JP5247294B2 - Ceramic support member and dielectric resonator using the same - Google Patents

Ceramic support member and dielectric resonator using the same Download PDF

Info

Publication number
JP5247294B2
JP5247294B2 JP2008207030A JP2008207030A JP5247294B2 JP 5247294 B2 JP5247294 B2 JP 5247294B2 JP 2008207030 A JP2008207030 A JP 2008207030A JP 2008207030 A JP2008207030 A JP 2008207030A JP 5247294 B2 JP5247294 B2 JP 5247294B2
Authority
JP
Japan
Prior art keywords
alumina
support member
dielectric
ceramic support
dielectric resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008207030A
Other languages
Japanese (ja)
Other versions
JP2010042948A (en
Inventor
諭史 豊田
辰治 古瀬
長延 福尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008207030A priority Critical patent/JP5247294B2/en
Publication of JP2010042948A publication Critical patent/JP2010042948A/en
Application granted granted Critical
Publication of JP5247294B2 publication Critical patent/JP5247294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、携帯電話の基地局などに用いられる誘電体共振器に関する。特に誘電体共振器のキャビティ内で誘電体共振子の支持固定に使用されるとともに、誘電体共振器としての誘電特性を良好にできるセラミック支持部材およびこれを用いた誘電体共振器に関する。   The present invention relates to a dielectric resonator used in a mobile phone base station or the like. In particular, the present invention relates to a ceramic support member that can be used for supporting and fixing a dielectric resonator in a cavity of the dielectric resonator, and can improve the dielectric characteristics as the dielectric resonator, and a dielectric resonator using the ceramic support member.

携帯通信基地局用の周波数フィルタとして誘電体共振器が用いられている。例えば、誘電体セラミックスからなる誘電体共振子は、絶縁性セラミックスにより形成した円筒状のセラミック支持部材を介して金属ケースの中央に配置したものであった。この誘電体共振器は、これに特定の信号を入力すると、誘電体共振子の共振周波数のみが出力信号として出力されることから、誘電体フィルタとして使用され、各種回路に搭載されてきた(例えば、特許文献1〜3を参照)。
実開昭51−94643号公報 実開平3−92809号公報 特開2003−273614号公報
Dielectric resonators are used as frequency filters for mobile communication base stations. For example, a dielectric resonator made of dielectric ceramics is disposed at the center of a metal case via a cylindrical ceramic support member formed of insulating ceramics. When a specific signal is input to this dielectric resonator, only the resonance frequency of the dielectric resonator is output as an output signal. Therefore, this dielectric resonator has been used as a dielectric filter and mounted on various circuits (for example, Patent Documents 1 to 3).
Japanese Utility Model Publication No. 51-94643 Japanese Utility Model Publication No. 3-92809 JP 2003-273614 A

このようなセラミック支持部材としては、誘電特性が良好で、高い誘電特性を示す誘電体共振子と組み合わせて使用しても、トータルの誘電特性(特にQ値)の高いものが望まれている。   As such a ceramic support member, a material having a high total dielectric characteristic (particularly Q value) is desired even when used in combination with a dielectric resonator having good dielectric characteristics and high dielectric characteristics.

本発明はセラミック支持部材単体での誘電特性が良好で、誘電体共振子と組み合わせて使用した場合の誘電特性(特にQ値)を良好にできるセラミック支持部材およびこれを用いた誘電体共振器を提供することを目的とする。   The present invention provides a ceramic support member that has good dielectric characteristics when used alone and that can be used in combination with a dielectric resonator, and that can provide good dielectric characteristics (particularly Q value), and a dielectric resonator using the ceramic support member. The purpose is to provide.

本発明のセラミック支持部材は、誘電体共振子の支持に用いられ、少なくとも前記誘電体共振子の支持部が、アルミナを99.3質量%以上含有し、SiおよびSrを含有するとともに、アルミナ結晶粒子を主結晶粒子としてなり、かつ前記アルミナ結晶粒子の粒界にSrAlSiで表される化合物の結晶相が存在し、さらに密度が3.83g/cm 以上であるアルミナ質焼結体からなることを特徴とする。
The ceramic support member of the present invention is used to support a dielectric resonator, and at least the support portion of the dielectric resonator contains 99.3% by mass of alumina, contains Si and Sr, and contains alumina crystals. It becomes the particles as a main crystal grains, and the grain boundary to SrAl 2 Si compound represented by the 2 O 8 of alumina crystal grains present crystalline phase, further density 3.83 g / cm 3 or more der Ru alumina It consists of a sintered body.

また、本発明の誘電体共振器は、前記セラミック支持部材と、これに支持される誘電体共振子とをキャビティ内に備えたことを特徴とする。
The dielectric resonator of the present invention is characterized in that the ceramic support member and a dielectric resonator supported by the ceramic support member are provided in a cavity .

本発明のセラミック支持部材は、アルミナを99.3質量%以上含有するため、アルミナの優れた耐腐食性と機械的特性、電気特性を維持することができる。また、アルミナ結晶粒子の粒界に、従来の粒界相成分からなるガラスではなく、SrAlSiで表される化合物からなる低損失の結晶相を存在させ、さらに密度が3.83g/cm 以上のアルミナ質焼結体からなるので、従来よりも誘電正接(tanδ)を低くすることができる。これにより、誘電正接の逆数で表される品質係数Q値を高くすることができる。
Since the ceramic support member of the present invention contains 99.3% by mass or more of alumina, the excellent corrosion resistance, mechanical properties, and electrical properties of alumina can be maintained. In addition, a low-loss crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 is present at the grain boundaries of the alumina crystal particles instead of a glass composed of a conventional grain boundary phase component , and the density is 3.83 g. since consisting / cm 3 or more alumina sintered body, it is possible to lower the dielectric loss tangent (tan [delta) than conventional. Thereby, the quality factor Q value represented by the reciprocal of the dielectric loss tangent can be increased.

また、本発明の誘電体共振器は、本発明のセラミック支持部材とこのセラミック支持部材に支持された誘電体共振子とをキャビティ内に備えていることにより、従来よりも誘電正接を低減することが可能なために、より高い品質係数Q値を得ることが可能となる。
The dielectric resonator of the present invention, by Rukoto features a ceramic support member of the present invention and the ceramic support dielectric resonator which is supported member in the cavity, reducing the dielectric loss tangent than conventional Therefore, it is possible to obtain a higher quality factor Q value.

また、本発明の誘電体共振器は、キャビティ内に本発明のセラミック支持部材とこのセラミック支持部材に支持された誘電体共振子とを備えたことにより、誘電体共振器の誘電正接(tanδ)を低下させることができるため、前記誘電体共振器を携帯電話の基地局等に使用した場合に減衰等なく電波の送受信を行うことが可能となる。
The dielectric resonator of the present invention includes the ceramic support member of the present invention and a dielectric resonator supported by the ceramic support member in the cavity, so that the dielectric loss tangent (tan δ) of the dielectric resonator is provided. Therefore, when the dielectric resonator is used for a mobile phone base station or the like, radio waves can be transmitted and received without attenuation.

本発明の最良の実施形態(以下、本実施形態という)について図面を参照しながら詳細に説明する。図1に一例として示すように、本実施形態の誘電体共振器1は、誘電体セラミックスからなる誘電体共振子4と、この誘電体共振子4を支持する、アルミナ質焼結体からなる円筒状のセラミック支持部材3とを有している。このように、セラミック支持部材3は、誘電体共振子4の支持に用いられ、少なくとも誘電体共振子4の支持部が、アルミナを99.3質量%以上含有し、SiおよびSrを含有するとともに、アルミナ結晶粒子を主結晶粒子としてなり、かつ前記アルミナ結晶粒子の粒界にSrAlSiで表される化合物の結晶相が存在し、さらに密度が3.83g/cm 以上であるアルミナ質焼結体からなることを特徴とする。 The best embodiment of the present invention (hereinafter referred to as the present embodiment) will be described in detail with reference to the drawings. As shown in FIG. 1 as an example, a dielectric resonator 1 according to this embodiment includes a dielectric resonator 4 made of dielectric ceramics, and a cylinder made of an alumina sintered body that supports the dielectric resonator 4. And a ceramic support member 3. Thus, the ceramic support member 3 is used to support the dielectric resonator 4, and at least the support portion of the dielectric resonator 4 contains 99.3% by mass or more of alumina, and contains Si and Sr. The crystal phase of the compound represented by SrAl 2 Si 2 O 8 is present at the grain boundary of the alumina crystal particles , and the density is 3.83 g / cm 3 or more. characterized by comprising the alumina sintered body that.

また、金属製のケース2のキャビティ内において、誘電体共振子4はセラミック支持部材3を介して配置されている。このようにして構成された誘電体共振器1に特定の信号を入力すると、誘電体共振子4の共振周波数のみが出力信号として出力されることから、誘電体フィルタや各種回路に搭載することが可能である。   In addition, in the cavity of the metal case 2, the dielectric resonator 4 is disposed via the ceramic support member 3. When a specific signal is input to the thus configured dielectric resonator 1, only the resonance frequency of the dielectric resonator 4 is output as an output signal. Therefore, the dielectric resonator 1 can be mounted on a dielectric filter or various circuits. Is possible.

本実施形態のセラミック支持部材3と誘電体共振子4は、誘電体共振子4に予め座繰り加工などにより形成した凹部(不図示)にセラミック支持部材3の端部を嵌合させる方法などにより固定される。
Ceramic support member 3 and the dielectric resonator 4 in this embodiment, a method of fitting the ends of the ceramic support member 3 in the recess (not shown) formed in advance by counterbored processed derivative collector resonator 4, etc. It is fixed by.

セラミック支持部材3は、例えば誘電体共振器のキャビティ内で誘電体共振子を支持固定するために用いられるものであり、少なくともその支持部は、アルミナを99.3質量%以上含有し、SiおよびSrを含有するとともに、アルミナ結晶粒子を主結晶粒子としてなり、前記アルミナ結晶粒子の粒界にSrAl Si で表される化合物結晶相が存在するアルミナ質焼結体からなる。
The ceramic support member 3 is used, for example, to support and fix the dielectric resonator 4 in the cavity of the dielectric resonator 1 , and at least the support portion contains 99.3% by mass or more of alumina, with containing Si and Sr, the alumina crystal grain becomes a main crystal grains, made of alumina sintered body crystal phase of grain boundary SrAl 2 Si 2 O compound is Ru represented by eight of the alumina crystal particles are present .

図2に示すように、本実施形態のアルミナ質焼結体は、アルミナ結晶粒子10間(粒界11)に、SrAl Si で表される化合物からなる低損失の結晶相を析出させると、この結晶相自身の誘電正接が低いため、アルミナ質焼結体全体の誘電正接を低下させることができる。なお、一般的なアルミナ質焼結体では、焼結助剤として加えた副成分が、アルミナ結晶粒子間にガラス、あるいは誘電正接の高い結晶として存在し、アルミナ質焼結体全体の誘電正接を増大させる傾向があった。
As shown in FIG. 2, the alumina sintered body of the present embodiment, deposition between alumina crystal particles 10 in (grain boundary 11), a crystalline phase of the low-loss consisting of the compounds express by SrAl 2 Si 2 O 8 Then, since the dielectric loss tangent of the crystal phase itself is low, the dielectric loss tangent of the entire alumina sintered body can be lowered. In a general alumina sintered body, the auxiliary component added as a sintering aid exists between the alumina crystal particles as a glass or a crystal having a high dielectric loss tangent, and the dielectric tangent of the entire alumina sintered body is reduced. There was a tendency to increase.

また、本実施形態のセラミック支持部材3において、アルミナを99.3質量%以上含有していることにより、焼結性が完全となるとともに、アルミナの優れた機械的特性および電気特性を維持することが可能となる。   Further, in the ceramic support member 3 of the present embodiment, by containing 99.3% by mass or more of alumina, the sinterability becomes perfect and the excellent mechanical and electrical properties of alumina are maintained. Is possible.

