JP2014048186A - Gas analysis method using gas chromatograph - Google Patents

Gas analysis method using gas chromatograph Download PDF

Info

Publication number
JP2014048186A
JP2014048186A JP2012192096A JP2012192096A JP2014048186A JP 2014048186 A JP2014048186 A JP 2014048186A JP 2012192096 A JP2012192096 A JP 2012192096A JP 2012192096 A JP2012192096 A JP 2012192096A JP 2014048186 A JP2014048186 A JP 2014048186A
Authority
JP
Japan
Prior art keywords
gas
analysis
component
concentration
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012192096A
Other languages
Japanese (ja)
Inventor
Masahito Ando
雅人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2012192096A priority Critical patent/JP2014048186A/en
Publication of JP2014048186A publication Critical patent/JP2014048186A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an error in implementing sum correction and improve performance of measurement of a heat release value of a natural gas.SOLUTION: A sample gas of the time when concentration of measured gas components becomes stabilized is set as a reference gas, the reference gas is mixed with a carrier gas to produce a reference analysis gas, and component reference gas concentration of this reference analysis gas at a first analysis and at a second analysis is measured (S101). The sample gas is mixed with the carrier gas to produce an analysis gas, and component concentration before sum correction of the analysis gas at the first analysis and at the second analysis is measured (S102). A correction coefficient is obtained from a sum of the component reference gas concentrations at the first analysis and at the second analysis, and a sum of the component concentrations before the sum correction at the first analysis and at the second analysis and, with the use of the obtained correction coefficient, the component concentrations in the sample gas before the sum correction at the first analysis and at the second analysis respectively are corrected and made into component concentrations after the sum correction (S103).

Description

この発明は、サンプルガスとキャリアガスとを混合し、この混合ガスに含まれる被測定ガス成分を分離し、分離した被測定ガス成分の濃度を測定するガスクロマトグラフによるガス分析方法に関するものである。   The present invention relates to a gas analysis method using a gas chromatograph in which a sample gas and a carrier gas are mixed, a gas component to be measured contained in the mixed gas is separated, and a concentration of the separated gas component to be measured is measured.

従来より、天然ガスの発熱量値などを測定するために、ガスクロマトグラフが用いられている。ガスクロマトグラフを用いて天然ガスの発熱量値を測定する場合、天然ガスの微量サンプルを採取して分析計に取り込み、天然ガス中に含まれる混合物をカラムによって11成分に分離し、この分離した11成分の濃度値を測定し、この測定した濃度値より天然ガスの発熱量値を算出する。   Conventionally, gas chromatographs have been used to measure the calorific value of natural gas. When measuring the calorific value of natural gas using a gas chromatograph, a small sample of natural gas is collected and taken into an analyzer, and the mixture contained in the natural gas is separated into 11 components by a column, and the separated 11 The concentration value of the component is measured, and the calorific value value of natural gas is calculated from the measured concentration value.

本出願人は、ガス流路切り替えバルブやサンプル導入バルブなど通常複数必要な装置を1つのバルブにすることで、ガスクロマトグラフを用いた天然ガスの発熱量の測定装置(熱量計)の小型化を実現している。但し、この測定装置では、そのデメリットとして、1回の発熱量出力につき2回のサンプリング(第1分析、第2分析)を実施する必要がある。   The applicant has reduced the size of the natural gas calorific value measurement device (calorimeter) using a gas chromatograph by using a single valve for multiple normally required devices such as gas flow path switching valves and sample introduction valves. Realized. However, in this measuring apparatus, it is necessary to perform sampling twice (first analysis and second analysis) for each calorific value output as a disadvantage.

すなわち、サンプルガスとキャリアガスを混合して分析ガスとし、この分析ガスについて第1分析では7成分、第2分析では残りの4成分を被測定ガス成分として分離し、濃度を算出する。従って、この11成分の濃度を測定するためにサンプルガスを2回採取する必要がある。なお、特許文献1に示された燃料ガス分析装置においても、同様の技術が採用されている。   That is, the sample gas and the carrier gas are mixed to obtain an analysis gas, and the analysis gas is separated into seven components in the first analysis and the remaining four components in the second analysis as gas components to be measured, and the concentration is calculated. Therefore, it is necessary to collect the sample gas twice in order to measure the concentration of these 11 components. The same technique is also adopted in the fuel gas analyzer disclosed in Patent Document 1.

