JP5395474B2 - Industrial hydraulic oil composition - Google Patents

Industrial hydraulic oil composition Download PDF

Info

Publication number
JP5395474B2
JP5395474B2 JP2009060977A JP2009060977A JP5395474B2 JP 5395474 B2 JP5395474 B2 JP 5395474B2 JP 2009060977 A JP2009060977 A JP 2009060977A JP 2009060977 A JP2009060977 A JP 2009060977A JP 5395474 B2 JP5395474 B2 JP 5395474B2
Authority
JP
Japan
Prior art keywords
viscosity
oil
viscosity index
kinematic viscosity
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009060977A
Other languages
Japanese (ja)
Other versions
JP2010215699A (en
Inventor
祥子 阪田
健司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Lubricants Co Ltd
Original Assignee
Cosmo Oil Lubricants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Lubricants Co Ltd filed Critical Cosmo Oil Lubricants Co Ltd
Priority to JP2009060977A priority Critical patent/JP5395474B2/en
Publication of JP2010215699A publication Critical patent/JP2010215699A/en
Application granted granted Critical
Publication of JP5395474B2 publication Critical patent/JP5395474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Description

本発明は、省電力型工業用作動油組成物に関する。 The present invention relates to a power-saving industrial hydraulic oil composition.

近年、地球規模での温暖化が進行し、温室効果ガスの一つである二酸化炭素排出量削減が急務となっている。わが国でも、2006年にエネルギーの使用の合理化に関する法律、地球温暖化対策の推進に関する法律がそれぞれ改正施行され、工場、輸送事業者等はこれまで以上に電力消費量の削減が求められるようになってきた。 In recent years, global warming has progressed, and there is an urgent need to reduce carbon dioxide emissions, which is one of the greenhouse gases. In Japan, the Law Concerning the Rational Use of Energy and the Law Concerning Promotion of Global Warming Countermeasures were revised and implemented in 2006, and factories and transportation companies have been required to reduce power consumption more than ever. I came.

電力消費量削減の一つの方法として、産業機械や輸送機械で使用される潤滑油側からの省電力化が図られている。
省電力化の有効な手段として、動粘度を低くすることが広く知られているが、一方で、特定の添加剤を配合することによる摩擦・摩耗の低減による向上が図られている。
As one method of reducing power consumption, power saving from the lubricating oil side used in industrial machines and transportation machines is being attempted.
As an effective means for power saving, it is widely known that the kinematic viscosity is lowered, but on the other hand, improvement by reducing friction and wear by blending a specific additive has been achieved.

例えば、リン酸エステル、リン酸エステルのアミン塩、脂肪酸エステル、カルボン酸アミド、硫化オキシモリブデンジチオホスフェート、硫化オキシモリブデンジチオカーバメートなどの配合技術による対応が試みられている(例えば、特許文献1、2参照)。また、特定の基油を使用することにより、配管等の圧力損失の低減を図った例も挙げられる(特許文献3参照)。 For example, attempts have been made to cope with blending techniques such as phosphoric acid esters, phosphoric acid ester amine salts, fatty acid esters, carboxylic acid amides, sulfurized oxymolybdenum dithiophosphate, sulfurized oxymolybdenum dithiocarbamate (for example, Patent Documents 1 and 2). reference). Moreover, the example which aimed at reduction of pressure loss, such as piping, by using specific base oil is also mentioned (refer patent document 3).

ところで、油圧装置においても省電力化が求められている。最近では油圧装置の高出力化、高圧化、オイルタンクの小型化などにより、高温、高圧、高せん断等、作動油がより過酷な条件にさらされる傾向にある。 By the way, power saving is also demanded in the hydraulic device. Recently, hydraulic oil tends to be exposed to harsher conditions such as high temperature, high pressure, high shear, etc. due to higher output, higher pressure, and smaller oil tanks.

工業用油圧装置は、オイルタンク、ベーンポンプやピストンポンプなどの油圧ポンプ、流量、方向、圧力を調整するための制御弁、油圧シリンダーや油圧ポンプなどのアクチュエーター、それらをつなぐ配管から構成される。これらの各部位の内、油圧ポンプ、制御弁、アクチュエーターにおいて、作動油は狭い経路を流れることとなり、高せん断条件にさらされる。油圧ポンプ、制御弁、アクチュエーターといった、油圧装置を構成するメインの部位での粘度を低くすることは、油圧装置の省電力化の方法の一つとして有効であると考えられ、動粘度だけではなく、せん断条件下での一時せん断粘度(以下、「高せん断粘度」ということもある)を低くすることは、油圧装置の省電力化によりいっそう寄与することが期待できる。その際、射出成形機のように通常タンク油温40℃前後にて運転される油圧装置では、40℃における高せん断粘度を低くすることで、省電力化に寄与できることが期待できる。 Industrial hydraulic devices are composed of oil tanks, hydraulic pumps such as vane pumps and piston pumps, control valves for adjusting the flow rate, direction and pressure, actuators such as hydraulic cylinders and hydraulic pumps, and piping connecting them. Among these parts, in the hydraulic pump, the control valve, and the actuator, the hydraulic fluid flows through a narrow path and is exposed to a high shear condition. Reducing the viscosity at the main parts of the hydraulic system such as hydraulic pumps, control valves, and actuators is considered to be effective as one of the methods for power saving of the hydraulic system. Lowering the temporary shear viscosity under shear conditions (hereinafter sometimes referred to as “high shear viscosity”) can be expected to further contribute to power saving of the hydraulic device. At that time, in a hydraulic apparatus that is normally operated at a tank oil temperature of around 40 ° C. like an injection molding machine, it can be expected that it can contribute to power saving by reducing the high shear viscosity at 40 ° C.

このように、高せん断粘度を低くするためには、基油に適切なポリマーを配合することが考えられる。しかしながら、高せん断粘度を低くするために配合されるポリマーは、高せん断下において分子の切断を生じやすいものが多いため、そのようなポリマーが配合された作動油は永久せん断安定性が低下し、せん断力による永久的な粘度低下が起こりやすい傾向にある。その結果、例えば、油圧ポンプやアクチュエーターにおいて、適切な油膜を保持しにくくなることが考えられる。 Thus, in order to make high shear viscosity low, it is possible to mix | blend a suitable polymer with a base oil. However, since many of the polymers blended to reduce the high shear viscosity are likely to cause molecular cleavage under high shear, hydraulic fluids blended with such polymers have reduced permanent shear stability, There is a tendency for permanent viscosity reduction due to shear force. As a result, for example, it may be difficult to hold an appropriate oil film in a hydraulic pump or an actuator.

特開平5−140556号公報Japanese Patent Laid-Open No. 5-140556 特開2001−040383号公報JP 2001-040383 A 特開2004−250504号公報JP 2004-250504 A

本発明は、高せん断条件下での一時せん断粘度が低く、かつ永久せん断安定性に優れた工業用油圧作動油組成物を提供することを目的とする。 An object of the present invention is to provide an industrial hydraulic fluid composition having a low temporary shear viscosity under a high shear condition and an excellent permanent shear stability.

本発明者は、上記課題を解決するために鋭意研究を行った結果、特定の40℃動粘度、アニリン点、15℃密度、ナフテン分(%CN)を有する炭化水素系潤滑油基油に、重量平均分子量が、84,000〜130,000であるポリメタクリレート系粘度指数向上剤を含有する組成物を配合し、得られる組成物の40℃における動粘度、粘度指数を特定の範囲にすることで、高せん断条件下での一時せん断粘度が低く、かつ永久せん断安定性に優れた工業用油圧作動油組成物が得られることを見出し、この知見に基づいて本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventor has obtained a hydrocarbon-based lubricating base oil having a specific 40 ° C. kinematic viscosity , aniline point, 15 ° C. density, and naphthene content (% CN) . Formulating a composition containing a polymethacrylate viscosity index improver having a weight average molecular weight of 84,000 to 130,000 , and setting the kinematic viscosity and viscosity index of the resulting composition at 40 ° C. to a specific range Thus, it was found that an industrial hydraulic fluid composition having a low temporary shear viscosity under high shear conditions and excellent in permanent shear stability was obtained, and the present invention was completed based on this finding.

すなわち、本発明は、(A)40℃動粘度が4〜40mm/sであり、アニリン点が100〜130℃であり、15℃密度が0.80〜0.85g/cm であり、ナフテン分(%CN)が8〜27である炭化水素系潤滑油基油、及び(B)重量平均分子量が、84,000〜130,000であるポリメタクリレート系粘度指数向上剤を含有する組成物であって、該組成物の40℃における動粘度が19〜51mm/sであり、粘度指数が140〜240であることを特徴とする工業用油圧作動油組成物を提供するものである。 That is, the present invention, (A) 40 ° C. kinematic viscosity 4~40mm Ri 2 / s der, aniline point is 100 to 130 ° C., 15 ° C. density be 0.80~0.85g / cm 3 , naphthene (% CN) is 8-27 der Ru hydrocarbon lubricating base oil, and (B) a weight average molecular weight, containing a polymethacrylate-based viscosity index improver is 84,000~130,000 a composition, kinematic viscosity at 40 ° C. of the composition 19~51mm Ri 2 / s der to provide industrial hydraulic oil composition viscosity index is characterized by 140 to 240 der Rukoto Is.

本発明の工業用油圧作動油組成物は、高せん断条件下での一時せん断粘度が低く、かつ永久せん断安定性に優れている。なお、「一時せん断粘度」とは、せん断力がかかった条件下で一時的に変化した粘度をいう。一方、作動油は、せん断力がかかることで化学構造の不可逆的な変化が生じ、せん断力を解除した条件に戻しても粘度が元に戻らない、すなわち永久的な粘度低下を起こすことがある。このせん断力による永久的な粘度低下に対する耐性を「永久せん断安定性」という。よって、「高せん断条件下での一時せん断粘度が低く、かつ永久せん断安定性に優れている」ということは、「高せん断力がかかった条件下での粘度は低いが、この高せん断力を取り除いた後の粘度は、高せん断力をかける前の粘度と同じか、またはそれに近い粘度になる」ということを意味する。
よって、本発明の工業用油圧作動油組成物は、省電力型工業用油圧作動油として産業機械等に好適に用いることができる。
The industrial hydraulic fluid composition of the present invention has a low temporary shear viscosity under high shear conditions and is excellent in permanent shear stability. The “temporary shear viscosity” refers to a viscosity that temporarily changes under a condition where a shearing force is applied. On the other hand, irreversible changes in the chemical structure occur due to the application of shearing force, and the oil does not return to its original viscosity even when the shearing force is released, that is, it may cause a permanent decrease in viscosity. . This resistance to permanent viscosity reduction due to shear force is referred to as “permanent shear stability”. Therefore, “low temporary shear viscosity under high shear conditions and excellent permanent shear stability” means that “viscosity under low shear conditions is low, but this high shear force is It means that the viscosity after removal is the same as or close to the viscosity before applying a high shear force.
Therefore, the industrial hydraulic fluid composition of the present invention can be suitably used for industrial machines and the like as a power-saving industrial hydraulic fluid.

(1)基油
本発明の工業用油圧作動油組成物に用いる炭化水素系基油としては、ポリαオレフィンやポリαオレフィン以外の炭化水素系基油等が挙げられ、1種類の基油成分を単独使用してもよいし、2種類以上の基油成分を混合してもよい。また、ポリαオレフィンとポリαオレフィン以外の炭化水素系潤滑油基油を混合して用いてもよい。
(1) Base oil Examples of the hydrocarbon base oil used in the industrial hydraulic fluid composition of the present invention include poly α olefins and hydrocarbon base oils other than poly α olefins. May be used alone, or two or more base oil components may be mixed. Moreover, you may mix and use hydrocarbon type base oil other than poly alpha olefin and poly alpha olefin.

ポリαオレフィンはα−オレフィンの共重合体であり、例えば、炭素数が6〜18のα−オレフィンの10量体以下のものが好ましい。特に好ましいポリαオレフィンは、α−デセン(炭素数10)の2〜4量体、またはα−ドデセン(炭素数12)の2〜4量体を中心に、それらの5量体以上のものを含有するものである。ポリαオレフィンの1分子当りの平均炭素数は、上記の40℃動粘度範囲である限り特に制限はない。 The poly-α-olefin is a copolymer of α-olefin, and for example, an α-olefin having a number of carbon atoms of 6 to 18 is preferably a 10-mer or less. Particularly preferred poly-α-olefins are α-decene (carbon number 10) 2 to 4 mer, or α-dodecene (carbon number 12) 2 to 4 mer, and more than those pentamers. It contains. The average number of carbon atoms per molecule of the poly α-olefin is not particularly limited as long as it is in the above 40 ° C. kinematic viscosity range.

ポリαオレフィンの好適な製造例としては、エチレンの低重合またはワックスの熱分解によって炭素数6〜18のα−オレフィンを合成し、このα−オレフィン2〜9単位を重合し、水添反応を行うことによって合成される。 As a suitable production example of poly α-olefin, an α-olefin having 6 to 18 carbon atoms is synthesized by low polymerization of ethylene or thermal decomposition of wax, 2 to 9 units of this α-olefin are polymerized, and hydrogenation reaction is performed. Synthesized by doing.

ポリαオレフィン以外の炭化水素系潤滑油基油としては、原油の潤滑油留分を溶剤精製、水素化精製、水素化分解精製など適宜組合せた製造された鉱油系炭化水素基油や、溶剤脱ロウによるスラックワックスやフィッシャー・トロプシュ合成で得られたワックス等の原料を水素化処理、水素化分解処理して得た基油などが挙げられる。 Hydrocarbon base oils other than poly-alpha olefins include mineral oil base oils produced by combining crude oil fractions as appropriate, including solvent refining, hydrorefining, hydrocracking refining, and solvent removal. Examples thereof include base oils obtained by hydrotreating and hydrocracking raw materials such as slack wax by wax and wax obtained by Fischer-Tropsch synthesis.

鉱油系潤滑油基油の好ましい製造方法としては、以下の方法が挙げられる。まず、原油の常圧蒸留で得られたボトム油を減圧蒸留装置で処理する。そこで得られた減圧軽油を水素化処理および水素化分解を行い、その後、軽質分、燃料分を減圧ストリッパーで除去した残渣物を得る。この残渣物を減圧蒸留し、得られた潤滑油留分を水素化脱ロウ処理、安定化処理を行う。 The following method is mentioned as a preferable manufacturing method of mineral oil type | system | group lubricating base oil. First, bottom oil obtained by atmospheric distillation of crude oil is treated with a vacuum distillation apparatus. The vacuum gas oil thus obtained is hydrotreated and hydrocracked, and then a residue obtained by removing light and fuel components with a vacuum stripper is obtained. This residue is distilled under reduced pressure, and the resulting lubricating oil fraction is subjected to hydrodewaxing treatment and stabilization treatment.

本発明の工業用油圧作動油組成物に用いる炭化水素系潤滑油基油の40℃動粘度は、JIS K2283動粘度試験方法において、4〜40mm/sであり、より好ましくは8〜35mm/sであり、さらに好ましくは10〜30mm/sであり、特に好ましくは15〜25mm/sである。40℃動粘度が4mm/s未満であると、適当な油膜厚さが保たれなくなり、十分な摩耗防止性を得づらくなる。40℃動粘度が40mm/sを超えると、作動油として適切な動粘度に調整するために、後述する粘度指数向上剤の配合量を減らす必要が生じ、高せん断粘度が大きくなり、十分な省電力効果を得づらくなる。なお、複数の基油成分を混合した基油を用いる場合には、混合後の基油の40℃動粘度が上記の範囲内であればよく、各基油成分の40℃動粘度が上記範囲内であることがより好ましい。 The 40 ° C. kinematic viscosity of the hydrocarbon-based lubricating base oil used in the industrial hydraulic fluid composition of the present invention is 4 to 40 mm 2 / s, more preferably 8 to 35 mm 2 in the JIS K2283 kinematic viscosity test method. / S, more preferably 10 to 30 mm 2 / s, and particularly preferably 15 to 25 mm 2 / s. When the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, an appropriate oil film thickness cannot be maintained, and it is difficult to obtain sufficient wear resistance. When the 40 ° C. kinematic viscosity exceeds 40 mm 2 / s, it is necessary to reduce the blending amount of the viscosity index improver, which will be described later, in order to adjust the kinematic viscosity to be appropriate as the hydraulic oil, and the high shear viscosity becomes large. It becomes difficult to obtain a power saving effect. In addition, when using the base oil which mixed the some base oil component, the 40 degreeC kinematic viscosity of the base oil after mixing should just be in said range, and the 40 degreeC kinematic viscosity of each base oil component is the said range. More preferably, it is within.

なお、工業用作動油組成物の粘度グレードは、40℃の動粘度により定められており、各装置、運転条件に適した粘度グレードの作動油を使うことが求められる。例えば粘度グレード(以下VGと記す)が46である作動油は、VG22の作動油よりも、より摩耗防止性が求められる装置、運転条件にて使用されることが考えられる。よって、VG46、すなわち組成物の40℃動粘度が41.4〜50.6mm/sである作動油を調製する場合と、VG32、すなわち組成物の40℃動粘度が28.8〜35.2mm/sである作動油を調製する場合と、VG22、すなわち組成物の40℃動粘度が19.8〜24.2mm/sである作動油を調製する場合とでは、それぞれ使用する基油の好ましい40℃動粘度は異なる。 The viscosity grade of the industrial hydraulic oil composition is determined by a kinematic viscosity of 40 ° C., and it is required to use a hydraulic oil of a viscosity grade suitable for each device and operating conditions. For example, hydraulic oil having a viscosity grade (hereinafter referred to as VG) of 46 is considered to be used in an apparatus and operating conditions that require higher wear resistance than hydraulic oil of VG22. Therefore, VG46, that is, a hydraulic oil having a composition having a 40 ° C. kinematic viscosity of 41.4 to 50.6 mm 2 / s, and VG 32, that is, a composition having a 40 ° C. kinematic viscosity of 28.8 to 35. In the case of preparing a hydraulic oil having 2 mm 2 / s, and in the case of preparing a hydraulic oil in which VG22, that is, the composition having a kinematic viscosity of 40 ° C. of 19.8 to 24.2 mm 2 / s, is used. The preferred 40 ° C. kinematic viscosity of the oil is different.

例えば、本発明においてVG46の作動油を調製する場合、本発明で使用する基油の40℃動粘度は4〜40mm/sであり、好ましくは10〜38mm/sであり、さらに好ましくは13〜35mm/sであり、特に好ましくは14〜25mm/sである。
また、本発明においてVG32の作動油を調製する場合、本発明で使用する基油の動粘度は好ましくは4〜30mm/sであり、さらに好ましくは9〜28mm/sであり、特に好ましくは11〜25mm/sである。
また、本発明においてVG22の作動油を調製する場合、本発明で使用する基油の動粘度は好ましくは4〜20mm/sであり、さらに好ましくは8〜18mm/sであり、特に好ましくは10〜15mm/sである。
For example, when preparing hydraulic oil of VG46 in the present invention, the 40 ° C. kinematic viscosity of the base oil used in the present invention is 4 to 40 mm 2 / s, preferably 10 to 38 mm 2 / s, more preferably 13~35mm a 2 / s, particularly preferably 14~25mm 2 / s.
Moreover, when preparing the hydraulic oil of VG32 in this invention, the kinematic viscosity of the base oil used by this invention becomes like this. Preferably it is 4-30 mm < 2 > / s, More preferably, it is 9-28 mm < 2 > / s, Especially preferably Is 11 to 25 mm 2 / s.
Moreover, when preparing the hydraulic oil of VG22 in this invention, the kinematic viscosity of the base oil used by this invention becomes like this. Preferably it is 4-20 mm < 2 > / s, More preferably, it is 8-18 mm < 2 > / s, Especially preferably, Is 10-15 mm 2 / s.

本発明の工業用油圧作動油組成物で用いる炭化水素系潤滑油基油は、40℃動粘度が上記範囲を満たすものであれば、どのような性状のものでもよく、特に制限はないが、より良好な性能を確保するという観点からは、ポリαオレフィン以外の炭化水素系基油は以下の性状を有することが好ましい。 The hydrocarbon-based lubricating base oil used in the industrial hydraulic fluid composition for industrial use of the present invention may have any properties as long as the kinematic viscosity at 40 ° C. satisfies the above range, and is not particularly limited. From the viewpoint of ensuring better performance, it is preferable that the hydrocarbon base oil other than the poly-α-olefin has the following properties.

本発明の工業用油圧作動油組成物で用いる炭化水素系潤滑油基油の粘度指数は、JIS K2283動粘度試験方法において、90以上であることが好ましい。粘度指数を90以上とすることで、後述する好ましい組成物の粘度指数を得やすく、その結果、低温粘度を低く抑え、低温始動時の電力消費量を抑制できる組成物を得やすくなる。また、組成物の粘度指数は、本発明の成分である粘度指数向上剤の配合量が多いほど、高くすることができるが、基油の粘度指数が高ければ、この配合量を抑制することができる。この観点から、基油の粘度指数は、より好ましくは103以上であり、さらに好ましくは105以上であり、特に好ましくは110以上であり、最も好ましくは120以上である。 The viscosity index of the hydrocarbon-based lubricating base oil used in the industrial hydraulic fluid composition of the present invention is preferably 90 or more in the JIS K2283 kinematic viscosity test method. By setting the viscosity index to 90 or more, it is easy to obtain a viscosity index of a preferable composition described later, and as a result, it becomes easy to obtain a composition that can suppress low-temperature viscosity to a low level and suppress power consumption at low-temperature startup. Further, the viscosity index of the composition can be increased as the blending amount of the viscosity index improver that is a component of the present invention is increased. However, if the viscosity index of the base oil is high, the blending amount can be suppressed. it can. From this viewpoint, the viscosity index of the base oil is more preferably 103 or more, further preferably 105 or more, particularly preferably 110 or more, and most preferably 120 or more.

本発明の工業用油圧作動油組成物で用いる炭化水素系潤滑油基油の密度は、JIS K2249密度試験方法(15℃)において0.80〜0.85g/cmである。15℃密度を0.80以上とすることで、添加剤の適度な溶解性を確保しやすい傾向にあるため好ましい。15℃密度を0.85g/cm以下とすることで、配管等の圧力損失を抑制しやすく、より高い省電力効果を得やすい傾向にあるため好ましい。 The density of the hydrocarbon-based lubricating base oil used in industrial hydraulic fluid composition of the present invention, in the JIS K2249 Density Test method (15 ° C.), a 0.80~0.85g / cm 3. It is preferable to set the density at 15 ° C. to 0.80 or more because it tends to ensure appropriate solubility of the additive. It is preferable to set the 15 ° C. density to 0.85 g / cm 3 or less because it is easy to suppress pressure loss of piping and the like and it is easy to obtain a higher power saving effect.

本発明の工業用油圧作動油組成物で用いる炭化水素系潤滑油基油のナフテン分(%CN)は、ASTM D3238環分析方法において8〜27である。%CNを8以上とすることで、添加剤の溶解性を確保しやすい傾向にあるため好ましい。%CNを27以下とすることで、高粘度指数基油となりやすい傾向にある。 Naphthene content of the hydrocarbon-based lubricating base oil used in industrial hydraulic fluid composition of the present invention (% CN), in ASTM D3238 ring analysis method, is 8-27. It is preferable to set% CN to 8 or more because it tends to ensure the solubility of the additive. By setting% CN to 27 or less, it tends to be a high viscosity index base oil.

本発明の工業用油圧作動油組成物で用いる炭化水素系潤滑油基油のアニリン点は、JIS K2256アニリン点試験方法において100〜130℃である。アニリン点を100℃以上とすることで、高粘度指数基油となりやすい傾向にある。アニリン点を130℃以下とすることで、添加剤の溶解性を確保しやすい傾向にあるため好ましい。 The aniline point of the hydrocarbon-based lubricating base oil used in the industrial hydraulic fluid composition of the present invention is 100 to 130 ° C. in the JIS K2256 aniline point test method. By setting the aniline point to 100 ° C. or higher, it tends to be a high viscosity index base oil. It is preferable to set the aniline point to 130 ° C. or lower because it tends to ensure the solubility of the additive.

本発明の工業用油圧作動油組成物には、本発明の効果を損ねない範囲内で、前記基油以外の他の基油を含んでもよいが、前記基油の含有割合は、基油全量に対して70質量であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。
本発明の工業用油圧作動油組成物において、基油の含有量は、油圧作動油組成物全量に対して、好ましくは75〜98質量%であり、より好ましくは77〜97質量%であり、さらに好ましくは80〜96質量%であり、特に好ましくは83〜95.5質量%である。
The industrial hydraulic fluid composition of the present invention may contain a base oil other than the base oil as long as the effects of the present invention are not impaired. The content of the base oil is based on the total amount of the base oil. Is preferably 70% by mass, more preferably 80% by mass or more, still more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
In the industrial hydraulic fluid composition of the present invention, the content of the base oil is preferably 75 to 98% by mass, more preferably 77 to 97% by mass, based on the total amount of the hydraulic fluid composition. More preferably, it is 80-96 mass%, Most preferably, it is 83-95.5 mass%.

(2)粘度指数向上剤
本発明の工業用油圧作動油組成物に用いるポリメタクリレート系粘度指数向上剤(以下、PMA系粘度指数向上剤ということもある)としては、式(1)で表わされる化合物の中から選ばれる少なくとも1種以上のモノマーを重合してなる非分散型ポリメタクリレート系粘度指数向上剤、式(1)で表わされる化合物の中から選ばれる少なくとも1種以上のモノマーと、極性基をもつモノマーとを共重合してなる分散型ポリメタクリレート系粘度指数向上剤が挙げられる。
(2) Viscosity index improver The polymethacrylate viscosity index improver (hereinafter sometimes referred to as PMA viscosity index improver) used in the industrial hydraulic fluid composition of the present invention is represented by the formula (1). A non-dispersed polymethacrylate viscosity index improver obtained by polymerizing at least one monomer selected from compounds, at least one monomer selected from compounds represented by formula (1), and polarity Examples thereof include a dispersion type polymethacrylate viscosity index improver obtained by copolymerizing a monomer having a group.

Figure 0005395474
Figure 0005395474

(式(1)中のRは水素原子またはメチル基を表し、同一であっても、異なっていてもよい。式(1)中のRは炭素数1〜18の直鎖もしくは分岐鎖のアルキル基を表す。)
極性基をもつモノマーの具体例としては、アルキル−ビニルピリジン、N−ビニルピロリドン及びビニルイミダゾール等の窒素原子含有化合物、ポリアルキレングリコールエステル、マレイン酸エステル及びフマル酸エステル等のエステル類が挙げられる。これらは1種でも、2種以上でも用いることができる。
(R 1 in Formula (1) represents a hydrogen atom or a methyl group, and may be the same or different. R 2 in Formula (1) is a linear or branched chain having 1 to 18 carbon atoms. Represents an alkyl group of
Specific examples of the monomer having a polar group include nitrogen atom-containing compounds such as alkyl-vinyl pyridine, N-vinyl pyrrolidone and vinyl imidazole, and esters such as polyalkylene glycol ester, maleic acid ester and fumaric acid ester. These can be used alone or in combination of two or more.

