JP5241524B2 - 光通信システムならびにその運用方法 - Google Patents

光通信システムならびにその運用方法 Download PDF

Info

Publication number
JP5241524B2
JP5241524B2 JP2009003036A JP2009003036A JP5241524B2 JP 5241524 B2 JP5241524 B2 JP 5241524B2 JP 2009003036 A JP2009003036 A JP 2009003036A JP 2009003036 A JP2009003036 A JP 2009003036A JP 5241524 B2 JP5241524 B2 JP 5241524B2
Authority
JP
Japan
Prior art keywords
onu
master station
optical
repeater
olt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009003036A
Other languages
English (en)
Other versions
JP2010161672A (ja
Inventor
昌彦 水谷
祐輔 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009003036A priority Critical patent/JP5241524B2/ja
Priority to CN200910253294.8A priority patent/CN101778314B/zh
Priority to US12/638,383 priority patent/US8249458B2/en
Priority to EP09179562.5A priority patent/EP2207285B1/en
Publication of JP2010161672A publication Critical patent/JP2010161672A/ja
Application granted granted Critical
Publication of JP5241524B2 publication Critical patent/JP5241524B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Description

本発明は、複数の加入者装置が光伝送回線を共有する光通信システムの構成と運用方法、ならびに、該システムにおける伝送距離の延長や収容加入者数の増加等のシステム拡張に関する。
ブロードバンドを利用する通信の需要が高まり、ユーザ向けアクセス回線はDSL(Digital Subscriber Line)などの電話回線をベースとするアクセス技術に代わり、光ファイバを用いた大容量アクセス回線への移行が進められている。現在、アクセス網としては、回線敷設コスト及び保守管理コストの点からPON(Passive Optical Network)システム(以下、単にPON、あるいは、光受動網システム、もしくは、受動光網システムとも称することがある)が多く利用されている。このPONは、国際電気通信連合(以下ITU-T(International Telecommunication Union Telecommunication Standardization Sector)と称する)で標準化(勧告化)が進められ、2006年頃から非特許文献1等で標準化されたGPON(Gigabit capable PON)のアクセス網への導入が各国で始まっている。
PONは、局舎側装置(以下、OLT(Optical Line Terminal)と称する)から複数の加入者装置(以下、ONU(Optical Network Unit)と称する)との間で光信号を光ファイバと光スプリッタを用いて分岐したり多重化したりして送受信するシステムである。使用する光ファイバの伝送性能及び光スプリッタにおける光分岐数によって光ファイバを通過する光信号の減衰量などの性能が制限されるため、OLTとONUとの間の通信距離に限界があった。具体例を挙げると、GPONの場合、通信距離が最大で20km、光スプリッタによる分岐数(OLTと接続できるONUの数)が最大で64に設定されているものが用いられる。
一般家庭の加入者(通信網ユーザ)がインターネットへアクセスして情報収集や社会生活のための通信を行う機会が増えるにつれ、通信網の設備、とりわけ、加入者を通信網へ接続するアクセス網の増加が求められてきている。すなわち、通信網を提供するキャリアは、アクセス回線のユーザ数増加に伴い局毎の収容ユーザ数を増やすための増資を迫られている。ユーザ数を増やすため方法としては、アクセス網に用いるPONそのものを追加導入すること、即ちOLTを追加すること、または、PONのOLTが収容するONU数を拡張する方法が考えられる。しかし、PONは、帯域制御等複雑なシステムの制御や収容するONUの管理を全てOLTが実施する構成が一般的であり、OLTの方がONUよりも遥かに高価である。また光ファイバを新たに敷設するためのコストは、キャリアにとって大きな支出を生む結果となる。したがって、OLTを増設するよりは、OLTあたりの収容ONUを拡大することが望ましい解決方法となる。
既存PONに対し、光ファイバの通信距離延長や分岐数の拡大のために用いる中継装置(以下EB(Extender Box)と称する)の研究が開始されている。その基本概念は、OLTとONUとの間の光信号通信区間内にEBを適宜設置して、OLTからこのEBを制御して光ファイバの通信距離延長や分岐数の拡大を実現するものである。尚、制御プロトコルとしては、既存のONU制御プロトコルであるOMCI(ONU Management Control Interface)を使用するという案に基づきITU−Tでの標準化が現在進められている。これによって、都市中央部以外のIT技術の普及が遅れている地域に対して高速インターネットアクセスサービスを提供することも可能となり、アクセス網普及の一つの方法として着目されている(非特許文献2)。
ITU-T 勧告 G.984.3 ITU−T 勧告(案) G.984.re
PONにEBを導入する場合、OLTと光スプリッタとの間で各ONUが共通に使用するトランクファイバ(集線光ファイバとも称する)にEBを挿入する方法と、光スプリッタと各ONUとの間で使用する支線光ファイバにEBを挿入する方法とが存在する。
EBを基幹光ファイバ内に挿入することで、従来のPONより通信距離が延長されるため、遠隔地に存在していた加入者のONUも同じOLTに収容することができるので、OLTの収容数増加が容易になる。すなわちOLTでのONU収容効率が向上する。一方、通信距離延長に伴い、遠隔地にあるONUとの通信時間(伝送遅延時間)が増えることになり、その数も増えていくので、OLTでの信号待ち時間が増加したり信号処理負荷が増大したりする。このため、各ONUに割当てる通信時間が低減される可能性がある。具体的には、PONのOLTと任意のONU(大抵の場合は新規にOLTへ追加接続されたONU)との通信距離(伝送遅延時間)を測定するレンジングを実施する場合、OLTが該ONUからのレンジングの応答を待つために、既に接続され運用に供されている全ONUが通信を中断しなければならないが、EBの挿入に伴い予想される待ち時間が長くなるため各ONUの通信中断時間が増えてしまう。すなわち、運用中のONUでの通信中断時間が増加して、リアルタイム性が要求される信号の品質に影響が出たり、全ONUへの動的帯域割当(以下、DBA(Dynamic Bandwidth Assignment)と称する)による各ONUへの通信容量(帯域)割当て処理が複雑になったり、割当が減ったり、信号送信の待ち時間が増えたりしてしまう。
したがって、PONにEBを導入してOLTとONUとの間の通信距離延長や収容ONUの増加を行う場合であっても、OLTでの信号処理負荷が増加したり、各ONUでの信号送信待ち時間の増加・送信信号帯域の減少、あるいは送信信号の品質劣化といった上記課題の発生を抑え、望ましくは従来のPONと同程度の通信品質を有するPONの提供が求められる。より具体的には、PONに必要なレンジングを実施しても上記課題の発生を抑えることが出来るPONおよびPONの制御方法やレンジング方法を提供することが本発明の目的である。
尚、EBを支線光ファイバに挿入する方法でも、EBを介して通信されるONUについては上記と同じ課題が発生する。しかし、他のONUについてはEBの影響が無いという特徴があり、この部分では従来のPONの制御方法(レンジング)が使用できる。したがって、EBを介して接続されるONUとEBを介さないONUとが混在するPONにあっては、従来のPONの制御方法と上記EBを介した場合の制御方法とをEBのPON内配置に応じて使い分ける構成のPONおよびその制御方法やレンジング方法を提供することも本発明の目的である。
上記課題を解決するために、本発明の光通信システム(PON)は、レンジング機能を中継装置にも備え、レンジングを2つの手順に分けて実施する構成とした。
すなわち、親局と複数の子局とを光スプリッタを備えた光ファイバ網で接続した光通信システムに、親局と前記複数の子局との間で送受信する信号を中継する中継器を光ファイバ網に備え、親局に自局と中継器との間のレンジングを実行する第1の制御部、中継器に自中継器と複数の子局との間のレンジングを実施する第2の制御部とを備え、親局は、第1の制御部で実施する第1のレンジングの結果と中継器の第2の制御部で実施する第2のレンジングの結果に基づき、複数の子局の要求に基づき複数の子局の夫々が親局に信号を送信するタイミングを決めて、複数の子局からの信号を光ファイバ網で多重して親局が受信する構成の光通信システムとしたものである。
より詳細には、中継器を親局と光スプリッタとの間に挿入し、親局の第1の制御部が先ず第1のレンジングを実施すると、親局が複数の子局の光ファイバ網への接続状態に応じて中継器に第2のレンジングの実施を指示する構成としたものである。
光通信システム(PON)に中継器を導入して親局と子局との間の通信距離延長や子局収容数の増加を行う場合であっても、レンジング処理を2つに分割して、運用中はレンジングによる子局からの信号中断時間が中継器から子局迄の最大距離だけに依存する構成とした一方のレンジングだけで済むので、距離延長に伴う信号中断時間の増加が抑えられる。したがって、親局での信号処理負荷が増加したり、各子局での信号送信待ち時間の増加・送信信号帯域の減少、あるいは送信信号の品質劣化といった現象の発生が抑えられる。
以下、図面を用いて本発明によるPONの構成と動作を、ITU−T勧告G.984.3で規定されたG―PONの構成及びその動作を例として説明する。
図1は、本発明のPONを用いた光アクセス網の構成例を示した網構成図で、PONの集線光ファイバにEBを挿入した場合の構成例を示している。
光アクセス網1は、局舎側装置(OLT)10、複数個の加入者装置(ONU)20−1〜20−n、光スプリッタ30、集線光ファイバ70、複数本の支線光ファイバ71−1〜71−n、集線光ファイバ70の途中で70−1と70−2との間に挿入した信号中継装置(EB)10000とからなるPON40において、各ONU20(20−1〜20−n)をそれぞれ加入者網(あるいは、PCや電話等の端末;代表例として加入者網50−1のみ図示)50と接続し、OLT10を上位の通信網であるアクセス網90と接続した網である。尚、以下ではアクセス網にと接続されるOLT10と加入者網50に接続されるONU20との間をPON区間80と称する。OLT10は、PON区間80とアクセス網90の双方に対してインタフェースを備える通信装置で、アクセス網90を介して更に上位の通信網と情報の送受信を行い、該情報をさらにONU20へ転送することにより、情報信号を送受信する装置である。尚、アクセス網90は、IPルータやイーサネット(Ethernet、登録商標で以下同様)スイッチなどで構成されるパケット通信網を用いることが多いが、これ以外の通信網であっても構わない。ONU20は、ユーザの家庭や企業のサイトに設置され、LANもしくは相当のネットワークである加入者網50に接続される形態が一般的である。各加入者網50には、IP電話や既存の電話サービスを提供する電話端末やPC/携帯端末等の情報端末が接続される。PON区間80では、OLT10と各ONU20−1〜20−nとの間で光信号によって通信が行われている。尚、PONでは使用される光信号の波長を、上りλupと下りλdownとをそれぞれ異なる波長にして光ファイバ70と71やスプリッタ30において信号が干渉しないようにしてある。
OLT10から発信された下り信号は、EB10000を通過し、スプリッタ30で分岐されて、光アクセス網1を構成している全ONU20−1〜20−nに到達する。下り信号についてG―PONを例にとると、OLT10からの下り信号は、PON区間80の通信に用いるフレーム(以下、GEMフレームと称する)を用いて送出される。このGEMフレームは、それぞれヘッダとペイロードから構成され、各ヘッダには、個々のGEMフレームの宛先となるONU20の識別子(Port−ID)が挿入されている。各ONU20−1〜20−nは、GEMフレームのヘッダを抽出し、当該フレームの宛先Port−IDが自分自身を指すものであった場合にフレーム処理を行い、他のONU20宛てのフレームであった場合は当該フレームを廃棄する。
各ONU20−1〜20−nからOLT10への上り通信には、全て同じ波長λupの光信号を用いる。上り信号は、下り信号と同様にONU毎のヘッダとペイロードから構成される可変長のフレーム(以下、GEMフレームと称する)である。各ONU20は、OLT10において各ONU20からのGEMパケットが識別できるよう、集線光ファイバ70上で個々の上り信号が衝突/干渉しないように、送信タイミングをずらして上り信号を送出する。これらの信号は、集線光ファイバ70上で時間分割多重されOLT10に到達する。具体的には、(1)レンジングでOLT10から各ONU20−1〜20−nまでの距離を測定した上で信号の遅延量を調整し、(2)DBAで、OLT10から各ONU20−1〜20−nに送信待ちのデータ量を申告させ、該申告に基づき、各ONU20−1〜20−nの上り信号送信タイミングと送出可能なデータ量を指示する。(3)各ONU20がOLT10から指示されたタイミングでデータを送信すると、これらの信号が集線光ファイバ70上で時間分割多重されOLT10に到達する。(4)OLT10は各ONU20に指示したタイミングを知っているので、多重化された信号から各ONU20の信号を識別して受信処理する。
EB10000は、OLT10からONU20へ送信される光信号とONU20からOLT10へ送信される光信号とを中継するための光中継機能10010を備える。この光中継機能10010としては、光アンプで受信した信号を直接増幅して送信する構成と、受信した光信号を一旦電気信号に戻し信号内容を確認し、終端及びフレーム挿入を含む必要な処理を行った後、再度光信号に変換して送出する構成とを備え、送受信する信号の性質に応じて使い分けるのが一般的な構成である。以下で説明する本発明のPON40で用いるEB10000では、従来のOLTが備えたレンジング機能の一部を実行する信号処理(制御処理)が必要なので、受信した光信号(制御信号)を一旦電気信号に変換して処理(中継)する。
本発明のPON40では、OLT10が従来実施していたレンジングの一部をEB10000が実行する。これは、先に説明したように、EB10000によって延長されたPON区間80の制御信号処理時間の増加を防止するためである。具体的には、図1に示すように、本発明のPON40では、先ずOLT10とEB10000の区間100におけるレンジング(距離測定)を行い、更にEB10000と各ONU20との区間101−1〜101−nにおけるレンジングを実施する。それぞれのレンジングの結果は、OLT10及びEB10000に備えるレンジングデータベース500及び510に格納して以降のDBA他のPON40の運用に供する構成としたものである。
詳細は図5を用いて別途説明するが、先ずPON40を立上げる際にOLT10が第1のレンジングによりEB10000までの往復遅延時間(RTD:Round Trip Delay)を測定し、測定結果に基づき等価遅延(EqD:Equivalent Delay)の値を決定してしまう。この算出したEqDを以降EqD1とする。EqD1は、OLT10のEqD情報データベース(以下、データベースをDBと略記する)500に記憶される。この第1のレンジングは、ITU−T勧告G.984.3で規定されたレンジング方法を用いれば良い。このEqD1の値は、集線光ファイバ70−1の特性変動でもないと略一定で各ONU20に対して共通の値なので、最初に1回測定してしまえば良い。すなわち、OLT10からEB10000までの距離測定を最初に行ってしまえば、以降OLT10から各ONU20迄のレンジングは実施する必要がなくなるので、先に述べたようなPON区間80の延長に伴いOLTが該ONUからのレンジングの応答を待つために全ONUの通信を中断する時間の増加が防げる。
第1のレンジングが終了すると、EB10000は、第2のレンジング処理により、ONU20−1〜20−nに対してEB10000からのRTDを測定する。EB10000は、このRTDから個々のONU20−1〜20−nに対し設定すべき等価遅延量EqD2を算出し、決定したEqD2値を、EqD2情報DB510に記憶する。EqD2は、既存のPONのEqDと同様に、EB10000に対する個々のONU20からの応答時間がシステム内で同一となるよう設定する。このEqD2と先に求めたEqD1の合算値がOLT10と各ONU20とに設定されるEqDになる。このEB10000が実施する第2のレンジングも、ITU−T勧告G.984.3で規定されたレンジング方法を用いれば良い。即ち、レンジングに関して、EB10000はOLT10の代理として動作する。EB10000の設置位置にも依存するが、EB10000から各ONU20へ第2のレンジングを行う構成とすれば、集線光ファイバ70−2と各支線光ファイバ71の合計長を20km以内として、EB10000を導入して集線光ファイバ70−1を延長することでPON区間80の距離を20km以上とする延長を図る構成であっても、PON40の運用中は従来のPONと同じ第2のレンジングだけ実施すれば良い事になり、先に述べたようなPON区間80の延長に伴いOLTが該ONUからのレンジングの応答を待つために全ONUの通信を中断する時間の増加が防げる。
OLT10のEqD情報DB500には、EqD1情報とEqD2情報とPON区間80のRTDを保持しておき、OLT10が各ONU20に対して帯域割当てを行った際に、対応する各ONU20からの上り信号を正しく受信できるようにしておく。
図2は、PONのOLTの構成例を示すブロック構成図である。
下りの信号は、アクセス網90からSNI(Service Network Interface)インタフェースであるIF1100−1〜1100−nに入力される。尚、アクセス網90にはパケット網が多く用いられ、IFに10/100Mbps若しくは1Gbpsのイーサネットインタフェースが用いられることが多いが、本発明ではこの構成に限定されるものではない。受信信号(以下信号をデータもしくはパケットと称することもある)は、下りフレーム処理部1210に転送されパケットのヘッダ情報が解析される。具体的にはパケットのヘッダに含まれる宛先情報、送信元情報、経路情報を含むフロー識別情報に基づいて、当該受信パケットを転送すべき先のONU20を決定する。この宛先情報の決定と供に、必要に応じて、当該受信パケットのヘッダ情報の変換や付与が行われる。尚、下りフレーム処理部1210には、上記宛先決定やヘッダ情報の変換及び付与を含む処理を決定するための下り経路情報DB1211を備え、受信パケットのヘッダ情報として含まれる一つもしくは複数のパラメータをトリガとしてDB1211を参照することで上記処理を行う構成とした。
下りフレーム処理部1210は、更に、下りフレーム処理部1210内部で決定されたヘッダ処理内容に従い、当該受信パケットをPON区間80伝送用のフレームフォーマットに変更するフレーム生成機能も備える。一例として、イーサネットの受信パケットをGPONのPON区間80に送信する場合の具体的な処理は、次のようになる。(1)イーサネットパケットのヘッダ情報を抽出し、(2)該ヘッダ情報をトリガとして下りフレーム処理部1210内の下り経路情報DB1211を検索することにより、受信パケットに対するVLANタグ処理(変換、削除、透過、付与)及びその転送先を決定する。(3)更に、フレーム生成機能にて該当する転送先ONUに設定したPort‐IDを含むGEMヘッダを生成し、(4)当該GEMヘッダを受信パケットに付与して、イーサネットパケットをGEMフレームとしてカプセリングする。
イーサネットパケットをカプセリングしたGEMフレームは、下りフレーム処理部1210から読み出だされ、E/O処理部1310で電気信号から光信号に変換され、波長多重分離器(WDM)1500と集線光ファイバ70−1を介して、ONU20へ送信される。
PON区間80では、各ONU20がOLT10の指定したタイミングで上り信号を送信する。上り信号は、ONU20毎に間歇的に送信されるバースト状の信号で、各ONU20からの上り信号が集線光ファイバ70上で時間分割多重されEB10000を介してOLT10で受信される。集線光ファイバ70−1、WDM1500を介して受信した光信号は、受信した各バースト信号の先頭に付与されるプリアンブル及びデリミタと呼ばれるパターンに基づきビット同期及びフレーム同期(PON区間80又は100のフレーム終端)処理される。これらの処理は、光信号を電気信号に変換するO/E処理部1320で実施される。
O/E処理部1320で終端処理された上り信号は、上りフレーム処理部1410に転送され、先に説明した下り信号の処理手順と略逆の手順で処理される。具体的には、GEMフレームは、上りフレーム処理部1410で終端され、イーサネットパケットに戻される。また、上りフレーム処理部1410には上り経路情報DB1411が備えられ、下り信号と同様に、このDBを参照することでヘッダ情報の解析や変換が行われ、パケットの転送先が決定される。また、上りフレーム処理部1410には、下りフレーム処理部1210と同様に、当該受信パケットを上位のアクセス網90で送受信するパケットにフレームフォーマットを変更するフレーム生成機能も備える。一例を挙げれば、下り信号とは逆に、PON区間80を伝送するGEMフレームをイーサネットパケットに変換する機能である。イーサネットパケットは、上りフレーム処理部1410から読み出だされ、IF1100−1〜1100−nを介してL2スイッチやルータを備えたアクセス網90に送信される。
本発明のOLT10に備えたPON制御部1000は、各ONU20の設定・管理等の制御他、EB10000も含めたPON40全体の制御を行う部分であり、レンジング1/DBA処理部1070及びONU管理部1060を含む構成とした。
レンジング1/DBA処理部1070は、第1のレンジングであるOLT10とEB10000との間のRTDを測定してEqD1を求めて記憶する機能を備える。また、EB10000と各ONU20との間で実施する第2のレンジングによって得られたEqD2も記憶する。このEqD1とEqD2の合算値がOLT10から各ONU20の伝送距離(遅延時間)に相当する情報であり、EqD情報DB1072に記憶され、PON運用中のDBA処理に利用される。また、DBA情報DB1071は、DBA処理に必要な情報を記憶するデータベースであり、各ONU20へ上り信号の送信を許可するデータ量(帯域)や送信タイミング(フレーム上の位置情報や時刻・タイミング)を記憶する。
上り信号の同期処理において受信した信号の先頭位置が確認されると、OLT10のPON制御部1000は、レンジング1/DBA処理部1070内のDBA情報DB1071を参照して、受信した信号の先頭位置と受信予定位置(予定時刻)と比較する。ここで、OLT10側で管理する上り信号の受信予測位置(時刻)とずれていれば、PON制御部1000でEqD修正値を求め、下りフレーム処理部1210を介して当該ONU20に対してEqD設定の変更を通知する。尚、先にも述べたように、OLT10の配下にある各ONU20のEqD情報は、EB10000を仲介としてPON制御部1000内のEqD情報DB1072としても保持される。従って、ONU20に対するEqD修正処理では、EB10000のEqD2情報DBの更新も要求する。
ONU管理部1060は、各ONU20やEB10000からの信号受信状況及び受信フレームに含まれるヘッダ情報などに基づいて、OLT10配下に接続されるONU20−1〜20−nとEB10000を管理・制御する機能を備える。具体的には、以下の制御パラメータを各データベースDBに備える。本実施例では、ONU毎に予め割当てられているSerial Number (SN)をSNDB1062に記憶し、OLT10が個々のONU20に割当てるONU−ID,Alloc−ID,Port−IDをONU/Alloc/Port−ID DB1061に記憶する構成とした。もちろん、これらのパラメータは一例であって、他にもPONの制御に必要なパラメータを記憶させても良いし、DBを1つに纏めたり、3個以上に細分化する構成としても構わない。
図3は、PONのONUの構成例を示すブロック構成図である。
ONU20が収容する端末(図示せず)からPONへの上りの信号は、加入者網50からUNI(User Network Interface)インタフェースであるIF2100−1〜2100−nに入力される。尚、加入者50にもLANやパケット網が用いられることが多く、IFには、10/100Mbps若しくは1Gbpsのイーサネットインタフェースが用いられることが多いが、本発明ではこの構成に限定されるものではない。
ONU20での下り信号および上り信号を処理する構成と動作は、それぞれ図2を用いて説明したOLT10の上り信号および下り信号処理の構成と動作に略同様である。すなわち、下り信号については、下り経路情報DB2211を備えた下りフレーム処理部2210がPON区間80から受信したGEMフレームをイーサネットパケットに変換してONU20の端末に出力し、上り信号については、上り経路情報DB2411を備えた上りフレーム処理部2410が端末から受信したイーサネットパケットをGEMフレームに変換してOLT10に向かって出力するものである。
PON制御部2000は、上り送信制御部2070及びONU制御部2060を含む構成とした。
上り送信制御部2070には、第2のレンジングに基づきEB10000から通知されたEqD2の値を記憶するEqD2情報DB2072とOLT10が実施したDBAの結果(信号送信開始位置/時刻・タイミングや送信量等)を記憶するDBA情報DB2071を備える。これらのデータベースに記憶された値は、OLT10やEB10000によって送られる上り通信の送信指示に従い、正しいタイミング(OLT10で他のONU20と信号が重ならないように時間分割多重させるタイミング)で情報を送出する際の基準情報として上りフレーム処理部2410に参照され、フレーム処理部2410から上り信号がOLT10に向け送信される。
ONU制御部2060は、OLT10若しくはEB10000からの指示に従い、ONU20を立上げる場合のパラメータ設定や通信状態管理に用いる機能ブロックで、例えば、受信フレームの解析、装置の保守管理情報の管理、OLT10あるいはEB10000への通信(返信)要否判定などが本ブロックの処理に含まれる。
図4は、本発明のPONに備えたEBの構成例を示す機能ブロック図である。
本実施例では、EB10000をPON区間80の集線光ファイバ70に挿入する。すなわち、OLT10とEB10000を集線光ファイバ70−1で接続し、EB10000とスプリッタ30とを集線光ファイバ70−2によって接続する構成で、集線光ファイバ70−1を延長してOLT10から遠隔地にあるONU20も収容するようにしても、PONとしての性能を維持するためにEB10000を入れる構成である。
EB10000は、下り信号受信用にO/E処理部11110、下り信号送出用にE/O処理部11130を備える。また、上り信号受信用にO/E処理部12210、送出用のE/O処理部12230を備える。WDM11500−1及びWDM11500−2を介して、それぞれ下り信号及び上り信号を受信した場合、OLT10及びONU20と同様にフレームを同期して終端する。ここで、光信号は一旦電気信号に変換されるので、下りフレーム処理部11120、上りフレーム処理部12220、及びEB制御部11000において、受信したフレームのヘッダ処理やフレーム情報の確認が可能となる。また、OLT10及びONU20と同様に、EB制御部11000内で生成した情報をフレームとして、下りフレーム制御部11120或いは上りフレーム制御部12220を通じてOLT10やONU20に送出できる構成とした。尚、EB10000から送出する情報の一例としては、ONU20が新たに接続された際に当該ONU20に対してレンジングを行うために送信するレンジング応答要求メッセージがある。一方、EB10000で終端する情報の一例としては、該レンジング応答要求に対するONU20からの応答メッセージが挙げられる。
EB制御部11000は、レンジング制御部11050と、ONU管理部11060と、上り信号制御部11070を備える。
レンジング制御部11050は、EB10000とONU20との区間101−1〜101−nについて実施する第2のレンジングを行う部分で、レンジングで測定した各ONU20に対するRTDと、該RTDから求めたEqD2を格納するためEqD2情報DB11051を備える。また、先に説明したように、OLT10で受信した信号の先頭位置と受信予定位置(予定時刻)とがずれていれば、当該ONU20に対してEqD2設定の変更を通知してくるので、この通知に基づきONU20のEqD2情報を変更する機能を備える。具体的には、OLT10からのEqD2修正指示を下りフレーム処理部11120が受信すると、当該指示をE/O処理部11130経由で当該ONU20へ転送する一方、レンジング制御部11050は、該指示のEqD2変更情報に基づき該当ONUのEqD2情報DBの内容を更新する。尚、OLT10で検出したずれが所定値以内であれば上記方法でOLT10からONU20(及びEB10000)に対してEqD2DBの修正を指示するが、所定値を超えた場合には、OLT10からEB10000に、該ONU20に対する再度レンジング処理を指示する。
ONU管理部11060には、レンジング制御部11050により距離測定すべきONU20を把握するためのONU識別情報を保持する。具体的には、接続されているONU20が有するSN情報、及び当該ONU20に対してOLT10によって割当てられるONU−IDを対応付けるSN/ONU−ID情報DB11061を備える。
上り送信制御部11070では、OLT10から通知されるEqD1情報を保持するためのEqD1情報DB11071を備える。
EB10000の重要な動作は、集線光ファイバ70−2側から受信した上り信号を、一定の装置内遅延を経て集線光ファイバ70−1を介してOLT10側へ送出することである。EqD1情報DB11071は、例えばOLT10からEB10000に対する応答を要求する制御メッセージを送信する場合に、EB10000自身のOLT10への応答基準時刻(装置内待機時間)を参照するために用いる。O/E処理部12210では常時信号同期及びフレーム取り込みを実施している。
図5は、本発明のPONの動作例を示す動作シーケンス図で、OLT10がEB10000を介してONU20を立上げる際の処理、およびそれ以降の通常運用状態における動作処理の一例を示した図である。
EB10000を立上げた段階において、OLT10とEB10000との間の距離測定(RTD測定)を第1のレンジングで実施する(図5:立上げ処理0(S2000))。この処理は、ITU−T勧告G.984.3に記載のレンジング手順で実施すれば良い。RTDから求めた等価遅延量をEqD1としてOLT10のレンジング1/DBA制御部1070のEqD情報DB1072に記憶する。
OLT10とEB10000との間の距離測定が終わり、これらの間の通信が可能となると、ITU−T勧告G.984.3に従ったONU立上げ方法に基づき、以下のようにONU20−1〜ONU20−nの立上げ処理を開始する。
OLT10では、当該OLT10に新たに接続されてくるONU20を見つけるために、ONU20が最大収容数に達する迄、適当な時間間隔でPLOAMメッセージを生成して(S201)、このメッセージをONU20へ送信する(S202)。この下りのPLOAMメッセージには、該メッセージを受信したONU20が、上り信号でOLT10への接続を要求するメッセージを送出する際に用いるべきヘッダ情報(特定パターン)が含まれる。具体的には、PLOAMメッセージはG―PON下り信号のヘッダ部(図8参照)に挿入されて送信される。EB10000では、OLT10からの下り信号がONU20宛ての制御フレームであるので、このPLOAMメッセージを転送処理して(S203)各ONU20に送信する(S204)。具体的には、全ONUに同報され、信号が必要なONUがこれを受信処理する。
新たにOLT10に接続されたONU20−1は、電源を投入すると(S200)、OLT10からEB10000を介して送信される下り信号(S204)の受信を開始する。ONU20−1のO/E処理部2310が光信号の同期を完了すると、下りフレーム処理部2210においてフレーム内容を検知する。ONU20−1は、下り信号S204に含まれるヘッダ情報からOLT10への接続を要求するメッセージを送出する際に用いるべきヘッダ情報(特定パターン)を抽出して(S205)、接続要求メッセージをOLT10に向かって送信する(S206)。EB10000では、ONU20からの上り信号がOLT10宛ての制御フレームであるので、この接続要求メッセージを転送処理して(S207)OLT10に送信する(S208)。
ITU−T勧告G.984.3で規定されたONU立上げ方法を用いても、本発明のEB10000は、OLT10とONU20との間で送受信される制御信号を転送するだけである。すなわち、ONU20から見るとOLT10がEB10000の位置に来ただけに見え、既存のPONと同じ制御で同じ性能を維持できることになる。尚、後述するが、OLT10やONU20からEB10000を管理制御するメッセージも存在するので、EB10000には、OLT10とONU20との間を転送する信号か、あるいは、EB自体で処理する信号かを識別する機能を備え、これらを受信したEB10000は別途必要な処理を行って応答を返す構成とした。この識別には、PON区間を送受信する信号のヘッダや上記PLOAMと称される勧告で規定された信号(信号挿入領域)を用いれば良い。
OLT10は、ONU制御部1060が上記新規ONU20からの上り信号を受信し、該受信信号に下りPLOAMメッセージで指示した特定の信号パターンが含まれていれば、新規に1つのONU20が正しく接続されたと認識して(S209)、該当するONU20−1の立上げを開始する。具体的には、当該ONU20−1の立上げ処理を開始するようEB10000へ指示するため、立上げ開始通知メッセージをEB10000に対して送信する(S210)。このメッセージは、ONU制御部1060の指示に従い、フレーム生成部1220で成され、EB10000へ送出される。
EB10000は、OLT10から立上げ開始通知S210を受信すると(S211)、以下のように、ITU−T勧告G.984.3で規定されたOLT10の如く動作してONU20−1の立上げ処理を開始する。
立上げ処理1(S212:詳細後述)では、レンジング(第2のレンジング)によりONU20−1迄の距離測定(RTD測定)を行い、ONU20のEB10000への応答タイミングが既に接続されているONUの応答時刻と一致するように基準時刻(論理的距離)を調整する。ここで、調整された基準応答時刻に基づきEqD2を算出する。EqD2をONU20−1に通知すると、ONU20−1は、これ以降、EqD2に従うタイミングで信号出力を行う。EqD2の通知並びにONU20−1内レジスタへの設定完了をもって、ONU20−1は、運用状態S214に入る。OLT10では、立上げ処理2(S213:詳細後述)の完了を契機としてONU20−1に対して運用状態に移る(S215)。
ONU20−1が運用状態へ移行した後は、勧告に従った通信を実行する。すなわち、ONU20−1から上り信号の帯域要求(具体的には、ONU20−1内の送信キュー内のデータ蓄積状況通知)S216を送出し、該送信要求をEB10000が中継して、OLT10が帯域要求S217を受信する。これに応じてOLT10がDBAで個々のONU20に対する上り信号の通信帯域割当を決定する(S218)。算出した帯域割当情報は、下り信号のヘッダ部分に含まれるBWmap(Bandwidth Map)フィールド(図示せず)に挿入してONU20へ送出する(S219)。実際には、この帯域割当情報S219はEB10000で受信される。EB10000は、この下り信号をONU20−1向け帯域割当て信号S220として転送する。これを受信したONU20−1は、指示されたタイミングと送信量に従い、上り信号S221を送信する。本信号はEB10000で転送され上り信号S222としてOLT10へ到達する。
尚、ONU20からの上り帯域の要求(S216、S217)、OLT10におけるDBA処理S218、ONU20への上り信号用帯域通知(S219,S220)を含む上記の一連の処理は、周期的に繰り返される。毎周期のDBA処理に従い、ONU20から受信する光信号について、OLT10では、各EqD情報DB1072に記憶した値との比較を行い、上り信号(上りフレーム)毎にその受信タイミングを確認する。ONU20では、帯域割当てが行われた場合、即ちデータ送信許可を得た場合に、該送信指示に従い上り信号を送出する(S218)。もし、受信タイミングにずれがあれば、先に説明したようなEqDの値修正やレンジングのやり直しを行う。
図6も、本発明のPONの詳細動作例を示す動作シーケンス図で、図5で示した立上げ処理1(S212)及び立上げ処理2(S213)の詳細な処理例を示す図である。同図の破線で囲ったS212とS213内部以外の各ステップは、図5で説明したステップと同じである。
ITU−T勧告G.984.3の規定では、OLT10がONU20−1の新規接続を検知すると、ONU20−1に対してSerial Number(SN)を確認するための要求フレームを送出する。本実施例では、OLT10がこの要求フレームの送信開始を指示する立上げ開始通知メッセージを送信する(S210)。このメッセージS210として、G.984.3に規定されるPLOAMメッセージの中のVendor Specific OAMメッセージ(VSMメッセージ)を利用する。もちろん、このVSMメッセージに限定されるわけでなく、他のメッセージを用いても良い。また、後でも説明するように、EB10000が存在しても勧告で規定されたONU20に送信するフレームを送信し、EB10000がステップ211の受信処理でこのフレームをONU20−1に転送する構成であっても構わない。
図5で示した立上げ処理1(S212)は、ステップS2121〜S2125、S2200及びS2300に分解される。また、立上げ処理2(S213)は、ステップS2131〜S2133、S2200及びS2300に分解される。
EB10000は、OLT10から立上げ信号S210を受信すると、該メッセージを終端し、新規にEB10000が発行するSN要求信号S2121を送出する。これに対してONU20−1は自装置に設定されているSNを含むSN通知信号S2122をEB10000に対して送出する。SNを受信した後、EB10000とOLT10の区間100においてSN確認処理S2131を実施する。
ONU20−1から受信したSNが正しいことが確認できると、OLT10は、該ONU20−1に割当てる識別子としてONU−IDを発行する。このONU−IDは、下り通信メッセージに挿入されてEB10000へ通知され(S2132)、更にEB10000よりONU20−1へ転送される(S2123)。また、このONU−IDはEB10000のONU管理部11060のDB11061に記憶され(S2200)、以降の運用に用いられる。これは、ONU識別子とEqD2情報と対応付けるため、及び既存のPLOAMフレームを使用するためにONU−IDをパラメータとしたフレームを設定する必要があるために記憶するものである。
EB10000内のONU管理部11060で新規ONU20−1とONU−IDとの対応関係を確認できた段階で、第2のレンジング、具体的には該ONU20−1とEB10000とのRTD測定を実施する(S2124)。本処理は、EB10000のレンジング2部11050が、ITU−T勧告G.984.3で規定したOLT10のレンジングと同様の動作を行えば良い。EB10000では、RTD測定結果から該ONU20に対し割当てるべきEqD2を決定した後、該EqD2の値をレンジング制御部11050のEqD2DB12510に記憶する(S2300)とともに、この値をONU20−1に通知する(S2125)。ONU20−1では、このEqD2の値をEqD2情報DB2072に記憶させ、以降の信号送受信等の運用に用いる。またDB11051へのEqD2の記憶が完了した後、EB10000は、OLT10に該ONU20−1に関してレンジング処理が完了したことを通知するレンジング完了通知を送信する(S2133)。
以上の手順が進むと、ONU20−1が運用状態S214になり、OLT10も運用開始状態S215に移行する。このようにPON区間80の両端におけるOLT10とONU20の状態遷移を同期するため、またONU20−1の接続状態を管理するため、OLT10はEB10000からONU20−1の立上げ完了通知(S213)を取得する必要がある。この通知として上述したレンジング完了通知S2133が使用される。この通知に関しても、立上げ開始通知S210と同様に、PLOAMメッセージの一種であるVSMメッセージを利用可能である。
EB10000からレンジング完了通知S2133によってONU20の接続管理に関する通知も受信すると、OLT10のONU制御部1060は、該メッセージの内容をチェックして、ONU20−1の接続完了通知であれば、該ONU20−1の管理に関する情報をONU制御部1060のONU管理データベース1061に登録し、該ONU20の運用状態に移行する。
上記手順で示したように、本発明のPONでは、ONU20−1〜20−nの接続状況を管理するためのSN、ONU−IDなどのパラメータはOLT10が管理しており、EB10000は、ONU20立上げ手順のレンジング部分のみを担当する。これにより、既存技術と同様に、OLT10でのONU20集中管理機能を保持しつつ、PON区間80を拡張した場合でも、第2のレンジングを実施する区間がOLTとONU間でなくEBとONUとの間になるので、PON40の立上げ時間の一部(レンジング処理時間中のメッセージ送受信待ち時間)を短縮して(増やさずに)運用出来るようになる。
尚、本発明のPON40では、上述したONU20の立上げ手順以外にもいくつかの立上げ手順を採用することが出来る。一例を挙げれば、先にも述べたように、ONU10からの立上げ開始通知S210に、ITU−T勧告G.984.3で規定したSN要求メッセージを用いる方法である。この場合、EB10000は、受信した立上げ開始処理通知(S210)の信号をONU20に転送(透過)するだけである(S2121)。本ケースでは、上述した手順より、VSMメッセージの定義が一つ少なく済む上、OLT10での立上げ開始通知S210の生成・送信とEB10000での該通知の受信処理の時間が更に短縮出来る。
また、PONシステム40の立上げ処理0(S2000)実行の際に、予めOLT10が管理しているONU−IDをEB10000に全て通知してしまう方法も実施できる。この場合、SNの照合結果に応じたONU−IDの決定はEB10000が実行する構成になる。そして、ONU−IDの通知(S2132)は、通知の向きが逆になり、EB10000で決定したONU−IDの通知を受信したOLT10がDB1061にこの値を記憶する構成となる。本ケースでは、OLT10からのONU−ID通知がなくなる分、立上げ処理1(S212)と立上げ処理2(S213)の処理時間が短縮出来る。尚、ONU−IDのOLT10への通知は、立上げ処理2(S213)が終了するまでに行われていれば良く、レンジング完了通知(S2133)で通知すれば良い。
更に、PONシステム40の立上げ処理0(S2000)実行の際に、予めOLT10が管理しているSNもEB10000に全て通知してしまう方法も実施できる。本ケースは、図6の立上げ開始通知(S210)以降の立上げ動作をEB10000に委譲する構成となり、立上げ手順2(S213)を実質なくしてレンジング完了通知(S2133)だけですます構成である。本ケースであればEBB10000とOLT10との制御信号送受信と確認動作が省略されるので立上げ処理時間が更に短縮できる。但し、最初にOLT10からEB10000に送信してしまうONU−IDやSNのデータの信頼性が厳しく要求される。
図7は、本発明のEBの動作例を示す動作フロー図で、ONUとのレンジング処理に関する動作フロー図である。
レンジングは、ITU−T勧告G.984.3で規定されたレンジングを用いるもので、図6のONU−ID通知処理S2123によりONU20に対してONU−IDが割当てられるとレンジングS2124を行う(F801)。
レンジングでは、EB10000と新規に接続を要求したONU20−1との間のRTDを測定し、その値に基づき既存のONU20に設定されているEqD2を参照して、新規に接続を要求したONU20−1からの信号が他のONU20からの信号と同様に遅延する様にEqD2を算出・記憶する(F802)他、このEqD2をONU20−1に通知する(図6:S2125,2300)。
ONU20−1へのEqD2の通知完了でONU立上げ処理の完了と見做し、上記EqD2をONU20に通知してOLT10へ立上げ処理の完了を通知する(F803、図6:S2133)。
図8は、PONで使用する下り信号の一部の構成例を示す信号構成図である。
以下、OLT10がEB10000に送信するONU20の立上げ開始通知(図6:S210)を例に構成を説明する。この信号は、G―PONのPLOAMフレームを基本としたもので、全ONU20−1〜20−nで受信される下りフレームのヘッダに含まれるPLOAMフィールド1913を用いる。このフィールドは、ONU20の立上げ(ONU−IDやAlloc−ID割当等)や運用中の距離や障害監視等の制御にも使用する。
本来の勧告では、信号の宛先ONUを示すONU−IDを入れる領域19131に、本発明のPONでは、立上げ開始メッセージの宛先がEB10000になるので、EB10000を宛先として指示するID(EB−ID)を規定して入力する。そして、本フレームがPONシステムの運用者が勧告の規定とは独自に定めたメッセージ(VSM)であることを示すMessage−ID19132を含める構成である。また、この信号には、データフィールド19130と誤り検出に使用するCRCフィールド19136が続く構成である。データフィールド19130のメッセージ種別19133には、立上げ開始メッセージであることを示す識別子を挿入する。データ格納部19135は、本実施例で使用しないので適当な固定パターンを決めて挿入しておけば良い。また、その他フラグ等19134には、本メッセージの有効性を示すフラグや本メッセージのデータフィールド部19130の誤り検出用パターンを入れておく。
他にも、図6のSN照合処理S2131では、EB10000からOLT10へ本フォーマットに従ったメッセージを送付する。具体的には、メッセージ種別19133にSN確認要求であることを示す識別子、データフィールド19130に立上げ対象のONU20−1を示すためのSN番号を示す識別子19133を挿入し、その他フラグフィールドに立上げに必要な関連制御パラメータ19134からなるデータフィールド19135を入れる構成とした。
図9は、PONで使用する上り信号の一部の構成例を示す信号構成図である。
以下、EB10000がOLT10に送信するONU20−1の立上げ完了通知(図6:S2133)を例に構成を説明する。この信号も、図8と同様に、G―PONのPLOAMフレームを基本としたもので、、PLOAMフィールドを利用する。
上り通信では、125μ秒間に複数のONUから送信されたフレームが存在する。フレームのヘッダ2210には、PLOu(Physical Layer Overhead Upstream)2211、PLOAMu2212、PLSu(Power leveling Sequence Upstream)2213、DBRu(Dynamic Bandwidth Report Upstream)2214が含まれる。PLOu2211には、フレーム同期のためのプリアンブルやデリミタ用の信号パターンが含まれる。PLOAMu2212は、下りフレームのPLOAMに対応するものであって既存勧告ではONU20運用のための制御を行うメッセージとして定義されているが、本実施例での信号送信元がEB10000であるため、図8の下り信号と同様に、送信元ONU識別子を入れる領域22121に送信元EB10000の識別子(以下、EB‐IDと称する)を規定して入れる構成である。尚、PLOAMu2212には、図8の下り信号と同様に、EB‐ID22121、メッセージ識別子MSG‐ID22122、メッセージ本体(データ格納部)22120、誤り検知及び訂正用のCRC22124が含まれる。PLSu2213は、EB10000側の送出パワーをモニタし、調整要否を判断する際に利用される。
本発明のように、PON区間80の距離拡張やONU収容数増加のためにEB10000を導入したPON40であっても、レンジングを、EB10000を境界とした2つの処理(OLT10とEB10000との間のレンジングと、EB10000とONU20との間のレンジング)に分けて実施せずに、適当な制御信号をEB10000で転送(通過)させることにより、従来のPONのように、OLT10とONU20との間でレンジングを実行することは可能である。しかし、先に説明したように、OLTが該ONUからのレンジングの応答を待つために、既に接続され運用に供されている全ONUが通信を中断する必要があり、EBの挿入に伴い予想される待ち時間が長くなるため各ONUの通信中断時間が増えてしまう。すなわち、運用中のONUでの通信中断時間が増加して、リアルタイム性が要求される信号の品質に影響が出たり、全ONUへのDBA処理が複雑になったり、割当が減ったり、信号送信の待ち時間が増えたりしてしまう。以下では、図面を用いてEB10000を導入した場合に既存のレンジングを用いる状況を仮定しながら、本発明のPONのレンジング動作を示してその効果を説明する。
図10は、本発明のPONの動作例を示す説明図で、OLTからONUへ直接レンジングを行った場合の動作を仮定してレンジングの処理時間を説明する説明図である。
OLT10が新規に接続要求したONU20−1を認識すると(S209、図5および図6と同様)、時刻6000で該ONU20−1に対するレンジングを開始する。先ずOLT10は、ONU20−1からのレンジングの応答を待つために、既運用中の全ONU20に対してOLTへの信号送信を中断させるONU haltメッセージ6100を送出開始する。このメッセージは、EB10000を通過してONU20へ到達する信号で、時刻6000から125μ秒周期でPON区間80の距離に応じて必要な数だけ全ONUに送信されるものである。従来のPONであれば、PON区間80の距離が最大20kmに制限されていたので、最大250μ秒だけ既存ONU20からの信号送信を中断すれば新規ONU20−1からのレンジングの応答が得られたが、EB10000導入でPON区間80距離が増加すると、OLT10からONU20へ送信した信号およびその応答信号のRTDが長くなるので、ONU20−1からのレンジング応答を待つ時間、すなわち、既存ONU20がOLT10への信号送信を中断する時間を長く設定する必要が生じる。例えば、同図で示したように、集線光ファイバ70へのEB10000の導入でOLT10からEB10000までの距離を80km延長してPON区間80の距離を5倍の100kmに伸ばせば、最大1m秒と他にもEB10000での信号転送(通過)処理時間を合わせた時間だけ信号送信を中断することになり、リアルタイム性を要求される信号の品質に影響が出ることも起こりえる。ONU20は、OLT10より設定されるEqD6200−nに従って返答までの待ち時間をとった後に上り信号を発信するので、ONU20−nが上り信号を発信できない時間帯は、時刻6901と6902との幅6900であるが、当該上り信号をOLT10が実際に受信出来ない時間帯は時刻6501と6502との幅6500となる。すなわち、EBで伝送距離の延長を行ったPONにおいてOLTからONUへ直接レンジングを行った場合、従来のPONより延長した距離に略比例した信号送信中断時間が発生してしまう。
図11も本発明のPONの動作例を示す説明図で、EBを境界としてレンジング処理を2つに分けて実施する本発明のPONのレンジング処理時間を説明する説明図である。
本発明のPON40では、先に説明したように、PON40の立上げ時にOLT10とEB10000との遅延値を決定してしまうものである。具体的には、同図と図5および図6のS2000で示した立上げ処理0において全ONU20(あるいはPON40)で共通な集線光ファイバ70−1の距離(本実施例では80km)やRTDとEqD1を測定・決定・記憶してしまう。そして、以降の処理で、EB10000から本実施例であれば残りの最大20kmの距離内に存在する各ONU20のRTDを測定してEqD2を決めてしまうことでPON40の運用が可能となる。
立上げ処理S2000の終了後、OLT10が新規に接続要求したONU20−1を認識すると(S209、図5および図6と同様)、時刻6000で該ONU20−1に対するレンジングを開始する。具体的には、時刻6000でOLT10がEB10000に対し立上げ開始通知を送信して(S210)、EB10000がこの通知を受信する(S211)。そこでEB10000は、立上げ処理1(図5および図6のS212)を開始して新規に接続要求したONU20−1に対するレンジング(S2124、図6と同様)を実行する。
具体的には、EB10000がONU20−1からのレンジングの応答を待つために、既運用中の全ONU20に対してOLT10(EB10000)への信号送信を中断させるONU haltメッセージ7100を送出開始する。本メッセージは、OLT10からのメッセージ6100と同じく125μ秒周期でEB10000からONU20迄の最大距離に応じて必要な数だけ全ONUに送信されるもので、本実施例ではEB10000から各ONU20迄の集線光ファイバ70−2と支線光ファイバ71との合計値が最大20kmと設定してあるので、最大250μ秒だけ既存ONU20からの信号送信を中断すれば新規ONU20−1からのレンジングの応答がEB10000で得られようになる。すなわち、本発明のPON40によれば、EB10000の導入によってPON区間80の距離が伸びても、レンジング処理をEB10000を境界に分割して処理することにより、レンジングによるONUからの信号中断時間がEB10000からONU20迄の最大距離だけに依存する構成としたので、この最大距離を短く保った上でPON区間80の距離を伸ばしても新規ONUの導入に伴う既存ONUの信号送信中断時間の増加を防ぐことが可能となるものである。
尚、EB10000でのONU haltメッセージ7100の送出回数(ONUの信号送信中断時間)の設定は、EB10000から各ONU20迄の集線光ファイバ70−2と支線光ファイバ71との合計値の最大値が予めシステム設計において決められているので、従来のPONのOLTで設定していた方法と同様にEB10000に設定する構成とした(図示せず)。すなわち、仮にEB10000からONU20まで最大40km離れる構成であれば、ONU haltメッセージ7100を4回送信すれば良い。
ONU20は、EqD7200−nに従って返答までの待ち時間をとった後に上り信号を発信するので、ONU20−nが上り信号を発信できない時間帯は、時刻7901と7902との幅7900であるが、OLT10が実際に上り信号を受信できない時間帯は時刻7501と7502との幅7500となる。図10と図11を比較すると明らかであるが、ONU20に近い位置にあるEB10000からレンジングを行うことにより、他のONU20に要求する通信中断時間を低減することが可能となり、リアルタイム性を要求される信号の品質劣化が防げることになる。
以上で説明したように、本発明のPON40によれば、ONU20の管理に必要なパラメータの一部をOLT10からEB10000に移動して実行する構成になっているので、PONの運用効率を向上できる。具体的には、新規接続されたONUの立上げ時間を短縮できることになる。また、OLT10における処理の負荷を低減できるのでDBA処理の高速化・効率化が図れる等、信号送受信能力の向上も期待できる。
以下では、本発明のPONの別実施形態として、EB10000の挿入位置を変えた
例を説明する。図12は、PONを用いた光アクセス網の別の構成例を示す網構成図で、PONの支線光ファイバにEBを挿入した場合の光アクセス網の構成例を示している。
光アクセス網2は、前述した実施例で示した光アクセス網1と同様に、OLT10、複数個のONU20−1〜20−n、光スプリッタ30、集線光ファイバ70(70−0、70−1及び70−2)、複数本の支線光ファイバ71−1〜71−nからなるPON区間81と、PON区間1000の中間に設置されるEB10000とで構成されるPON41で構成した。尚、同図では、OLT10に接続されるアクセス網90や各ONU20に接続される加入者網50の構成はアクセス網1と同様なので省略した。
本実施例では、EB10000とOLT10との間に光スプリッタ30−2がある。すなわち、一部のONU20−nは、EB10000を介さずに直接OLT10に接続され、EB10000が支線光ファイバ71の一部に挿入される構成である。また、PON区間81では、OLT10と各ONU20−1〜20−nとの間で光信号によって通信が行われている。すなわち、PONで使用する光信号の波長を、上りλupと下りλdownと異なる波長にして光ファイバ区間100及び101において信号が干渉しないようにしてある。そしてOLT10から発信された下り信号は、スプリッタ30−2で一部分岐された後、ONU20−nとEB10000に送られる。EB10000を通過した信号は、スプリッタ30−1で更に分岐されて、PONシステムに収容される全ONU20−1、20−2に到達する。各ONU20−1〜20−nからOLT10への上り通信には、全て同じ波長λupの光信号を用いる。これらの信号は時間分割多重方式により、OLT側で当該上り信号を発信したONUを識別する。OLT10で上り信号を受信した際に各ONU20からのGEMパケットが識別できるよう、集線光ファイバ70上で個々の上り信号が衝突/干渉しないように、各ONU20が送信タイミングをずらして上り信号を送出する。尚、直接接続されるONU20−nとOLT10は、既存勧告で規定されたPONと同じように動作する。
同図において、OLT10とONU20とEB10000の構成と動作は先に説明した構成(図2〜図4)と同様である。すなわち、OLT10からの指示を中継してONU20を立上げる構成で、ONU管理機能の一部をOLT10に代わってEB10000が実行する。具体的には、EB10000の配下に接続されるONU20に対するレンジングを、EB10000を境に2つの処理に分けて行う構成である。一方、EB10000を経由せずにOLT10と直接接続されるONU20−nに関しては、既存勧告で規定されたPONと同じように動作させる。
同図の構成でも、OLT10は、EB10000が起動された時点で通信区間100のレンジング(図5および図6の立上げ処理0(S2000)相当)を実施する。さらに、OLT10がEB10000へのレンジングと同時に、ONU20−nのように直接接続されるONUのレンジングも実施する。従って、OLT10のレンジング制御部1070に保持されるONU20のEqD情報は2種類存在する。即ち、EB10000を介したONU20についてはEB10000で実施したレンジング結果とOLT10が実施した区間100のレンジング結果とに基づいて決定される。他方、直接接続されるONU20−nは、勧告規定の手段によってRTDを測定し、その結果に従ってOLT10内でEqDを決定する。前者を先の実施例と同様にEqD1とEqD2との双方を管理するパターン、後者をEqD1としてONU20−nを直接制御するパターンと記憶して以降の運用を行う。
本実施例では、EB10000が配下のONUに対するレンジングを実施する構成であるため、例えばONU20−2のレンジングを行っている最中にも、OLT10と直接接続されたONU20−nは、通常の通信を継続することができ、光アクセス網2の上り帯域を有効に活用することが可能となる。そして、PON運用中にEB10000配下のONUを新規接続しても他のONU20に対する影響を低減できるようになる。先の実施例では、配下のONU全てがOLTから遠距離に存在する場合に有効であったが、本実施例の構成であると、一部のONUがOLTの近くで残りのONUが遠隔地等、OLTからONUの距離が大きくばらつく場合に適用すると有効である。
勿論、従来OLT10が実施していたPON区間1000の距離測定をEB10000が請け負うため、先の実施例と同様に、EB10000によって延長されたPON区間の制御信号処理時間を短縮する効果も期待できる。また、ONU立上げの高速化と、OLT10の処理簡易化が可能である点も先の実施例と同様である。
図13は、PONを用いた光アクセス網の他の構成例を示す網構成図で、多段光中継システムの構成例を示したものである。
本実施例は、EB10000−1及びEB10000−2を多段に接続すること、また、図12で示した実施例と同様に、ONU20がOLT10と直接接続されるものとEB10000を1つだけ経由するものが混ざる構成、すなわち、OLTからEBを経由する個数の異なるONUが複数種の通信に際して、経由する必要のあるEB10000の数が異なるアクセス網3の構成を示している。動作は、先の2つの実施例を組合せた動作になるが、レンジング処理が更に細分化されるので、OLT10毎により多数のONUを接続でき、あるいは光アクセス通信区間をより長距離化することが可能である。また、新規ONUを接続する上で、レンジング処理を管理するEB10000を分割するので、先の実施例2つよりも更にONU間の影響(通信途絶時間の影響)を低減できる。
図14も、PONを用いた光アクセス網の他の構成例を示す網構成図で、OLTに複数のEBが接続される光アクセス網の構成例を示したものである。
本実施例では、OLT10に複数のEB10000が接続されるため、OLT10に高い収容能力が要求されるが、先の実施例で示したアクセス網より多数のONUを収容できる。したがって、OLT10が収容するONU20の設置箇所が大きく広がった地域にわたる場合に有効な構成である。
PONを用いた光アクセス網の構成例を示す網構成図である。 OLTの構成例を示すブロック構成図である。 ONUの構成例を示すブロック構成図である。 本発明のEBの構成例を示すブロック構成図である。 本発明のPONの動作例を示す動作シーケンス図である。 同じく、PONの詳細動作例を示す動作シーケンス図である。 本発明のEBの動作例を示す動作フロー図である。 PONの下り信号の一部の構成例を示す信号構成図である。 PONの上り信号の一部の構成例を示す信号構成図である。 本発明のPONの仮想動作例を説明する動作説明図である。 本発明のPONの動作例を説明する動作説明図である。 PONを用いた光アクセス網の別の構成例を示す網構成図である。 PONを用いた光アクセス網の他の構成例を示す網構成図である。 PONを用いた光アクセス網の他の構成例を示す網構成図である。
10・・・OLT、 20・・・ONU、 30・・・スプリッタ、
40・・・PON、 50・・・加入者網、 70,71・・・光ファイバ、
90・・・アクセス網、 10000・・・EB(Extender Box)。

Claims (12)

  1. 親局と複数の子局とを光スプリッタを備えた光ファイバ網で接続した光通信システムにおいて、
    前記光ファイバ網に前記親局と前記複数の子局との間で送受信する信号を中継する中継器を備え、
    前記親局は、該親局と前記中継器との間の伝送距離もしくは伝送時間を測定する第1の制御部とを備え、
    前記中継器は、該中継器と前記複数の子局のうち前記親局から指示された子局と、の間の伝送距離もしくは伝送時間を測定する第2の制御部とを備え、
    前記親局は、前記第1の制御部で実施する第1の測定の結果と前記中継器の前記第2の制御部で実施する第2の測定の結果に基づき、前記複数の子局の要求に基づき該複数の子局の夫々が前記親局に信号を送信するタイミングを決め、
    前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信することを特徴とする光通信システム。
  2. 上記光ファイバ網において、上記中継器を上記親局と上記光スプリッタとの間の第1の光ファイバに挿入したことを特徴とする請求項1に記載の光通信システム。
  3. 上記親局の第1の制御部は、上記光通信システムの動作開始に基づき上記第1の測定を実施し、
    前記第1の測定実施後、上記複数の子局の上記光ファイバ網への接続状態に応じて上記中継器に上記第2の測定の実施を指示することを特徴とする請求項1に記載の光通信システム。
  4. 上記中継器の第2の制御部は、該指示された子局以外の子局には、前記中継器もしくは親局への信号送信の停止を指示することを特徴とする請求項3に記載の光通信システム。
  5. 上記第1の測定の実施時間ならびに上記第2の測定の実施時間は、上記光ファイバ網に備える上記中継器の位置に応じて、上記光通信システムの運用者によって予め上記第1の制御部ならびに第2の制御部に設定されていることを特徴とする請求項1に記載の光通信システム。
  6. 親局と複数の子局とを複数の光ファイバと複数の光スプリッタとで接続した光通信システムであって、
    前記複数の子局の一部子局からの複数の第1の光ファイバを集線する第1の光スプリッタと、前記一部子局以外の複数の子局からの複数の第2の光ファイバを集線して前記親局に接続する第2の光スプリッタとを備え、
    前記複数の第1の光ファイバを集線した第1の光スプリッタからの第3の光ファイバを光信号を中継する中継器を介して前記第2の光スプリッタで前記第2の光ファイバとともに集線して第4の光ファイバ介して前記親局に接続する光通信システムにおいて、
    前記親局は、該親局と前記中継器もしくは前記一部子局以外の子局との間の伝送距離もしくは伝送時間を測定する第1の制御部とを備え、
    前記中継器は、該中継器と前記一部子局との間の伝送距離もしくは伝送時間を測定する第2の制御部とを備え、
    前記親局は、前記第1の制御部で実施する第1の測定の結果と前記中継器の前記第2の制御部で実施する第2の測定の結果に基づき、前記複数の子局の要求に基づき該複数の子局の夫々が前記親局に信号を送信するタイミングを決め、
    前記第1の光ファイバと第3の光ファイバ、ならびに、第2の光ファイバを介して前記複数の子局の夫々が送信した信号を前記第4の光ファイバで多重して前記親局が受信することを特徴とする光通信システム。
  7. 上記親局の第1の制御部は、上記光通信システムの動作開始時もしくは上記一部子局以外の複数の上記第2の光ファイバへの接続状況に応じて上記第1の測定を実施し、
    前記第1の測定実施後、上記一部子局の上記第1の光ファイバへの接続状態に応じて上記中継器に上記第2の測定の実施を指示することを特徴とする請求項6に記載の光通信システム。
  8. 上記中継器の第2の制御部は、該中継器から上記第1の光ファイバで接続された上記複数一部子局に対し、上記親局から指示された一部子局に上記第2の測定を実施し、
    該指示された子局以外の一部子局には、前記中継器もしくは親局への信号送信の停止を指示する
    ことを特徴とする請求項7に記載の光通信システム。
  9. 前記親局は、上記第2の制御部が上記第2の測定を実施している場合でも、上記第2の光ファイバと接続された上記一部子局以外の複数の子局からの信号受信を継続することを特徴とする請求項7に記載の光通信システム。
  10. 親局と複数の子局とを光スプリッタと該親局と該複数の子局との間で送受信する信号を中継する中継器を備えた光ファイバ網で接続した光通信システムの運用方法であって、
    前記親局が前記光通信システムの運用開始時に、第1の制御部で該親局と前記中継器との間の伝送距離もしくは伝送時間を測定し、
    前記中継器は、前記親局の指示に基づき、第2の制御部で該中継器と前記複数の子局のうち前記親局から指示された子局と、の間の伝送距離もしくは伝送時間を測定し、
    前記光通信システムの運用中は、前記親局が、前記第1の制御部での測定結果と前記第2の制御部での測定結果と前記複数の子局の要求に基づき該複数の子局の夫々が前記親局に信号を送信するタイミングを決め、前記複数の子局から信号を送信させることを特徴とする光通信システムの運用方法。
  11. 上記親局は、上記光通信システムの動作開始に基づき、上記第1の制御部での測定を実施し、
    前記第1の制御部での測定実施後、上記複数の子局の上記光ファイバ網への接続状態に応じて上記中継器に上記第2の制御部での測定実施を指示することを特徴とする請求項10に記載の光通信システムの運用方法
  12. 上記中継器の第2の制御部は、該指示された子局以外の子局には、前記中継器もしくは親局への信号送信の停止を指示することを特徴とする請求項11記載の光通信システムの運用方法
JP2009003036A 2009-01-09 2009-01-09 光通信システムならびにその運用方法 Expired - Fee Related JP5241524B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009003036A JP5241524B2 (ja) 2009-01-09 2009-01-09 光通信システムならびにその運用方法
CN200910253294.8A CN101778314B (zh) 2009-01-09 2009-12-11 光通信系统及其运用方法
US12/638,383 US8249458B2 (en) 2009-01-09 2009-12-15 Optical communication system and method for operating the same
EP09179562.5A EP2207285B1 (en) 2009-01-09 2009-12-17 Optical communication system and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003036A JP5241524B2 (ja) 2009-01-09 2009-01-09 光通信システムならびにその運用方法

Publications (2)

Publication Number Publication Date
JP2010161672A JP2010161672A (ja) 2010-07-22
JP5241524B2 true JP5241524B2 (ja) 2013-07-17

Family

ID=42096713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003036A Expired - Fee Related JP5241524B2 (ja) 2009-01-09 2009-01-09 光通信システムならびにその運用方法

Country Status (4)

Country Link
US (1) US8249458B2 (ja)
EP (1) EP2207285B1 (ja)
JP (1) JP5241524B2 (ja)
CN (1) CN101778314B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538258B2 (en) * 2008-05-08 2013-09-17 Alcatel Lucent Burst-mode data recovery for multi-gigabit passive optical networks
CN102065344B (zh) * 2009-11-12 2016-09-07 中兴通讯股份有限公司 数据传输方法及吉比特无源光网络系统
CN101827287B (zh) * 2010-05-14 2013-04-17 华为技术有限公司 无源光网络及其接入方法、光网络单元和光线路终端
CN102377507A (zh) * 2010-08-13 2012-03-14 新峤网络设备(上海)有限公司 基于gpon的光桥接器设备及其测距方法
US20120141139A1 (en) * 2010-08-17 2012-06-07 Umesh Bakhru System and Method for Optical-Electrical-Optical Reach Extension in a Passive Optical Network
CN102131131B (zh) * 2010-10-14 2013-09-25 华为技术有限公司 一种实现无源光网络拉远的方法和系统及中继装置
JP5423701B2 (ja) * 2011-02-15 2014-02-19 住友電気工業株式会社 局側装置、制御方法およびponシステムの制御方法
US9219566B2 (en) * 2011-04-08 2015-12-22 Futurewei Technologies, Inc. Wavelength management in multiple-wavelength passive optical networks
CN103297866B (zh) * 2012-02-29 2016-03-09 华为技术有限公司 上、下行带宽分配方法、设备和嵌套系统
JP5853822B2 (ja) * 2012-03-29 2016-02-09 沖電気工業株式会社 加入者側装置登録方法
EP2950466B1 (en) * 2013-01-23 2021-04-07 Nec Corporation Optical branching/insertion device and corresponding optical branching/insertion method
CN104218995B (zh) * 2013-06-04 2018-06-05 中兴通讯股份有限公司 一种onu、通信系统及onu通信方法
US9577758B2 (en) * 2014-04-10 2017-02-21 Tibit Communications, Inc. Method and system for scheduling cascaded PON
CN105745889B (zh) * 2014-10-28 2019-03-08 华为技术有限公司 一种注册方法、设备及系统
CN107534985B (zh) * 2015-04-21 2019-01-25 三菱电机株式会社 通信装置、通信方法及通信系统
EP3182616A1 (en) * 2015-12-17 2017-06-21 Alcatel Lucent Method, devices and system for endpoint communication
US10925058B2 (en) * 2016-06-20 2021-02-16 Nippon Telegraph And Telephone Corporation Optical transmission device and bandwidth allocation method
CN108631861B (zh) * 2018-03-21 2020-07-07 烽火通信科技股份有限公司 实现快速保护倒换的gpon系统及保护倒换方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ295713A (en) * 1994-11-22 1997-09-22 British Telecomm Optical network with n:1 repeater at split
JP2001156824A (ja) * 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd 加入者系ネットワーク装置および中継局
JP2002271271A (ja) * 2001-03-06 2002-09-20 Hitachi Ltd 再生中継方法及び再生中継装置
CN101192885A (zh) 2006-11-27 2008-06-04 华为技术有限公司 一种无源光网络的测距方法与系统
WO2008117035A1 (en) * 2007-03-26 2008-10-02 British Telecommunications Public Limited Company A repeater
US20090208210A1 (en) * 2008-02-18 2009-08-20 Elmar Trojer Passive optical network remote protocol termination
WO2009145066A1 (ja) * 2008-05-26 2009-12-03 日本電気株式会社 光通信システムおよび光通信方法、並びに中継装置

Also Published As

Publication number Publication date
EP2207285B1 (en) 2014-03-26
EP2207285A1 (en) 2010-07-14
JP2010161672A (ja) 2010-07-22
US20100178051A1 (en) 2010-07-15
CN101778314A (zh) 2010-07-14
US8249458B2 (en) 2012-08-21
CN101778314B (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5241524B2 (ja) 光通信システムならびにその運用方法
JP5210959B2 (ja) 光受動網システム、および、その運用方法
JP5331646B2 (ja) 光通信システム及び通信帯域制御方法
JP5564393B2 (ja) 受動光網システム
JP5626725B2 (ja) 通信システム、通信装置および加入者装置
JP5372960B2 (ja) 保護されたパッシブ光学通信システム
JP4888515B2 (ja) 動的帯域割当装置及び方法とponシステムの局側装置
JP5097641B2 (ja) 受動光網システム、光多重終端装置及び光網終端装置
US8412043B2 (en) Optical communications network, power supply controlling method, station-side equipment, subscriber-side equipment, and semiconductor chip
US8391715B2 (en) Passive optical network system
WO2010031326A1 (zh) 光网络系统数据链路切换方法、光线路终端及系统
US9871614B2 (en) WDM/TDM-PON system and transmission start time correction method thereof
JP2012019264A (ja) 通信システムおよび通信装置
JP2011217298A (ja) Ponシステムとその局側装置及び宅側装置、rttの補正方法
JP6459588B2 (ja) アクセス制御システム、アクセス制御方法、親局装置及び子局装置
JP5640877B2 (ja) 通信システム、親局装置および通信回線切替方法
JP4893589B2 (ja) Ponシステムの局側装置及びフレーム処理方法
JP5411805B2 (ja) 受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置
JP2016072736A (ja) 光通信装置及び光通信ネットワークシステム
CN118590792A (zh) 光接入网中信道终端选择方法、装置及通信设备
JP2015005862A (ja) 光信号中継装置、局側装置、光通信システムおよび通信制御方法
JP2015198268A (ja) 光信号中継装置、監視制御装置、通信制御方法および通信制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees