JP5238094B1 - Gas component concentration calculation method and apparatus - Google Patents
Gas component concentration calculation method and apparatus Download PDFInfo
- Publication number
- JP5238094B1 JP5238094B1 JP2012245881A JP2012245881A JP5238094B1 JP 5238094 B1 JP5238094 B1 JP 5238094B1 JP 2012245881 A JP2012245881 A JP 2012245881A JP 2012245881 A JP2012245881 A JP 2012245881A JP 5238094 B1 JP5238094 B1 JP 5238094B1
- Authority
- JP
- Japan
- Prior art keywords
- dilution
- sample gas
- component concentration
- gas
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004364 calculation method Methods 0.000 title claims description 42
- 238000010790 dilution Methods 0.000 claims abstract description 173
- 239000012895 dilution Substances 0.000 claims abstract description 173
- 238000012937 correction Methods 0.000 claims abstract description 61
- 239000002131 composite material Substances 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 16
- 239000007789 gas Substances 0.000 description 270
- 239000000523 sample Substances 0.000 description 158
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 5
- 239000012470 diluted sample Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
【課題】試料ガスの希釈率が大きくなっても、その希釈前の正確な成分濃度が取得できるようにする。
【解決手段】質量流量計による試料ガスの希釈前の質量流量の測定値と、ガス分析計による試料ガスの希釈後の成分濃度の測定値と、希釈ガスの質量流量と、試料ガスの各成分の流量補正係数および質量流量計の固有の流量補正係数とを用い、反復計算法に従って、質量流量計の測定値、および当該質量流量計の測定値から得られる希釈率、および当該希釈率から得られる試料ガスの希釈前成分濃度を、所定の精度が得られるまで、繰り返し補正し、それによって、試料ガスの正確な成分濃度を算出する(S1〜S9)。
【選択図】図1Even when a dilution rate of a sample gas is increased, an accurate component concentration before the dilution can be obtained.
A measured value of a mass flow before dilution of a sample gas by a mass flow meter, a measured value of a component concentration after dilution of the sample gas by a gas analyzer, a mass flow of the diluted gas, and each component of the sample gas The flow rate correction coefficient of the mass flow meter and the flow rate correction coefficient specific to the mass flow meter are used, and the measurement value of the mass flow meter, the dilution rate obtained from the measurement value of the mass flow meter, and the dilution rate The component concentration of the sample gas before dilution is repeatedly corrected until a predetermined accuracy is obtained, thereby calculating the exact component concentration of the sample gas (S1 to S9).
[Selection] Figure 1
Description
本発明は、予め用意された希釈ガスによって希釈された、成分濃度が未知の試料ガスをガス分析計に導入し、ガス分析計による測定で得られた希釈後の試料ガスの成分濃度から、希釈前の試料ガスの正確な成分濃度を算出する方法および装置に関するものである。 The present invention introduces a sample gas whose component concentration is unknown, which is diluted with a dilution gas prepared in advance, into the gas analyzer, and dilutes it from the component concentration of the diluted sample gas obtained by measurement with the gas analyzer. The present invention relates to a method and apparatus for calculating an accurate component concentration of a previous sample gas.
内燃機関、燃料改質システムおよび燃料電池等の開発においては、それらから発生する試料ガスに含まれる各成分ガスの濃度をガス分析計を用いて検出し、それによって性能や作動状態を把握することが重要である。
この場合、ガス分析計には測定可能濃度範囲(測定レンジ)があり、試料ガスの濃度がこの測定レンジ内にあるときは、正確な測定値が得られるが、試料ガスの濃度がこの測定レンジ外にあるときは、得られる測定値は不正確なものとなることは良く知られている。
In the development of internal combustion engines, fuel reforming systems, fuel cells, etc., the concentration of each component gas contained in the sample gas generated from them is detected using a gas analyzer, thereby grasping the performance and operating state is important.
In this case, the gas analyzer has a measurable concentration range (measurement range), and when the sample gas concentration is within this measurement range, accurate measurement values can be obtained, but the sample gas concentration is within this measurement range. It is well known that when it is outside, the measurements obtained are inaccurate.
一方、試料ガスは、通常、多量の燃料成分や反応成分を含んでおり、比較的高濃度である場合が多い。そのため、試料ガスがガス分析計の測定レンジを恒常的に超える場合には、試料ガスを、例えば窒素や空気等によって希釈し、希釈後のガスをガス分析計によって測定することが多い。
また、採取可能な試料ガスの量が少量であって、ガス分析計に必要なガス流量が確保できない場合にも、ガス流量を増やすために希釈が行われることがある。
On the other hand, the sample gas usually contains a large amount of fuel components and reaction components and is often relatively high in concentration. Therefore, when the sample gas is constantly greater than the measurement range of the gas analyzer, the sample gas, for example, diluted with nitrogen or air or the like, it is often the gas after dilution is measured by the gas analyzer.
Even when the amount of sample gas that can be collected is small and the gas flow rate required for the gas analyzer cannot be secured, dilution may be performed to increase the gas flow rate.
そして、従来技術においては、試料ガスを希釈してその成分濃度を測定する形式のガス分析装置として、例えば、ガス発生源に連なる流路を流れる試料ガスの一部をサンプリングし、サンプリングした試料ガスを希釈ガスによって希釈し、希釈した試料ガスを質量流量計(マスフローメータ)によって質量流量を測定しつつガス分析計に導入し、ガス分析計によって試料ガスの希釈後の成分濃度を測定する一方、希釈後の試料ガスの質量流量と希釈ガスの質量流量との差を試料ガス流量として希釈率を算出し、この希釈率に基づいて、試料ガスの希釈後の成分濃度から試料ガスの希釈前の成分濃度を求めるようにしたものがある(例えば、特許文献1参照)。 In the prior art, as a gas analyzer of the type that dilutes the sample gas and measures its component concentration, for example, a part of the sample gas flowing through the flow path connected to the gas generation source is sampled, and the sample gas sampled While the diluted sample gas is introduced into the gas analyzer while measuring the mass flow rate with a mass flow meter (mass flow meter), the component concentration after dilution of the sample gas is measured with the gas analyzer, The dilution rate is calculated using the difference between the mass flow rate of the sample gas after dilution and the mass flow rate of the dilution gas as the sample gas flow rate. Based on this dilution rate, the component concentration before dilution of the sample gas is calculated from the component concentration after dilution of the sample gas. There is one in which the component concentration is obtained (see, for example, Patent Document 1).
しかしながら、このガス分析装置においては、試料ガスの希釈率が大きくなって、希釈後の試料ガスの質量流量と希釈ガスの質量流量との差、すなわち、試料ガスの質量流量が小さくなると、当該試料ガスの質量流量の算出(測定)時に質量流量計の測定誤差の影響が大きくなって、その結果、希釈率の算出、さらには、試料ガスの希釈前の成分濃度の算出に誤差を生じるという問題があった。 However, in this gas analyzer, if the dilution rate of the sample gas increases and the difference between the diluted sample gas mass flow rate and the diluted gas mass flow rate, that is, the sample gas mass flow rate decreases, the sample gas The measurement error of the mass flow meter is greatly affected when calculating (measuring) the mass flow rate of the gas, resulting in an error in the calculation of the dilution rate and further the calculation of the component concentration before dilution of the sample gas was there.
したがって、本発明の課題は、試料ガスの希釈率が大きくなっても、常に試料ガスの希釈前の正確な成分濃度が得られるようにする。 Therefore, an object of the present invention is to always obtain an accurate component concentration before dilution of the sample gas even when the dilution rate of the sample gas increases.
上記課題を解決するため、第1発明は、(1)質量流量計の流量表示値をモニタリングしつつ試料ガスを供給するとともに、前記試料ガスに予め用意した希釈ガスの一定質量流量を混合し、混合したガスをガス分析計に導入することにより、前記試料ガスの希釈後成分濃度を前記ガス分析計によって測定するステップと、
(2)前記質量流量計の流量表示値および前記希釈ガスの質量流量から希釈率を計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を計算するステップと、
(3)前記試料ガスの希釈前成分濃度と前記試料ガスの各成分の流量補正係数とから前記試料ガスの合成流量補正係数を計算し、当該合成流量補正係数と前記質量流量計の固有の流量補正係数とを用いて前記質量流量計の流量表示値を補正するステップと、
(4)前記補正をした前記流量表示値と前記希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を再計算するステップと、
(5)前記再計算をした前記試料ガスの希釈前成分濃度と前記試料ガスの各成分の流量補正係数とから前記試料ガスの合成流量補正係数を再計算し、当該合成流量補正係数と、前記質量流量計の固有の流量補正係数とを用いて前記質量流量計の流量表示値を補正するステップと、
(6)前記補正をした前記流量表示値と前記希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を再計算するステップと、
(7)前記再計算をした前記試料ガスの希釈前成分濃度と、当該再計算前の前記試料ガスの希釈前成分濃度との差を計算し、当該差が予め決定した閾値よりも小さいときは、前記再計算をした前記試料ガスの希釈前成分濃度を、前記試料ガスの正確な成分濃度として処理を終了するが、当該差が前記閾値に等しいかまたはそれよりも大きいときは、前記再計算をした前記試料ガスの希釈前成分濃度を用いて、再度、ステップ(5)〜(7)を順次実行するステップと、を順次実行することを特徴とする試料ガスの成分濃度算出方法としたものである。
In order to solve the above problems, the first invention is (1) supplying a sample gas while monitoring a flow rate display value of a mass flow meter, mixing a predetermined mass flow rate of a dilution gas prepared in advance with the sample gas, Measuring the diluted component concentration of the sample gas with the gas analyzer by introducing the mixed gas into the gas analyzer;
(2) The dilution rate is calculated from the flow rate display value of the mass flow meter and the mass flow rate of the dilution gas, and the pre-dilution component concentration of the sample gas is calculated from the dilution rate and the diluted component concentration of the sample gas. Steps,
(3) calculating a combined flow rate correction coefficient of the sample gas from a concentration of the sample gas before dilution and a flow rate correction coefficient of each component of the sample gas, and calculating the combined flow rate correction coefficient and the specific flow rate of the mass flow meter Correcting the flow rate display value of the mass flow meter using a correction coefficient;
(4) The dilution rate is recalculated from the corrected flow rate display value and the mass flow rate of the dilution gas, and the pre-dilution component concentration of the sample gas is determined from the dilution rate and the diluted component concentration of the sample gas. A recalculating step;
(5) Recalculating the composite gas flow correction coefficient of the sample gas from the pre-dilution component concentration of the sample gas that has been recalculated and the flow correction coefficient of each component of the sample gas, Correcting the flow display value of the mass flow meter using a flow correction coefficient inherent to the mass flow meter;
(6) The dilution rate is recalculated from the corrected flow rate display value and the mass flow rate of the dilution gas, and the pre-dilution component concentration of the sample gas is determined from the dilution rate and the diluted component concentration of the sample gas. A recalculating step;
(7) When the difference between the pre-dilution component concentration of the sample gas recalculated and the pre-dilution component concentration of the sample gas before the re-calculation is calculated, and the difference is smaller than a predetermined threshold value The processing is terminated with the recalculated component concentration of the sample gas before dilution as an accurate component concentration of the sample gas. When the difference is equal to or larger than the threshold value, the recalculation is performed. A step of sequentially executing steps (5) to (7) again using the pre-dilution component concentration of the sample gas that has been subjected to the sample gas component concentration calculation method It is.
上記課題を解決するため、第2発明は、質量流量計の流量表示値をモニタリングしつつ試料ガスを供給するとともに、前記試料ガスに予め用意した希釈ガスの一定質量流量を混合し、混合したガスをガス分析計に導入することによって得られた前記試料ガスの希釈後成分濃度の入力を受ける第1入力部と、前記希釈ガスの質量流量および前記質量流量計の前記流量表示値の入力を受ける第2入力部と、前記第1入力部に入力された前記試料ガスの希釈後成分濃度、および前記第2入力部に入力された前記希釈ガスの質量流量並びに前記質量流量計の前記流量表示値を格納する第1メモリ部と、前記質量流量計の測定対象となる各ガス成分の流量補正係数、および前記質量流量計の固有の流量補正係数が予め格納された第2メモリ部と、前記質量流量計の流量表示値および前記希釈ガスの質量流量から希釈率を計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を算出する第1の試料ガス成分濃度算出部と、前記第1の試料ガス成分濃度算出部によって算出された前記試料ガスの希釈前成分濃度と、前記試料ガスの各成分の流量補正係数とから前記試料ガスの合成流量補正係数を計算し、当該合成流量補正係数と前記質量流量計の固有の流量補正係数とを用いて前記質量流量計の流量表示値を補正し、当該流量表示値と前記希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を算出する第2の試料ガス成分濃度算出部と、前記第2の試料ガス成分濃度算出部によって算出された前記試料ガスの希釈前成分濃度に基づき前記試料ガスの合成流量補正係数を計算し、当該合成流量補正係数に基づいて前記質量流量計の前記流量表示値を補正し、当該流量表示値に基づいて希釈率を計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を再計算し、再計算した希釈前成分濃度と当該再計算前の希釈前成分濃度との差が予め決定された閾値よりも小さくなるまで前記試料ガスの希釈前成分濃度の再計算を繰り返し、前記差が前記閾値よりも小さくなった時の前記試料ガスの希釈前成分濃度を出力する試料ガス成分濃度補正部と、を備えたことを特徴とする試料ガス成分濃度算出装置としたものである。 In order to solve the above-mentioned problem, the second invention supplies a sample gas while monitoring a flow rate display value of a mass flow meter, and mixes a predetermined mass flow rate of a dilution gas prepared in advance with the sample gas, and mixes the gas A first input unit that receives an input of a component concentration after dilution of the sample gas obtained by introducing the gas into the gas analyzer, and receives an input of the mass flow rate of the dilution gas and the flow rate display value of the mass flow meter The second input unit, the component concentration after dilution of the sample gas input to the first input unit, the mass flow rate of the dilution gas input to the second input unit, and the flow rate display value of the mass flow meter A second memory unit in which a flow rate correction coefficient of each gas component to be measured by the mass flow meter and a flow rate correction coefficient unique to the mass flow meter are stored in advance, and the quality A first sample gas that calculates the dilution rate from the flow rate display value of the flow meter and the mass flow rate of the dilution gas, and calculates the pre-dilution component concentration of the sample gas from the dilution rate and the diluted component concentration of the sample gas A combined flow rate correction coefficient of the sample gas from a component concentration calculation unit, a pre-dilution component concentration of the sample gas calculated by the first sample gas component concentration calculation unit, and a flow rate correction coefficient of each component of the sample gas The flow rate display value of the mass flow meter is corrected using the composite flow rate correction coefficient and the flow rate correction coefficient unique to the mass flow meter, and dilution is performed from the flow rate display value and the mass flow rate of the dilution gas. A second sample gas component concentration calculation unit that recalculates the rate and calculates the pre-dilution component concentration of the sample gas from the dilution rate and the diluted component concentration of the sample gas; and the second sample gas component concentration By the calculator Calculate a composite flow rate correction coefficient of the sample gas based on the component concentration before dilution of the sample gas that has been issued, correct the flow rate display value of the mass flow meter based on the composite flow rate correction factor, and the flow rate display value Based on the above, the dilution rate is calculated, the pre-dilution component concentration of the sample gas is recalculated from the dilution rate and the diluted component concentration of the sample gas, the re-calculated pre-dilution component concentration and the dilution before the re-calculation The re-calculation of the pre-dilution component concentration of the sample gas is repeated until the difference from the pre-component concentration becomes smaller than a predetermined threshold value, and the pre-dilution component of the sample gas when the difference becomes smaller than the threshold value A sample gas component concentration calculation apparatus comprising a sample gas component concentration correction unit that outputs a concentration.
本発明によれば、質量流量計による試料ガスの希釈前の質量流量の測定値と、ガス分析計による試料ガスの希釈後の成分濃度の測定値と、希釈ガスの質量流量と、試料ガスの各成分の流量補正係数および質量流量計の固有の流量補正係数とを用い、反復計算法に従って、質量流量計の測定値、および当該質量流量計の測定値から得られる希釈率、および当該希釈率から得られる試料ガスの希釈前成分濃度を、所定の精度が得られるまで、繰り返し補正し、それによって、試料ガスの正確な成分濃度を算出するようにしているので、試料ガスの希釈率の如何にかかわらず、常に、試料ガスの正確な成分濃度が得られる。 According to the present invention, the measured value of the mass flow rate before dilution of the sample gas by the mass flow meter, the measured value of the component concentration after dilution of the sample gas by the gas analyzer, the mass flow rate of the diluted gas, and the sample gas Using the flow correction coefficient of each component and the inherent flow correction coefficient of the mass flow meter, according to the iterative calculation method, the measurement value of the mass flow meter, the dilution rate obtained from the measurement value of the mass flow meter, and the dilution rate The component concentration before dilution of the sample gas obtained from the above is corrected repeatedly until a predetermined accuracy is obtained, thereby calculating the exact component concentration of the sample gas. Regardless, the exact component concentration of the sample gas is always obtained.
以下、添付図面を参照して本発明の好ましい実施例を説明する。図1は、本発明の1実施例によるガス成分濃度算出方法のフロー図である。
図1を参照して、本発明によれば、まず、質量流量計の流量表示値をモニタリグしつつ試料ガスが供給されるとともに、試料ガスに予め用意された希釈ガスの一定質量流量が混合され、混合されたガスがガス分析計に導入されることにより、試料ガスの希釈後成分濃度がガス分析計によって測定される(図1のステップS1)。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a flowchart of a gas component concentration calculation method according to an embodiment of the present invention.
Referring to FIG. 1, according to the present invention, first, a sample gas is supplied while monitoring a flow rate display value of a mass flow meter, and a predetermined mass flow rate of a dilution gas prepared in advance is mixed with the sample gas. Then, the mixed gas is introduced into the gas analyzer, whereby the component concentration after dilution of the sample gas is measured by the gas analyzer (step S1 in FIG. 1).
この場合、希釈ガスとしては、使用されるガス分析計によって検出されないガス、例えば、窒素ガスおよびアルゴンガス等の不活性ガスが用いられる。また、希釈ガスの供給は、例えば、質量流量調整器(マスフローコントローラ)を用いて行われる。
また、ガス分析計としては、公知の任意のガス分析計(例えば、FTIR法ガス分析計、質量分析計およびNDIR法分析計等)が使用可能であり、さらには、必要に応じて、複数のガス分析計を使用することもできる。
In this case, as the dilution gas, a gas that is not detected by the gas analyzer used, for example, an inert gas such as nitrogen gas or argon gas is used. In addition, the dilution gas is supplied using, for example, a mass flow controller (mass flow controller).
As the gas analyzer, any known gas analyzer (for example, FTIR gas analyzer, mass spectrometer, NDIR analyzer, etc.) can be used, and a plurality of gas analyzers can be used as necessary. A gas analyzer can also be used.
次に、質量流量計の流量表示値F0および希釈ガスの質量流量F1から希釈率α0が計算され、当該希釈率α0と試料ガスの希釈後成分濃度mi(i=1、2、・・・、n)とから試料ガスの希釈前成分濃度Mi(i=1、2、・・・、n)が
そして、試料ガスの希釈前成分濃度Mi(i=1、2、・・・、n)と、試料ガスの各成分の流量補正係数CFi(i=1、2、・・・、n)とから試料ガスの合成流量補正係数CFが、
Then, the component concentration M i (i = 1, 2,..., N) before dilution of the sample gas and the flow rate correction coefficient CF i (i = 1, 2,..., N) of each component of the sample gas. From the above, the sample gas synthesis flow rate correction coefficient CF is
そして、ステップS3で補正された流量表示値(=試料ガスの質量流量Fsample)と、希釈ガスの質量流量F1とから希釈率αが
そして、(5)式で得られた試料ガスの希釈前成分濃度Miを(2)式に代入することによって、試料ガスの合成流量補正係数CFが再計算され、当該再計算された合成流量補正係数CFと、質量流量計の固有の流量補正係数CF0とから、(3)式に従って、質量流量計の流量表示値F0が再補正され、補正された試料ガスの質量流量Fsampleが得られる(図1のステップS5)。
次に、ステップS5で補正された流量表示値(=補正された試料ガスの質量流量Fsample)と、希釈ガスの質量流量F1とから、(4)式に従って希釈率αが再計算され、当該再計算された希釈率αを用いて、(5)式に従って、試料ガスの希釈前成分濃度Miが再計算される(図1のステップS6)。
Then, (5) by substituting the pre-dilution component concentration M i of the sample gas obtained in (2) in formula is recalculated synthetic flow rate correction factor CF of the sample gas, the recalculated synthesized flow From the correction coefficient CF and the flow rate correction coefficient CF 0 inherent to the mass flow meter, the flow rate display value F 0 of the mass flow meter is re-corrected according to the equation (3), and the corrected mass flow rate F sample of the sample gas is Is obtained (step S5 in FIG. 1).
Next, from the flow rate display value corrected in step S5 (= corrected sample gas mass flow rate F sample ) and the dilution gas mass flow rate F 1 , the dilution rate α is recalculated according to the equation (4), using dilution α which is the recalculated according (5), pre-dilution component concentration M i of the sample gas is recalculated (step S6 in FIG. 1).
さらに、ステップS6で再計算された試料ガスの希釈前成分濃度と、当該再計算前の試料ガスの希釈前成分濃度との差が計算され(図1のステップS7)、当該差が予め決定された閾値と比較される(図1のステップS8)。この閾値は、算出される試料ガスの成分濃度値の望まれた精度に応じて決定される。
そして、当該差が予め決定した閾値よりも小さいときは、ステップS6で再計算された試料ガスの成分濃度を試料ガスの正確な成分濃度として処理が終了される(図1のステップS9)が、当該差が閾値に等しいかまたはそれよりも大きいときは、ステップS6で再計算された試料ガスの成分濃度を用いて、再度、ステップS5〜S8が順次実行される。
Further, the difference between the pre-dilution component concentration of the sample gas recalculated in step S6 and the pre-dilution component concentration of the sample gas before the re-calculation is calculated (step S7 in FIG. 1), and the difference is determined in advance. (Step S8 in FIG. 1). This threshold is determined according to the desired accuracy of the calculated component concentration of the sample gas.
When the difference is smaller than a predetermined threshold value, the processing is terminated with the component concentration of the sample gas recalculated in step S6 as the accurate component concentration of the sample gas (step S9 in FIG. 1). When the difference is equal to or larger than the threshold value, steps S5 to S8 are sequentially executed again using the component concentration of the sample gas recalculated in step S6.
こうして、本発明は、質量流量計を用いて複数ガスの混合ガスの質量流量を測定する場合、当該質量流量計の表示流量が、当該混合ガスの成分濃度、各成分の流量補正係数、並びに当該質量流量計の固有の流量補正係数とを用いて補正される点、および、ガス分析計によって測定されるのはあくまでも試料ガスの希釈後の成分濃度である点に鑑み、質量流量計による試料ガスの希釈前の質量流量の測定値と、希釈ガスの質量流量と、ガス分析計による試料ガスの希釈後の成分濃度の測定値と、試料ガスの各成分の流量補正係数および質量流量計の固有の流量補正係数とを用い、反復計算法に従って、質量流量計の測定値、および当該質量流量計の測定値から得られる希釈率、および当該希釈率から得られる試料ガスの希釈前成分濃度を、所定の精度が得られるまで繰り返し補正し、それによって、試料ガスの正確な成分濃度を算出するようにしている。
それ故、本発明によれば、試料ガスの希釈率の変動の如何にかかわらず、常に、試料ガスの正確な成分濃度が得られる。
Thus, in the present invention, when the mass flow rate of a mixed gas of a plurality of gases is measured using a mass flow meter, the display flow rate of the mass flow meter includes the component concentration of the mixed gas, the flow rate correction coefficient of each component, and the In view of the point that is corrected using the inherent flow rate correction coefficient of the mass flow meter, and that the gas analyzer measures only the component concentration after dilution of the sample gas, the sample gas from the mass flow meter Of the mass flow rate before dilution of the sample gas, the mass flow rate of the dilution gas, the measured value of the component concentration after dilution of the sample gas by the gas analyzer, the flow rate correction coefficient of each component of the sample gas, and the mass flow meter specific In accordance with an iterative calculation method, the dilution rate obtained from the measurement value of the mass flow meter, the dilution rate obtained from the measurement value of the mass flow meter, and the pre-dilution component concentration of the sample gas obtained from the dilution rate, Predetermined Repeatedly corrected to an accuracy is obtained, thereby being possible to calculate an accurate component concentration of the sample gas.
Therefore, according to the present invention, an accurate component concentration of the sample gas can always be obtained regardless of variations in the dilution rate of the sample gas.
また、上記一連のステップを、予め決定された時間間隔で連続的に繰り返し実行することによって、濃度変化のある試料ガスの成分濃度を連続的に測定することができる。
なお、本発明では、上述のように、反復計算法に従って、質量流量計の流量表示値(測定値)、希釈率および試料ガスの希釈前成分濃度を、所定の精度が得られるまで繰り返し補正し、それによって、試料ガスの正確な成分濃度を算出しており、よって、上記反復計算の過程では、試料ガスの希釈前成分濃度の精度の上昇とともに、質量流量計の流量表示値の精度も上昇する。したがって、試料ガスの希釈前成分濃度の代わりに、質量流量計の流量表示値に着目し、反復計算において、補正後の流量表示値と補正前の流量表示値の差が所定の閾値より小さくなった時点での試料ガスの希釈前成分濃度を試料ガスの正確な成分濃度とすることもできる。
Moreover, the component concentration of the sample gas having a concentration change can be continuously measured by repeatedly executing the above series of steps continuously at predetermined time intervals.
In the present invention, as described above, according to the iterative calculation method, the flow rate display value (measurement value) of the mass flow meter, the dilution rate, and the concentration of the sample gas before dilution are repeatedly corrected until a predetermined accuracy is obtained. Therefore, the accurate component concentration of the sample gas is calculated. Therefore, in the above iterative calculation process, the accuracy of the flow rate display value of the mass flowmeter increases as the accuracy of the concentration of the sample gas before dilution increases. To do. Therefore, paying attention to the flow rate display value of the mass flow meter instead of the pre-dilution component concentration of the sample gas, the iterative calculation makes the difference between the corrected flow rate display value and the uncorrected flow rate display value smaller than a predetermined threshold value. It is also possible to set the component concentration of the sample gas before dilution at the time when the sample gas is in an accurate component concentration.
次に、上記反復計算によって、試料ガスの希釈前成分濃度が次第にその正確な値に収れんしていく過程を調べるべく、コンピュータによるシミュレーションを行った。
今、組成が、
・成分1:7vol%(流量補正係数=0.8)
・成分2:12vol%流量補正係数=0.55)
・成分3:23vol%(流量補正係数=0.3)
・窒素:58vol%(流量補正係数=1.0)
である試料ガスの流量12L/minを供給しつつ、流量50L/minの希釈ガス(窒素)で希釈し、希釈後の試料ガスをガス分析計に導入して成分濃度を測定する場合を考える。
Next, a computer simulation was performed to examine the process in which the concentration of the pre-dilution component of the sample gas gradually converged to the correct value by the above iterative calculation.
Now the composition is
-Component 1: 7 vol% (flow rate correction coefficient = 0.8)
-Component 2: 12 vol% flow rate correction coefficient = 0.55)
-Component 3: 23 vol% (flow rate correction coefficient = 0.3 )
-Nitrogen: 58 vol% (flow rate correction coefficient = 1.0)
Consider a case where the sample gas is supplied with a flow rate of 12 L / min, diluted with a dilution gas (nitrogen) at a flow rate of 50 L / min, and the diluted sample gas is introduced into a gas analyzer to measure the component concentration.
この場合、試料ガスの希釈後の成分濃度は、それぞれ、
・成分1:1.355vol%
・成分2:2.323vol%
・成分3:4.452vol%
となり、この試料ガスの合成流量補正係数は、上記(2)式に従って、0.605と計算される。
In this case, the component concentrations after dilution of the sample gas are respectively
・ Ingredient 1: 1.355 vol%
-Component 2: 2.323 vol%
Ingredient 3: 4.452 vol%
Thus, the synthesis flow rate correction coefficient of this sample gas is calculated as 0.605 according to the above equation (2).
一方、この試料ガスの質量流量を、窒素を基準に校正された質量流量計(質量流量計の固有の流量補正係数=1.0)を用いて測定したとすれば、質量流量計の流量表示値は、19.82L/minとなる。
そして、この流量表示値(19.82L/min)と、上で計算された希釈後の成分濃度とから、試料ガスの希釈前の成分濃度が、上記(5)式に従って、
・成分1:4.771vol%
・成分2:8.179vol%
・成分3:15.677vol%
と計算され、前提とされた成分濃度から誤差を生じている。
On the other hand, if the mass flow rate of the sample gas is measured using a mass flow meter calibrated with reference to nitrogen (specific flow correction coefficient of the mass flow meter = 1.0), the flow rate of the mass flow meter is displayed. The value is 19.82 L / min.
Then, from this flow rate display value (19.82 L / min) and the component concentration after dilution calculated above, the component concentration before dilution of the sample gas is determined according to the above equation (5).
Ingredient 1: 4.771 vol%
Ingredient 2: 8.179 vol%
Ingredient 3: 15.677 vol%
An error is generated from the assumed component concentration.
そこで、この試料ガスの成分濃度、および質量流量計の流量表示値19.82L/minから出発して、上記ステップS1〜S9を順次実行すれば、次の表1に示すような結果が得られた。表1から、5回の反復計算により、算出された成分濃度の値が、前提とされた成分濃度に対して0.1%の誤差範囲内に収れんしていることがわかる。 Therefore, starting from the sample gas component concentration and the mass flow meter's flow rate display value of 19.82 L / min, the above-described steps S1 to S9 can be executed sequentially to obtain the results shown in Table 1 below. It was. From Table 1, it can be seen that the calculated component concentration value is within an error range of 0.1% with respect to the assumed component concentration by five iterations.
本発明によるガス成分濃度算出方法の一連のプロセスをプログラム化し、公知の適当なCPUに搭載することによって、ガス成分濃度算出装置とすることができる。そして、本発明によるガス成分濃度算出装置は、通常、ガス分析装置に組み込まれて使用される。 By programming a series of processes of the gas component concentration calculation method according to the present invention and mounting the program on a known appropriate CPU, a gas component concentration calculation device can be obtained. The gas component concentration calculation apparatus according to the present invention is normally used by being incorporated in a gas analyzer.
図2は、本発明の1実施例によるガス成分濃度算出装置を備えたガス分析装置のブロック図である。
図2を参照して、ガス分析装置は、ガス分析計9と、ガス分析計9に試料ガス源8から試料ガスを導入するためのガス導入管路10を備えている。また、ガス導入管10の途中には、試料ガスの供給流量を調整するバルブ15と、バルブ15の下流側に試料ガスの流量を測定する質量流量計11が設けられている。
FIG. 2 is a block diagram of a gas analyzer equipped with a gas component concentration calculation device according to one embodiment of the present invention.
Referring to FIG. 2, the gas analyzer includes a
また、ガス導入管路10における質量流量計11の下流側には、希釈ガス供給管路12が分岐接続されており、希釈ガス供給管路12には、希釈ガス源13と、希釈ガスの供給流量を調整する質量流量調整器(マスフローコントローラ)14が接続されている。
なお、図示はしないが、必要に応じて、ガス導入管路10における希釈ガス供給管路12との接続点よりも下流側に、ガス分析計9にガスを供給するための供給ポンプが設けられる。
A dilution
Although not shown, a supply pump for supplying gas to the
そして、質量流量計11の流量表示値がモニタリングされつつ試料ガス源8から試料ガスが供給されるとともに、試料ガスに予め用意された希釈ガスの一定質量流量が混合され、混合されたガスがガス分析計9に導入されることによって、試料ガスの希釈後成分濃度が測定されるようになっている。
Then, the sample gas is supplied from the
この実施例では、質量流量計11の流量表示値をモニタリングしながら試料ガスの供給流量をバルブ15によって調整するようにしているが、バルブ15および質量流量計11の代わりに質量流量調整器を配置し、予め設定された流量をガス分析計9に供給する構成とすることもできる。
また、試料ガス中に露点温度が低い成分ガスが含まれる場合には、当該成分ガスがガス導入管路10や質量流量計11内に凝縮して故障や測定誤差を引き起こすことを防止すべく、ガス導入管路10および質量流量計11等が露点温度以上に温度制御される。
In this embodiment, the supply flow rate of the sample gas is adjusted by the
Further, in the case where a component gas having a low dew point temperature is included in the sample gas, in order to prevent the component gas from condensing in the
ガス分析装置には、本発明によるガス成分濃度算出装置1が備えられている。
本発明によるガス成分濃度算出装置1は、ガス分析計9によって測定された試料ガスの希釈後成分濃度の入力を受ける第1入力部2と、希釈ガスの質量流量(質量流量調整器14の流量表示値)および質量流量計11の流量表示値の入力を受ける第2入力部3を備えている。
The gas analyzer is provided with a gas component
The gas component
また、ガス成分濃度算出装置1は、第1入力部2に入力された試料ガスの希釈後成分濃度、および第2入力部3に入力された希釈ガスの質量流量並びに質量流量計11の流量表示値を格納する第1メモリ部4と、質量流量計11の測定対象となる各ガス成分の流量補正係数、および質量流量計11の固有の流量補正係数が予め格納された第2メモリ部5を備えている。
Further, the gas component
ガス成分濃度算出装置1は、また、質量流量計11の流量表示値および希釈ガスの質量流量から希釈率を計算し、当該希釈率と試料ガスの希釈後成分濃度とから試料ガスの希釈前成分濃度を算出する第1の試料ガス成分濃度算出部6aと、第1の試料ガス成分濃度算出部6aによって算出された試料ガスの希釈前成分濃度と、試料ガスの各成分の流量補正係数とから試料ガスの合成流量補正係数を計算し、当該合成流量補正係数と、質量流量計の固有の流量補正係数とを用いて質量流量計11の流量表示値を補正し、さらに、当該補正した流量表示値と、希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と、試料ガスの希釈後成分濃度とから、試料ガスの希釈前成分濃度を算出する第2の試料ガス成分濃度算出部6bを備えている。
The gas component
さらに、ガス成分濃度算出装置1は、第2の試料ガス成分濃度算出部6bによって算出された試料ガスの希釈前成分濃度に基づき試料ガスの合成流量補正係数を計算し、当該合成流量補正係数に基づいて質量流量計11の流量表示値を補正し、当該流量表示値に基づいて希釈率を計算し、当該希釈率と試料ガスの希釈後成分濃度とから試料ガスの希釈前成分濃度を再計算し、再計算した希釈前成分濃度と当該再計算前の希釈前成分濃度との差が予め決定された閾値よりも小さくなるまで試料ガスの希釈前成分濃度の再計算を繰り返し、差が閾値よりも小さくなった時の試料ガスの希釈前成分濃度を出力する試料ガス成分濃度補正部7を備えている。
Further, the gas component
1 ガス成分濃度算出装置
2 第1入力部
3 第2入力部
4 第1メモリ部
5 第2メモリ部
6a 第1の試料ガス成分濃度算出部
6b 第2の試料ガス成分濃度算出部
7 試料ガス成分濃度補正部
8 試料ガス源
9 ガス分析計
10 ガス導入管路
11 質量流量計
12 分岐管路
13 希釈ガス源
14 質量流量調整器
15 バルブ
DESCRIPTION OF
Claims (2)
(2)前記質量流量計の流量表示値および前記希釈ガスの質量流量から希釈率を計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を計算するステップと、
(3)前記試料ガスの希釈前成分濃度と前記試料ガスの各成分の流量補正係数とから前記試料ガスの合成流量補正係数を計算し、当該合成流量補正係数と前記質量流量計の固有の流量補正係数とを用いて前記質量流量計の流量表示値を補正するステップと、
(4)前記補正をした前記流量表示値と前記希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を再計算するステップと、
(5)前記再計算をした前記試料ガスの希釈前成分濃度と前記試料ガスの各成分の流量補正係数とから前記試料ガスの合成流量補正係数を再計算し、当該合成流量補正係数と、前記質量流量計の固有の流量補正係数とを用いて前記質量流量計の流量表示値を補正するステップと、
(6)前記補正をした前記流量表示値と前記希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を再計算するステップと、
(7)前記再計算をした前記試料ガスの希釈前成分濃度と、当該再計算前の前記試料ガスの希釈前成分濃度との差を計算し、当該差が予め決定した閾値よりも小さいときは、前記再計算をした前記試料ガスの希釈前成分濃度を、前記試料ガスの正確な成分濃度として処理を終了するが、当該差が前記閾値に等しいかまたはそれよりも大きいときは、前記再計算をした前記試料ガスの希釈前成分濃度を用いて、再度、ステップ(5)〜(7)を順次実行するステップと、を順次実行することを特徴とする試料ガスの成分濃度算出方法。 (1) By supplying the sample gas while monitoring the flow rate display value of the mass flow meter, mixing a predetermined mass flow rate of the dilution gas prepared in advance with the sample gas, and introducing the mixed gas into the gas analyzer Measuring the diluted component concentration of the sample gas with the gas analyzer;
(2) The dilution rate is calculated from the flow rate display value of the mass flow meter and the mass flow rate of the dilution gas, and the pre-dilution component concentration of the sample gas is calculated from the dilution rate and the diluted component concentration of the sample gas. Steps,
(3) calculating a combined flow rate correction coefficient of the sample gas from a concentration of the sample gas before dilution and a flow rate correction coefficient of each component of the sample gas, and calculating the combined flow rate correction coefficient and the specific flow rate of the mass flow meter Correcting the flow rate display value of the mass flow meter using a correction coefficient;
(4) The dilution rate is recalculated from the corrected flow rate display value and the mass flow rate of the dilution gas, and the pre-dilution component concentration of the sample gas is determined from the dilution rate and the diluted component concentration of the sample gas. A recalculating step;
(5) Recalculating the composite gas flow correction coefficient of the sample gas from the pre-dilution component concentration of the sample gas that has been recalculated and the flow correction coefficient of each component of the sample gas, Correcting the flow display value of the mass flow meter using a flow correction coefficient inherent to the mass flow meter;
(6) The dilution rate is recalculated from the corrected flow rate display value and the mass flow rate of the dilution gas, and the pre-dilution component concentration of the sample gas is determined from the dilution rate and the diluted component concentration of the sample gas. A recalculating step;
(7) When the difference between the pre-dilution component concentration of the sample gas recalculated and the pre-dilution component concentration of the sample gas before the re-calculation is calculated, and the difference is smaller than a predetermined threshold value The processing is terminated with the recalculated component concentration of the sample gas before dilution as an accurate component concentration of the sample gas. When the difference is equal to or larger than the threshold value, the recalculation is performed. The step of sequentially executing steps (5) to (7) again using the pre-dilution component concentration of the sample gas that has been performed is sequentially performed.
前記希釈ガスの質量流量および前記質量流量計の前記流量表示値の入力を受ける第2入力部と、
前記第1入力部に入力された前記試料ガスの希釈後成分濃度、および前記第2入力部に入力された前記希釈ガスの質量流量並びに前記質量流量計の前記流量表示値を格納する第1メモリ部と、
前記質量流量計の測定対象となる各ガス成分の流量補正係数、および前記質量流量計の固有の流量補正係数が予め格納された第2メモリ部と、
前記質量流量計の流量表示値および前記希釈ガスの質量流量から希釈率を計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を算出する第1の試料ガス成分濃度算出部と、
前記第1の試料ガス成分濃度算出部によって算出された前記試料ガスの希釈前成分濃度と、前記試料ガスの各成分の流量補正係数とから前記試料ガスの合成流量補正係数を計算し、当該合成流量補正係数と前記質量流量計の固有の流量補正係数とを用いて前記質量流量計の流量表示値を補正し、当該流量表示値と前記希釈ガスの質量流量とから希釈率を再計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を算出する第2の試料ガス成分濃度算出部と、
前記第2の試料ガス成分濃度算出部によって算出された前記試料ガスの希釈前成分濃度に基づき前記試料ガスの合成流量補正係数を計算し、当該合成流量補正係数に基づいて前記質量流量計の前記流量表示値を補正し、当該流量表示値に基づいて希釈率を計算し、当該希釈率と前記試料ガスの希釈後成分濃度とから前記試料ガスの希釈前成分濃度を再計算し、再計算した希釈前成分濃度と当該再計算前の希釈前成分濃度との差が予め決定された閾値よりも小さくなるまで前記試料ガスの希釈前成分濃度の再計算を繰り返し、前記差が前記閾値よりも小さくなった時の前記試料ガスの希釈前成分濃度を出力する試料ガス成分濃度補正部と、を備えたことを特徴とする試料ガス成分濃度算出装置。 Obtained by supplying the sample gas while monitoring the flow rate display value of the mass flow meter, mixing a constant mass flow rate of the dilution gas prepared in advance with the sample gas, and introducing the mixed gas into the gas analyzer A first input unit for receiving an input of a component concentration after dilution of the sample gas;
A second input unit for receiving input of a mass flow rate of the dilution gas and the flow rate display value of the mass flow meter;
A first memory for storing the diluted component concentration of the sample gas input to the first input unit, the mass flow rate of the dilution gas input to the second input unit, and the flow rate display value of the mass flow meter. And
A second memory unit in which a flow rate correction coefficient of each gas component to be measured by the mass flow meter and a specific flow rate correction coefficient of the mass flow meter are stored in advance;
A dilution rate is calculated from a flow rate display value of the mass flow meter and a mass flow rate of the dilution gas, and a pre-dilution component concentration of the sample gas is calculated from the dilution rate and a diluted component concentration of the sample gas. A sample gas component concentration calculator,
A synthesis flow correction coefficient of the sample gas is calculated from the pre-dilution component concentration of the sample gas calculated by the first sample gas component concentration calculation unit and the flow correction coefficient of each component of the sample gas, and the synthesis Correct the flow rate display value of the mass flow meter using the flow rate correction factor and the flow rate correction factor specific to the mass flow meter, recalculate the dilution rate from the flow rate display value and the mass flow rate of the dilution gas, A second sample gas component concentration calculator that calculates the pre-dilution component concentration of the sample gas from the dilution rate and the diluted component concentration of the sample gas;
Calculating a combined flow rate correction coefficient of the sample gas based on the pre-dilution component concentration of the sample gas calculated by the second sample gas component concentration calculating unit, and based on the combined flow rate correction coefficient, the mass flow meter The flow rate display value was corrected, the dilution rate was calculated based on the flow rate display value, the pre-dilution component concentration of the sample gas was recalculated from the dilution rate and the diluted component concentration of the sample gas, and recalculated. The re-calculation of the pre-dilution component concentration of the sample gas is repeated until the difference between the pre-dilution component concentration and the pre-dilution component concentration before the re-calculation becomes smaller than a predetermined threshold value, and the difference is smaller than the threshold value. And a sample gas component concentration correction unit that outputs a pre-dilution component concentration of the sample gas at the time when the sample gas has become.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012245881A JP5238094B1 (en) | 2012-11-08 | 2012-11-08 | Gas component concentration calculation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012245881A JP5238094B1 (en) | 2012-11-08 | 2012-11-08 | Gas component concentration calculation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5238094B1 true JP5238094B1 (en) | 2013-07-17 |
JP2014095573A JP2014095573A (en) | 2014-05-22 |
Family
ID=49041744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012245881A Active JP5238094B1 (en) | 2012-11-08 | 2012-11-08 | Gas component concentration calculation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5238094B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534868A (en) * | 2017-03-02 | 2018-09-14 | 中国计量科学研究院 | A kind of gas-dynamic dilution air distribution system and its method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102456784B1 (en) * | 2020-12-07 | 2022-10-19 | 재단법인 한국화학융합시험연구원 | Atmospheric lifetimes measurement system for calculating global warming potential of sample gas |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003287477A (en) * | 2002-02-04 | 2003-10-10 | Avl List Gmbh | Exhaust emission analysis system and method for correcting measurement of exhaust emission |
JP2005172472A (en) * | 2003-12-08 | 2005-06-30 | National Institute Of Advanced Industrial & Technology | Gas analysis method, and gas analysis method for fuel cell |
JP2006266774A (en) * | 2005-03-23 | 2006-10-05 | Taiyo Nippon Sanso Corp | Analyzing method and analyzing apparatus for mixed gas |
JP2010243180A (en) * | 2009-04-01 | 2010-10-28 | Toyota Motor Corp | Gas composition analyzer, gas composition analysis method, and fuel cell system |
WO2011078242A1 (en) * | 2009-12-25 | 2011-06-30 | 株式会社堀場エステック | Mass flow controller system |
-
2012
- 2012-11-08 JP JP2012245881A patent/JP5238094B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003287477A (en) * | 2002-02-04 | 2003-10-10 | Avl List Gmbh | Exhaust emission analysis system and method for correcting measurement of exhaust emission |
JP2005172472A (en) * | 2003-12-08 | 2005-06-30 | National Institute Of Advanced Industrial & Technology | Gas analysis method, and gas analysis method for fuel cell |
JP2006266774A (en) * | 2005-03-23 | 2006-10-05 | Taiyo Nippon Sanso Corp | Analyzing method and analyzing apparatus for mixed gas |
JP2010243180A (en) * | 2009-04-01 | 2010-10-28 | Toyota Motor Corp | Gas composition analyzer, gas composition analysis method, and fuel cell system |
WO2011078242A1 (en) * | 2009-12-25 | 2011-06-30 | 株式会社堀場エステック | Mass flow controller system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534868A (en) * | 2017-03-02 | 2018-09-14 | 中国计量科学研究院 | A kind of gas-dynamic dilution air distribution system and its method |
Also Published As
Publication number | Publication date |
---|---|
JP2014095573A (en) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5650548B2 (en) | Mass flow controller system | |
EP3480593B1 (en) | Method and system for calibrating a gas analysis apparatus | |
EP1333270B1 (en) | Exhaust emissions analysis system | |
US7390346B2 (en) | System and apparatus for producing primary standard gas mixtures | |
JP5932768B2 (en) | Method for calibrating a gas flow diluter | |
JP7267161B2 (en) | Exhaust gas analyzer, exhaust gas analysis method, and correction formula creation method | |
EP3069370B1 (en) | Method of measuring isotope ratio | |
KR20180006527A (en) | Automatic Calibration Gas Concentration Measurement Method Using the Standard Gas Concentration | |
Brewer et al. | High-accuracy stable gas flow dilution using an internally calibrated network of critical flow orifices | |
JP5238094B1 (en) | Gas component concentration calculation method and apparatus | |
US20190391045A1 (en) | Gas analyzing device and gas analyzing method | |
JP4925493B1 (en) | Mixed gas flow rate control device and exhaust gas purification catalyst evaluation device | |
JP2006145341A (en) | Gas-sampling method and gas sampler | |
JP5810597B2 (en) | Gaseous fuel measuring device and gas turbine control system | |
JP4074556B2 (en) | Method for improving response speed of analysis system and exhaust gas measurement system | |
CN108426848B (en) | Dilution error detection device and method of standard gas dilution device based on infrared gas analyzer | |
RU2690870C1 (en) | Nitrogen gas analyzer in nitrogen-argon mixture | |
WO2024174280A1 (en) | Method and system for calibrating hydrogen concentration sensor of fuel cell vehicle | |
JP6342096B1 (en) | Equipment for evaluating gas responsiveness of test specimens | |
JP2014048186A (en) | Gas analysis method using gas chromatograph | |
CN115541473A (en) | Calibration method of standard curve capable of calculating specific surface area of dynamic specific surface instrument | |
CN117288300A (en) | Performance calibration system, device, equipment and method for hydrogen-containing natural gas volumetric flowmeter | |
CN113933140A (en) | Dynamic gas dilution instrument evaluation method and device based on CRDS and standard gas | |
JPH11237359A (en) | Air-fuel ratio measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130329 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5238094 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |