JP5241210B2 - Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure - Google Patents

Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure Download PDF

Info

Publication number
JP5241210B2
JP5241210B2 JP2007306219A JP2007306219A JP5241210B2 JP 5241210 B2 JP5241210 B2 JP 5241210B2 JP 2007306219 A JP2007306219 A JP 2007306219A JP 2007306219 A JP2007306219 A JP 2007306219A JP 5241210 B2 JP5241210 B2 JP 5241210B2
Authority
JP
Japan
Prior art keywords
plug
seismic isolation
isolation structure
composition
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007306219A
Other languages
Japanese (ja)
Other versions
JP2009127115A (en
Inventor
裕一郎 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007306219A priority Critical patent/JP5241210B2/en
Publication of JP2009127115A publication Critical patent/JP2009127115A/en
Application granted granted Critical
Publication of JP5241210B2 publication Critical patent/JP5241210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、免震構造体のプラグ用組成物、該組成物を用いた免震構造体用プラグ及び該プラグを用いた免震構造体に関し、特には、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れたプラグを提供することが可能な免震構造体のプラグ用組成物に関するものである。   The present invention relates to a plug composition for a base isolation structure, a plug for a base isolation structure using the composition, and a base isolation structure using the plug, and in particular, sufficient damping performance and displacement followability. In addition, the present invention relates to a plug composition for a seismic isolation structure capable of providing a plug having excellent repeatability.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、該中空部の内部にプラグが圧入されたものがある。   2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. Among such seismic isolation structures, for example, there is a structure in which a hollow portion is formed at the center of a laminated body made of a soft plate and a hard plate, and a plug is press-fitted into the hollow portion.

上記プラグとしては、全体が鉛からなるプラグが使用されることが多く、積層体がせん断変形する際に、該プラグが塑性変形することで振動のエネルギーを吸収する。しかしながら、鉛は、環境負荷が大きく、また、廃却時等に要するコストが大きい。このため、鉛の代替材料を用いて、十分な減衰性能、変位追従性等を有するプラグを開発することが試みられている。   As the plug, a plug made entirely of lead is often used, and when the laminated body undergoes shear deformation, the plug is plastically deformed to absorb vibration energy. However, lead has a large environmental load and a high cost for disposal. For this reason, an attempt has been made to develop a plug having sufficient damping performance, displacement followability, etc., using a lead substitute material.

例えば、特開2006−170233号には、鉛プラグに代えて、錫プラグ又は錫合金プラグを採用し、該プラグの外径と積層体の外径との比を特定の範囲に規定した免震構造体が提案されており、該免震構造体によれば、優れた免震効果が得られるとのことである。   For example, Japanese Patent Laid-Open No. 2006-170233 employs a tin plug or a tin alloy plug in place of a lead plug, and a seismic isolation that specifies a ratio between the outer diameter of the plug and the outer diameter of the laminate within a specific range. A structure has been proposed, and according to the base isolation structure, an excellent base isolation effect can be obtained.

特開2006−170233号公報JP 2006-170233 A

しかしながら、本発明者が検討したところ、錫プラグや錫合金プラグを用いた免震構造体は、繰り返し安定性が十分とは言えず、性能面で改善の余地があることが分かった。   However, as a result of studies by the present inventors, it has been found that the seismic isolation structure using a tin plug or a tin alloy plug does not have sufficient repetitive stability, and there is room for improvement in terms of performance.

そこで、本発明の目的は、上記従来技術の問題を解決し、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れた免震構造体用プラグを提供することが可能な免震構造体のプラグ用組成物を提供することにある。また、本発明の他の目的は、かかる組成物を用いた免震構造体用プラグ及び該プラグを用いた免震構造体を提供することにある。   In view of the above, an object of the present invention is to solve the problems of the prior art described above, and to provide a seismic isolation structure plug capable of providing sufficient damping performance, displacement followability, and excellent repeatability. The object is to provide a plug composition for a seismic structure. Another object of the present invention is to provide a plug for a base isolation structure using the composition and a base isolation structure using the plug.

本発明者は、上記目的を達成するために鋭意検討した結果、軟質金属粉と鉄粉とを含有する組成物を免震構造体のプラグに使用することで、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れた免震構造体が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has obtained sufficient damping performance and displacement followability by using a composition containing soft metal powder and iron powder for a plug of a seismic isolation structure. In addition, the inventors have found that a seismic isolation structure having excellent repetitive stability can be obtained, and the present invention has been completed.

即ち、本発明に従う免震構造体のプラグ用組成物は、軟質金属粉と、鉄粉とを含有し、前記鉄粉の含有量が50〜74体積%であることを特徴とする。ここで、軟質金属とは、変形し易く、展延性に富む金属のことを指し、金、銀、銅、スズ、鉛やそれらの合金等を指す。 That is, the plug composition of the seismic isolation structure according to the present invention contains soft metal powder and iron powder, and the content of the iron powder is 50 to 74% by volume . Here, the soft metal refers to a metal that is easily deformable and rich in spreadability, and refers to gold, silver, copper, tin, lead, alloys thereof, and the like.

本発明のプラグ用組成物においては、前記鉄粉の含有量が50〜74体積%である。これにより、変形時の鉄粉同士の摩擦が十分大きいため、十分な減衰効果が得られる上、耐久性も十分確保されている。 Oite plug composition of the present invention, the content of the iron powder is 50 to 74 vol%. Thereby, since the friction between the iron powders at the time of deformation is sufficiently large, a sufficient damping effect can be obtained, and durability is sufficiently ensured.

本発明のプラグ用組成物において、前記軟質金属粉としては、錫粉及び錫合金粉が好ましい。   In the plug composition of the present invention, the soft metal powder is preferably tin powder or tin alloy powder.

また、本発明の免震構造体用プラグは、上記のプラグ用組成物から製造されたことを特徴とし、更に、本発明の免震構造体は、剛性を有する剛性板と弾性を有する弾性板とが交互に積層されてなり、該積層方向に延びる中空部を有する積層体と、該積層体の中空部に圧入されたプラグとを具え、該プラグが上記免震構造体用プラグであることを特徴とする。   The plug for a seismic isolation structure of the present invention is manufactured from the above plug composition, and the seismic isolation structure of the present invention includes a rigid plate having rigidity and an elastic plate having elasticity. And a plug having a hollow portion extending in the stacking direction, and a plug press-fitted into the hollow portion of the stack, and the plug is the plug for the seismic isolation structure. It is characterized by.

本発明によれば、軟質金属粉と鉄粉とを含有し、前記鉄粉の含有量が50〜74体積%であり、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れた免震構造体用プラグを作製することが可能な免震構造体のプラグ用組成物を提供することができる。また、かかる組成物を用いた、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れた免震構造体用プラグ及び該プラグを用いた免震構造体を提供することができる。 According to the present invention, it contains soft metal powder and iron powder, the content of the iron powder is 50 to 74% by volume, has sufficient damping performance, displacement followability, and excellent repeat stability. It is possible to provide a plug composition for a seismic isolation structure capable of producing a seismic isolation structure plug. Moreover, it is possible to provide a seismic isolation structure plug using such a composition and having sufficient damping performance, displacement followability, and excellent repeatability, and a seismic isolation structure using the plug. .

<プラグ用組成物>
以下に、本発明のプラグ用組成物を詳細に説明する。本発明に従う免震構造体のプラグ用組成物は、軟質金属粉と、鉄粉とを含有し、前記鉄粉の含有量が50〜74体積%であることを特徴とし、必要に応じて、他の成分を含有してもよい。
<Composition for plug>
Below, the composition for plugs of this invention is demonstrated in detail. The composition for a plug of the seismic isolation structure according to the present invention contains soft metal powder and iron powder, the content of the iron powder is 50 to 74% by volume , and if necessary, Other components may be contained.

本発明者は、鉛プラグの代替として錫プラグを検討したが、該錫プラグを用いた免震構造体は繰り返し安定性に改善の余地があることが分かった。そこで、更に検討を進め、種々の金属粉から圧縮成型によりプラグを作製し、該プラグを免震構造体に使用してみたが、大抵は、金属粉同士が擦れて割れてしまい、十分な耐久性を有するプラグが得られなかったり、繰り返し安定性に問題があった。しかしながら、かかる金属粉の中から、軟質金属粉と鉄粉とを選択し、その混合金属粉からプラグを作製することで、十分な耐久性、減衰特性、変位追従性等を有する上、繰り返し安定性にも優れ、鉛プラグと同等以上の性能を有する免震構造体用プラグが得られることを見出し、本発明に想到したものである。なお、軟質金属粉を含まないプラグ用組成物を使用すると、成型加工性が悪い上、鉄粉同士が擦れて割れてしまい、十分な耐久性を有するプラグが得られず、一方、鉄粉を含まないプラグ用組成物を使用すると、繰り返し安定性が不十分である。   The inventor examined a tin plug as an alternative to a lead plug, but it was found that the seismic isolation structure using the tin plug has room for improvement in repeated stability. Therefore, further investigation was carried out, and plugs were produced from various metal powders by compression molding, and the plugs were used for seismic isolation structures, but in most cases, the metal powders were rubbed and cracked, resulting in sufficient durability. Plugs having the same properties could not be obtained, and there were problems with repeated stability. However, by selecting soft metal powder and iron powder from such metal powder, and making plugs from the mixed metal powder, it has sufficient durability, damping characteristics, displacement followability, etc., and is stable repeatedly The present inventors have found that a plug for a seismic isolation structure having excellent performance and performance equivalent to or higher than that of a lead plug can be obtained and the present invention has been conceived. If a plug composition containing no soft metal powder is used, the moldability is poor and the iron powder is rubbed and cracked, so that a plug having sufficient durability cannot be obtained. If a plug composition that does not contain it is used, the repeated stability is insufficient.

本発明のプラグ用組成物に用いる軟質金属粉は、バインダーとして作用し、鉄粉同士が擦れて割れてしまうのを防止して、プラグの耐久性を向上させる効果を有する。なお、軟質金属粉は、プラグの変形時には、変形時の負荷によって塑性変形し易いため、プラグの変位追従性を向上させることができる。   The soft metal powder used for the plug composition of the present invention acts as a binder and has an effect of preventing the iron powder from rubbing and cracking and improving the durability of the plug. Since the soft metal powder is easily plastically deformed by the load at the time of deformation of the plug, the displacement followability of the plug can be improved.

本発明のプラグ用組成物に用いる軟質金属粉としては、錫(Sn)粉の他、Sn−Zn,Sn−Cu−Ni、Sn−Ag−Cu、Sn−Ag、Sn−Bi、Sn−Ag−Cu−Bi、Sn−Ag−In−Bi、Sn−Sb等の錫合金の粉体を使用することができる。これら軟質金属粉は、一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。また、使用する軟質金属粉は、成型加工性の観点から、融点が75〜500℃であることが好ましい。   As the soft metal powder used for the plug composition of the present invention, in addition to tin (Sn) powder, Sn-Zn, Sn-Cu-Ni, Sn-Ag-Cu, Sn-Ag, Sn-Bi, Sn-Ag Powders of tin alloys such as -Cu-Bi, Sn-Ag-In-Bi, and Sn-Sb can be used. These soft metal powders may be used alone or in a combination of two or more. Moreover, it is preferable that melting | fusing point is 75-500 degreeC from a viewpoint of molding processability for the soft metal powder to be used.

本発明のプラグ用組成物において軟質金属粉の含有量は、26〜50体積%の範囲が好ましい。プラグ用組成物中の軟質金属粉の含有量が26体積%未満では、鉄粉同士の接触が増え、繰り返し耐久性が低下する。一方、プラグ用組成物中の軟質金属粉の含有量が50体積%を超えると、鉄粉の割合が減少して、鉄粉間の距離が広くなりすぎ、変形時の鉄粉同士の摩擦が小さくなるため、減衰性能が不十分である。   In the plug composition of the present invention, the content of the soft metal powder is preferably in the range of 26 to 50% by volume. When the content of the soft metal powder in the composition for plugs is less than 26% by volume, the contact between the iron powders increases, and the repeated durability decreases. On the other hand, when the content of the soft metal powder in the plug composition exceeds 50% by volume, the ratio of the iron powder decreases, the distance between the iron powders becomes too wide, and the friction between the iron powders during deformation is reduced. Since it becomes small, attenuation performance is insufficient.

上記軟質金属粉は、プラグ用組成物をプラグに成型する際に、変形するため、その形状は、特に限定されない。なお、取り扱い性や入手容易性の観点からは、軟質金属粉の粒径は、1μm〜10 mmの範囲が好ましい。また、金属粉の状態でなくてもよく、塊状であっても液化させて鉄粉と混合して使用することが可能である。   Since the soft metal powder is deformed when the plug composition is molded into a plug, its shape is not particularly limited. From the viewpoint of handleability and availability, the soft metal powder preferably has a particle size in the range of 1 μm to 10 mm. Moreover, it does not need to be in the state of metal powder, and it can be liquefied and mixed with iron powder even if it is in the form of a lump.

一方、本発明のプラグ用組成物に用いる鉄粉は、プラグの減衰性能を主として担う材料であり、具体的には、鉄粉同士の摩擦及び鉄粉と軟質金属との摩擦により振動を減衰させる。なお、プラグ用組成物が鉄粉を含まない場合、プラグの減衰性能が大幅に低下して、十分な減衰性能、変位追従性等を得ることができない。   On the other hand, the iron powder used in the plug composition of the present invention is a material mainly responsible for the damping performance of the plug. Specifically, the vibration is attenuated by friction between the iron powders and friction between the iron powder and the soft metal. . In addition, when the composition for plugs does not contain iron powder, the damping performance of a plug falls significantly and sufficient damping performance, displacement followability, etc. cannot be obtained.

本発明のプラグ用組成物に用いる鉄粉は、安価である上、他の金属粉と対比して破壊強度が高く、また、鉄粉を主成分とする免震構造体用プラグは、固すぎることも脆すぎることもないため、優れた減衰性能を長期に渡って発揮することができる。なお、使用する鉄粉は、一部酸化されていてもよい。また、鉄粉としては、還元鉄粉、電解鉄粉、噴霧鉄粉、純鉄粉、鋳鉄粉等が挙げられるが、これらの中でも、還元鉄粉が好ましい。   The iron powder used in the plug composition of the present invention is inexpensive and has a high breaking strength compared to other metal powders, and the plug for a seismic isolation structure mainly composed of iron powder is too hard. It is neither too fragile nor too fragile, so that excellent damping performance can be exhibited over a long period of time. In addition, the iron powder to be used may be partially oxidized. Examples of the iron powder include reduced iron powder, electrolytic iron powder, sprayed iron powder, pure iron powder, and cast iron powder. Among these, reduced iron powder is preferable.

本発明のプラグ用組成物において鉄粉の含有量は、50〜74体積%の範囲である。プラグ用組成物中の鉄粉の含有量が50体積%未満では、鉄粉間の距離が広すぎ、変形時の鉄粉同士の摩擦が小さくなるため、減衰性能が不十分である。一方、プラグ用組成物中の鉄粉の含有量が74体積%を超えると、鉄粉同士の接触が増え、繰り返し耐久性が低下する上、プラグ用組成物からプラグを成形する際に、プラグ用組成物から空気を十分に除くことが難しく、プラグの体積が理想体積(空気の混入が無い場合の体積)より大幅に大きくなり、プラグの減衰性能が低下する。 In the plug composition of the present invention, the iron powder content is in the range of 50 to 74% by volume. When the content of the iron powder in the plug composition is less than 50% by volume, the distance between the iron powders is too wide, and the friction between the iron powders during deformation becomes small, so that the damping performance is insufficient. On the other hand, if the content of iron powder in the plug composition exceeds 74% by volume, the contact between the iron powders increases and the durability decreases repeatedly, and when the plug is formed from the plug composition, It is difficult to sufficiently remove air from the composition for use, and the volume of the plug becomes significantly larger than the ideal volume (the volume in the case where no air is mixed), so that the damping performance of the plug is lowered.

上記鉄粉の粒径は、0.1μm〜2 mmの範囲が好ましく、1μm〜150μmの範囲が更に好ましい。鉄粉の粒径が0.1μm未満では、取り扱いが困難であり、一方、鉄粉の粒径が2 mmを超えると、鉄粉同士の摩擦が減少して減衰効果が低下する傾向がある。なお、鉄粉の粒径が1μm以上であれば、取り扱いが容易であり、鉄粉の粒径が150μm以下であれば、プラグの減衰性能が十分に高い。   The particle size of the iron powder is preferably in the range of 0.1 μm to 2 mm, and more preferably in the range of 1 μm to 150 μm. When the particle size of the iron powder is less than 0.1 μm, handling is difficult. On the other hand, when the particle size of the iron powder exceeds 2 mm, the friction between the iron particles tends to decrease and the damping effect tends to decrease. If the particle size of the iron powder is 1 μm or more, handling is easy, and if the particle size of the iron powder is 150 μm or less, the damping performance of the plug is sufficiently high.

また、上記鉄粉の形状は、不定形であることが好ましい。ここで、不定形とは、球状などの1種類の形状のみではなく、凹凸を有するものや突起を有するものなど、種々の形態を有する形状が混在していることを意味する。バルクを粉砕することなどによって得られる鉄粉の形状は当然に不定形であるが、球状鉄粉を用いた場合と比較したところ、不定形の鉄粉を用いた方が良好な減衰効果が得られた。これは、不定形の鉄粉を使用すると、鉄粉同士、鉄粉−軟質金属間の摩擦の際に引っ掛かり効果のようなものが生じ、球状のもの等を使用した場合と比較して摩擦が大きくなって、減衰性能が良好になるためであると考えられる。   The shape of the iron powder is preferably indefinite. Here, the indefinite shape means that not only one type of shape such as a spherical shape but also shapes having various forms such as those having irregularities and protrusions are mixed. The shape of the iron powder obtained by pulverizing the bulk is naturally indefinite, but compared with the case of using spherical iron powder, the use of amorphous iron powder provides better damping effect. It was. This is because, when using irregular shaped iron powder, a frictional effect occurs between the iron powders and between the iron powder and the soft metal. This is considered to be due to the fact that the attenuation performance is improved.

本発明のプラグ用組成物は、軟質金属粉と、鉄粉とを用いる以外特に制限はなく、例えば、公知のミキサーを用いて、鉄粉と軟質金属粉とを混合することで製造できる。   The composition for plugs of the present invention is not particularly limited except that soft metal powder and iron powder are used, and can be produced, for example, by mixing iron powder and soft metal powder using a known mixer.

<免震構造体用プラグ>
本発明の免震構造体用プラグは、上述したプラグ用組成物から製造されたことを特徴とし、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れる。なお、本発明の免震構造体用プラグは、上記プラグ用組成物を用いて、例えば、下記(1)又は(2)のようにして製造することができる。
<Seismic isolation structure plug>
The plug for a seismic isolation structure of the present invention is characterized by being manufactured from the above-described plug composition, has sufficient damping performance and displacement followability, and is excellent in repeated stability. In addition, the plug for seismic isolation structure of this invention can be manufactured as follows (1) or (2) using the said composition for plugs, for example.

(1)上記のようにして調製したプラグ用組成物をミキサーから取り出して、成型装置に移し、圧力をかけることによって、プラグへとプレス加工する。この工程で使用するプレス機としては、当該技術分野において通常使用されているものを採用することができる。また、プレス加工の条件も、特に限定されるものではなく、当該技術分野において通常に用いられている条件を適宜改変してプラグの成型に適した条件を設定することができる。例えば、プレス加工の条件としては、プレス温度は常温〜150℃の範囲が好ましく、成形圧力は0.7 t/cm2以上が好ましい。 (1) The plug composition prepared as described above is taken out of the mixer, transferred to a molding apparatus, and pressed into a plug by applying pressure. As a press machine used in this step, a machine that is usually used in the technical field can be adopted. Further, the press working conditions are not particularly limited, and conditions suitable for molding of the plug can be set by appropriately modifying the conditions normally used in the technical field. For example, as the conditions for pressing, the pressing temperature is preferably in the range of room temperature to 150 ° C., and the molding pressure is preferably 0.7 t / cm 2 or more.

また、(2)上記のようにして調製したプラグ用組成物をミキサーから取り出して、モールドに移し、軟質金属粉の溶融温度以上且つ鉄粉の溶融温度未満の温度に加熱して、成型することでも、プラグを作製することができる。   (2) The plug composition prepared as described above is taken out of the mixer, transferred to a mold, and heated to a temperature not lower than the melting temperature of the soft metal powder and lower than the melting temperature of the iron powder to be molded. But plugs can be made.

<免震構造体>
本発明の免震構造体は、剛性を有する剛性板と弾性を有する弾性板とが交互に積層されてなり、該積層方向に延びる中空部を有する積層体と、該積層体の中空部に圧入されたプラグとを具え、該プラグが上述の免震構造体用プラグであることを特徴とし、減衰性能、変位追従性が高く、繰り返し安定性に優れる。以下に、図を参照しながら本発明の免震構造体を詳細に説明する。
<Seismic isolation structure>
The seismic isolation structure of the present invention includes a laminate having a rigid plate having rigidity and an elastic plate having elasticity stacked alternately, and having a hollow portion extending in the lamination direction, and press-fitting into the hollow portion of the laminate. The plug is a plug for the above-described seismic isolation structure, and has high damping performance and displacement followability, and is excellent in repeated stability. Below, the seismic isolation structure of this invention is demonstrated in detail, referring a figure.

図1に示す免震構造体1は、剛性を有する剛性板2と弾性を有する弾性板3とが交互に積層されてなり、該積層方向(鉛直方向)に延びる円筒状の中空部を中心部に有する積層体4と、該積層体4の中空部に圧入されたプラグ5と、積層体4及びプラグ5の両端(上端及び下端)に固定されたフランジ板6とを具え、積層体4の外周面が被覆材7で覆われている。   A seismic isolation structure 1 shown in FIG. 1 is formed by alternately laminating rigid plates 2 having rigidity and elastic plates 3 having elasticity, and has a cylindrical hollow portion extending in the laminating direction (vertical direction) as a central portion. The laminate 4, the plug 5 press-fitted into the hollow portion of the laminate 4, and the flange 4 fixed to both ends (upper and lower ends) of the laminate 4 and the plug 5. The outer peripheral surface is covered with a covering material 7.

積層体4を構成する剛性板2と弾性板3とは、例えば、加硫接着により、あるいは接着剤により強固に貼り合わされている。なお、加硫接着においては、剛性板2と未加硫ゴム組成物とを積層してから加硫を行い、未加硫ゴム組成物の加硫物が弾性板3となる。ここで、剛性板2としては、鋼板等の金属板、セラミックス板、FRP等の強化プラスチックス板等を使用することができる。一方、弾性板3としては、加硫ゴム製の板等を使用することができる。また、本発明の免震構造体を構成する積層体は、被覆材7で覆われていなくてもよいが、積層体4の外周面が被覆材7で覆われている場合、積層体4に外部から雨や光が届かなくなり、酸素やオゾン、紫外線による積層体4の劣化を防止できる。なお、被覆材7としては、弾性板3と同様な材料、例えば、加硫ゴム等を使用できる。   The rigid plate 2 and the elastic plate 3 constituting the laminated body 4 are firmly bonded by, for example, vulcanization adhesion or an adhesive. In the vulcanization adhesion, the rigid plate 2 and the unvulcanized rubber composition are laminated and then vulcanized, and the vulcanized product of the unvulcanized rubber composition becomes the elastic plate 3. Here, as the rigid plate 2, a metal plate such as a steel plate, a ceramic plate, a reinforced plastic plate such as FRP, or the like can be used. On the other hand, as the elastic plate 3, a vulcanized rubber plate or the like can be used. Moreover, the laminated body which comprises the seismic isolation structure of this invention does not need to be covered with the coating | covering material 7, but when the outer peripheral surface of the laminated body 4 is covered with the coating | covering material 7, the laminated body 4 Rain and light do not reach from the outside, and deterioration of the laminate 4 due to oxygen, ozone, and ultraviolet rays can be prevented. As the covering material 7, the same material as the elastic plate 3, for example, vulcanized rubber can be used.

積層体4は、振動により水平方向のせん断力を受けた際には、せん断変形して、振動のエネルギーを吸収する。また、積層体4は、剛性板2と弾性板3とが交互に積層されてなるため、積層方向(鉛直方向)に荷重が作用しても、圧縮が抑制されている。   When the laminated body 4 receives a shearing force in the horizontal direction due to vibration, the laminated body 4 undergoes shear deformation and absorbs vibration energy. Further, since the laminate 4 is formed by alternately laminating the rigid plates 2 and the elastic plates 3, the compression is suppressed even when a load is applied in the lamination direction (vertical direction).

上記免震構造体1は、積層体4の中空部にプラグ5が圧入されており、振動により水平方向のせん断力を受けた際には、積層体4と共にプラグ5がせん断変形して、振動のエネルギーを効果的に吸収して、振動を速やかに減衰することができる。ここで、本発明の免震構造体は、プラグ5として、軟質金属粉と鉄粉とを含有する組成物から製造したプラグが用いられているため、十分な減衰性能、変位追従性を有する上、繰り返し安定性にも優れる。   In the seismic isolation structure 1, the plug 5 is press-fitted into the hollow part of the laminated body 4, and when the horizontal shearing force is received by vibration, the plug 5 is sheared and deformed together with the laminated body 4. The energy can be effectively absorbed, and the vibration can be quickly damped. Here, since the plug manufactured from the composition containing soft metal powder and iron powder is used as the plug 5, the seismic isolation structure of the present invention has sufficient damping performance and displacement followability. Excellent repeatability.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1〜3)
ミキサーを用いて、鉄粉と、錫粉又は錫合金粉とを表1に示す配合で混合してプラグ用組成物を調製した。次に、該プラグ用組成物を温度100℃、圧力1.3 ton/cm2でプレス加工して直径45 mmで円柱状の免震構造体用プラグを作製した。
(Examples 1-3)
Using a mixer, iron powder and tin powder or tin alloy powder were mixed in the formulation shown in Table 1 to prepare a plug composition. Next, the plug composition was pressed at a temperature of 100 ° C. and a pressure of 1.3 ton / cm 2 to produce a columnar seismic isolation structure plug having a diameter of 45 mm.

(比較例1)
ミキサーを用いて、鉄粉とアルミ粉とを混合してプラグ用組成物を調製した。次に、該プラグ用組成物を実施例1〜3と同様にプレス加工して免震構造体用プラグを作製した。
(Comparative Example 1)
Using a mixer, iron powder and aluminum powder were mixed to prepare a plug composition. Next, the plug composition was pressed in the same manner as in Examples 1 to 3 to produce a plug for a seismic isolation structure.

(比較例2)
鉄粉を実施例1〜3と同様にプレス加工して免震構造体用プラグを作製した。
(Comparative Example 2)
The iron powder was pressed in the same manner as in Examples 1 to 3 to produce a plug for a seismic isolation structure.

(比較例3及び4)
免震構造体用プラグとして、アルミ製又は鉄製の円柱を準備した。
(Comparative Examples 3 and 4)
Aluminum or iron cylinders were prepared as plugs for seismic isolation structures.

<評価>
中央に円筒状の中空部を有し、外径が225 mmで、剛性を有する剛性板[鉄板]と弾性を有する弾性板[加硫ゴム(G'=0.4 MPa)]とが交互に積層されてなる積層体の中空部に、上記免震構造体用プラグを圧入して、図1に示す構造の免震構造体を作製した。なお、プラグの体積は、積層体の中空部の体積の1.01倍とした。上記免震構造体用プラグに対して、下記の方法で減衰性能、追従性、繰り返し安定性及び成形加工性を評価した。結果を表1に示す。
<Evaluation>
Cylindrical hollow part in the center, outer diameter is 225 mm, rigid rigid plate [iron plate] and elastic elastic plate [vulcanized rubber (G '= 0.4 MPa)] are laminated alternately The above seismic isolation structure plug was press-fitted into the hollow portion of the laminated body, thereby producing the seismic isolation structure having the structure shown in FIG. The volume of the plug was 1.01 times the volume of the hollow part of the laminate. With respect to the above-mentioned plug for seismic isolation structure, the damping performance, followability, repeatability and moldability were evaluated by the following methods. The results are shown in Table 1.

(減衰性能)
上記免震構造体に対し、動的試験機を用いて鉛直方向に基準面圧をかけた状態で水平方向に加振して規定変位のせん断変形を生じさせた。なお、加振変位は、積層体の総厚さを100%として、歪50〜250%とし、加振周波数は0.33 Hzとし、垂直面圧は10 MPaとした。図2に、水平方向の変形変位(δ)と免震構造体の水平方向荷重(Q)との関係を示す。図2中のヒステリシス曲線で囲まれた領域の面積ΔWが広くなるほど、振動のエネルギーを多く吸収できることを意味する。ここでは、簡便のため、歪200%における切片荷重Qd(変位0における水平荷重値)でプラグの減衰性能を評価した。なお、切片荷重Qdは、ヒステリシス曲線が縦軸と交差する点での荷重Qd1、Qd2を用いて、下記式:
d=(Qd1+Qd2)/2
から計算した。Qdが大きくなる程、ヒステリシス曲線で囲まれた領域の面積が広くなり、減衰性能が優れることを示す。
(Attenuation performance)
The seismic isolation structure was subjected to a horizontal deformation with a reference surface pressure applied in the vertical direction using a dynamic testing machine to cause shear deformation with a specified displacement. The vibration displacement was set such that the total thickness of the laminate was 100%, the strain was 50 to 250%, the vibration frequency was 0.33 Hz, and the vertical surface pressure was 10 MPa. FIG. 2 shows the relationship between the horizontal deformation displacement (δ) and the horizontal load (Q) of the seismic isolation structure. As the area ΔW of the region surrounded by the hysteresis curve in FIG. 2 becomes wider, it means that more vibration energy can be absorbed. Here, for the sake of simplicity, the damping performance of the plug was evaluated based on an intercept load Q d at a strain of 200% (a horizontal load value at a displacement of 0). The intercept load Q d is expressed by the following formula using the loads Q d1 and Q d2 at the point where the hysteresis curve intersects the vertical axis:
Q d = (Q d1 + Q d2 ) / 2
Calculated from As Q d increases, the area of the region surrounded by the hysteresis curve increases, indicating that the attenuation performance is excellent.

(追従性)
積層体がせん断変形した際に、プラグがその変形に追従できるか否かを評価し、プラグが変形に追従できる場合を○(良好)、追従できない場合を×(不良)とした。
(Followability)
When the laminate was subjected to shear deformation, it was evaluated whether or not the plug could follow the deformation. A case where the plug could follow the deformation was evaluated as ◯ (good), and a case where the plug could not be followed was evaluated as x (bad).

(繰り返し安定性)
予備試験として、50%、100%、150%、200%、250%歪の各3サイクルずつ、せん断変形を実施した。次に、せん断変形を100%歪(1)、200%歪、100%歪(2)の順に各3サイクルずつかけたとき、Qd(100%歪(2)の3サイクル目)/Qd(100%歪(1)の3サイクル目)が0.5以上の場合を○(良好)、0.5未満の場合を×(不良)とした。
(Repetitive stability)
As a preliminary test, shear deformation was performed for each of three cycles of 50%, 100%, 150%, 200%, and 250% strain. Next, when shear deformation was applied in the order of 100% strain (1), 200% strain, and 100% strain (2) for 3 cycles each, Q d (third cycle of 100% strain (2)) / Q d A case where (the third cycle of 100% strain (1)) was 0.5 or more was evaluated as ◯ (good), and a case where it was less than 0.5 was evaluated as x (defective).

(成形加工性)
プラグ用組成物をプレス加工して免震構造体用プラグを作製する際の加工性を評価し、加工性が良好な場合を○、加工性が悪い場合を×とした。
(Molding processability)
The workability at the time of producing a plug for a base-isolated structure by pressing the plug composition was evaluated. The case where the workability was good was evaluated as ○, and the case where the workability was poor was evaluated as ×.

Figure 0005241210
Figure 0005241210

*1 鉄粉, 粒径=40μm, 不定形還元鉄粉
*2 錫粉, 融点=449℃, 粒径=40μm
*3 錫合金粉A, Sn−Zn, Sn=92質量%, Zn=8質量%, 融点=199℃, 粒径=40μm
*4 錫合金粉B, Sn−Ag−Cu, Sn=96.5質量%, Cu=0.5質量%, Ag=3質量%, 融点=218℃, 粒径=40μm
*5 アルミ粉, 融点=660℃
* 1 Iron powder, particle size = 40μm, irregular reduced iron powder
* 2 Tin powder, melting point = 449 ℃, particle size = 40μm
* 3 Tin alloy powder A, Sn—Zn, Sn = 92 mass%, Zn = 8 mass%, melting point = 199 ° C., particle size = 40 μm
* 4 Tin alloy powder B, Sn-Ag-Cu, Sn = 96.5 mass%, Cu = 0.5 mass%, Ag = 3 mass%, melting point = 218 ° C., particle size = 40 μm
* 5 Aluminum powder, melting point = 660 ℃

表1の実施例1〜3から、軟質金属粉と鉄粉とを含有するプラグ用組成物から作製したプラグを用いることで、免震構造体の減衰性能を十分に確保できる上、変位追従性、繰り返し安定性、成型加工性も良好であることが分かる。   From Examples 1 to 3 in Table 1, by using a plug prepared from a plug composition containing soft metal powder and iron powder, the damping performance of the seismic isolation structure can be sufficiently secured, and displacement followability It can be seen that the repetition stability and molding processability are also good.

一方、比較例1から、非軟質金属粉と、鉄粉とを含有するプラグ用組成物は、成型加工性が悪いことが分かる。   On the other hand, it can be seen from Comparative Example 1 that the plug composition containing non-soft metal powder and iron powder has poor moldability.

また、比較例2から、鉄粉のみから作製したプラグを用いた場合、繰り返し安定性及び成型加工性が悪いことが分かる。これは、鉄粉同士が擦れあって壊れてしまうためであると考えられる。従って、この結果から、鉄粉の間に、軟質金属が介在している必要があることが分かる。   Further, it can be seen from Comparative Example 2 that when a plug made only from iron powder is used, the repeated stability and the moldability are poor. This is thought to be because the iron powders rub against each other and break. Therefore, it can be seen from this result that a soft metal needs to be interposed between the iron powders.

また、比較例3及び4から、プラグとしてアルミ製又は鉄製の円柱を用いた場合、追従性及び繰り返し安定性が悪いことが分かる。   Further, it can be seen from Comparative Examples 3 and 4 that when an aluminum or iron cylinder is used as the plug, the followability and repeatability are poor.

本発明の免震構造体の一例の断面図である。It is sectional drawing of an example of the seismic isolation structure of this invention. プラグを使用した免震構造体における、水平方向の変形変位(δ)と水平方向荷重(Q)との関係を示すグラフである。It is a graph which shows the relationship between horizontal deformation displacement (delta) and horizontal direction load (Q) in the seismic isolation structure using a plug.

符号の説明Explanation of symbols

1 免震構造体
2 剛性板
3 弾性板
4 積層体
5 プラグ
6 フランジ板
7 被覆材
DESCRIPTION OF SYMBOLS 1 Seismic isolation structure 2 Rigid board 3 Elastic board 4 Laminated body 5 Plug 6 Flange board 7 Coating | covering material

Claims (4)

軟質金属粉と、鉄粉とを含有し、前記鉄粉の含有量が50〜74体積%であることを特徴とする免震構造体のプラグ用組成物。 A composition for a plug of a seismic isolation structure , comprising soft metal powder and iron powder , wherein the content of the iron powder is 50 to 74% by volume . 前記軟質金属粉が錫粉又は錫合金粉であることを特徴とする請求項1に記載の免震構造体のプラグ用組成物。   The composition for a plug of a seismic isolation structure according to claim 1, wherein the soft metal powder is tin powder or tin alloy powder. 請求項1又は2に記載の免震構造体のプラグ用組成物を、成型装置にて圧力をかけてプレス加工することにより、又はモールドにて前記軟質金属粉の溶融温度以上且つ前記鉄粉の溶融温度未満の温度に加熱して成型することにより製造された免震構造体用プラグ。 The composition for plugs of the seismic isolation structure according to claim 1 or 2 is pressed by applying pressure with a molding apparatus, or more than a melting temperature of the soft metal powder and a mold of the iron powder. A plug for a base-isolated structure manufactured by heating and molding to a temperature below the melting temperature . 剛性を有する剛性板と弾性を有する弾性板とが交互に積層されてなり、該積層方向に延びる中空部を有する積層体と、該積層体の中空部に圧入されたプラグとを具える免震構造体において、
前記プラグが請求項3に記載の免震構造体用プラグであることを特徴とする免震構造体。
A seismic isolation system comprising a laminate having a hollow portion extending in the lamination direction, and a plug press-fitted into the hollow portion of the laminate, wherein a rigid plate having rigidity and an elastic plate having elasticity are alternately laminated. In the structure,
The said plug is a plug for seismic isolation structures of Claim 3. The seismic isolation structure characterized by the above-mentioned.
JP2007306219A 2007-11-27 2007-11-27 Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure Active JP5241210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306219A JP5241210B2 (en) 2007-11-27 2007-11-27 Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306219A JP5241210B2 (en) 2007-11-27 2007-11-27 Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2009127115A JP2009127115A (en) 2009-06-11
JP5241210B2 true JP5241210B2 (en) 2013-07-17

Family

ID=40818347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306219A Active JP5241210B2 (en) 2007-11-27 2007-11-27 Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure

Country Status (1)

Country Link
JP (1) JP5241210B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223402A (en) * 1990-01-25 1991-10-02 Hitachi Ltd Sintered metal high damping structural body and manufacture thereof
JP4622663B2 (en) * 2005-03-30 2011-02-02 オイレス工業株式会社 Seismic isolation support
JP2006275215A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Mining Co Ltd Vibrational energy absorbing device and its manufacturing method

Also Published As

Publication number Publication date
JP2009127115A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5140546B2 (en) Seismic isolation structure
TWI627336B (en) Seismic isolation device
JP2010255782A (en) Plug for seismic isolator and manufacturing method thereof
CN107002813A (en) Earthquake isolating equipment
CN106321706A (en) Lead alloy shearing-type damper used for support column-type electric equipment
JP5241210B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
WO2021256035A1 (en) Automotive impact energy absorptive part
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
WO2009122023A3 (en) Mesostructured material having a high aluminium content and composed of spherical particles of specific size
JP5415691B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP2010025233A (en) Plug for base isolation structure and base isolation structure using the same
JP2011149476A (en) Vibration control damper
JP5164783B2 (en) Seismic isolation structure
JP5436027B2 (en) Seismic isolation structure plug and seismic isolation structure
JP2010255776A (en) Base isolation structure
JP2010101383A (en) Plug for base isolation structure, and base isolation structure
JP5289029B2 (en) Seismic isolation structure plug and seismic isolation structure using the plug
JP5539642B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP5745564B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug, seismic isolation structure, and method of manufacturing seismic isolation structure plug
JP5390252B2 (en) Seismic isolation plug manufacturing method and isolation plug
JP5350773B2 (en) Manufacturing method of seismic isolation structure plug
JP4942238B2 (en) Rubber damper
JP2009108200A (en) Elastomer composition for plug in base isolation structure, composition for plug in base isolation structure, plug in base isolation structure, and base isolation structure
TW202130929A (en) Shock absorption device, laminated rubber type shock absorption support containing metal bolt, shock absorption damper and method of making shock absorption device stably exerting vibration attenuation performance for small deformation to large deformation
JP5869860B2 (en) Method for manufacturing composition for plug of base isolation structure and method for manufacturing plug for base isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5241210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250