また、本実施形態のセラミック支持部材3は、アルミナ質焼結体が、SiをSiO換算で0.02〜0.2質量%,SrをSrO換算で0.01〜0.1質量%含むことを特徴としている。前記Si,SrをそれぞれSiO換算,SrをSrO換算で前記範囲とすれば、これらの元素で低損失のSrAl Si で表される化合物の結晶相をアルミナ質焼結体の粒界に析出させるためである。特に、誘電正接と焼結性という観点からSiはSiO換算で0.05〜0.15質量%であることが望ましい。
In the ceramic support member 3 of the present embodiment, the alumina sintered body includes 0.02 to 0.2% by mass of Si in terms of SiO 2 and 0.01 to 0.1% by mass of Sr in terms of SrO. It is characterized by that. If the Si and Sr are respectively converted to SiO 2 and Sr is set to the above range in terms of SrO , the crystal phase of the compound represented by SrAl 2 Si 2 O 8 with these elements and low loss is converted into particles of the alumina sintered body. This is because it precipitates in the boundary. In particular, it is desirable from the viewpoint of dielectric loss tangent and sinterability Si is 0.05 to 0.15 wt% in terms of SiO 2.

また、本実施形態のセラミック支持部材3は、前記アルミナ質焼結体がさらにMgをMgO換算で0.01〜0.3質量%、CaをCaO換算で0.01〜0.2質量%含有することを特徴としている。これにより、アルミナ質焼結体の焼結性を向上させることができ、より焼結体を緻密化させることが可能であるため、誘電特性を低下(Q値を向上)させるボイドや欠陥を減らすことができ、低損失のアルミナ質焼結体を得ることができる。   In the ceramic support member 3 of the present embodiment, the alumina sintered body further contains 0.01 to 0.3% by mass of Mg in terms of MgO and 0.01 to 0.2% by mass of Ca in terms of CaO. It is characterized by doing. As a result, the sinterability of the alumina sintered body can be improved, and the sintered body can be further densified, thereby reducing voids and defects that lower the dielectric properties (improve the Q value). And a low-loss alumina sintered body can be obtained.

また、本実施形態のセラミック支持部材3は、前記アルミナ結晶粒子の平均粒径D50が10μm以上であることを特徴としている。これにより、誘電正接を安定して低減でき、Q値を向上させることができる。低誘電正接をより安定させるという観点から、アルミナ結晶粒子の平均粒径D50は15μm以上が好ましい。アルミナ結晶粒子の平均粒径D50は、機械的特性という観点から70μm以下であることが好ましい。なお、平均粒径D50とは、累積粒度分布の微粒側から累積50%の粒径をいう。
Moreover, the ceramic support member 3 of the present embodiment is characterized in that the average particle diameter D 50 of the alumina crystal particles is 10μm or more. Thereby, the dielectric loss tangent can be stably reduced, and the Q value can be improved. From the viewpoint of further stabilizing the low dielectric loss tangent, the average particle diameter D 50 of the alumina crystal particles is preferably 15 μm or more. The average particle diameter D 50 of the alumina crystal particles is preferably 70μm or less from the viewpoint of mechanical properties. Incidentally, the average particle diameter D 50, refers to the particle size of cumulative 50% fine particle side of the cumulative particle size distribution.

また、本実施形態のセラミック支持部材3は、前記アルミナ質焼結体の粒界に存在する結晶相がSrAlSi 表される化合物であることを特徴としている。この結晶の生成により誘電正接を低減でき、Q値をより向上させることができる。
Moreover, the ceramic support member 3 of the present embodiment is characterized in that crystalline phases present in the grain boundary of the alumina sintered body is a compound represented by Sr Al 2 Si 2 O 8. The generation of the crystal phase can be reduced dielectric loss tangent, Ru can be further improved Q value.

なお、本実施形態においては、SrAlSi 表される化合物とは、Srの構成元素の一部が他の元素で置換されたものも含む概念である。
In this embodiment, the compound represented by Sr Al 2 Si 2 O 8, a concept including those of the constituent elements of Sr is substituted with another element.

次に、本実施形態のセラミック支持部材3の製造方法について説明する。例えば、酸化
アルミニウム粉末に、Si源とSr源とを混合して熱処理した原料粉末を混合し、この混合粉末を成形したのち、1500〜1800℃で焼成する。
Next, the manufacturing method of the ceramic support member 3 of this embodiment is demonstrated. For example, an aluminum oxide powder is mixed with a raw material powder obtained by mixing and heat-treating a Si source and an Sr source, and the mixed powder is molded and then fired at 1500 to 1800 ° C.

Sr源とSi源とを混合し焼成した原料粉末とは、Si源とSr源を所定の比率で混合し、500℃〜1400℃で焼成することによって得られる粉末である。ここでいうSi源、Sr源としては、金属、酸化物、水酸化物、炭酸塩および硝酸塩等の塩類のいずれであっても良い。SiとSrの原料粉末を用いることで、アルミナ質焼結体中でのSiとSrの分布を均一なものとし、不均一な焼結組織をなくすことが可能となる。
The raw material powder obtained by mixing and baking the Sr source and the Si source is a powder obtained by mixing the Si source and the Sr source at a predetermined ratio and baking at 500 ° C. to 1400 ° C. The Si source and Sr source here may be any of metals, oxides, hydroxides, carbonates and nitrates. By using the raw material powder of Si and Sr, the distribution of Si and Sr in alumina sintered body in and made uniform, it is possible to eliminate the uneven sintering tissue.

また、SiとSrの反応を優先的に起こし、アルミナ結晶粒子間にSiとSr、Al、O元素からなる誘電正接の低い結晶を生成することが可能となる。
Further, cause a reaction of Si and Sr preferentially, it is possible to generate Si and Sr, Al, a low crystalline dielectric loss tangent consisting of O element among alumina crystal grains.

酸化アルミニウム粉末に、上記Sr源とSi源を混合し焼成した原料粉末と、Mg源やCa源を含む原料粉末を混合し、焼成する場合もある。Mg源やCa源としては、金属、金属酸化物、金属水酸化物、金属炭酸塩などの塩類等を粉末あるいは水溶液等として使用することが可能である。
In some cases, the raw material powder obtained by mixing and baking the Sr source and the Si source with the aluminum oxide powder and the raw material powder containing the Mg source and the Ca source are mixed and fired. As the Mg source or Ca source , it is possible to use metals, metal oxides, metal hydroxides, metal carbonates, and other salts as powders or aqueous solutions.

成形には、プレス成形、鋳込み、冷間静水圧成形、或いは冷間静水圧処理などの成形法が使用可能である。次に、得られた成形体を1500〜1800℃の温度範囲で焼成する。これにより高密度で、アルミナ結晶粒子間にSrAl Si で表される化合物からなる結晶相が生成したアルミナ焼結体からなるセラミック支持部材3を作製することができる
For molding, a molding method such as press molding, casting, cold isostatic pressing, or cold isostatic pressing can be used. Next, the obtained molded body is fired in a temperature range of 1500 to 1800 ° C. Thus a high density, it is possible to form a ceramic support member 3 crystal phase consisting of compounds between the alumina grain you express by SrAl 2 Si 2 O 8 is made from the resulting alumina sintered body.

次に、前記セラミック支持部材3の誘電特性を測定する。誘電特性は円柱共振器法により、測定周波数800MHzで比誘電率εr,Q値,共振周波数の温度係数τfを測定する。測定後、Q値はマイクロ波誘電体において一般的に成立する(Q値)×(測定周波数f)=一定の関係から、1GHzでのQ値に換算する。共振周波数の温度係数は、25℃の時の共振周波数を基準にして25〜60℃の温度係数τfを算出する。   Next, the dielectric characteristics of the ceramic support member 3 are measured. Dielectric characteristics are measured by a cylindrical resonator method at a measurement frequency of 800 MHz, a relative dielectric constant εr, a Q value, and a temperature coefficient τf of the resonance frequency. After the measurement, the Q value is converted into a Q value at 1 GHz from a certain relationship (Q value) × (measurement frequency f) = which is generally established in a microwave dielectric. As the temperature coefficient of the resonance frequency, a temperature coefficient τf of 25 to 60 ° C. is calculated based on the resonance frequency at 25 ° C.

また、前記アルミナ焼結体の測定周波数1MHzと8.5GHzでの誘電正接を測定することも可能である。1MHzで5×10−4以下、8.5GHzで5×10−4以下とするものを良品としてセラミック支持部材3として用いることにより、測定周波数1MHz〜8.5GHzの間の周波数領域においても誘電正接が5×10−4以下を見込むことができる。 It is also possible to measure the dielectric loss tangent of the alumina sintered body at the measurement frequencies of 1 MHz and 8.5 GHz. 5 × 10 -4 or less at 1 MHz, by using a ceramic support member 3 as good what you 5 × 10 -4 or less at 8.5 GHz, the dielectric loss tangent in the frequency region between the measurement frequency 1MHz~8.5GHz Can be expected to be 5 × 10 −4 or less.

この製法により、誘電正接に関して高精度なキャパシタンスメータ(ヒューレットパッカード社製:HP−4278A)およびネットワークアナライザ(アジレント・テクノロジー社製:8722ES)を使用することができる。これにより、従来のインピーダンスアナライザでは保障できない1MHz〜8.5GHz帯における低誘電正接材料の設計が可能となる。ネットワークアナライザによる測定周波数は8.5GHzから多少ずれることがある。   With this manufacturing method, it is possible to use a high-precision capacitance meter (Hewlett Packard: HP-4278A) and network analyzer (Agilent Technology: 8722ES) with respect to dielectric loss tangent. This makes it possible to design a low dielectric loss tangent material in the 1 MHz to 8.5 GHz band that cannot be guaranteed by a conventional impedance analyzer. The frequency measured by the network analyzer may deviate somewhat from 8.5 GHz.

従来、測定周波数1MHzにおける誘電正接は、キャパシタンスメータ(ヒューレットパッカード社製:HP−4278A)、測定周波数8.5GHzにおける誘電正接は、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行ない、測定誤差がそれぞれ±2×10−4以下、±0.1×10−4以下の精度の良い誘電正接が得られることが知られている。しかし、半導体、液晶パネル製造装置用部材に要求される1MHz〜8.5GHz、特に10MHz〜1GHzにおける周波数領域では、インピーダンスアナライザ(ヒューレットパッカード社製:HP−4291A)による測定しかなく、その測定誤差は小さくても±30×10−4程度であり、5×10−4以下の誘電正接については測定精度が極めて低い。
Conventionally, dielectric loss tangent at a measuring frequency 1MHz, the capacitor down smelling chromatography data: Measurements (Hewlett Packard HP-4278A), dielectric loss tangent at a measuring frequency 8.5GHz, using a cavity resonator method (a network analyzer 8722ES) It is known that accurate dielectric loss tangents with measurement errors of ± 2 × 10 −4 or less and ± 0.1 × 10 −4 or less can be obtained. However, in the frequency range of 1 MHz to 8.5 GHz, particularly 10 MHz to 1 GHz, required for semiconductor and liquid crystal panel manufacturing equipment members, there is only measurement by an impedance analyzer (HP-4291A manufactured by Hewlett-Packard Company), and the measurement error is Even if it is small, it is about ± 30 × 10 −4 , and the measurement accuracy is very low for a dielectric loss tangent of 5 × 10 −4 or less.

そこで、本実施形態では、1MHz〜8.5GHzにおける周波数領域の誘電損失を、測定精度の低いインピーダンスアナライザで直接測定することなく、測定周波数1MHzと8.5GHzにおける誘電正接を間接的に測定する。測定周波数1MHzと8.5GHzにおける誘電正接が5×10−4以下の範囲にある場合には、測定周波数1MHz〜8.5GHz、特には10〜100MHzの間の周波数領域においても誘電正接を5×10−4以下と推定でき、測定周波数1MHz〜8.5GHzにおける誘電正接を容易にかつ正確に推定できる。 Therefore, in this embodiment, the dielectric loss tangent at the measurement frequencies of 1 MHz and 8.5 GHz is indirectly measured without directly measuring the dielectric loss in the frequency region at 1 MHz to 8.5 GHz with an impedance analyzer with low measurement accuracy. When the dielectric loss tangent at the measurement frequency of 1 MHz and 8.5 GHz is in the range of 5 × 10 −4 or less, the dielectric loss tangent is 5 × even in the frequency range between the measurement frequency of 1 MHz to 8.5 GHz, particularly 10 to 100 MHz. It can be estimated to be 10 −4 or less, and the dielectric loss tangent at the measurement frequency of 1 MHz to 8.5 GHz can be estimated easily and accurately.

次に、セラミック支持部材3を、別途製造した誘電体セラミックからなる誘電体共振子4と組み合わせ、誘電体共振器用セラミック体5とする。ここで、誘電体共振子4として用いられる誘電体セラミックとしては、一般的に用いられているものならどのような材料系のものでも用いることが可能である。この場合、誘電体共振器用セラミック体5が用いられる誘電体共振器の使用周波数帯に合わせ、誘電体共振子に用いられる誘電体セラミックの材料系が選択される。セラミック支持部材3はこれに合わせて様々な形状に変更可能であり、従来よりもセラミック支持部材3の誘電正接を低くできるために、誘電体共振子と組み合わせれば、高い品質係数Q値を有した誘電体共振器用セラミック体5とすることが可能となる。
Next, the ceramic support member 3, in combination with a dielectric resonator 4 formed of separately manufacturing the dielectric ceramics, and dielectric resonator ceramic body 5. Here, the dielectric ceramics used as derivative collector resonator 4, it is possible to use any one of general any material system if those employed. In this case, according to the use frequency band of the dielectric resonator 1 derivative collector resonator ceramic body 5 is used, the material system of the dielectric ceramics used in the dielectric resonator 4 is selected. The ceramic support member 3 can be changed to various shapes in accordance with this, and since the dielectric loss tangent of the ceramic support member 3 can be made lower than before, a high quality factor Q value can be obtained when combined with the dielectric resonator 4. The ceramic body 5 for a dielectric resonator can be provided.

次に、誘電体共振器用セラミック体5を、図1に示すように金属製のキャビティ2内に支持固定することにより、本実施形態の誘電体共振器1とすることが可能となる。この誘電体共振器1は携帯電話の基地局用フィルタに主に用いることができ、優れた誘電特性(Q値)を有するために、従来よりも基地局1台あたりの処理回線数を増加させることが可能である。また、少ない設置台数,設置面積でも従来よりも高性能な携帯電話基地局を設置することが可能となり、大幅な基地局の設置コスト削減を実現することが可能となる。
Next, the derivative collector resonator ceramic body 5, by supporting and fixing the metal cavity 2 as shown in FIG. 1, it is possible to a dielectric resonator 1 of the present embodiment. The dielectric resonator 1 can be mainly used for a filter for a base station of a mobile phone, and has an excellent dielectric characteristic (Q value), so that the number of processing lines per base station is increased as compared with the prior art. It is possible. In addition, it is possible to install a mobile phone base station with higher performance than before even with a small number of installations and an installation area, and it is possible to realize a drastic reduction in the installation cost of the base station.

さらには、従来携帯電話機の使用が不可能であった飛行機内での使用実現のために、誘電体共振器用セラミック体5を備えた誘電体共振器1を飛行機内に設置すれば、従来の誘電体共振器と比較して処理回線数を多くできる。このため、少ない設置スペースでより多くの回線を処理することが可能となり、飛行機の計器に影響を与えることがなく飛行機内での携帯電話機およびパソコンなどの通信関連機器の使用が可能となる。   Furthermore, if the dielectric resonator 1 provided with the ceramic body 5 for dielectric resonators is installed in an airplane in order to realize use in an airplane where the use of a conventional mobile phone is impossible, the conventional dielectric can be obtained. Compared with a body resonator, the number of processing lines can be increased. For this reason, it is possible to process more lines in a small installation space, and it is possible to use communication-related equipment such as a mobile phone and a personal computer in the airplane without affecting the airplane instrument.

また、本実施形態のセラミック支持部材3を用いた誘電体共振器1が使用される高周波信号の周波数は500MHz〜500GHz程度であり、共振周波数としては2GHz〜80GHz程度が実用上好ましい。   Moreover, the frequency of the high frequency signal in which the dielectric resonator 1 using the ceramic support member 3 of the present embodiment is used is about 500 MHz to 500 GHz, and the resonance frequency is preferably about 2 GHz to 80 GHz.

以下、本発明をより具体化した実施例について説明する。   Examples of the present invention will be described below.

<実施例1>
セラミック支持部材3を構成するアルミナ質焼結体の試料を製造し、その誘電特性(Q値)について評価した。
<Example 1>
A sample of an alumina sintered body constituting the ceramic support member 3 was manufactured, and its dielectric property (Q value) was evaluated.

まず、SiOとSrCOの粉末を、それぞれSiO換算、SrO換算で表1に示す組成となるように秤量、混合して混合粉末を得た。この粉末を1000℃〜1300℃で熱処理し、アルミナボールミルにて48〜72時間粉砕を行ない、原料粉末を作製した。 First, powders of SiO 2 and SrCO 3 were weighed and mixed so as to have compositions shown in Table 1 in terms of SiO 2 and SrO, respectively, to obtain a mixed powder. This powder was heat-treated at 1000 ° C. to 1300 ° C. and pulverized in an alumina ball mill for 48 to 72 hours to produce a raw material powder.

次に、純度が99.95質量%のAl粉末に、前記のSiとSrの原料粉末と所定量のMg(OH)粉末などからなる焼結助剤を添加し、これにさらに所定量の水
を加えアルミナボールミルにて48時間混合してスラリーとした。このスラリーにバインダーを加えて乾燥したのち、造粒し、この混合粉末を1t/cmの圧力で金型プレス成形してφ16.5mm厚さ10mmの試料を複数個作製した。その後、1650〜1750℃にて大気中にて焼成を行ない、アルミナ質焼結体からなる複数個のセラミック支持部材を得た。
Next, a sintering aid composed of the Si source , Sr source powder, and a predetermined amount of Mg (OH) 2 powder is added to 99.95% by mass of Al 2 O 3 powder. A predetermined amount of water was further added to the mixture and mixed for 48 hours in an alumina ball mill to form a slurry. The slurry was added to the slurry, dried, granulated, and this mixed powder was press-molded at a pressure of 1 t / cm 2 to produce a plurality of samples having a diameter of 16.5 mm and a thickness of 10 mm. Thereafter, subjected to calcination in air at at 1,650 to 1,750 ° C., to obtain a plurality of ceramic support member made of alumina sintered body.

次に、これらの試料の誘電特性としてQ値を測定し表1に示す。誘電特性は円柱共振器法により測定周波数800MHzでQ値を測定した。そして測定したQ値を、マイクロ波誘電体において一般的に成立する(Q値)×(測定周波数f)=一定の関係から、1GHzでのQ値に換算して、80000以上の値を示すものを良好とした。   Next, Q values were measured as dielectric characteristics of these samples and are shown in Table 1. As for the dielectric characteristics, the Q value was measured at a measurement frequency of 800 MHz by a cylindrical resonator method. The measured Q value is converted into a Q value at 1 GHz from a certain relationship (Q value) × (measurement frequency f) = constant relationship generally established in a microwave dielectric, and shows a value of 80000 or more. Was good.

また、各焼結体中の結晶相の分析は、透過型電子顕微鏡(TEM)を用いて、エネルギー分散型X線分光分析(EDS)と制限視野電子線回折により行ない、Si、Al、Sr、O元素を含む化合物からなる低損失の結晶相である、SrAlSi8、の有無を表1に記載した。図3に、試料No.6の電子回折写真を示す。
Moreover, the analysis of the crystal phase in each sintered body is performed by energy dispersive X-ray spectroscopy (EDS) and limited-field electron diffraction using a transmission electron microscope (TEM), and Si, Al, Sr, Table 1 shows the presence or absence of SrAl 2 Si 2 O 8, which is a low-loss crystal phase composed of a compound containing O element. In FIG. 6 shows an electron diffraction photograph.

表1に示すように、本発明の範囲外である試料No.1,2については、Sr成分を含んでいないため、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相が生成しておらず、Q値が80000未満と低い値を示した。
As shown in Table 1, Sample No. which is outside the scope of the present invention. Since 1 and 2 do not contain a Sr component, a crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 is not generated at the grain boundary of the alumina crystal particles, and the Q value is as low as less than 80000. The value is shown.

また、本発明範囲外である試料No.3については、アルミナの純度が99.3質量%未満と低く、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相は生成しているものの、他の助剤成分の影響によりQ値が80000未満と低い値を示した。
In addition, sample No. which is outside the scope of the present invention. No. 3, the purity of alumina is as low as less than 99.3% by mass, and a crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 is formed at the grain boundary of alumina crystal particles, but other auxiliary agents The Q value was as low as less than 80000 due to the influence of the components.

これと比較して本発明範囲内の試料No.4〜7については、アルミナ純度が99.3質量%以上であり、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相が生成しており、Q値が80000以上の良好な範囲の値を示す結果となった。
Compared to this, sample No. within the scope of the present invention. As for Nos. 4 to 7, the alumina purity is 99.3% by mass or more, a crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 is formed at the grain boundary of the alumina crystal particles, and the Q value is 80000. The result showed the value of the above favorable range.

<実施例2>
本発明のセラミック支持体を構成するアルミナ質焼結体について、アルミナ純度一定として添加するSiO,SrOの量を増減し、誘電特性(Q値)を確認する試験を実施した。
<Example 2>
The alumina sintered body constituting the ceramic support of the present invention was subjected to a test for confirming the dielectric properties (Q value) by increasing or decreasing the amount of SiO 2 and SrO added with a constant alumina purity.

試料の製造方法および誘電特性の評価方法については、実施例1と同様の方法にて試験を実施した。最初にSiOとSrCOの混合粉末を製造する段階で各試料ごとに表2に示す配合量となるよう混合粉末を作製した。その後の工程については、実施例1と同様の工程を経て試料を作製した。 Tests were conducted in the same manner as in Example 1 for the sample manufacturing method and dielectric property evaluation method. First, a mixed powder was prepared so as to obtain the blending amounts shown in Table 2 for each sample at the stage of producing a mixed powder of SiO 2 and SrCO 3 . About the process after that, the sample was produced through the process similar to Example 1. FIG.

試料の評価については、円柱共振器法によりQ値を求めた。また透過型電子顕微鏡(TEM)により結晶相を用いて、SrAl Si で表される化合物からなる結晶相の有無を確認した。
For the evaluation of the sample, the Q value was determined by the cylindrical resonator method. And using the crystalline phase by a transmission electron microscope (TEM), to confirm the presence or absence of crystal phase comprising a compound represented by SrAl 2 Si 2 O 8.

Q値については、130000以上の値を示すものを良好なものとして評価した。   About Q value, what showed the value of 130,000 or more was evaluated as a favorable thing.

なお、各試料ともSi,Sr元素以外にMg,Ca元素を含む化合物と、不可避不純物としてNa,K,Ti,Fe,Ni,Zn,Gaなどの元素を含む化合物をアルミナ純度の範囲内で含有している。   Each sample contains a compound containing Mg and Ca elements in addition to Si and Sr elements, and a compound containing elements such as Na, K, Ti, Fe, Ni, Zn and Ga as inevitable impurities within the range of alumina purity. doing.

試験結果を表2に示す。   The test results are shown in Table 2.

表2に示すように、試料No.8については、SiOの添加量が少なく焼結しにくいため密度が若干低くなり、Q値も比較的低い値を示した。また試料No.13については、逆にSiO の添加量が多すぎ、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相を存在させることはできているものの、それ以上に誘電損失の大きなSi元素を含むガラス相が多く存在するために、Q値が比較的低い値を示した。
As shown in Table 2, sample no. For No. 8, since the addition amount of SiO 2 was small and sintering was difficult, the density was slightly lowered, and the Q value was also relatively low. Sample No. As for No. 13, on the contrary, the amount of SiO 2 added is too large and a crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 can be present at the grain boundary of alumina crystal particles, but more than that Since many glass phases containing Si element with large dielectric loss existed, the Q value was relatively low.

また、試料No.14はSrOの添加量が少なすぎるために、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相を充分に存在させることができず比較的低いQ値を示した。また、試料No.19については、SrOの添加量が多く、余剰のSrOがアルミナ結晶粒子の粒界に存在し焼結性が比較的悪く、若干緻密化しにくい傾向が見られ、焼結体の密度が低下しQ値が比較的低い値を示した。
Sample No. No. 14 has a relatively low Q value because the amount of SrO added is too small, and a crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 cannot be sufficiently present at the grain boundaries of alumina crystal particles. It was. Sample No. For No. 19, the amount of SrO added is large, and excess SrO is present at the grain boundaries of the alumina crystal particles, so that the sinterability is relatively poor and tends to be slightly densified. The value was relatively low.

これらの試料と比較して、試料No.9〜12,15〜18の試料は、充分に緻密化し、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相を存在させることができたため、130000以上の高いQ値が得られた。
Compared to these samples, sample No. Samples 9 to 12 and 15 to 18 were sufficiently densified, and a crystal phase composed of a compound represented by SrAl 2 Si 2 O 8 could be present at the grain boundaries of the alumina crystal particles. A Q value was obtained.

<実施例3>
次に、SiO,SrOを一定として、MgO,CaOの添加量を増減し、誘電特性に与える影響を確認する試験を実施した。
<Example 3>
Next, a test was conducted to confirm the influence on the dielectric characteristics by increasing or decreasing the addition amount of MgO and CaO while keeping SiO 2 and SrO constant.

試験は実施例2と同様に、最初にSiOとSrCOの混合粉末を製造する段階で各試料ごとに表3に示す配合量となるよう混合粉末を作製する。その後の工程については実施例1と同様の工程を経て試料を作製した。 In the test, in the same manner as in Example 2, first, a mixed powder of SiO 2 and SrCO 3 is produced at the stage of producing a mixed powder of Table 2 for each sample. About the subsequent process, the sample was produced through the process similar to Example 1. FIG.

試料の評価については、円柱共振器法によりQ値を、また透過型電子顕微鏡(TEM)
により結晶相を用いて、SrAl Si で表される化合物からなる結晶相Si、Al、Sr、O元素を含む化合物からなる結晶相の有無を確認した。
For the evaluation of the sample, the Q value was measured by the cylindrical resonator method, and the transmission electron microscope (TEM)
By using the crystal phase, the presence or absence of a crystal phase composed of a compound containing Si, Al, Sr, and O elements was confirmed, consisting of a compound represented by SrAl 2 Si 2 O 8 .

なお、各試料とも不可避不純物としてNa,K,Ti,Fe,Ni,Zn,Gaなどの元素を含む化合物を0.001〜0.05質量%の範囲内で含有している。   Each sample contains a compound containing elements such as Na, K, Ti, Fe, Ni, Zn, and Ga as inevitable impurities in the range of 0.001 to 0.05 mass%.

試験結果を表3に示す。   The test results are shown in Table 3.

表3に示すように、試料No.20については、焼結助剤として作用するMgOの添加量が少なすぎるために、焼結性が比較的悪く密度が若干低くなった。これにより、同じアルミナ純度である試料No.21と比較してQ値が低い。また、試料No.25については、MgOの添加量が多く、余剰のMgOがアルミナ結晶粒子の粒界に存在するため、同じアルミナ純度である試料No.24と比較してQ値が低くなったと考えられる。   As shown in Table 3, Sample No. Regarding No. 20, since the amount of MgO acting as a sintering aid was too small, the sinterability was relatively poor and the density was slightly lowered. As a result, sample Nos. Having the same alumina purity were obtained. Q value is lower than 21. Sample No. For sample No. 25, the amount of MgO added is large, and excess MgO is present at the grain boundaries of the alumina crystal particles. It is thought that Q value became low compared with 24.

また、試料No.26については、焼結助剤として作用するCaOの添加量が少なすぎるために、焼結性が比較的悪く密度が若干低くなったために、同じアルミナ純度である試料No.27と比較してQ値が低い。また、試料No.31については、CaOの添加量が多く、余剰のCaOがアルミナ結晶粒子の粒界に存在するため、同じアルミナ純度である試料No.24と比較してQ値が低くなったと考えられる。   Sample No. For sample No. 26, since the amount of CaO acting as a sintering aid was too small, the sinterability was relatively poor and the density was slightly lowered. Q value is lower than 27. Sample No. Regarding No. 31, since the amount of CaO added is large and excess CaO is present at the grain boundaries of the alumina crystal particles, Sample No. 31 having the same alumina purity is used. It is thought that Q value became low compared with 24.

これら試料と比較して、試料No.21〜24,27〜30,32〜34については、充分に緻密化し、アルミナ結晶粒子の粒界にSrAl Si で表される化合物からなる結晶相を存在させることができたため、高いQ値を得ることができた。
Compared to these samples, sample no. For 21~24,27~30,32~34, fully densified, because that could be present grain boundaries SrAl 2 Si 2 represented by O 8 is made of a compound crystalline phase of the alumina crystal grain, high Q value could be obtained.

<実施例4>
実施例1で高い性能を示した試料No.23のセラミック支持体3と、一般的な誘電率33〜37程度の誘電体材料からなる誘電体共振子とを組み合わせて誘電体共振器用セラミック体5とし、実施例1と同様の円柱共振器法にて誘電特性であるQ値を測定した。
<Example 4>
Sample No. 1 showing high performance in Example 1 was used. A ceramic resonator 5 for a dielectric resonator is formed by combining a ceramic support body 3 of 23 and a dielectric resonator 4 made of a general dielectric material having a dielectric constant of 33 to 37, and a cylindrical resonator similar to that of the first embodiment. The Q value, which is a dielectric property, was measured by the method.

その結果、従来のアルミナ焼結体からなるセラミック支持部材と比較して10%程度Q値を向上させることができた。   As a result, the Q value could be improved by about 10% as compared with a ceramic support member made of a conventional alumina sintered body.

次に、誘電体共振器用セラミック体を、金属のキャビティ内に設置し、携帯電話の基地局に使用したところ問題なく使用でき、かつ従来よりも高性能であるが故に1台の誘電体共振器で処理できる回線数を増加させることが可能であり、基地局の能力を10%以上向上させることが可能であった。
Next, when the ceramic body 5 for dielectric resonator is installed in a metal cavity and used in a base station of a mobile phone, it can be used without any problems and has higher performance than before, so one dielectric resonance. The number of lines that can be processed by the device 1 can be increased, and the capacity of the base station can be improved by 10% or more.

本発明の一実施形態を模式的に説明する図であり、セラミック支持部材を備えた誘電体共振器の概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically illustrating an embodiment of the present invention, and is a schematic cross-sectional view of a dielectric resonator including a ceramic support member. 本発明の一実施形態を模式的に説明する図であり、セラッミック支持部材を構成するアルミナ焼結体の組織拡大断面図である。It is a figure explaining one embodiment of the present invention typically, and is an organization expansion sectional view of the alumina sintered compact which constitutes a ceramic support member. 本発明に係るセラミック支持部材を構成するアルミナ質焼結体の電子回折写真である。3 is an electron diffraction photograph of an alumina sintered body constituting the ceramic support member according to the present invention.

符号の説明Explanation of symbols

1:誘電体共振器
2:ケース
3:セラミック支持部材
4:誘電体共振子
5:誘電体共振器用セラミック体
10:アルミナ結晶粒子
11:粒界
1: dielectric resonator 2: Case 3: ceramic support member 4: dielectric resonator 5: dielectric resonator ceramic body 10: alumina crystal grains 11: grain boundary

Claims (5)

誘電体共振子の支持に用いられ、少なくとも前記誘電体共振子の支持部が、アルミナを99.3質量%以上含有し、SiおよびSrを含有するとともに、アルミナ結晶粒子を主結晶粒子としてなり、かつ前記アルミナ結晶粒子の粒界にSrAlSiで表される化合物の結晶相が存在し、さらに密度が3.83g/cm 以上であるアルミナ質焼結体からなるセラミック支持部材。 Used for supporting the dielectric resonator, at least the support portion of the dielectric resonator contains 99.3% by mass or more of alumina, contains Si and Sr, and becomes alumina crystal particles as main crystal particles, and wherein the grain boundary to SrAl 2 Si compound represented by the 2 O 8 of alumina crystal grains present crystalline phase ceramic support member further density of from 3.83 g / cm 3 or more der Ru alumina sintered body . 前記アルミナ質焼結体は、SiをSiO換算で0.05〜0.2質量%、SrをSrO換算で0.01〜0.1質量%、それぞれ含有することを特徴とする請求項1に記載のセラミック支持部材。 2. The alumina-based sintered body contains 0.05 to 0.2% by mass of Si in terms of SiO 2 and 0.01 to 0.1% by mass of Sr in terms of SrO, respectively. The ceramic support member described in 1. 前記アルミナ質焼結体は、さらにMgをMgO換算で0.01〜0.3質量%、CaをCaO換算で0.01〜0.2質量%、それぞれ含有することを特徴とする請求項1または2に記載のセラミック支持部材。   The alumina-based sintered body further contains 0.01 to 0.3% by mass of Mg in terms of MgO and 0.01 to 0.2% by mass of Ca in terms of CaO, respectively. Or the ceramic support member of 2. 前記アルミナ結晶粒子の平均粒径が10μm以上であることを特徴とする請求項1乃至3のいずれかに記載のセラミック支持部材。   The ceramic support member according to any one of claims 1 to 3, wherein an average particle diameter of the alumina crystal particles is 10 µm or more. 請求項1乃至4のいずれかに記載のセラミック支持部材と、該セラミック支持部材に支持された誘電体共振子とをキャビティ内に備えていることを特徴とする誘電体共振器。   A dielectric resonator comprising the ceramic support member according to claim 1 and a dielectric resonator supported by the ceramic support member in a cavity.
JP2008207030A 2008-08-11 2008-08-11 Ceramic support member and dielectric resonator using the same Expired - Fee Related JP5247294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207030A JP5247294B2 (en) 2008-08-11 2008-08-11 Ceramic support member and dielectric resonator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207030A JP5247294B2 (en) 2008-08-11 2008-08-11 Ceramic support member and dielectric resonator using the same

Publications (2)

Publication Number Publication Date
JP2010042948A JP2010042948A (en) 2010-02-25
JP5247294B2 true JP5247294B2 (en) 2013-07-24

Family

ID=42014661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207030A Expired - Fee Related JP5247294B2 (en) 2008-08-11 2008-08-11 Ceramic support member and dielectric resonator using the same

Country Status (1)

Country Link
JP (1) JP5247294B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558892B2 (en) * 2010-03-31 2014-07-23 太平洋セメント株式会社 Alumina sintered body
JP2013056793A (en) * 2011-09-07 2013-03-28 Taiheiyo Cement Corp Aluminum oxide sintered body, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157921A (en) * 1997-09-19 1999-06-15 Matsushita Electric Ind Co Ltd Oxide ceramic material and multilayer wiring board using the same material
JP2004307323A (en) * 2003-03-27 2004-11-04 Kyocera Corp Alumina ceramic composition, and its production method

Also Published As

Publication number Publication date
JP2010042948A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
CN112919894B (en) Frequency-stable low-dielectric microwave dielectric ceramic material and preparation method thereof
US7781357B2 (en) Dielectric ceramic composition
JP4535592B2 (en) Laminated body
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
CN114716238A (en) Silicate series low-temperature sintering microwave dielectric ceramic material and preparation method thereof
JP5247294B2 (en) Ceramic support member and dielectric resonator using the same
US7208434B2 (en) Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
US20140302320A1 (en) Dielectric ceramic composition, dielectric ceramic, electronic device, and communication device
JP6575185B2 (en) Dielectric composition and electronic component
JP5421092B2 (en) Alumina sintered body
EP2363384A1 (en) Dielectric ceramic and resonator using the same
JP4969488B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
EP2216307A1 (en) Dielectric ceramics, process for production thereof, and resonator
US7368407B2 (en) High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
JP5247561B2 (en) Dielectric ceramics and dielectric resonator
US8247337B2 (en) Alumina sintered article
JP5435932B2 (en) Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator
JP2007045690A (en) Dielectric porcelain composition
KR100823217B1 (en) Dielectric porcelain composition and method for production thereof
WO2023160504A1 (en) Dielectric ceramic, dielectric ceramic material, filter, radio frequency unit, and communication device
JP5527052B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
CN108314437B (en) Low-temperature sintered low-dielectric-constant ceramic substrate material and preparation method thereof
JP3439972B2 (en) High strength dielectric porcelain and method of manufacturing the same
JP5062220B2 (en) Manufacturing method of low dielectric constant porcelain substrate for high frequency components
JP5349146B2 (en) Dielectric ceramics and dielectric resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees