014-06-25 2016-01-27 Jx日鉱日石エネルギー株式会社 Transmission oil composition for automobiles
JP2014198857A (en) * 2014-07-31 2014-10-23 Jx日鉱日石エネルギー株式会社 Lubricant base oil and manufacturing method thereof and lubricant composition
JP5913478B2 (en) * 2014-08-11 2016-04-27 Jxエネルギー株式会社 Hydraulic fluid composition
PL3135640T3 (en) * 2015-08-26 2020-08-24 Socabelec S.A. Lubrication of blank moulds in a method for manufacturing hollow glass products
CN108368445B (en) 2015-12-25 2022-07-08 出光兴产株式会社 Mineral base oil, lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
JP6047224B1 (en) * 2015-12-25 2016-12-21 出光興産株式会社 Mineral oil base oil, lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
JP6905971B2 (en) * 2016-02-25 2021-07-21 出光興産株式会社 Mineral oil-based base oil and lubricating oil composition
WO2020213644A1 (en) * 2019-04-16 2020-10-22 Jxtgエネルギー株式会社 Transmission lubricating oil composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693698B2 (en) * 1993-04-22 1997-12-24 株式会社ジャパンエナジー Fuel-efficient lubricating oil
US6090989A (en) * 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
US6179994B1 (en) * 1998-09-04 2001-01-30 Exxon Research And Engineering Company Isoparaffinic base stocks by dewaxing fischer-tropsch wax hydroisomerate over Pt/H-mordenite
US6103099A (en) * 1998-09-04 2000-08-15 Exxon Research And Engineering Company Production of synthetic lubricant and lubricant base stock without dewaxing
US6080301A (en) * 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
JP4723056B2 (en) * 2000-05-17 2011-07-13 出光興産株式会社 Lubricating base oil and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180535A (en) * 2003-11-04 2012-09-20 Idemitsu Kosan Co Ltd Lubricant base oil and method for producing the same, and lubricant composition containing the same
EP3375852A4 (en) * 2015-11-13 2019-04-03 Idemitsu Kosan Co.,Ltd. Lubricant composition and lubricating method

Also Published As

Publication number Publication date
JP2005154760A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP5108200B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
JP5390737B2 (en) Lubricating oil composition
EP2497820B1 (en) Lubricant composition
JP5324748B2 (en) Lubricating oil composition
JP5779376B2 (en) Lubricating oil composition
JP6472262B2 (en) Lubricating oil composition for internal combustion engines
EP3409751B1 (en) Lubricant composition
JP5829374B2 (en) Lubricating oil composition
WO2010140446A1 (en) Lubricant oil composition
CA2719588A1 (en) Lubricant oil composition for internal combustion engine
JP2009511728A (en) Lubricating oil composition
WO2011027730A1 (en) Lubricant composition
WO2011083602A1 (en) Lubricant composition
JPWO2013136582A1 (en) Lubricating oil composition for transmission
JP2012211338A (en) Lubricant base oil and method of producing the same, and lubricant composition that contains the base oil
JP5576437B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
WO2017168868A1 (en) Mineral oil-based base oil, lubricating oil composition, equipment, lubricating method, and grease composition
JP2018016729A (en) Lubricant composition
JP2016190918A (en) Lubricant composition
JP5931250B2 (en) Lubricating oil composition
JP5564204B2 (en) Lubricating oil composition
JP6444219B2 (en) Lubricating oil composition for gear oil
CN108368445B (en) Mineral base oil, lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
JP5750218B2 (en) Lubricating oil composition
JP2018100328A (en) Lubricant composition, internal combustion, and method for lubricating internal combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5108200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3