特開2000−321260号公報JP 2000-32260 A

上述したように、本出願人は、11成分の濃度を測定するためにサンプルガスを2回採取する方式を採用しているが、この場合2回のサンプリング量がまったく同じであることが理想的である。しかし、現実的には、僅かにサンプリング量に差が生じており、これが総和補正実施時の誤差となって、発熱量値の繰り返し性に悪影響を与えていた。   As described above, the applicant employs a method of collecting the sample gas twice in order to measure the concentration of the 11 components. In this case, it is ideal that the sampling amount of the two times is exactly the same. It is. However, in reality, there is a slight difference in the sampling amount, which becomes an error when performing the total correction, and adversely affects the repeatability of the calorific value.

図5に現行の総和補正のイメージを示す。この例において、総和補正前は、第1分析で測定された7成分の濃度の和は9%、第2分析で測定された4成分の濃度の和は90%である。この場合、全体の濃度の和が100%となるように、補正前の値に補正係数を乗じて調整する。この例では、補正前の和が99%であるから、α=100/99≒1.01として補正係数αを求め、第1分析で測定された7成分の濃度の和9%にα=1.01を乗じて9.09%とし、第2分析で測定された4成分の濃度の和90%にα=1.01を乗じて90.91%とし、総和補正後では全体の濃度の和が100%となるようにする。   FIG. 5 shows an image of the current sum correction. In this example, before the sum correction, the sum of the concentrations of the seven components measured in the first analysis is 9%, and the sum of the concentrations of the four components measured in the second analysis is 90%. In this case, adjustment is performed by multiplying the value before correction by the correction coefficient so that the total density becomes 100%. In this example, since the sum before correction is 99%, the correction coefficient α is obtained with α = 100 / 99≈1.01, and α = 1 is added to 9% of the concentration of the seven components measured in the first analysis. Is multiplied by .01 to obtain 9.09%, and the sum of the concentrations of the four components measured in the second analysis is multiplied by α = 1.01 to obtain 90.91%. To be 100%.

これを計算式で表すと、各成分総和補正前濃度をxi、各成分総和補正後濃度をyi、iを各成分に付与された番号とすると、下記(1)式のように表される。   This can be expressed by the following equation (1), where the density before each component sum correction is xi, the density after each component sum correction is yi, and i is the number assigned to each component.

Figure 2014048186
Figure 2014048186

この総和補正では、第1分析、第2分析ともに同じ補正係数αを乗じるので、これが総和補正実施時の誤差となって、発熱量値の繰り返し性に悪影響を与えている。天然ガスの発熱量値の計測性能は繰り返し性で規定されることが一般的であり、繰り返し性が小さいほど計測性能が良いものとされる。この天然ガスの発熱量値の測定に際し、総和補正実施時の誤差は、発熱量値の繰り返し性を大きくし、発熱量値の計測性能を悪化させる。   In this total correction, since the same correction coefficient α is multiplied in both the first analysis and the second analysis, this becomes an error when performing the total correction, and adversely affects the repeatability of the calorific value. The measurement performance of the calorific value of natural gas is generally defined by repeatability, and the smaller the repeatability, the better the measurement performance. When measuring the calorific value of this natural gas, the error during the sum correction increases the repeatability of the calorific value and degrades the calorific value measurement performance.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、総和補正実施時の誤差を小さくし、天然ガスの発熱量値の計測性能を向上させることが可能なガスクロマトグラフによるガス分析方法を提供することにある。   The present invention has been made in order to solve such problems, and the object of the present invention is to reduce errors during the sum correction and improve the measurement performance of the calorific value of natural gas. Another object of the present invention is to provide a gas analysis method using a gas chromatograph.

このような目的を達成するために本発明は、サンプルガスとキャリアガスとを混合して分析ガスとし、この分析ガスについて第1〜第N(N≧2)の分析毎に定められた種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分の濃度として測定するガスクロマトグラフによるガス分析方法において、安定したときのサンプルガスとキャリアガスとを混合して基準分析ガスとし、この基準分析ガスについて第1〜第Nの分析毎に定められた種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分基準ガス濃度として測定する第1ステップと、第1〜第Nの分析用のサンプルガスとキャリアガスとを混合して分析ガスとし、この分析ガスについて第1〜第Nの分析毎に定められた種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分総和補正前濃度として測定する第2ステップと、第1〜第Nの分析毎に、第1ステップで求められた各成分基準ガス濃度の和と第2ステップで求められた各成分総和補正前濃度の和とから補正係数を求め、この補正係数を用いて第2ステップで求められた各成分総和補正前濃度を補正して各成分総和補正後濃度とする第3ステップとを備えることを特徴とする。   In order to achieve such an object, according to the present invention, a sample gas and a carrier gas are mixed to make an analysis gas, and the types determined for each of the first to N-th (N ≧ 2) analyzes of the analysis gas. In a gas analysis method using a gas chromatograph in which different measured gas components are separated and the concentration of each separated measured gas component is measured as the concentration of each component in the first to N-th analysis, the sample gas when stabilized And the carrier gas are mixed to obtain a reference analysis gas, and the measurement gas components having different types determined for each of the first to Nth analyzes are separated from the reference analysis gas, and each of the separated measurement gas components is separated. The first step of measuring the concentration as each component reference gas concentration in the first to Nth analyzes, the first to Nth analysis sample gases and the carrier gas are mixed to make an analysis gas, and this analysis gas In The gas components to be measured which are different for each of the first to Nth analyzes are separated, and the concentrations of the separated gas components to be measured are the concentrations before each component sum correction in the first to Nth analyses. And the sum of the component reference gas concentrations obtained in the first step and the sum of the concentration before each component sum obtained in the second step for each of the first to Nth analyzes. And a third step of obtaining a correction coefficient, and correcting each component sum before density correction obtained in the second step using the correction coefficient to obtain a density after each component sum correction.

例えば、本発明では、第3ステップにおいて、第1〜第Nの分析毎に、第1ステップで求められた各成分基準ガス濃度をci、第2ステップで求められた各成分総和補正前濃度をxi、iをその分析中の各成分に付与された番号、nをその分析中の各成分の数として、各成分総和補正後濃度yiを下記(2)式によって求める。   For example, in the present invention, in the third step, for each of the first to Nth analyses, each component reference gas concentration obtained in the first step is ci, and each component total concentration before correction is obtained in the second step. xi, i is the number assigned to each component in the analysis, n is the number of each component in the analysis, and each component total corrected concentration yi is obtained by the following equation (2).

Figure 2014048186
Figure 2014048186

この場合、各分析において、補正係数αiが異なるものとなり、段階的に総和補正が行われるような形となって、総和補正実施時の誤差が小さくなる。これにより、天然ガスの発熱量値を測定するような場合、発熱量値の繰り返し性が小さくなり、発熱量値の計測性能が向上するものとなる。   In this case, in each analysis, the correction coefficient αi is different, and the summation correction is performed step by step, so that the error at the time of summation correction is reduced. Thereby, when measuring the calorific value of natural gas, the repeatability of the calorific value is reduced, and the measurement performance of the calorific value is improved.

本発明によれば、安定したときのサンプルガスとキャリアガスとを混合して基準分析ガスとし、この基準分析ガスについて第1〜第Nの分析毎に定められた種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分基準ガス濃度として測定し、第1〜第Nの分析用のサンプルガスとキャリアガスとを混合して分析ガスとし、この分析ガスについて第1〜第Nの分析毎に定められた種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分総和補正前濃度として測定し、第1〜第Nの分析毎に、各成分基準ガス濃度の和と各成分総和補正前濃度の和とから補正係数を求め、この補正係数を用いて各成分総和補正前濃度を補正するようにしたので、段階的に総和補正が行われるような形となって、総和補正実施時の誤差を小さくして、天然ガスの発熱量値を測定するような場合、発熱量値の繰り返し性を小さくし、発熱量値の計測性能を向上させることが可能となる。   According to the present invention, the sample gas and the carrier gas at the time of stabilization are mixed to obtain the reference analysis gas, and the measured gas components having different types determined for each of the first to N-th analyzes of the reference analysis gas are obtained. The concentration of each of the gas components to be measured is measured as each component reference gas concentration in the first to Nth analysis, and the first to Nth analysis sample gases and the carrier gas are mixed. The analysis gas is separated, and the measurement gas components having different types determined for each of the first to N-th analyzes are separated from the analysis gas, and the concentrations of the separated measurement gas components are classified into the first to N-th analysis. In each of the first to Nth analyses, a correction coefficient is obtained from the sum of each component reference gas concentration and the sum of each component sum before correction, and this correction coefficient is used. The density before each component sum correction was corrected. In case of measuring the calorific value of natural gas by reducing the error at the time of performing the sum correction and reducing the error when performing the total correction, the repeatability of the calorific value is reduced. The measurement performance of the calorific value can be improved.

本発明の実施に用いるガスクロマトグラフの基本構成を示す概略的なブロック図である。It is a schematic block diagram which shows the basic composition of the gas chromatograph used for implementation of this invention. このガスクロマトグラフにおいてCPUが行う特徴的な処理動作を示すフローチャートである。It is a flowchart which shows the characteristic processing operation which CPU performs in this gas chromatograph. このガスクロマトグラフにおいて実施される総和補正のイメージ図である。It is an image figure of total correction implemented in this gas chromatograph. 発熱量値の測定結果を例示する図である。It is a figure which illustrates the measurement result of the calorific value. 現行の総和補正のイメージ図である。It is an image figure of the present sum total correction | amendment.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1はこの発明の実施に用いるガスクロマトグラフの基本構成を示す概略的なブロック図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic block diagram showing the basic configuration of a gas chromatograph used in the practice of the present invention.

図1において、1は恒温槽を形成し所定温度に保持されるアナライザ本体、2はこのアナライザ本体1内に配置されるサンプルバルブ、3−1は第1のカラム、3−2は第2のカラム、4は検出器、5は計量管、6はキャリアガス(ヘリウムガス等)CGを所定圧に減圧する減圧弁、7はCPU、8はメモリである。   In FIG. 1, 1 is an analyzer body that forms a thermostat and is maintained at a predetermined temperature, 2 is a sample valve disposed in the analyzer body 1, 3-1 is a first column, and 3-2 is a second column. A column, 4 is a detector, 5 is a metering tube, 6 is a pressure reducing valve for reducing the carrier gas (such as helium gas) CG to a predetermined pressure, 7 is a CPU, and 8 is a memory.

このガスクロマトグラフでは、周期的に、サンプルバルブ2の流路を切り替えることにより、計量管5によって分取した測定すべきサンプルガスSGをキャリアガスCGと混合してカラム3−1および3−2に第1の分析ガスG1および第2の分析ガスG2として交互に送り込み、カラム3−1内で第1の分析ガスG1に含まれる所定の7成分の各ガス成分を分離させながら検出器4へ給送し、カラム3−2内で第2の分析ガスG2に含まれる所定の4成分の各ガス成分を分離させながら検出器4へ給送し、この検出器4により各ガス成分の熱伝導度を測定し、この測定した熱伝導度に基づいて第1分析および第2分析での各ガス成分の濃度を測定する。この濃度測定はメモリ8に格納されたプログラムに従うCPU7の処理動作により実行される。   In this gas chromatograph, by periodically switching the flow path of the sample valve 2, the sample gas SG to be measured separated by the measuring tube 5 is mixed with the carrier gas CG to be placed in the columns 3-1 and 3-2. The first analysis gas G1 and the second analysis gas G2 are alternately sent to the detector 4 while separating the predetermined seven gas components contained in the first analysis gas G1 in the column 3-1. Then, the gas components are fed to the detector 4 while separating the predetermined four gas components contained in the second analysis gas G2 in the column 3-2, and the thermal conductivity of the gas components is detected by the detector 4. And the concentration of each gas component in the first analysis and the second analysis is measured based on the measured thermal conductivity. This concentration measurement is executed by the processing operation of the CPU 7 in accordance with a program stored in the memory 8.

以下、図2に示すフローチャートを参照して、本実施の形態のガスクロマトグラフにおいて、CPU7が行う特徴的な処理動作を説明する。   The characteristic processing operation performed by the CPU 7 in the gas chromatograph of the present embodiment will be described below with reference to the flowchart shown in FIG.

上述した各被測定ガス成分の濃度測定を開始するにあたって、先ず、安定したサンプルガスSGを計量管5によって分取した基準ガスPGをキャリアガスCGと混合し、最初は第1の基準分析ガスG1としてカラム3−1へ送り込み、次に第2の基準分析ガスG2としてカラム3−2へ送り込み、カラム3−1内で第1の基準分析ガスG1に含まれる所定の7成分の各ガス成分を分離させながら検出器4へ給送し、カラム3−2内で第2の基準分析ガスG2に含まれる所定の4成分の各ガス成分を分離させながら検出器4へ給送し、この検出器4により各ガス成分の熱伝導度を測定し、この測定した熱伝導度に基づいて各ガス成分の濃度を第1分析および第2分析での各成分基準ガス濃度として測定する(ステップS101)。   In starting the concentration measurement of each gas component to be measured as described above, first, the reference gas PG obtained by separating the stable sample gas SG by the measuring tube 5 is mixed with the carrier gas CG, and the first reference analysis gas G1 is first prepared. To the column 3-1 and then to the column 3-2 as the second reference analysis gas G2, and the predetermined seven component gas components contained in the first reference analysis gas G1 in the column 3-1. The gas is fed to the detector 4 while being separated, and is fed to the detector 4 while separating each of the predetermined four gas components contained in the second reference analysis gas G2 in the column 3-2. 4, the thermal conductivity of each gas component is measured, and based on the measured thermal conductivity, the concentration of each gas component is measured as the component reference gas concentration in the first analysis and the second analysis (step S101).

次に、サンプルガスSGをサンプルバルブ2へ送り、計量管5によって分取したサンプルガスSGをキャリアガスCGと混合し、最初は第1の分析ガスG1としてカラム3−1へ送り込み、次に第2の分析ガスG2としてカラム3−2へ送り込み、カラム3−1内で第1の分析ガスG1に含まれる所定の7成分の各ガス成分を分離させながら検出器4へ給送し、カラム3−2内で第2の分析ガスG2に含まれる所定の4成分の各ガス成分を分離させながら検出器4へ給送し、この検出器4により各ガス成分の熱伝導度を測定し、この測定した熱伝導度に基づいて各ガス成分の濃度を第1分析および第2分析での各成分総和補正前濃度として測定する(ステップS102)。   Next, the sample gas SG is sent to the sample valve 2, the sample gas SG collected by the measuring tube 5 is mixed with the carrier gas CG, and first sent to the column 3-1 as the first analysis gas G1, and then the second 2 is sent to the column 3-2 as the analysis gas G2, and is fed to the detector 4 while separating each of the seven predetermined gas components contained in the first analysis gas G1 in the column 3-1. -2 is supplied to the detector 4 while separating each of the predetermined four gas components contained in the second analysis gas G2, and the thermal conductivity of each gas component is measured by the detector 4, Based on the measured thermal conductivity, the concentration of each gas component is measured as the concentration before each component sum correction in the first analysis and the second analysis (step S102).

次に、CPU7は、第1分析および第2分析毎に、ステップS101で求められた各成分基準ガス濃度の和とステップS102で求められた各成分総和補正前濃度の和とから補正係数を求め、この補正係数を用いてステップS102で求められた各成分総和補正前濃度を補正し、この補正した各成分総和補正前濃度を各成分総和補正後濃度とする(ステップS103)。   Next, for each of the first analysis and the second analysis, the CPU 7 obtains a correction coefficient from the sum of each component reference gas concentration obtained in step S101 and the sum of each component sum total concentration obtained in step S102. Then, the density before each component sum correction obtained in step S102 is corrected using this correction coefficient, and the corrected density before each component sum correction is used as the density after each component sum correction (step S103).

CPU7は、このステップS103での総和補正を次のようにして行う。すなわち、ステップS101で求められた第1分析での各成分基準ガス濃度をci、ステップS102で求められた第1分析での各成分総和補正前濃度をxi、iをその分析中の各成分に付与された番号、nをその分析中の各成分の数とし、第1分析での各成分総和補正後濃度yiを下記(3)式により求める。この場合、第1分析の各成分の数は7であるので、n=7とされる。   The CPU 7 performs the sum correction in step S103 as follows. That is, each component reference gas concentration in the first analysis obtained in step S101 is ci, each component total concentration before correction in the first analysis obtained in step S102 is xi, and i is each component in the analysis. The assigned number, n, is the number of each component in the analysis, and each component total corrected concentration yi in the first analysis is obtained by the following equation (3). In this case, since the number of each component in the first analysis is 7, n = 7.

Figure 2014048186
Figure 2014048186

また、ステップS101で求められた第2分析での各成分基準ガス濃度をcj、ステップS102で求められた第2分析での各成分総和補正前濃度をxj、jをその分析中の各成分に付与された番号、mをその分析中の各成分の数とし、第2分析での各成分総和補正後濃度yjを下記(4)式により求める。この場合、第2分析の各成分の数は4であるので、m=4とされる。   Also, each component reference gas concentration in the second analysis obtained in step S101 is cj, each component total concentration before correction in the second analysis obtained in step S102 is xj, and j is each component in the analysis. The assigned number, m, is the number of each component in the analysis, and each component total corrected concentration yj in the second analysis is obtained by the following equation (4). In this case, since the number of each component in the second analysis is 4, m = 4.

Figure 2014048186
Figure 2014048186

図3に本実施の形態における総和補正のイメージ図を示す。この例において、総和補正前は、第1分析で測定された7成分の濃度の和は9%、第2分析で測定された4成分の濃度の和は90%である。この場合、本実施の形態の総和補正に従えば、第1分析については、上記(3)式におけるciの和とxiの和との比として表される補正係数α1が補正前の値に乗じられ、第2分析については、上記(4)式におけるcjの和とxjの和との比として表される補正係数α2が補正前の値に乗じられる。   FIG. 3 shows an image diagram of total correction in the present embodiment. In this example, before the sum correction, the sum of the concentrations of the seven components measured in the first analysis is 9%, and the sum of the concentrations of the four components measured in the second analysis is 90%. In this case, according to the sum correction of the present embodiment, for the first analysis, the correction coefficient α1 expressed as the ratio of the sum of ci and the sum of xi in the above equation (3) is multiplied by the value before correction. For the second analysis, the value before correction is multiplied by a correction coefficient α2 expressed as a ratio of the sum of cj and the sum of xj in the above equation (4).

この例では、α1≒1.019として求められ、α2≒1.0092として求められ、第1分析で測定された7成分の濃度の和9%にα1=1.019を乗じて9.17%とされ、第2分析で測定された4成分の濃度の和90%にα2=1.0092を乗じて90.83%とされ、総和補正後では全体の濃度の和が100%となるようにされる。   In this example, α1≈1.019 is obtained, α2≈1.0093 is obtained, and the sum of the concentrations of the seven components measured in the first analysis is multiplied by α1 = 1.019 to obtain 9.17%. The sum of 90% of the concentrations of the four components measured in the second analysis is multiplied by α2 = 1.0092 to obtain 90.83%, and after the sum correction, the total concentration is 100%. Is done.

このように、本実施の形態では、第1分析と第2分析とで、補正係数α1とα2とが異なるものとなり、2段階で総和補正が行われるような形となって、総和補正実施時の誤差が小さくなる。CPU7は、ステップS102での各成分総和補正前濃度の測定とステップ103での各成分総和補正後濃度の算出(2段階総和補正)とを繰り返す。これにより、天然ガスの発熱量値を測定するような場合、発熱量値の繰り返し性が小さくなり、発熱量値の計測性能が向上するものとなる。   As described above, in the present embodiment, the correction coefficients α1 and α2 are different between the first analysis and the second analysis, and the total correction is performed in two stages. The error becomes smaller. The CPU 7 repeats the measurement of the density before each component total correction in step S102 and the calculation of the density after each component total correction in step 103 (two-stage total correction). Thereby, when measuring the calorific value of natural gas, the repeatability of the calorific value is reduced, and the measurement performance of the calorific value is improved.

図4に発熱量値の測定結果を例示する。同図において、横軸は測定回数、縦軸は測定された発熱量値であり、測定結果Iは本実施の形態の総和補正(2段階総和補正)を用いた場合、測定結果IIは現行の総和補正を用いた場合である。現行の総和補正では、測定中大きく発熱量値が異なる点(一点鎖線で囲んだ点)が存在するが、本実施の形態の2段階総和補正では、そのような異常な点が存在していないことが分かる。このようなことからも、繰り返し性が良くなっていることが推測できる。   FIG. 4 illustrates the measurement result of the calorific value. In the figure, the horizontal axis is the number of measurements, the vertical axis is the measured calorific value, and the measurement result I is the current result when the total correction (two-stage total correction) of this embodiment is used. This is a case where summation correction is used. In the current sum correction, there is a point where the calorific value is greatly different during measurement (a point surrounded by a one-dot chain line), but such an abnormal point does not exist in the two-step sum correction of the present embodiment. I understand that. From this, it can be estimated that the repeatability is improved.

なお、上述した実施の形態では、第1分析と第2分析の2回に分けて濃度測定を行うものとしたが、例えば第1分析と第2分析と第3分析の3回に分けて濃度測定を行うようにするなどしてもよい。第3分析で求められた各成分基準ガス濃度をck、第3分析で求められた各成分総和補正前濃度をxk、kをその分析中の各成分に付与された番号、pをその分析中の各成分の数とした場合、第3分析での各成分総和補正後濃度ykは下記(5)式により求めることができる。   In the above-described embodiment, the concentration measurement is performed separately for the first analysis and the second analysis. However, for example, the concentration is divided for the first analysis, the second analysis, and the third analysis. Measurement may be performed. Each component reference gas concentration obtained in the third analysis is ck, each component sum total concentration obtained in the third analysis is xk, k is a number assigned to each component in the analysis, and p is in the analysis. In the third analysis, the concentration yk after each component sum correction in the third analysis can be obtained by the following equation (5).

Figure 2014048186
Figure 2014048186

上記の(3)〜(5)式から分かるように、本実施の形態において分析回数をN回(N≧2)に分けて行うようにした場合、各分析において、各成分基準ガス濃度をci、各成分総和補正前濃度をxi、iをその分析中の各成分に付与された番号、nをその分析中の各成分の数とした場合、各成分総和補正後濃度yiは下記の(6)式によって求められることになる。   As can be seen from the above equations (3) to (5), when the number of analyzes is divided into N times (N ≧ 2) in the present embodiment, each component reference gas concentration is set to ci in each analysis. , Where xi is the concentration before each component sum correction, i is the number assigned to each component under analysis, and n is the number of each component under analysis, the concentration y i after each component sum correction is (6 ).

Figure 2014048186
Figure 2014048186

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…アナライザ本体、2…サンプルバルブ、3−1…第1のカラム、3−2…第2のカラム、4…検出器、5…計量管、6…減圧弁、7…CPU、8…メモリ。   DESCRIPTION OF SYMBOLS 1 ... Analyzer main body, 2 ... Sample valve, 3-1 ... 1st column, 3-2 ... 2nd column, 4 ... Detector, 5 ... Metering tube, 6 ... Pressure reducing valve, 7 ... CPU, 8 ... Memory .

Claims (2)

サンプルガスとキャリアガスとを混合して分析ガスとし、この分析ガスについて第1〜第N(N≧2)の分析毎に定められた種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分の濃度として測定するガスクロマトグラフによるガス分析方法において、
前記被測定ガス成分の濃度が安定したときの前記サンプルガスと前記キャリアガスとを混合して基準分析ガスとし、この基準分析ガスについて第1〜第Nの分析毎に定められた前記種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分基準ガス濃度として測定する第1ステップと、
前記第1〜第Nの分析用のサンプルガスと前記キャリアガスとを混合して分析ガスとし、この分析ガスについて第1〜第Nの分析毎に定められた前記種別が異なる被測定ガス成分を分離し、その分離した各被測定ガス成分の濃度を第1〜第Nの分析での各成分総和補正前濃度として測定する第2ステップと、
前記第1〜第Nの分析毎に、前記第1ステップで求められた各成分基準ガス濃度の和と前記第2ステップで求められた各成分総和補正前濃度の和とから補正係数を求め、この補正係数を用いて前記第2ステップで求められた各成分総和補正前濃度を補正して各成分総和補正後濃度とする第3ステップと
を備えることを特徴とするガスクロマトグラフによるガス分析方法。
A sample gas and a carrier gas are mixed to obtain an analysis gas, and the gas components to be measured that are different for each of the first to N-th (N ≧ 2) analyzes are separated for the analysis gas, and the separated gas components In a gas analysis method using a gas chromatograph that measures the concentration of a gas component to be measured as the concentration of each component in the first to Nth analyzes,
When the concentration of the gas component to be measured is stabilized, the sample gas and the carrier gas are mixed to obtain a reference analysis gas, and the types determined for each of the first to Nth analyzes of the reference analysis gas are different. A first step of separating the gas component to be measured, and measuring the concentration of each separated gas component to be measured as each component reference gas concentration in the first to N-th analysis;
The first to N-th sample gases for analysis and the carrier gas are mixed to obtain an analysis gas, and the measured gas components having different types determined for each of the first to N-th analysis are analyzed for the analysis gas. A second step of separating and measuring the concentration of each measured gas component as the concentration before each component sum correction in the first to Nth analyzes;
For each of the first to Nth analyses, a correction coefficient is obtained from the sum of the component reference gas concentrations obtained in the first step and the sum of the concentration before each component sum obtained in the second step. A gas analysis method using a gas chromatograph, comprising: a third step of correcting the concentration before each component sum correction obtained in the second step using the correction coefficient to obtain the concentration after each component sum correction.
請求項1に記載されたガスクロマトグラフによるガス分析方法において、
前記第3ステップは、
前記第1〜第Nの分析毎に、前記第1ステップで求められた各成分基準ガス濃度をci、前記第2ステップで求められた各成分総和補正前濃度をxi、iをその分析中の各成分に付与された番号、nをその分析中の各成分の数として、前記各成分総和補正後濃度yiを下記(1)式によって求める
ことを特徴とするガスクロマトグラフによるガス分析方法。
Figure 2014048186
In the gas analysis method by the gas chromatograph according to claim 1,
The third step includes
For each of the first to Nth analyses, each component reference gas concentration obtained in the first step is ci, each component total concentration before correction obtained in the second step is xi, and i is being analyzed. A gas analysis method using a gas chromatograph, wherein the number y given to each component, n is the number of each component in the analysis, and the concentration yi after each component sum correction is obtained by the following equation (1).
Figure 2014048186
JP2012192096A 2012-08-31 2012-08-31 Gas analysis method using gas chromatograph Pending JP2014048186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012192096A JP2014048186A (en) 2012-08-31 2012-08-31 Gas analysis method using gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192096A JP2014048186A (en) 2012-08-31 2012-08-31 Gas analysis method using gas chromatograph

Publications (1)

Publication Number Publication Date
JP2014048186A true JP2014048186A (en) 2014-03-17

Family

ID=50608005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192096A Pending JP2014048186A (en) 2012-08-31 2012-08-31 Gas analysis method using gas chromatograph

Country Status (1)

Country Link
JP (1) JP2014048186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509525A (en) * 2021-12-29 2022-05-17 聚光科技(杭州)股份有限公司 Apparatus and method for chromatographic analysis of hydrogen and hydrocarbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509525A (en) * 2021-12-29 2022-05-17 聚光科技(杭州)股份有限公司 Apparatus and method for chromatographic analysis of hydrogen and hydrocarbons
CN114509525B (en) * 2021-12-29 2023-12-01 聚光科技(杭州)股份有限公司 Chromatographic analysis device and method for hydrogen and hydrocarbon

Similar Documents

Publication Publication Date Title
EP3182086B1 (en) Exhaust gas measuring system
Pramann et al. Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: part 3—molar mass of silicon highly enriched in 28Si
Mabry et al. High-precision helium isotope measurements in air
JP2010066185A (en) Gas chromatograph device
CN109358095B (en) Quantitative measurement method and system for gas concentration of each component of mixed gas
Creech et al. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS
Yang et al. Online determination of mercury isotopic compositions at ultratrace levels by automated purge and trap coupled with multicollector inductively coupled plasma-mass spectrometry
JP2014048186A (en) Gas analysis method using gas chromatograph
Potter et al. Fully automated, high‐precision instrumentation for the isotopic analysis of tropospheric N2O using continuous flow isotope ratio mass spectrometry
CN103196986B (en) Method for correcting determination data of hydrogen and oxygen isotope components in water
Sairanen et al. Validation of a calibration set-up for radiosondes to fulfil GRUAN requirements
JP2014048191A (en) Gas analysis method using gas chromatograph
JP5657904B2 (en) Gas analyzer and gas analysis method
JP2014048189A (en) Gas analysis method using gas chromatograph
Puton et al. Conservation of dimer peak intensity in ion mobility spectrometers with ketone-doped carrier gas
CN112782263A (en) Method for correcting mass spectrum signal of sulfur hexafluoride gas component
US11656236B2 (en) Mirror calibration of multiple flow-measurement devices
CN109239010B (en) Gas monitoring method based on multispectral spectrum technology
JP2014095573A (en) Gas component concentration calculation method and device
JP2014215116A (en) Exhaust gas component detector
JP6213959B2 (en) Mass spectrometer
CN103592415B (en) Single-component gas concentration correction process in transformer oil
US20230221291A1 (en) Element analysis method, element analysis device, and non-transitory computer readable medium storing program for element analysis device
KR102665593B1 (en) Systems, methods and programs for calibrating moisture sensors
CN106525180A (en) Natural gas compression factor calculation method