ポリメタクリレート系粘度指数向上剤の重量平均分子量は82,000〜130,000であり、特に好ましくは84,000〜120,000である。重量平均分子量を80,000以上とすることで、高せん断粘度を低く抑えやすく、より高い省電力効果が得やすくなる傾向になる。重量平均分子量を150,000以下とすることで、より良好な永久せん断安定性を得やすい傾向にある。なお、重量平均分子量はゲル浸透クロマトグラフィーで測定され、ポリスチレン換算による値である。 The weight average molecular weight of polymethacrylate viscosity index improver is 82,000~130,000, particularly preferably 84,000~120,000. By setting the weight average molecular weight to 80,000 or more, the high shear viscosity can be easily suppressed and a higher power saving effect tends to be obtained. By setting the weight average molecular weight to 150,000 or less, it tends to easily obtain better permanent shear stability. The weight average molecular weight is measured by gel permeation chromatography and is a value in terms of polystyrene.

ポリメタクリレート系粘度指数向上剤の作動油組成物全量に対する配合量は、好ましくは2〜20質量%であり、より好ましくは3〜18質量%であり、さらに好ましくは4〜15質量%であり、特に好ましくは4.5〜12質量%である。配合量を2質量%以上とすることで、高せん断条件下での一時せん断粘度の低下が大きくなり、省電力効果をより得やすくできる傾向にある。配合量を20質量%以下とすることで、より良好な永久せん断安定性を得やすい傾向にある。
上記のポリメタクリレート系粘度指数向上剤は、1種を単独使用してもよいし、2種以上を併用してもよい。
The blending amount of the polymethacrylate viscosity index improver with respect to the total amount of the hydraulic oil composition is preferably 2 to 20% by mass, more preferably 3 to 18% by mass, and further preferably 4 to 15% by mass, Especially preferably, it is 4.5-12 mass%. When the blending amount is 2% by mass or more, the decrease in the temporary shear viscosity under high shear conditions is increased, and the power saving effect tends to be more easily obtained. By setting the blending amount to 20% by mass or less, it tends to easily obtain better permanent shear stability.
One of the above polymethacrylate viscosity index improvers may be used alone, or two or more thereof may be used in combination.

また、本発明の工業用油圧作動油組成物には、本発明の効果を損ねない範囲内であれば、前記ポリメタクリレート系粘度指数向上剤以外の他の粘度指数向上剤を含んでもよい。前記PMA系粘度指数向上剤以外の他の粘度指数向上剤としては、たとえば、エチレン-プロピレン共重合体、ポリイソブチレン、スチレン−ジエン水素化共重合体などや、重量平均分子量が80,000未満でポリメタクリレート系粘度指数向上剤が挙げられる。 In addition, the industrial hydraulic fluid composition of the present invention may contain a viscosity index improver other than the polymethacrylate viscosity index improver as long as the effects of the present invention are not impaired. Examples of the viscosity index improver other than the PMA-based viscosity index improver include, for example, ethylene-propylene copolymer, polyisobutylene, styrene-diene hydrogenated copolymer, and the like, and the weight average molecular weight is less than 80,000. Examples include polymethacrylate viscosity index improvers.

(3)その他の添加剤
本発明の工業用油圧作動油組成物には、本発明の目的が損なわれない範囲で、必要に応じて各種の公知の添加剤を配合することができる。たとえば、酸化防止剤、極圧剤、油性剤、清浄分散剤、さび止め剤、金属不活性化剤、流動点降下剤、泡消剤、抗乳化剤等が挙げられる。
酸化防止剤としては、2,6−ジ−tert−ブチル−p−クレゾール等のフェノール系酸化防止剤、アルキル化ジフェニルアミン、アルキル化フェニル−α−ナフチルアミン等のアミン系酸化防止剤、ホスホン酸エステル等のリン系酸化防止剤等が挙げられる。
(3) Other Additives Various known additives can be blended with the industrial hydraulic fluid composition of the present invention, if necessary, as long as the object of the present invention is not impaired. For example, antioxidants, extreme pressure agents, oily agents, detergents and dispersants, rust inhibitors, metal deactivators, pour point depressants, defoamers, demulsifiers and the like can be mentioned.
Antioxidants include phenol-based antioxidants such as 2,6-di-tert-butyl-p-cresol, amine-based antioxidants such as alkylated diphenylamine and alkylated phenyl-α-naphthylamine, phosphonic acid esters, etc. And phosphorus-based antioxidants.

極圧剤としては、ホスフェート、ホスファイト等のリン系極圧剤、硫化オレフィン、ポリサルファイド、硫化油脂、ジチオリン酸誘導体等の硫黄系極圧剤、ZnDTP、ZnDTC等の有機金属系極圧剤が挙げられる。特に好ましいものとして、硫化オレフィン、ジチオリン酸誘導体が挙げられる。
油性剤としては、オレイン酸、ステアリン酸等の高級脂肪酸、オレイルアルコール等の高級アルコール、オレイルアミン等のアミン、ブチルステアレート等のエステルが挙げられる。
Examples of extreme pressure agents include phosphorous extreme pressure agents such as phosphates and phosphites, sulfur-based extreme pressure agents such as sulfurized olefins, polysulfides, sulfurized fats and oils, dithiophosphoric acid derivatives, and organometallic extreme pressure agents such as ZnDTP and ZnDTC. It is done. Particularly preferred are sulfurized olefins and dithiophosphoric acid derivatives.
Examples of the oily agent include higher fatty acids such as oleic acid and stearic acid, higher alcohols such as oleyl alcohol, amines such as oleylamine, and esters such as butyl stearate.

清浄分散剤としては、アルケニルコハク酸イミド、アルケニルコハク酸エステル等の無灰系清浄分散剤、アルカリ土類金属系清浄分散剤が挙げられる。
さび止め剤としては、カルボン酸、金属セッケン、カルボン酸アミン塩、スルホン酸の金属塩、多価アルコールの部分エステル等が挙げられる。
金属不活性化剤としては、ベンゾトリアゾ−ルおよびその誘導体、アルキルコハク酸誘導体が挙げられる。
流動点降下剤としては、ポリアルキルメタクリレート、ポリブテン、ポリアルキルスチレン、ポリビニルアセテート、ポリアルキルアクリレート等が挙げられる。
消泡剤としては、シリコーン油やエステル系消泡剤等が挙げられる。
抗乳化剤としては、アニオン系界面活性剤、カチオン系界面活性剤、非イオン系界面活性剤等の抗乳化剤が挙げられる。
Examples of the cleaning dispersant include ashless cleaning dispersants such as alkenyl succinimides and alkenyl succinic esters, and alkaline earth metal cleaning dispersants.
Examples of the rust inhibitor include carboxylic acid, metal soap, carboxylic acid amine salt, sulfonic acid metal salt, and partial ester of polyhydric alcohol.
Examples of metal deactivators include benzotriazole and derivatives thereof, and alkyl succinic acid derivatives.
Examples of the pour point depressant include polyalkyl methacrylate, polybutene, polyalkyl styrene, polyvinyl acetate, polyalkyl acrylate and the like.
Examples of antifoaming agents include silicone oil and ester-based antifoaming agents.
Examples of the demulsifier include demulsifiers such as an anionic surfactant, a cationic surfactant, and a nonionic surfactant.

(4)組成物の性状
本発明の工業用油圧作動油組成物の40℃動粘度は、JIS K2283動粘度試験方法において、19〜51mm/sであり、より好ましくは24〜48mm/sであり、さらに好ましくは28〜46mm/sである。40℃動粘度が19mm/s未満であると、適当な油膜厚さが保たれなくなり、十分な摩耗防止性が得にくくなる傾向にある。40℃動粘度が51mm/sを超えると、高せん断粘度が大きくなり、省電力効果を十分に得られなくなる傾向にある。
(4) Composition Properties The industrial hydraulic fluid composition of the present invention has a kinematic viscosity at 40 ° C. of 19 to 51 mm 2 / s, more preferably 24 to 48 mm 2 / s in the JIS K2283 kinematic viscosity test method. More preferably, it is 28-46 mm < 2 > / s. When the 40 ° C. kinematic viscosity is less than 19 mm 2 / s, an appropriate oil film thickness cannot be maintained, and sufficient wear resistance tends to be difficult to obtain. When the 40 ° C. kinematic viscosity exceeds 51 mm 2 / s, the high shear viscosity increases and the power saving effect tends to be insufficient.

本発明の工業用油圧作動油組成物の粘度指数はJIS K2283動粘度試験方法において140〜240であり、下限値はさらに好ましくは143以上である。粘度指数を140以上とすることで、低温粘度を抑制しやすいため、低温始動時の電力消費量を抑制しやすく、より高い省電力効果を得やすい傾向にある。 Viscosity index of industrial hydraulic fluid composition of the present invention, in the JIS K2283 kinematic viscosity test method is 140 to 240, the lower limit is more preferably 143 or more. By setting the viscosity index to 140 or more, it is easy to suppress the low temperature viscosity. Therefore, it is easy to suppress the power consumption at the time of low temperature start, and it is easy to obtain a higher power saving effect.

(5)用途
本発明の工業用油圧作動油組成物は、種々の工業用油圧作動油に適用できるが、特に油圧システムに用いる油圧作動油として好ましく用いることができる。さらには、油圧システムのうち、油圧ポンプ、油圧モーター、制御弁等、油圧作動油がせん断状態にさらされる箇所での省電力化を図る際に特に有効である。
(5) Applications The industrial hydraulic fluid composition of the present invention can be applied to various industrial hydraulic fluids, but can be preferably used as a hydraulic fluid used in a hydraulic system. Furthermore, it is particularly effective for reducing power consumption in a hydraulic system such as a hydraulic pump, a hydraulic motor, a control valve, etc., where hydraulic hydraulic fluid is exposed to a sheared state.

次に、本発明を実施例によりさらに具体的に説明する。なお、本発明は、これらの例によって何ら制限されるものではない。各実施例、比較例において工業用油圧作動油組成物の調製に用いた基油、添加剤成分は次のとおりである。
なお、40℃動粘度、100℃動粘度、粘度指数はJIS
K2283動粘度試験方法、密度はJIS K2249密度試験方法により測定した。%CNはASTM D3238環分析により測定した。%CN算出に必要な屈折率、密度、分子量および硫黄分は、JIS K0062屈折率測定方法、JIS K2249密度試験方法、ASTM D2502分子量試験方法、JIS K2541硫黄分試験方法にて測定した。
また、重量平均分子量はゲル浸透クロマトグラフィーにて測定し、ポリスチレン換算にて算出した。ゲル浸透クロマトグラフィーはカラムにShodex
GPC LF−804を3本、移動層にTHF、検出器に示差屈折検出器を用いた。
Next, the present invention will be described more specifically with reference to examples. In addition, this invention is not restrict | limited at all by these examples. The base oil and additive components used in the preparation of the industrial hydraulic fluid composition in each example and comparative example are as follows.
In addition, 40 degreeC kinematic viscosity, 100 degreeC kinematic viscosity, viscosity index are JIS
K2283 kinematic viscosity test method, density was measured by JIS K2249 density test method. % CN was determined by ASTM D3238 ring analysis. The refractive index, density, molecular weight and sulfur content necessary for calculating% CN were measured by JIS K0062 refractive index measurement method, JIS K2249 density test method, ASTM D2502 molecular weight test method, and JIS K2541 sulfur content test method.
The weight average molecular weight was measured by gel permeation chromatography and calculated in terms of polystyrene. Gel permeation chromatography is applied to the column
Three GPC LF-804s were used, THF was used for the moving layer, and a differential refraction detector was used for the detector.

(A)基油
(A−1)水素化分解鉱油
40℃動粘度:13.2mm/s、100℃動粘度:3.2mm/s、粘度指数:106、15℃における密度:0.837g/cm、%CN:26、アニリン点:106℃
(A−2)水素化分解鉱油
40℃動粘度:17.8mm/s、100℃動粘度:4.1mm/s、粘度指数:135、15℃における密度:0.825g/cm、%CN:13、アニリン点:120℃
(A) Base oil (A-1) Hydrocracked mineral oil
40 ° C. kinematic viscosity: 13.2 mm 2 / s, 100 ° C. kinematic viscosity: 3.2 mm 2 / s, viscosity index: 106, density at 15 ° C .: 0.837 g / cm 3 ,% CN: 26, aniline point: 106 ℃
(A-2) Hydrocracked mineral oil 40 ° C. kinematic viscosity: 17.8 mm 2 / s, 100 ° C. kinematic viscosity: 4.1 mm 2 / s, viscosity index: 135, density at 15 ° C .: 0.825 g / cm 3 , % CN: 13, aniline point: 120 ° C

(A−3)水素化分解鉱油
40℃動粘度:20.1mm/s、100℃動粘度:4.3mm/s、粘度指数:122、15℃における密度:0.834g/cm、%CN:20、アニリン点:115℃
(A−4)水素化分解鉱油
40℃動粘度:46.9mm/s、100℃動粘度:7.7mm/s、粘度指数:130、15℃における密度:0.842g/cm、%CN:21、アニリン点:127℃
(A-3) Hydrocracked mineral oil
40 ° C. kinematic viscosity: 20.1 mm 2 / s, 100 ° C. kinematic viscosity: 4.3 mm 2 / s, viscosity index: 122, density at 15 ° C .: 0.834 g / cm 3 ,% CN: 20, aniline point: 115 ℃
(A-4) Hydrocracked mineral oil
40 ° C. kinematic viscosity: 46.9 mm 2 / s, 100 ° C. kinematic viscosity: 7.7 mm 2 / s, viscosity index: 130, density at 15 ° C .: 0.842 g / cm 3 ,% CN: 21, aniline point: 127 ℃

(A−5)ポリαオレフィン基油(1−デセンモノマーの2〜5量体)
40℃動粘度:17.3mm/s、100℃動粘度:3.9mm/s、粘度指数:123、15℃における密度:0.820g/cm、%CN:8、アニリン点:120 ℃
(A−6)ポリαオレフィン基油(1−デセンモノマーの2〜5量体)
40℃動粘度:30.5mm/s、100℃動粘度:5.8mm/s、粘度指数:135、15℃における密度:0.827g/cm、%CN:9、アニリン点:127 ℃
(A-5) Poly α-olefin base oil (2- to 5-mer of 1-decene monomer)
40 ° C. kinematic viscosity: 17.3 mm 2 / s, 100 ° C. kinematic viscosity: 3.9 mm 2 / s, viscosity index: 123, density at 15 ° C .: 0.820 g / cm 3 ,% CN: 8, aniline point: 120 ℃
(A-6) Polyalphaolefin base oil (2- to 5-mer of 1-decene monomer)
40 ° C. kinematic viscosity: 30.5 mm 2 / s, 100 ° C. kinematic viscosity: 5.8 mm 2 / s, viscosity index: 135, density at 15 ° C .: 0.827 g / cm 3 ,% CN: 9, aniline point: 127 ℃

(B)粘度指数向上剤
(B−1) PMA系粘度指数向上剤:分散型ポリメタクリレート粘度指数向上剤(重量平均分子量:104,000、希釈油含有量:45質量%)
(B−2) PMA系粘度指数向上剤:非分散型ポリメタクリレート粘度指数向上剤(重量平均分子量:85,000、希釈油含有量:27質量%)
(B−3) PMA系粘度指数向上剤:非分散ポリメタクリレート粘度指数向上剤(重量平均分子量:106,000、希釈油含有量:45質量%)
(B−4) PMA系粘度指数向上剤:非分散型ポリメタクリレート粘度指数向上剤(重量平均分子量:154,000、希釈油含有量:28質量%)
(B−5) PMA系粘度指数向上剤:分散型ポリメタクリレート粘度指数向上剤(重量平均分子量:234,000、希釈油含有量:60質量%)
(B−6) PMA系粘度指数向上剤:非分散型ポリメタクリレート系ポリマー(重量平均分子量:35,000、希釈油含有量:40質量%)
(B) Viscosity index improver (B-1) PMA viscosity index improver: Dispersed polymethacrylate viscosity index improver (weight average molecular weight: 104,000, diluent oil content: 45 mass%)
(B-2) PMA viscosity index improver: non-dispersed polymethacrylate viscosity index improver (weight average molecular weight: 85,000, diluent oil content: 27% by mass)
(B-3) PMA viscosity index improver: non-dispersed polymethacrylate viscosity index improver (weight average molecular weight: 106,000, diluent oil content: 45 mass%)
(B-4) PMA viscosity index improver: non-dispersed polymethacrylate viscosity index improver (weight average molecular weight: 154,000, diluent oil content: 28% by mass)
(B-5) PMA viscosity index improver: Dispersed polymethacrylate viscosity index improver (weight average molecular weight: 234,000, diluent oil content: 60% by mass)
(B-6) PMA viscosity index improver: non-dispersed polymethacrylate polymer (weight average molecular weight: 35,000, diluent oil content: 40% by mass)

(C)その他添加剤
(C−1) 極圧剤1:β−ジチオホスホリル化プロピオン酸
(C−2) 極圧剤2:硫化オレフィン
(C−3) 酸化防止剤:2,6−ジ−tert−ブチル−p−クレゾール、及びアルキル化ジフェニルアミン
(C) Other additives (C-1) Extreme pressure agent 1: β-dithiophosphorylated propionic acid (C-2) Extreme pressure agent 2: Sulfurized olefin (C-3) Antioxidant: 2,6-di- tert-Butyl-p-cresol and alkylated diphenylamine

(評価方法)
工業用作動油組成物の高せん断条件下における一時せん断粘度(高せん断粘度)、および永久せん断安定性について、下記の評価方法により評価した。
(Evaluation method)
The temporary shear viscosity (high shear viscosity) and permanent shear stability under high shear conditions of the industrial hydraulic oil composition were evaluated by the following evaluation methods.

<高せん断粘度>
TBS粘度計を用い、温度100℃・せん断速度10−1における高せん断粘度(100℃)、及び温度150℃・せん断速度10−1における高せん断粘度(150℃)を測定した(ASTM D4683準拠)。
また、USV(Ultra Shear Viscometer、PCS Instruments製)を用い、温度40℃・せん断速度10−1における高せん断粘度(40℃)を測定した。
<永久せん断安定性試験>
超音波法(JPI−5S−29準拠、低出力法)にて行い、30分超音波照射後の40℃動粘度を測定した。超音波照射前の40℃動粘度を基準として、40℃動粘度低下率(%)を評価した。
<High shear viscosity>
With TBS viscometer, high shear viscosity (100 ° C.) at a temperature 100 ° C. · shear rate 10 6 s -1, and to measure the high shear viscosity (0.99 ° C.) at a temperature 0.99 ° C. · shear rate 10 6 s -1 ( According to ASTM D4683).
In addition, high shear viscosity (40 ° C.) at a temperature of 40 ° C. and a shear rate of 10 6 s −1 was measured using USV (Ultra Shear Viscometer, manufactured by PCS Instruments).
<Permanent shear stability test>
The ultrasonic method (JPI-5S-29 compliant, low output method) was performed, and the 40 ° C. kinematic viscosity after 30 minutes of ultrasonic irradiation was measured. The 40 ° C. kinematic viscosity reduction rate (%) was evaluated based on the 40 ° C. kinematic viscosity before ultrasonic irradiation.

(実施例1〜6)
基油に粘度指数向上剤及びその他の添加剤を表1〜2の上段に示す割合(質量%)で配合し、工業用油圧作動油組成物を調製した。それらの油圧作動油組成物の粘度指数、高せん断粘度および永久せん断安定性を評価し、その結果を表1〜2の下段に示す。
(比較例1〜4)
基油に粘度指数向上剤及びその他の添加剤を表3の上段に示す割合(質量%)で配合し、工業用油圧作動油組成物を調製した。それらの油圧作動油組成物の粘度指数、高せん断粘度および永久せん断安定性を評価し、その結果を表3の下段に示す。
(Examples 1-6)
Viscosity index improvers and other additives were blended with the base oil in the proportions (mass%) shown in the upper part of Tables 1 and 2 to prepare an industrial hydraulic fluid composition. The hydraulic fluid compositions were evaluated for viscosity index, high shear viscosity and permanent shear stability, and the results are shown in the lower part of Tables 1-2.
(Comparative Examples 1-4)
An industrial hydraulic fluid composition was prepared by blending the base oil with a viscosity index improver and other additives in the proportion (mass%) shown in the upper part of Table 3. The hydraulic fluid compositions were evaluated for viscosity index, high shear viscosity and permanent shear stability, and the results are shown in the lower part of Table 3.

Figure 0005395474
Figure 0005395474

Figure 0005395474
Figure 0005395474

Figure 0005395474
Figure 0005395474

実施例1〜6は比較例1(ポリメタクリレート系粘度指数向上剤を含まない)、比較例4(重量平均分子量が低いポリメタクリレート系粘度指数向上剤を配合)よりも40℃における高せん断粘度が低く、また比較例2、3(重量平均分子量が高いポリメタクリレート系粘度指数向上剤を配合)よりも永久せん断安定性に優れている。また、実施例1〜6は比較例1(ポリメタクリレート系粘度指数向上剤を含まない)よりも粘度指数が高い。
よって、これら実施例は、いずれも高せん断粘度の低下による省電力効果が期待できると同時に、優れた永久せん断安定性、低温始動性も得られることが期待できる。
Examples 1 to 6 have a higher shear viscosity at 40 ° C. than Comparative Example 1 (not including a polymethacrylate viscosity index improver) and Comparative Example 4 (containing a polymethacrylate viscosity index improver having a low weight average molecular weight). It is low, and more excellent in permanent shear stability than Comparative Examples 2 and 3 (containing a polymethacrylate viscosity index improver having a high weight average molecular weight). Moreover, Examples 1-6 have a higher viscosity index than Comparative Example 1 (not including a polymethacrylate viscosity index improver).
Therefore, all of these Examples can be expected to have a power saving effect due to a decrease in high shear viscosity, and at the same time, can be expected to have excellent permanent shear stability and low temperature startability.

本発明の工業用油圧作動油組成物は、種々の工業用油圧作動油に適用できるが、特に油圧システムに用いる油圧作動油として好ましく用いることができる。さらには、油圧システムのうち、油圧ポンプ、油圧モーター、制御弁等において、油圧作動油がせん断状態にさらされる箇所での省電力化を図る際に特に有効である。
Although the industrial hydraulic fluid composition of the present invention can be applied to various industrial hydraulic fluids, it can be preferably used particularly as a hydraulic fluid used in a hydraulic system. Furthermore, in a hydraulic system, in a hydraulic pump, a hydraulic motor, a control valve, etc., it is particularly effective for achieving power saving at a location where the hydraulic fluid is exposed to a sheared state.

Claims (1)

(A)40℃動粘度が4〜40mm/sであり、アニリン点が100〜130℃であり、15℃密度が0.80〜0.85g/cm であり、ナフテン分(%CN)が8〜27である炭化水素系潤滑油基油、及び(B)重量平均分子量が、84,000〜130,000であるポリメタクリレート系粘度指数向上剤を含有する組成物であって、該組成物の40℃における動粘度が19〜51mm/sであり、粘度指数が140〜240であることを特徴とする工業用油圧作動油組成物。 (A) 40 ° C. kinematic viscosity 4~40mm Ri 2 / s der, aniline point is 100 to 130 ° C., 15 ° C. density of 0.80~0.85g / cm 3, naphthenes (% CN ) is 8-27 der Ru hydrocarbon lubricating base oil, and (B) a weight average molecular weight of a composition containing a polymethacrylate-based viscosity index improver is 84,000~130,000, kinematic viscosity at 40 ° C. of the composition 19~51mm 2 / s der is, industrial hydraulic oil composition viscosity index is characterized by 140 to 240 der Rukoto.
JP2009060977A 2009-03-13 2009-03-13 Industrial hydraulic oil composition Active JP5395474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060977A JP5395474B2 (en) 2009-03-13 2009-03-13 Industrial hydraulic oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060977A JP5395474B2 (en) 2009-03-13 2009-03-13 Industrial hydraulic oil composition

Publications (2)

Publication Number Publication Date
JP2010215699A JP2010215699A (en) 2010-09-30
JP5395474B2 true JP5395474B2 (en) 2014-01-22

Family

ID=42974874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060977A Active JP5395474B2 (en) 2009-03-13 2009-03-13 Industrial hydraulic oil composition

Country Status (1)

Country Link
JP (1) JP5395474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932579B2 (en) * 2012-09-11 2016-06-08 コスモ石油ルブリカンツ株式会社 Hydraulic fluid composition
CN113621421A (en) * 2021-08-18 2021-11-09 青岛华瑞泰格工贸有限公司 Preparation method of oil mist lubricating oil for improving low-temperature pumping property

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69109927T2 (en) * 1990-03-31 1995-09-28 Tonen Corp Hydraulic fluids for automotive suspensions.
JP2007238663A (en) * 2006-03-06 2007-09-20 Sanyo Chem Ind Ltd Lubricating oil additive and lubricating oil composition
JP4800635B2 (en) * 2005-02-14 2011-10-26 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for automatic transmission
JP5249492B2 (en) * 2005-08-31 2013-07-31 出光興産株式会社 Hydraulic fluid composition
JP5094030B2 (en) * 2006-03-22 2012-12-12 Jx日鉱日石エネルギー株式会社 Low ash engine oil composition
JP5248022B2 (en) * 2007-01-23 2013-07-31 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for automatic transmission
JP5565999B2 (en) * 2007-01-31 2014-08-06 Jx日鉱日石エネルギー株式会社 Lubricating oil composition

Also Published As

Publication number Publication date
JP2010215699A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP6445425B2 (en) Lubricating oil composition
JPWO2007114260A1 (en) Lubricating oil composition for internal combustion engines
JP2012207083A (en) Lubricating oil composition
ES2926249T3 (en) Lubricant composition containing polyisobutyl methacrylate copolymers
US11053450B2 (en) Alkyl capped oil soluble polymer viscosity index improving additives for base oils in automotive applications
JP2010090250A (en) Lubricant composition and method for producing the same
JP5395474B2 (en) Industrial hydraulic oil composition
JP2015178632A (en) Lubricant composition
JP5421697B2 (en) Industrial hydraulic oil composition
JP5395473B2 (en) Industrial hydraulic oil composition
JP5395472B2 (en) Industrial hydraulic oil composition
JP5284148B2 (en) Industrial hydraulic oil composition
JP2009126897A (en) Lubricating oil composition
JP2010090252A (en) Lubricant composition
JP5932579B2 (en) Hydraulic fluid composition
JP5489838B2 (en) Industrial hydraulic oil composition
JP6077955B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver
JP6055320B2 (en) Hydraulic fluid composition
JP6088924B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver
JP7266382B2 (en) lubricating oil composition
JP5284187B2 (en) Hydraulic oil composition
CN115210346A (en) Lubricating oil composition
JP2011219632A (en) Diesel engine oil composition
JP5467819B2 (en) Rotary compressor oil composition
WO2014157201A1 (en) Hydraulic fluid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5395474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250