JP5244469B2 - Method for imparting DME resistance to rubber components - Google Patents

Method for imparting DME resistance to rubber components Download PDF

Info

Publication number
JP5244469B2
JP5244469B2 JP2008155670A JP2008155670A JP5244469B2 JP 5244469 B2 JP5244469 B2 JP 5244469B2 JP 2008155670 A JP2008155670 A JP 2008155670A JP 2008155670 A JP2008155670 A JP 2008155670A JP 5244469 B2 JP5244469 B2 JP 5244469B2
Authority
JP
Japan
Prior art keywords
dme
rubber
rubber composition
rubber component
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008155670A
Other languages
Japanese (ja)
Other versions
JP2009298936A (en
Inventor
寛 阪間
秀幸 稲垣
靖 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Hamai Co Ltd
Fujikura Composites Inc
Original Assignee
Fujikura Rubber Ltd
Central Motor Wheel Co Ltd
Hamai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Rubber Ltd, Central Motor Wheel Co Ltd, Hamai Co Ltd filed Critical Fujikura Rubber Ltd
Priority to JP2008155670A priority Critical patent/JP5244469B2/en
Priority to KR1020090052385A priority patent/KR101419956B1/en
Priority to CN2009101474517A priority patent/CN101691437B/en
Publication of JP2009298936A publication Critical patent/JP2009298936A/en
Application granted granted Critical
Publication of JP5244469B2 publication Critical patent/JP5244469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ゴム成分の耐DME性の付与方法に関する。より詳しくは、DMEを製造・貯蔵・輸送・供給・使用する段階で、気体または液体のDMEと接触するシール材を形成するのに適したゴム組成物等に関する。 The present invention relates to the DME-resistant method imparting rubber component. More specifically, the present invention relates to a rubber composition and the like suitable for forming a sealing material that comes into contact with gaseous or liquid DME at the stage of manufacturing, storing, transporting, supplying, and using DME.

ジメチルエーテル(DME)は、CHOCHという化学構造を有し、LPGに類似した物性を有する。DMEは、常温常圧ではガス体であるが、加圧あるいは低温、いずれかによって容易に液化する。 Dimethyl ether (DME) has a chemical structure of CH 3 OCH 3 and has physical properties similar to those of LPG. DME is a gas body at normal temperature and normal pressure, but easily liquefies by either pressurization or low temperature.

DMEは、天然ガス・随伴ガス・石炭等をガス化して得られる合成ガス(CO、H)を原料としてDME合成によって得られる。 DME is obtained by DME synthesis using synthetic gas (CO 2 , H 2 ) obtained by gasifying natural gas, associated gas, coal, or the like as a raw material.

DMEは、燃やした時に煤塵・SOxが発生せず、NOxも少なく、クリーンな環境性に優れた次世代の燃料として注目されている。   DME is attracting attention as a next-generation fuel that does not generate soot and SOx when burned, has low NOx, and is clean and environmentally friendly.

近年では、このようなDMEを軽油およびLPGの代替燃料として利用しようとする動きがあり、発電用・ボイラー用・家庭用・自動車用等の燃料等としての利用が検討されている。   In recent years, there has been a movement to use such DME as an alternative fuel for light oil and LPG, and its use as a fuel for power generation, boilers, homes, automobiles, and the like has been studied.

DMEを燃料等として利用する場合、燃料の貯蔵タンクや配管等のシール材材として、NBRやフッ素ゴム等のゴム成分が使用されるが、これらのゴム成分はDMEに対する耐性が比較的低い。   When DME is used as fuel or the like, rubber components such as NBR and fluororubber are used as a sealing material for fuel storage tanks and pipes, but these rubber components have a relatively low resistance to DME.

即ち、DMEは化学的にはエーテルに分類され、パラフィン系炭化水素であるプロパンやブタンからなるLPGとは化学的性質がまったく異なり、ゴム成分に対して、ゴムの膨潤現象並びにゴムの抽出現象が発生しやすいという特徴を有している。   That is, DME is chemically classified as ether, and its chemical properties are completely different from those of LPG made of propane and butane, which are paraffinic hydrocarbons. It has the feature of being easily generated.

DMEによるゴムの膨潤現象とは、DMEが、ゴム組成物に含有される可塑剤成分等を押しのける形でゴム組成物内部に入り込むことによって起こる。DMEがゴム組成物内部に入ることにより、ゴム組成物自体の体積が増大する。   The swelling phenomenon of rubber by DME occurs when DME enters the rubber composition in such a manner as to push away the plasticizer component and the like contained in the rubber composition. When DME enters the rubber composition, the volume of the rubber composition itself increases.

そのため、DME存在下で、例えばゴム組成物で形成されたOリングパッキンとして使用すると、Oリングが膨潤して、パッキンの可動部の摺動性が著しく低下する。これにより、回栓等の操作が困難となることもある。   Therefore, when used as, for example, an O-ring packing formed of a rubber composition in the presence of DME, the O-ring swells and the slidability of the movable portion of the packing is significantly reduced. Thereby, operation, such as a stopper, may become difficult.

また、DMEによるゴムの抽出現象とは、上述のゴム組成物の膨潤現象によってゴム組成物内部に入り込んだDMEが、その後ゴム組成物外部へ放出されることにより発生する。即ち、DMEがゴム組成物外部へ放出されても、膨潤現象の際にゴム組成物の外部へ押しのけられた可塑剤成分は再びゴム組成物の内部に入り込めず、ゴム組成物自体の体積は当初よりも減少する。   The rubber extraction phenomenon by DME occurs when DME that has entered the rubber composition due to the swelling phenomenon of the rubber composition is released to the outside of the rubber composition. That is, even when DME is released to the outside of the rubber composition, the plasticizer component pushed out of the rubber composition during the swelling phenomenon cannot enter the inside of the rubber composition again, and the volume of the rubber composition itself is Decrease from the beginning.

そのため、DME存在下でOリングが膨潤し、その後にDMEがゴム組成物の外部へ放出されると、Oリングでシールしていた装着部に隙間が空き、これによりガス等の漏れが生じるおそれがある。   Therefore, if the O-ring swells in the presence of DME and then DME is released to the outside of the rubber composition, there is a possibility that a gap will be left in the mounting portion sealed with the O-ring, thereby causing leakage of gas or the like There is.

そこで、DMEが燃料として有力な候補として注目されているなか、DMEに対する耐性(耐DME性)が高いゴム組成物の開発が求められる。   Therefore, development of a rubber composition having high resistance to DME (DME resistance) is demanded while DME is attracting attention as a promising candidate as a fuel.

特許文献1では、ニトリルゴムのアクリロニトリル含量を増加させたゴム組成物を用いることにより、ゴム成分にDMEに対する耐性を与えることが試みられている。   In Patent Document 1, an attempt is made to impart resistance to DME to a rubber component by using a rubber composition in which the acrylonitrile content of the nitrile rubber is increased.

しかし、特許文献1記載の技術におけるゴム組成物では、実際のDME存在下におけるパッキンとして使用しうる程度のDME耐性を持つには至っていない。
特開2004−137391号公報
However, the rubber composition in the technique described in Patent Document 1 does not have a DME resistance that can be used as a packing in the presence of actual DME.
JP 2004-137391 A

本発明は、このような課題に鑑みなされたものであり、ゴム成分に対して新規で効果的な耐DME性付与方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an effective resistance to DME imparting methods novel against rubber component.

記目的を達成するため、この発明に係るゴム成分の耐DME性の付与方法は、
シール材に使用されるゴム成分に、前記ゴム成分のジメチルエーテル(DME)による膨潤を抑制するとともに、前記ゴム成分に滑性を付与する膨潤抑制滑材を含有させ、前記膨潤抑制滑材は、ポリエチレンパウダー、シリコーンパウダー、ポリテトラフルオロエチレンパウダーのうち少なくとも何れか一つを含有する、ことを特徴とする。
To achieve the above Symbol purpose, the DME-resistant method imparting a rubber component according to the inventions are
The rubber component used in the sealing material contains a swelling suppression lubricant that suppresses swelling of the rubber component with dimethyl ether (DME) and imparts lubricity to the rubber component. powder, it contains at least one of silicone powder, polytetrafluoroethylene powder, and wherein the.

また、前記ゴム成分は、水素化ニトリルゴム(HNBR)、ニトリルゴム(NBR)、エチレン−プロピレン−ジエンゴム(EPDM)のうち少なくとも何れか一つを含有する、ことも可能である。   The rubber component may contain at least one of hydrogenated nitrile rubber (HNBR), nitrile rubber (NBR), and ethylene-propylene-diene rubber (EPDM).

また、前記膨潤抑制滑材の含有量が、前記ゴム成分100重量部に対して、10重量部以上50重量部以下である、ことも可能である。   Moreover, it is also possible that content of the said swelling suppression lubricant is 10 to 50 weight part with respect to 100 weight part of said rubber components.

また、充填剤として、カーボンブラック、シリカ、クレーのうち少なくとも何れか一つを含有する、ことも可能である。   Further, it is possible to contain at least one of carbon black, silica, and clay as a filler.

本発明に係るゴム組成物は、DMEに対して優れた耐性を有する新規なゴム組成物である。   The rubber composition according to the present invention is a novel rubber composition having excellent resistance to DME.

〔ゴム組成物・ゴム成分の耐DME性の付与方法〕
本実施形態に係るゴム組成物は、ゴム成分と、膨潤抑制滑材と、を有する。また、本実施形態に係るゴム成分の耐DME性の付与方法は、シール材に使用されるゴム成分に、膨潤抑制滑材を含有させる。
[Method of imparting DME resistance of rubber composition / rubber component]
The rubber composition according to the present embodiment has a rubber component and a swelling suppression lubricant. Moreover, the method for imparting DME resistance of the rubber component according to the present embodiment includes a rubber component used for the sealing material containing a swelling suppression lubricant.

ゴム組成物に、DMEによる膨潤を抑制させる効果のみを有する添加材を充填したとしても、仮にゴム組成物がシール材に成形された場合は摺動性が悪く、シール材としての機能が不十分となるおそれがある。
そこで、本発明では、ゴム組成物に、ゴム組成物のDMEによる膨潤を抑制し、かつ、ゴム組成物に滑性を付与する部材である、膨潤抑制滑材を含有させる。
Even if the rubber composition is filled with an additive having only an effect of suppressing swelling due to DME, if the rubber composition is molded into a sealing material, the slidability is poor and the function as a sealing material is insufficient. There is a risk of becoming.
Therefore, in the present invention, the rubber composition contains a swelling-suppressing lubricant, which is a member that suppresses swelling of the rubber composition due to DME and imparts lubricity to the rubber composition.

膨潤抑制滑材は、ポリエチレンパウダー、シリコーンパウダー、ポリテトラフルオロエチレンパウダー等、若しくは、これらの混合物を使用することができる。
さらには、膨潤抑制滑材として、ナイロンパウダー、ポリメチルメタクリレートパウダー、ポリウレタンパウダー、ポリスチレンパウダー、ポリエステルパウダー、ミクロスポンジ、メチルセスキオキサン樹脂ミクロビーズ等も使用することができる。
As the swelling-suppressing lubricant, polyethylene powder, silicone powder, polytetrafluoroethylene powder, or the like, or a mixture thereof can be used.
Furthermore, nylon powder, polymethylmethacrylate powder, polyurethane powder, polystyrene powder, polyester powder, microsponge, methyl sesquioxane resin microbeads, and the like can also be used as the swelling suppression lubricant.

ポリエチレンパウダーは、ポリエチレンを粉末状に加工したものであるならば、低密度、中密度、若しくは、高密度の何れのものであっても特に制限はされない。   The polyethylene powder is not particularly limited as long as it is a low-density, medium-density or high-density polyethylene as long as it is obtained by processing polyethylene into a powder form.

ポリエチレンパウダーは、平均分子量が3万以上であるのが好ましく、100万以上であるのがより好ましい。平均分子量が3万より小さいと、耐摩耗性が向上されない可能性がありうるためである。   The polyethylene powder preferably has an average molecular weight of 30,000 or more, more preferably 1,000,000 or more. This is because if the average molecular weight is less than 30,000, the wear resistance may not be improved.

ポリエチレンパウダーの平均粒径は、1μm〜600μmであるのが好ましく、20μm〜300μmであるのがより好ましい。平均粒径が1μmよりも小さいと、ゴム組成物中での分散性が低下するおそれがありうるからである。一方、平均粒径が600μmよりも大きいと、後述するようにOリング等に成形加工したときの外観不良が発生するおそれがありうるからである。   The average particle size of the polyethylene powder is preferably 1 μm to 600 μm, and more preferably 20 μm to 300 μm. This is because if the average particle size is smaller than 1 μm, the dispersibility in the rubber composition may be lowered. On the other hand, when the average particle size is larger than 600 μm, there is a possibility that poor appearance when formed into an O-ring or the like as described later may occur.

具体的なポリエチレンパウダーとしては、例えば、三井化学(株)のミペロンXM−220、ミペロンXM−221Uや、旭化成(株)のサンファインLH411等を用いることができる。   As specific polyethylene powders, for example, MIPELLON XM-220 and MIPELON XM-221U manufactured by Mitsui Chemicals, Inc., Sunfine LH411 manufactured by Asahi Kasei Co., Ltd., and the like can be used.

シリコーンパウダーは、シリコーンレジンパウダー、シリコーンゴムパウダー、若しくは、球状のシリコーンゴムパウダーの表面をシリコーンレジンで被覆した球状粉末であるシリコーン複合パウダーのいずれであっても好適に使用することができる。   As the silicone powder, any of silicone resin powder, silicone rubber powder, or silicone composite powder which is spherical powder obtained by coating the surface of spherical silicone rubber powder with silicone resin can be preferably used.

シリコーンパウダーの硬度は、例えばデュロA硬度が20〜80とすることが可能であり、好ましくは35〜55である。樹脂硬度が20〜80の範囲であると、ゴム組成物の弾性率を低減するのに有効であると共に、強度の低下が少ないからである。   The hardness of the silicone powder can be, for example, a Duro A hardness of 20 to 80, preferably 35 to 55. This is because if the resin hardness is in the range of 20 to 80, it is effective for reducing the elastic modulus of the rubber composition and there is little decrease in strength.

シリコーンパウダーの形状は、球状若しくは略球状であることが好ましい。   The shape of the silicone powder is preferably spherical or substantially spherical.

シリコーンパウダーの平均粒径は、例えば0.1〜500μmとすることが可能であり、好ましくは1〜200μmである。平均粒径が0.1μmよりも小さいと、ゴム組成物中での分散性が低下するおそれがありうるからである。一方、平均粒径が500μmよりも大きいと、成形加工したときの外観不良が発生するおそれがありうるからである。   The average particle size of the silicone powder can be, for example, 0.1 to 500 μm, and preferably 1 to 200 μm. This is because if the average particle size is smaller than 0.1 μm, the dispersibility in the rubber composition may be lowered. On the other hand, if the average particle size is larger than 500 μm, there may be a risk of appearance failure when molding.

具体的なシリコーンレジンパウダーとしては、例えば、GE東芝シリコーン(株)のトスパール120、トスパール120A、トスパール130、トスパール145、トスパール145A、トスパール2000B*、トスパール2000B、トスパール240*、トスパール3120等を使用することができる。また、例えば、信越化学工業(株)のKMP−590、KMP−701、X−52−854等を使用することができる。   Specific examples of the silicone resin powder include Tospearl 120, Tospearl 120A, Tospearl 130, Tospearl 145, Tospearl 145A, Tospearl 2000B *, Tospearl 2000B, Tospearl 240 *, and Tospearl 3120 manufactured by GE Toshiba Silicone. be able to. For example, KMP-590, KMP-701, X-52-854, etc. of Shin-Etsu Chemical Co., Ltd. can be used.

また、具体的なシリコーンゴムパウダーとしては、例えば、信越化学工業(株)のKMP−597、KMP−598、KMP−594、X−52−875等を用いることができる。   Moreover, as specific silicone rubber powder, Shin-Etsu Chemical Co., Ltd. KMP-597, KMP-598, KMP-594, X-52-875 etc. can be used, for example.

また、具体的なシリコーン複合パウダーとしては、例えば、信越化学工業(株)のKMP−600、KMP−601、KMP−602、KMP−605、X−52−7030等を用いることができる。   As specific silicone composite powders, for example, KMP-600, KMP-601, KMP-602, KMP-605, X-52-7030, etc., manufactured by Shin-Etsu Chemical Co., Ltd. can be used.

ポリテトラフルオロエチレンパウダーは、ポリテトラフルオロエチレン(PTFE)を粉末状に加工したものであるならば特に制限はされない。   The polytetrafluoroethylene powder is not particularly limited as long as it is a polytetrafluoroethylene (PTFE) processed into a powder form.

ポリテトラフルオロエチレンパウダーの平均分子量は5万〜1000万とすることが好ましい。平均分子量が1000万よりも大きいと、ポリテトラフルオロエチレンパウダーのゴム組成物中の分散性が低下するおそれがありうるからである。一方、平均分子量が5万よりも小さいと、摺動性が向上されない可能性がありうるからである。   The average molecular weight of the polytetrafluoroethylene powder is preferably 50,000 to 10,000,000. This is because when the average molecular weight is larger than 10 million, the dispersibility of the polytetrafluoroethylene powder in the rubber composition may be lowered. On the other hand, if the average molecular weight is less than 50,000, the slidability may not be improved.

ポリテトラフルオロエチレンパウダーの平均粒子径は、例えば1μm〜200μmとすることが可能であり、好ましくは10〜100μmである。平均粒径が1μmよりも小さいと、ゴム組成物中での分散性が低下するおそれがありうるからである。一方、平均粒径が200μmよりも大きいと、成形加工したときの外観不良が発生するおそれがありうるからである。   The average particle diameter of the polytetrafluoroethylene powder can be, for example, 1 μm to 200 μm, and preferably 10 to 100 μm. This is because if the average particle size is smaller than 1 μm, the dispersibility in the rubber composition may be lowered. On the other hand, when the average particle size is larger than 200 μm, there is a possibility that appearance defects may occur when molding is performed.

具体的なポリテトラフルオロエチレンパウダーとしては、例えば旭硝子(株)製のFluon(登録商標)G190シリーズや、ダイキン工業(株)製のニューポリフロンM−111、ルブロンL−2等を使用することができる。   As specific polytetrafluoroethylene powder, for example, Fluon (registered trademark) G190 series manufactured by Asahi Glass Co., Ltd., New Polyflon M-111, Lubron L-2 manufactured by Daikin Industries, Ltd., etc. should be used. Can do.

ゴム成分としては、水素化ニトリルゴム(HNBR)、ニトリルゴム(NBR)、若しくは、エチレン−プロピレン−ジエンゴム(EPDM)等を使用することができる。   As the rubber component, hydrogenated nitrile rubber (HNBR), nitrile rubber (NBR), ethylene-propylene-diene rubber (EPDM), or the like can be used.

ニトリルゴム(NBR)は、アクリロニトリル含有量が、低ニトリル(含有量24%以下)、中ニトリル(含有量25%〜30%)、中高ニトリル(含有量31%〜35%)、高ニトリル(含有量36%〜42%)、極高ニトリル(含有量43%以上)のいずれのものであっても好適に使用することができる。   Nitrile rubber (NBR) has low nitrile content (content 24% or less), medium nitrile (content 25% to 30%), medium to high nitrile (content 31% to 35%), high nitrile (content Any of 36% to 42%) and extremely high nitrile (content 43% or more) can be preferably used.

水素化ニトリルゴム(HNBR)は、ニトリル−共役ジエン共重合ゴムの共役ジエン単位部分を水素化したもの、ニトリル−共役ジエン−エチレン性不飽和モノマー三元共重合ゴムの共役ジエン単位部分を水素化したもの、ニトリル−エチレン性不飽和モノマー系共重合ゴム等を使用することができるが、これらに限定されるものではない。   Hydrogenated nitrile rubber (HNBR) is hydrogenated conjugated diene unit part of nitrile-conjugated diene copolymer rubber, hydrogenated conjugated diene unit part of nitrile-conjugated diene-ethylenically unsaturated monomer terpolymer rubber. Nitrile-ethylenically unsaturated monomer copolymer rubber or the like can be used, but is not limited thereto.

エチレン−プロピレン−ジエンゴム(EPDM)は、エチレン−プロピレン鎖中に導入される第3成分としては、エチリデンノルボルネン(ENB)、1,4−ヘキサジエン(1,4−HD)、ジシクロペンタジエン(DCP)等の種々のものを使用することができる。   Ethylene-propylene-diene rubber (EPDM) is a third component introduced into the ethylene-propylene chain. Ethylidene norbornene (ENB), 1,4-hexadiene (1,4-HD), dicyclopentadiene (DCP) Etc. can be used.

上述した膨潤抑制滑材の含有量は、ゴム成分100重量部に対して、10〜50重量部とすることができる。膨潤抑制滑材の含有量が10重量部よりも少ないと、DME浸漬後のゴム組成物の体積変化率が大きくなるおそれがありうるからである。一方、膨潤抑制滑材の含有量が50重量部よりも多いと、ゴム組成物自体の含有割合が相対的に小さくなることで、成形加工性が悪くなる可能性がありうるからである。なお、膨潤抑制滑材を50重量部より多く含有させることで成形加工性が若干悪化したとしても、それは成形加工手段の問題であり、膨潤抑制滑材を50重量部以上含有させることができないわけではない。   The content of the above-described swelling suppression lubricant can be 10 to 50 parts by weight with respect to 100 parts by weight of the rubber component. This is because if the content of the swelling suppression lubricant is less than 10 parts by weight, the volume change rate of the rubber composition after dipping in DME may be increased. On the other hand, when the content of the swelling suppression lubricant is more than 50 parts by weight, the molding processability may be deteriorated because the content ratio of the rubber composition itself is relatively small. In addition, even if the molding processability is slightly deteriorated by containing more than 50 parts by weight of the swelling suppression lubricant, it is a problem of the molding processing means, and the swelling suppression lubricant cannot be contained by 50 parts by weight or more. is not.

また、本実施形態に係るゴム組成物には、充填剤を含有させることができる。充填材としては、カーボンブラック、シリカ、クレー等を好適に使用することができる。   Moreover, the rubber composition according to the present embodiment can contain a filler. As the filler, carbon black, silica, clay and the like can be suitably used.

カーボンブラックとしては、ファーネスブラック、サーマルブラック、チャンネルブラック等を使用することができる。   As carbon black, furnace black, thermal black, channel black, etc. can be used.

シリカ、クレー以外の無機系充填剤としては、アルミニウム、銅、鉄、鉛、ニッケル、銀等の金属粉、ケイ藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化鉄、酸化ベリリウム等の酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、アルミネート水和物等の水酸化物、タルク、マイカ、アスベスト、ベントナイト、ゼビオライト、ケイ酸カルシウム、モンモリロナイト等のケイ酸塩、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、硫酸塩硫酸カルシウム、亜硫酸塩硫酸カルシウム、硫酸バリウム、亜硫酸カルシウム等の硫酸塩を使用することが可能であり、さらに、二硫化モリブデン、チタン酸カリウム、炭化ケイ素等も無機系充填剤として使用できる。   Inorganic fillers other than silica and clay include metal powders such as aluminum, copper, iron, lead, nickel, silver, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, zinc oxide, iron oxide, oxidation Oxides such as beryllium, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, aluminate hydrate, silicates such as talc, mica, asbestos, bentonite, zeviolite, calcium silicate, montmorillonite , Carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite, sulfates such as calcium sulfate sulfate, calcium sulfite sulfate, barium sulfate and calcium sulfite can be used, and molybdenum disulfide, titanium Potassium acid, silicon carbide and the like can also be used as inorganic fillers.

さらには、充填剤としては、有機系充填剤も使用することが可能であり、例えば、リンター、リネン、サイザル木粉、絹、皮革粉、コラーゲン繊維、ビスコース、アセテート等を使用することができる。   Furthermore, organic fillers can also be used as the filler. For example, linter, linen, sisal wood flour, silk, leather powder, collagen fiber, viscose, acetate, etc. can be used. .

その他、本実施形態に係るゴム組成物には、ゴム成分及び膨潤抑制滑材以外にも、所定の配合量の加硫剤、加硫促進剤、加硫促進助剤、加硫遅延剤等を含有させることができる。加硫剤としては、例えば、硫黄、二塩化硫黄、モルホリンジスルフィド等の硫黄系加硫剤の他に、有機過酸化物、金属酸化物等の非硫黄系加硫剤も用いることができる。加硫促進剤としては、例えば、チウラム系、チアゾール系、スルフェンアミド系、スルフィド系、チオ尿素系の化合物等を用いることができる。加硫遅延剤としては、例えば、サリチル酸等を使用できる。   In addition, the rubber composition according to the present embodiment includes a vulcanizing agent, a vulcanization accelerator, a vulcanization accelerator, a vulcanization retarder, etc. in a predetermined blending amount in addition to the rubber component and the swelling-suppressing lubricant. It can be included. As the vulcanizing agent, for example, in addition to sulfur-based vulcanizing agents such as sulfur, sulfur dichloride, morpholine disulfide, non-sulfur vulcanizing agents such as organic peroxides and metal oxides can be used. As the vulcanization accelerator, for example, thiuram, thiazole, sulfenamide, sulfide, and thiourea compounds can be used. As a vulcanization retarder, for example, salicylic acid or the like can be used.

さらに、本実施形態に係るゴム組成物には、品質改良等を目的として、可塑剤、酸化防止剤、軟化剤、粘着性付与剤、老化防止剤等の各種添加剤を含有させることができる。可塑剤としては、具体的には、例えば、フタル酸エステル、ジアリルフタレート、アジピン酸エステル、脂肪酸エステル、トリメリット酸エステル等の合成可塑剤等が挙げられる。酸化防止剤としては、例えば、ジオクチル化ジフェニルアミン等のジフェニルアミン系酸化防止剤、N,N’−ジフェニル−p−フェニレンジアミン等のp−フェニレンジアミン系酸化防止剤等を含有させることができる。軟化剤としては、例えば、脂肪酸、トール油等を使用することができる。老化防止剤は、耐熱性老化防止剤、耐候性老化防止剤等でゴム組成物に通常使用されるものであれば特に限定されないが、その具体例としては、N−(1,3−ジメチルブチル)−N′−フェニル−p−フェニレンジアミン(6PPD)、N,N′−ジナフチル−p−フェニレンジアミン(DNPD)、N−イソプロピル−N′−フェニル−p−フェニレンジアミン(IPPD)、スチレン化フェノール(SP)等が挙げられる。   Furthermore, the rubber composition according to the present embodiment may contain various additives such as a plasticizer, an antioxidant, a softening agent, a tackifier, and an anti-aging agent for the purpose of improving the quality. Specific examples of the plasticizer include synthetic plasticizers such as phthalic acid ester, diallyl phthalate, adipic acid ester, fatty acid ester, trimellitic acid ester, and the like. Examples of the antioxidant include diphenylamine-based antioxidants such as dioctylated diphenylamine, and p-phenylenediamine-based antioxidants such as N, N′-diphenyl-p-phenylenediamine. As the softener, for example, fatty acid, tall oil and the like can be used. The anti-aging agent is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like which are usually used in rubber compositions. Specific examples thereof include N- (1,3-dimethylbutyl). ) -N'-phenyl-p-phenylenediamine (6PPD), N, N'-dinaphthyl-p-phenylenediamine (DNPD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), styrenated phenol (SP) etc. are mentioned.

本実施形態に係るゴム組成物は、下記の方法により製造される。
即ち、まず、HNBR等のゴム成分100重量部あたり、ポリエチレンパウダー等の膨潤抑制滑材を例えば10〜50重量部含有させ、そして、硫黄等の加硫剤や、チウラム系加硫促進剤等を含有させて、加硫されていないゴム組成物を得る。
The rubber composition according to this embodiment is produced by the following method.
That is, first, for example, 10 to 50 parts by weight of a swelling suppression lubricant such as polyethylene powder is contained per 100 parts by weight of a rubber component such as HNBR, and a vulcanizing agent such as sulfur or a thiuram vulcanization accelerator is added. It is made to contain and the rubber composition which is not vulcanized is obtained.

このゴム組成物を例えば130℃〜200℃程度の所定の温度で、例えば10〜20分間の間、一次加硫した後に、例えば140℃〜180℃程度の所定の温度で、例えば30分〜2時間の間、二次加硫することにより得ることができる。   The rubber composition is primarily vulcanized at a predetermined temperature of, for example, about 130 ° C. to 200 ° C., for example, for 10 to 20 minutes, and then at a predetermined temperature of, for example, about 140 ° C. to 180 ° C. It can be obtained by secondary vulcanization for a period of time.

〔耐DME用ゴム組成物〕
本実施形態に係る耐DME用ゴム組成物は、DME耐性を有し、気体または液体のDMEと接触する環境下にて使用されるという用途に用いられるゴム組成物である。
[DME resistant rubber composition]
The rubber composition for DME resistant according to the present embodiment is a rubber composition that has DME resistance and is used in an environment where it is used in an environment where it is in contact with gas or liquid DME.

耐DME用ゴム組成物は、ゴム成分と、添加剤と、を有する。   The DME-resistant rubber composition has a rubber component and an additive.

ゴム成分としては、上述したように、水素化ニトリルゴム(HNBR)、ニトリルゴム(NBR)、若しくは、エチレン−プロピレン−ジエンゴム(EPDM)等を使用することができる。   As the rubber component, hydrogenated nitrile rubber (HNBR), nitrile rubber (NBR), ethylene-propylene-diene rubber (EPDM) or the like can be used as described above.

添加剤としては、上述した、ポリエチレンパウダー、シリコーンパウダー、ポリテトラフルオロエチレンパウダー等を使用することができる。   As the additive, the above-described polyethylene powder, silicone powder, polytetrafluoroethylene powder, and the like can be used.

また、耐DME用ゴム組成物には、上述した、充填剤、所定の配合量の加硫剤、加硫促進剤、加硫促進助剤、加硫遅延剤等を含有させることが可能である。   The rubber composition for DME-resistant rubber can contain the above-mentioned filler, a predetermined amount of vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, a vulcanization retarder, and the like. .

〔シール材〕
本実施形態に係るシール材は、その材質として本実施形態に係るゴム組成物を使用して成形加工するものである。
[Sealant]
The sealing material according to the present embodiment is molded using the rubber composition according to the present embodiment as its material.

シール材は例えば図1に示されるようなOリング900に加工することができる。横配管100の一端には、縦配管400が接続される。縦配管400の上端には、管の内面の円周方向に沿って凹設したOリング溝が形成されている。そして、Oリング溝にはOリング900が嵌め込まれる。Oリング900に接するように金属等で形成される栓200が縦配管400内部に嵌め込まれる。栓200の上部にはハンドル300が設けられている。   The sealing material can be processed into an O-ring 900 as shown in FIG. A vertical pipe 400 is connected to one end of the horizontal pipe 100. An O-ring groove that is recessed along the circumferential direction of the inner surface of the pipe is formed at the upper end of the vertical pipe 400. An O-ring 900 is fitted in the O-ring groove. A plug 200 made of metal or the like is fitted into the vertical pipe 400 so as to be in contact with the O-ring 900. A handle 300 is provided on the top of the stopper 200.

たとえ横配管100の他端から液体若しくは気体のDMEが流れ、図1に矢印で示すように、栓200の近傍に流れてきて、Oリング900に接触したとしても、Oリング900は本実施形態に係るゴム組成物で形成されている。そのため、DMEの膨潤・抽出現象により、Oリング900のシール性能が悪化しにくいだけではなく、摺動性の向上によりスムーズな開栓等が可能である。   Even if liquid or gaseous DME flows from the other end of the horizontal pipe 100 and flows in the vicinity of the stopper 200 as shown by an arrow in FIG. It is formed with the rubber composition concerning. For this reason, not only is the sealing performance of the O-ring 900 difficult to deteriorate due to the swelling / extraction phenomenon of DME, but smooth opening and the like are possible due to the improved slidability.

なお、Oリング900の形状としては、図1に示すような横断面形状が中実丸型のものに限定されるのではなく、種々の形状が可能であり、例えば横断面形状が中心に空孔を有する円環型でもよい。   The shape of the O-ring 900 is not limited to a solid round shape as shown in FIG. 1, and various shapes are possible. An annular shape having holes may be used.

また、Oリング900の設置される場所も、図1に示されるものに限定されることはなく、例えば、配管の端部近傍の外周面に設置されることも可能である。   Further, the place where the O-ring 900 is installed is not limited to that shown in FIG. 1, and can be installed on the outer peripheral surface near the end of the pipe, for example.

さらには、本実施形態に係るゴム組成物を加工して形成されるシール材の具体的形状はOリングに限定されるものではなく、例えば、Vパッキン、Uパッキン、カップパッキン、フランジパッキン等の種々の形状が可能である。   Furthermore, the specific shape of the sealing material formed by processing the rubber composition according to the present embodiment is not limited to the O-ring, and examples thereof include V packing, U packing, cup packing, and flange packing. Various shapes are possible.

(実施例1)
ゴム成分としてHNBR(日本ゼオン株式会社製、Zetpol 0020)を100重量部、膨潤抑制滑材としてポリエチレンパウダー(三井化学株式会社製 ミペロンXM−220)を10重量部、加硫剤として有機過酸化物を5重量部配合したゴム組成物を、170℃で10分間一次加硫した後に、150℃で2時間二次加硫し、その後成形することでゴム組成物の試験片を作成した。
Example 1
100 parts by weight of HNBR (manufactured by ZEON Corporation, Zetpol 0020) as a rubber component, 10 parts by weight of polyethylene powder (Mipelon XM-220, manufactured by Mitsui Chemicals, Inc.) as an anti-swelling lubricant, and organic peroxide as a vulcanizing agent A rubber composition containing 5 parts by weight of the rubber composition was subjected to primary vulcanization at 170 ° C. for 10 minutes, then secondary vulcanization at 150 ° C. for 2 hours, and then molded to prepare a test piece of the rubber composition.

(実施例2)
膨潤抑制滑材としてのポリエチレンパウダーを50重量部含有させる以外は、実施例1と同様にしてゴム組成物の試験片を作成した。
(Example 2)
A rubber composition test piece was prepared in the same manner as in Example 1 except that 50 parts by weight of polyethylene powder as a swelling-suppressing lubricant was contained.

(実施例3)
膨潤抑制滑材としてのポリエチレンパウダーを150重量部含有させる以外は、実施例1と同様にしてゴム組成物の試験片を作成した。
(Example 3)
A test piece of a rubber composition was prepared in the same manner as in Example 1 except that 150 parts by weight of polyethylene powder as a swelling suppression lubricant was contained.

(比較例)
膨潤抑制滑材としてのポリエチレンパウダーを含有させない以外は、実施例1と同様にしてゴム組成物の試験片を作成した。
(Comparative example)
A test piece of a rubber composition was prepared in the same manner as in Example 1 except that polyethylene powder as a swelling suppression lubricant was not included.

このようにして作成したゴム組成物の試験片に対して、圧縮永久歪み率(%)、DME浸漬後の体積変化率(%)、動摩擦係数、破断点強度(MPa)、破断点伸び(%)、硬さ(デュロA硬度)、をそれぞれ測定した。   For the test piece of rubber composition thus prepared, compression set (%), volume change rate after immersion in DME (%), dynamic friction coefficient, strength at break (MPa), elongation at break (% ) And hardness (Duro A hardness).

圧縮永久歪み率(%)は、ゴム組成物のシール性を試験するものであり、JIS K6262に準拠して試験を行った。試験片の形状は、大径試験片を使用した。即ち、直径が290±0.5mmであり、厚さが12.5±0.5mmであった。試験片の硬さがIRHDで10〜79であったので、試験片を圧縮する割合として25%を選択した。試験時間は、72時間とした。   The compression set (%) is used to test the sealability of the rubber composition and was tested according to JIS K6262. A large-diameter test piece was used as the shape of the test piece. That is, the diameter was 290 ± 0.5 mm and the thickness was 12.5 ± 0.5 mm. Since the hardness of the test piece was 10 to 79 in IRHD, 25% was selected as the ratio for compressing the test piece. The test time was 72 hours.

試験室の標準状態にて、試験片を圧縮装置の圧縮板の間の中央部に、規定のスペーサを試験片の外側にそれぞれ挿入し、その後、圧縮板がスペーサに密着するまで圧縮し、保持具を締め付けてその状態に固定した。
試験片を圧縮後、あらかじめ試験温度に調節した恒温槽に、直ちに圧縮装置をいれた。このときを試験開始時間とし、100±1℃で加熱した。
加熱処理の終了後、圧縮装置を恒温槽から取り出し、試験片を素早く圧縮装置から取り外し、台の上に置き、試験室の標準状態で30±3分間放置した後、試験片の中央部の厚さの測定を数式(1)にて行った。
In the standard state of the test chamber, insert the test piece into the center between the compression plates of the compression device and the specified spacer outside the test piece, and then compress until the compression plate is in close contact with the spacer. Tightened and fixed in that state.
After compressing the test piece, the compression apparatus was immediately put into a thermostatic chamber adjusted to the test temperature in advance. This time was taken as the test start time and heated at 100 ± 1 ° C.
After completion of the heat treatment, the compression device is taken out from the thermostatic chamber, the test piece is quickly removed from the compression device, placed on the table, and left in the standard state of the test room for 30 ± 3 minutes, and then the thickness of the central part of the test piece is measured. The measurement was performed by the formula (1).

Figure 0005244469
Figure 0005244469

ここで、Csは圧縮永久歪み(%)であり、tは試験片のもとの厚さ(mm)であり、tはスペーサの厚さ(mm)であり、tは試験片を圧縮装置から取り外して30分後の厚さ(mm)である。 Here, Cs is compression set (%), t 0 is the original thickness (mm) of the test piece, t 1 is the thickness (mm) of the spacer, and t 2 is the test piece. The thickness (mm) after 30 minutes from removal from the compression apparatus.

実施例1の圧縮永久歪み率は30%で、実施例2の圧縮永久歪み率は40%で、実施例3の圧縮永久歪み率は61%で、比較例の圧縮永久歪み率は25%であった。   The compression set of Example 1 is 30%, the compression set of Example 2 is 40%, the compression set of Example 3 is 61%, and the compression set of Comparative Example is 25%. there were.

次に、動摩擦係数は、ゴム組成物の摺動性を試験するものであり、JIS K6264に準拠して試験を行った。オリエンテック社製鈴木・松原式摩擦摩耗試験機を使用し、荷重10kgf/cm2、速度60m/分、距離10mmの下で測定した。   Next, the coefficient of dynamic friction is used to test the slidability of the rubber composition and was tested according to JIS K6264. The measurement was performed under a load of 10 kgf / cm 2, a speed of 60 m / min, and a distance of 10 mm using an Orientec Suzuki-Matsubara friction and wear tester.

実施例1の動摩擦係数は0.84で、実施例2の動摩擦係数は0.83で、実施例3の動摩擦係数は0.98で、比較例の動摩擦係数は0.83であった。   The dynamic friction coefficient of Example 1 was 0.84, the dynamic friction coefficient of Example 2 was 0.83, the dynamic friction coefficient of Example 3 was 0.98, and the dynamic friction coefficient of the comparative example was 0.83.

次に、DME浸漬後の体積変化率は、JIS K6258に準拠して測定を行った。
耐圧容器に、20mm×50mm×厚さ2mmの試験片を3枚いれ、液化DMEを注入した。
そして40℃にて24時間放置した。その後、DMEを抜き、速やかに試験片を取り出してデシケータに入れた。デシケータから試験片を取り出し、12分後の体積変化率を数式(2)にて行った。
Next, the volume change rate after immersion in DME was measured according to JIS K6258.
Three test pieces of 20 mm × 50 mm × 2 mm thickness were put into a pressure vessel, and liquefied DME was injected.
And it was left to stand at 40 degreeC for 24 hours. Thereafter, DME was removed, and the test piece was quickly taken out and placed in a desiccator. The test piece was taken out from the desiccator, and the volume change rate after 12 minutes was calculated by the formula (2).

Figure 0005244469
Figure 0005244469

ここで、Vaは浸漬後の体積であり、Vbは浸漬前の体積であり、Vcは体積変化率である。   Here, Va is the volume after immersion, Vb is the volume before immersion, and Vc is the volume change rate.

実施例1の体積変化率は30%で、実施例2の体積変化率は30%で、実施例3の体積変化率は22%で、比較例の体積変化率は39%であった。   The volume change rate of Example 1 was 30%, the volume change rate of Example 2 was 30%, the volume change rate of Example 3 was 22%, and the volume change rate of the comparative example was 39%.

次に、破断点強度(MPa)は、JIS K6251に準拠して試験を行った。
実施例1の破断点強度は15.4MPaで、実施例2の破断点強度は16.9MPaで、実施例3の破断点強度は14.3MPaで、比較例の破断点強度は18.4MPaであった。
Next, the strength at break (MPa) was tested according to JIS K6251.
The breaking strength of Example 1 is 15.4 MPa, the breaking strength of Example 2 is 16.9 MPa, the breaking strength of Example 3 is 14.3 MPa, and the breaking strength of the comparative example is 18.4 MPa. there were.

次に、破断点伸び(%)は、JIS K6251に準拠して試験を行った。
実施例1の破断点伸びは400%で、実施例2の破断点伸びは390%で、実施例3の破断点伸びは240%で、比較例の破断点伸びは400%であった。
Next, the elongation at break (%) was tested in accordance with JIS K6251.
The elongation at break of Example 1 was 400%, the elongation at break of Example 2 was 390%, the elongation at break of Example 3 was 240%, and the elongation at break of the Comparative Example was 400%.

次に、硬さ(デュロA)は、JIS K6253に準拠して試験を行った。
実施例1の硬さは90で、実施例2の硬さは91で、実施例3の硬さ97で、比較例の硬さは84であった。
Next, the hardness (Duro A) was tested according to JIS K6253.
The hardness of Example 1 was 90, the hardness of Example 2 was 91, the hardness of Example 3 was 97, and the hardness of the comparative example was 84.

これらの試験の結果を下記表1に示す。   The results of these tests are shown in Table 1 below.

Figure 0005244469
Figure 0005244469

動摩擦係数に関しては、実施例1〜実施例3において、良好な結果であった。特に実施例1と実施例2は、実施例3に比較して動摩擦係数が低く、シール材に成形加工した場合に特に摺動性に優れていることがわかる。   Regarding the dynamic friction coefficient, in Examples 1 to 3, good results were obtained. In particular, it can be seen that Example 1 and Example 2 have a lower coefficient of dynamic friction than Example 3, and are particularly excellent in slidability when molded into a sealing material.

圧縮永久歪に関しては、実施例1〜実施例3において、良好な結果であった。特に実施例1と実施例2は、実施例3に比較して圧縮永久歪が低く、シール材に成形加工した場合に特にシール性に優れていることがわかる。   Regarding the compression set, in Examples 1 to 3, good results were obtained. In particular, it can be seen that Example 1 and Example 2 have a lower compression set than Example 3 and are particularly excellent in sealing properties when molded into a sealing material.

DME浸漬後の体積変化率に関しては、比較例は39%という大きな体積変化率であった。しかしながら、実施例1は30%、実施例2は30%、実施例3は22%といずれも良好な値であり、実施例1〜実施例3は、比較例と異なり、耐DME性を有していることがわかった。   Regarding the volume change rate after immersion in DME, the comparative example had a large volume change rate of 39%. However, Example 1 is 30%, Example 2 is 30%, and Example 3 is 22%, both of which are good values. Examples 1 to 3 have DME resistance unlike the comparative examples. I found out.

従って、ゴム成分に膨潤抑制滑材としてのポリエチレンパウダーを含有させたゴム組成物の場合、Oリング等のシール材に成形加工したとしても、そのようなシール材は、摺動性に優れ、シール性に優れることはもちろんのこと、耐DME性に優れるという非常に優れた物性を示すことが理解される。   Therefore, in the case of a rubber composition containing polyethylene powder as a swelling-suppressing lubricant in a rubber component, such a sealing material is excellent in slidability even if molded into a sealing material such as an O-ring. It is understood that it exhibits excellent physical properties such as excellent DME resistance as well as excellent properties.

(実施例4)
ゴム成分としてHNBR(日本ゼオン株式会社製、Zetpol 0020)を100重量部、膨潤抑制滑材としてシリコーンパウダー(モメンティブ・パフォーマンス・マテリアルズ社製、トスパール2000B)を10重量部、加硫剤として有機過酸化物を5重量部配合したゴム組成物を、170℃で10分間一次加硫した後に、150℃で2時間二次加硫し、その後成形することでゴム組成物の試験片を作成した。
Example 4
100 parts by weight of HNBR (manufactured by Nippon Zeon Co., Ltd., Zetpol 0020) as a rubber component, 10 parts by weight of silicone powder (manufactured by Momentive Performance Materials, Tospearl 2000B) as a swelling-suppressing lubricant, and organic excess as a vulcanizing agent A rubber composition containing 5 parts by weight of oxide was subjected to primary vulcanization at 170 ° C. for 10 minutes, then secondary vulcanization at 150 ° C. for 2 hours, and then molded to prepare a test piece of the rubber composition.

(実施例5)
膨潤抑制滑材としてのシリコーンパウダーを50重量部含有させる以外は、実施例4と同様にしてゴム組成物の試験片を作成した。
(Example 5)
A rubber composition test piece was prepared in the same manner as in Example 4 except that 50 parts by weight of silicone powder as a swelling-suppressing lubricant was contained.

このようにして作成したゴム組成物の試験片に対して、圧縮永久歪み率(%)、DME浸漬後の体積変化率(%)、動摩擦係数、破断点強度(MPa)、破断点伸び(%)、硬さ(デュロA硬度)、上述と同様の手法にて、それぞれ測定した。   For the test piece of rubber composition thus prepared, compression set (%), volume change rate after immersion in DME (%), dynamic friction coefficient, strength at break (MPa), elongation at break (% ), Hardness (duro A hardness), and the same method as described above.

実施例4の圧縮永久歪み率は28%で、実施例5の圧縮永久歪み率は30%であった。   The compression set of Example 4 was 28%, and the compression set of Example 5 was 30%.

実施例4の体積変化率は32%で、実施例5の体積変化率は32%であった。   The volume change rate of Example 4 was 32%, and the volume change rate of Example 5 was 32%.

実施例4の動摩擦係数は0.82で、実施例5の動摩擦係数は0.73であった。   The dynamic friction coefficient of Example 4 was 0.82, and the dynamic friction coefficient of Example 5 was 0.73.

実施例4の破断点強度は14.9MPaで、実施例5の破断点強度は13.7MPaであった。   The breaking strength of Example 4 was 14.9 MPa, and the breaking strength of Example 5 was 13.7 MPa.

実施例4の破断点伸びは360%で、実施例5の破断点伸びは350%であった。   The elongation at break of Example 4 was 360%, and the elongation at break of Example 5 was 350%.

実施例4の硬さは89で、実施例5の硬さは90であった。   The hardness of Example 4 was 89, and the hardness of Example 5 was 90.

これらの試験の結果を下記表2に示す。   The results of these tests are shown in Table 2 below.

Figure 0005244469
Figure 0005244469

動摩擦係数に関しては、実施例4及び実施例5において、良好な結果であった。また、圧縮永久歪についても、実施例4及び実施例5において、良好な結果であった。   Regarding the dynamic friction coefficient, in Example 4 and Example 5, it was a favorable result. Also, the compression set was a good result in Example 4 and Example 5.

DME浸漬後の体積変化率に関しては、比較例は39%であったにもかかわらず、実施例4は32%、実施例5は32%といずれも良好な値であり、実施例4及び実施例5は、比較例と異なり、耐DME性を有していることがわかった。   Regarding the volume change rate after DME immersion, although the comparative example was 39%, Example 4 and Example 5 were good values of 32% and Example 5 were 32%. Example 5 was found to have DME resistance unlike the comparative example.

従って、ゴム成分に膨潤抑制滑材としてのシリコーンパウダーを含有させたゴム組成物の場合、Oリング等のシール材に成形加工したとしても、そのようなシール材は、摺動性に優れ、シール性に優れることはもちろんのこと、耐DME性に優れるという非常に優れた物性を示すことが理解される。   Therefore, in the case of a rubber composition containing a rubber component containing silicone powder as a swelling-suppressing lubricant, even if it is molded into a sealing material such as an O-ring, such a sealing material is excellent in slidability and seal. It is understood that it exhibits excellent physical properties such as excellent DME resistance as well as excellent properties.

以上より、HNBR等のゴム成分に、膨潤抑制滑材としてポリエチレンパウダーやシリコーンパウダーを含有させたゴム組成物は、摺動性に優れ、耐DME性に優れ、さらにOリング等のシール材に成形加工したとしてもシール性に優れることが判明した。膨潤抑制滑材としてポリテトラフルオロエチレンパウダーを含有させた場合も同様に摺動性に優れ、耐DME性に優れ、さらにOリング等のシール材に成形加工したとしてもシール性に優れる。   As described above, rubber compositions containing polyethylene powder or silicone powder as a swelling-suppressing lubricant in rubber components such as HNBR are excellent in slidability, excellent in DME resistance, and molded into sealing materials such as O-rings. It has been found that even if processed, it has excellent sealing properties. When polytetrafluoroethylene powder is contained as a swelling-suppressing lubricant, it is similarly excellent in slidability, excellent in DME resistance, and excellent in sealing properties even when molded into a sealing material such as an O-ring.

本実施形態に係るシール材の使用形態を説明する図である。It is a figure explaining the usage pattern of the sealing material which concerns on this embodiment.

符号の説明Explanation of symbols

100 横配管
200 栓
300 ハンドル
400 縦配管
900 Oリング
100 Horizontal piping 200 Plug 300 Handle 400 Vertical piping 900 O-ring

Claims (4)

シール材に使用されるゴム成分に、前記ゴム成分のジメチルエーテル(DME)による膨潤を抑制するとともに、前記ゴム成分に滑性を付与する膨潤抑制滑材を含有させ
前記膨潤抑制滑材は、ポリエチレンパウダー、シリコーンパウダー、ポリテトラフルオロエチレンパウダーのうち少なくとも何れか一つを含有する、
ことを特徴とする、ゴム成分の耐DME性の付与方法。
The rubber component used for the sealing material contains a swelling-suppressing lubricant that suppresses swelling of the rubber component by dimethyl ether (DME) and imparts lubricity to the rubber component .
The swelling-controlled lubricant is polyethylene powder, you contain at least one of silicone powder, polytetrafluoroethylene powder,
A method for imparting DME resistance to a rubber component.
前記ゴム成分は、水素化ニトリルゴム(HNBR)、ニトリルゴム(NBR)、エチレン−プロピレン−ジエンゴム(EPDM)のうち少なくとも何れか一つを含有する、
ことを特徴とする請求項1に記載のゴム成分の耐DME性の付与方法
The rubber component contains at least one of hydrogenated nitrile rubber (HNBR), nitrile rubber (NBR), and ethylene-propylene-diene rubber (EPDM).
The method for imparting DME resistance to a rubber component according to claim 1 .
前記膨潤抑制滑材の含有量が、前記ゴム成分100重量部に対して、10重量部以上50重量部以下である、
ことを特徴とする請求項1又は2に記載のゴム成分の耐DME性の付与方法。
The content of the swelling suppression lubricant is 10 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the rubber component.
The method for imparting DME resistance to a rubber component according to claim 1 or 2 .
充填剤として、カーボンブラック、シリカ、クレーのうち少なくとも何れか一つを含有する、
ことを特徴とする請求項乃至の何れか1項に記載のゴム成分の耐DME性の付与方法。
As a filler, it contains at least one of carbon black, silica, clay,
The method for imparting DME resistance of a rubber component according to any one of claims 1 to 3 , wherein:
JP2008155670A 2008-06-13 2008-06-13 Method for imparting DME resistance to rubber components Active JP5244469B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008155670A JP5244469B2 (en) 2008-06-13 2008-06-13 Method for imparting DME resistance to rubber components
KR1020090052385A KR101419956B1 (en) 2008-06-13 2009-06-12 Rubber composition and method for producing the same, seal member by using the same and apparatus having the same, and a rubber composition for resistance to dme
CN2009101474517A CN101691437B (en) 2008-06-13 2009-06-12 Rubber composition and method for producing the same, seal material and apparatus having the same, and a rubber composition for resistance to dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155670A JP5244469B2 (en) 2008-06-13 2008-06-13 Method for imparting DME resistance to rubber components

Publications (2)

Publication Number Publication Date
JP2009298936A JP2009298936A (en) 2009-12-24
JP5244469B2 true JP5244469B2 (en) 2013-07-24

Family

ID=41546165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155670A Active JP5244469B2 (en) 2008-06-13 2008-06-13 Method for imparting DME resistance to rubber components

Country Status (3)

Country Link
JP (1) JP5244469B2 (en)
KR (1) KR101419956B1 (en)
CN (1) CN101691437B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403619B2 (en) * 2010-01-20 2014-01-29 国立大学法人東京農工大学 Dimethyl ether resistant rubber composition
CN101852448A (en) * 2010-04-16 2010-10-06 谢启标 Application of hydrogenated nitrile-butadiene rubber in gas appliance taking dimethyl ether as fuel
KR101224602B1 (en) * 2010-04-30 2013-01-22 금호타이어 주식회사 Tire rubber composition comprising modified Polytetrafluoroethylene powder
CN103030907A (en) * 2012-12-20 2013-04-10 常熟市董浜镇徐市盛峰液压配件厂 Large and high-performance O-shaped sealing ring
WO2014097626A1 (en) 2012-12-21 2014-06-26 日本ゼオン株式会社 Rubber composition and molded article
CN103383077B (en) * 2013-07-26 2015-08-26 宁波市爱使电器有限公司 A kind of LED of high-seal
CN103756041A (en) * 2013-12-13 2014-04-30 芜湖佳诚电子科技有限公司 High impact-resistance rubber seal cup material
CN103923240A (en) * 2014-05-04 2014-07-16 董波 Activated polytetrafluoroethylene powder and composition comprising same
KR101664089B1 (en) * 2015-09-08 2016-10-11 비씨태창산업(유) Method of manufacturing a sealing for high-pressure pump
CN110746670A (en) * 2018-07-24 2020-02-04 中石化石油工程技术服务有限公司 Soluble hydrogenated butyronitrile rubber-plastic composite material and preparation method thereof
CN109206709B (en) * 2018-08-22 2021-05-28 四川之江高新材料股份有限公司 Preparation method of powdered rubber polyethylene mixture containing modified graphene fluoride for 3D printing
CN109705414B (en) * 2018-12-27 2021-03-16 广州弗西林橡塑有限公司 High-tear rubber cup material for breaking hammer and preparation method thereof
JP7012063B2 (en) * 2019-12-11 2022-01-27 三菱電線工業株式会社 Sealing material for semiconductor manufacturing equipment
KR102469916B1 (en) * 2020-10-14 2022-11-22 이우영 Compound composition for sealing luid pipes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3629306B2 (en) * 1994-08-12 2005-03-16 Ntn株式会社 V ring
JP2002105243A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Nbr composition
JP2004131630A (en) * 2002-10-11 2004-04-30 Mitsubishi Cable Ind Ltd Rubber composition and seal using the same
JP2004137391A (en) * 2002-10-18 2004-05-13 Liquefied Petroleum Gas Center Of Japan Dimethyl ether-resistant rubber composition and rubber member
JP2004155906A (en) * 2002-11-06 2004-06-03 Nichias Corp Dimethyl ether-resistant rubber composition and rubber member
JP4071147B2 (en) * 2003-04-18 2008-04-02 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire using the same
JP2005239739A (en) * 2003-12-22 2005-09-08 Nichias Corp Dimethyl ether-resistant polymer member
JP2005187718A (en) * 2003-12-26 2005-07-14 Nichias Corp Dimethyl ether-resistant sealing material
JP4531483B2 (en) * 2004-08-12 2010-08-25 藤倉ゴム工業株式会社 Rubber member
JP2007063430A (en) * 2005-08-31 2007-03-15 Nichias Corp Dimethyl ether-resistant rubber member
CN101134889A (en) * 2007-08-15 2008-03-05 安阳市鑫河科技研究院有限责任公司 Modified acrylonitrile butadiene packing material and preparation method thereof
JP2009091490A (en) * 2007-10-10 2009-04-30 Nichias Corp Dimethyl ether resistant rubber member
JP5040033B2 (en) * 2008-03-28 2012-10-03 ニチアス株式会社 Dimethyl ether resistant sealant

Also Published As

Publication number Publication date
KR20090129964A (en) 2009-12-17
CN101691437A (en) 2010-04-07
JP2009298936A (en) 2009-12-24
KR101419956B1 (en) 2014-07-16
CN101691437B (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5244469B2 (en) Method for imparting DME resistance to rubber components
JP5414196B2 (en) Fluoro rubber sealant with good high / low temperature load sealability
KR102326698B1 (en) Rubber composition for use in sealing member for high-pressure gas, sealing member for high-pressure gas, apparatus for high-pressure gas, and high-pressure gas sealing method
JP4800508B2 (en) Rubber composition for seal and carbon dioxide resistant seal using the same
WO2006087942A1 (en) Seal material for semiconductor production apparatus
JP2015206002A (en) Rubber composition and seal member for high pressure hydrogen device
JP5223674B2 (en) Silicone rubber composition
JP4617974B2 (en) Grease seal
US8404791B2 (en) Silicone rubber composition
JP7368936B2 (en) Fitting with seal member
JP2011168630A (en) Low-temperature resistant fluororubber composition exhibiting good fuel permeation resistance
US8697782B2 (en) Rubber composition
KR101865895B1 (en) Epdm composition
JP2009102646A (en) HYDROGENATED NITRILE RUBBER-BASED SEAL MOLDING MATERIAL FOR R152a AND R134a
JP4651202B2 (en) Sealing material using rubber composition for sealing material
JP2010126721A (en) Fluororubber composition
JP4712960B2 (en) Sealing material
JP7306844B2 (en) Rubber composition for sealing material and sealing material using the same
JPWO2009011263A1 (en) Hydrogenated nitrile rubber composition
WO2015019807A1 (en) Seal for gasoline engine
JP2016079200A (en) Fluororubber composition and seal structure provided with sealing material using the fluororubber composition
JP4195673B2 (en) Sealing device
JP2010126720A (en) Fluororubber composition
JP2010083992A (en) Nitrile rubber composition and fuel cap gasket
JP2006274012A (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5244469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250