JP5237972B2 - Body fluid component analyzer - Google Patents

Body fluid component analyzer Download PDF

Info

Publication number
JP5237972B2
JP5237972B2 JP2009549946A JP2009549946A JP5237972B2 JP 5237972 B2 JP5237972 B2 JP 5237972B2 JP 2009549946 A JP2009549946 A JP 2009549946A JP 2009549946 A JP2009549946 A JP 2009549946A JP 5237972 B2 JP5237972 B2 JP 5237972B2
Authority
JP
Japan
Prior art keywords
sample
measurement chamber
group
body fluid
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009549946A
Other languages
Japanese (ja)
Other versions
JPWO2009090756A1 (en
Inventor
務 臼井
雄司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TTM CO., LTD.
TYA K. K.
Original Assignee
TTM CO., LTD.
TYA K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TTM CO., LTD., TYA K. K. filed Critical TTM CO., LTD.
Publication of JPWO2009090756A1 publication Critical patent/JPWO2009090756A1/en
Application granted granted Critical
Publication of JP5237972B2 publication Critical patent/JP5237972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

本発明は生体の体液成分を測定する分析器具に関する。   The present invention relates to an analytical instrument for measuring a body fluid component of a living body.

体液成分の分析器具として、微量の体液試料を試薬を保持する試験片に滴下し、試料が試薬と反応した後の光学的特性などを測定することによって体液成分を分析する技術が知られている(特許文献1、2参照)。この分析器具は、試験片に設けられた試料供給口に体液の試料を供給したのち、当該試料を流路を通じて試薬が備えられた測定室に移送し、当該測定室にて呈色反応を発生させて、当該測定室における吸光度を測定することによって所望の体液成分を測定することができるように構成されている。なお、付与される試料が全血でありながら、測定対象が血漿中の成分である場合などは、適宜濾過手段などを設け、全血試料のうち血球成分を分離濾過してから、測定室に移送するよう構成することも可能である。   As a body fluid component analysis device, a technique for analyzing a body fluid component by dropping a small amount of a body fluid sample onto a test piece holding a reagent and measuring optical characteristics after the sample reacts with the reagent is known. (See Patent Documents 1 and 2). This analytical instrument supplies a sample of body fluid to a sample supply port provided in a test piece, and then transfers the sample to a measurement chamber equipped with a reagent through a flow path to generate a color reaction in the measurement chamber. Thus, a desired body fluid component can be measured by measuring the absorbance in the measurement chamber. In addition, when the sample to be applied is whole blood but the measurement target is a component in plasma, etc., a filtering means is provided as appropriate, and blood cell components in the whole blood sample are separated and filtered, and then placed in the measurement chamber. It can also be configured to be transported.

当該分析器具は複数のプレート材の積層によって構成されており、試料供給口から測定室に至る流路は一部の層に設けられた溝などによって形成されている。試料供給口から測定室までの試料の移送は、ポンプなどによる吸引または試料供給口からの加圧によってなされる。   The analytical instrument is configured by stacking a plurality of plate materials, and a flow path from the sample supply port to the measurement chamber is formed by a groove or the like provided in a part of the layers. The sample is transferred from the sample supply port to the measurement chamber by suction using a pump or the like or pressurization from the sample supply port.

このとき、流路および測定室を構成する層が、不通水性で通気性のあるプレートであれば、測定室の先に空気抜き孔などを設けることなく、試料を測定室まで移送することができる。また、測定室の先に空気抜き孔がないため、試料が測定室を通過して外部に漏洩するおそれがなく好適である。   At this time, if the layer constituting the flow path and the measurement chamber is an impermeable and breathable plate, the sample can be transferred to the measurement chamber without providing an air vent or the like at the tip of the measurement chamber. Further, since there is no air vent hole at the end of the measurement chamber, there is no possibility that the sample passes through the measurement chamber and leaks to the outside.

不通水性で通気性のあるプレート部材として、ポリテトラフルオロエチレン(以下、PTFE)膜を加工して使用する方法が知られている。ここで、PTFE膜は膜厚のばらつきが多く、また、積層等の加工により発生した変形が復元しにくいという性質がある。   A method of processing and using a polytetrafluoroethylene (hereinafter referred to as PTFE) membrane as a plate member having impermeability and air permeability is known. Here, the PTFE film has many variations in film thickness and has the property that deformation caused by processing such as lamination is difficult to restore.

前記のとおり、当該分析器具は積層構造を有しており、前記PTFE膜がプラスチック板により挟み込まれ、流路を形成している。測定室において前記プラスチック板は透明に形成されており、当該部の入射光および透過光の強度を測定し、これらから吸光度を測定することができる。   As described above, the analytical instrument has a laminated structure, and the PTFE membrane is sandwiched between plastic plates to form a flow path. In the measurement chamber, the plastic plate is formed to be transparent, and the intensity of incident light and transmitted light of the part can be measured, and the absorbance can be measured therefrom.

この際、吸光度を測定するに際して、測定部に入射した光は積層された複数のプレート部材を次々と通過したのち透過光として測定される。すなわち、プレートの板厚によって透過光の強度は変動し、吸光度の測定値も変動する。ここで分析器具の個体ごとにPTFE膜の膜厚が異なると、測定結果にもばらつきが生じ、精度低下を招く。   At this time, when measuring the absorbance, the light incident on the measurement unit is measured as transmitted light after passing through the plurality of stacked plate members one after another. That is, the intensity of transmitted light varies depending on the plate thickness, and the measured value of absorbance also varies. Here, if the film thickness of the PTFE film is different for each individual analytical instrument, the measurement results also vary, leading to a decrease in accuracy.

それに対して、不通水性で通気性のあるプレート部材として、セルロースアセテートやセルロース混合エステルなどを用いた場合、これらの素材は加工により発生した変形の復元性は良好であり、分析器具個体ごとの板厚のばらつきは小さく、したがって測定結果のばらつきは軽微である。ただし、セルロースアセテートおよびセルロース混合エステルは、PTFEとは異なり、本来不通水性を有していないため、別途撥水撥油処理を施す必要がある。撥水撥油処理としてはフッ素系表面処理が一般的である。   On the other hand, when cellulose acetate or cellulose mixed ester is used as the impervious and breathable plate member, these materials have good recovery from deformation caused by processing. The variation in thickness is small, and therefore the variation in measurement results is slight. However, unlike PTFE, cellulose acetate and cellulose mixed ester do not inherently have water impermeability, and therefore need to be separately subjected to water / oil repellent treatment. As the water / oil repellent treatment, a fluorine-based surface treatment is generally used.

ところが、従来の撥水処理剤には、通常、フッ素化合物の分散性を向上するため界面活性剤が含まれている。したがって、そのような処理剤を用いてセルロースアセテートやセルロース混合エステル等の多孔質プレート部材を処理した場合、そのような界面活性剤のため、多孔質プレート部材の中に試薬を溶解した試料がしみ込んでしまう欠点があった。また、試薬に界面活性剤が含まれる場合があり、その場合も同様の現象が起こることが確認されている。この現象が発生すると、見た目の吸光度が低下するため、測定値が安定せず、また測定精度の低下を招いていた。
特開平8−114539号公報 特開2002−224090号公報
However, a conventional water repellent treatment agent usually contains a surfactant in order to improve the dispersibility of the fluorine compound. Therefore, when a porous plate member such as cellulose acetate or cellulose mixed ester is treated with such a treatment agent, the sample in which the reagent is dissolved in the porous plate member soaks due to such a surfactant. There was a fault that would Further, there are cases where a surfactant is contained in the reagent, and in this case, it has been confirmed that the same phenomenon occurs. When this phenomenon occurs, the apparent absorbance is lowered, so that the measured value is not stable and the measurement accuracy is lowered.
JP-A-8-114539 JP 2002-2224090 A

したがって、体液中の総コレステロールのような特定の成分を分析する場合であり、試薬が界面活性剤を含有するときでも、多孔質プレート部材中に試薬を溶解した試料のしみ込みが無く、安定した吸光度測定が可能であり、かつ個体ごとのばらつきが少ない高精度な分析器具が求められていた。   Therefore, it is a case where a specific component such as total cholesterol in body fluid is analyzed, and even when the reagent contains a surfactant, there is no penetration of the sample in which the reagent is dissolved in the porous plate member. There has been a demand for a highly accurate analytical instrument that can measure absorbance and has little variation among individuals.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、試料が内部に供給される試料供給口と、前記試料の測定が行われる測定室と、前記試料供給口と前記測定室とを連通する流路とから構成され、前記流路および前記測定室は複数のプレート部材の積層によって形成され、前記複数のプレート部材のうち少なくとも流路を形成 するプレートは通気性を有する多孔質のプレート部材であり、前記通気性を有する多孔質のプレート部材の表面が、少なくともフッ化炭素基と炭化水素基とシリル基とを主成分とする物質1とシロキサン基を主成分とする物質2とを含みかつ表面に化学結合した撥水撥油性の複合膜で被われていることを特徴とする体液成分の分析器具である。なお、ここで、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の混合組成比は、必要とする撥水撥油性に応じて調整可能であるが、1:10〜1:0の範囲が好ましいが、より好ましくは、1:3〜1:0の範囲である。The present invention has been made to solve the above problems, and the invention according to claim 1 is directed to a sample supply port through which a sample is supplied, a measurement chamber in which the sample is measured, and the sample A flow path communicating with the supply port and the measurement chamber, the flow path and the measurement chamber are formed by stacking a plurality of plate members, and a plate forming at least the flow path among the plurality of plate members is A porous plate member having air permeability, wherein the surface of the porous plate member having air permeability has at least a substance 1 and a siloxane group mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group. A body fluid component analyzing instrument characterized in that it is covered with a water- and oil-repellent composite film containing a substance 2 as a main component and chemically bonded to the surface. Here, the mixing composition ratio of the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance 2 mainly composed of a siloxane group is adjusted according to the required water and oil repellency. While possible, a range of 1:10 to 1: 0 is preferred, but a range of 1: 3 to 1: 0 is more preferred.

請求項1に記載の発明によれば、流路を形成する多孔質プレート部材が通気性を有しながら撥水撥油性を有するため、多孔質プレート部材中に試薬を溶解した試料のしみ込みが無く、かつ、空気抜き孔を設けなくとも、加圧または吸引などの操作によって、試料供給口に適用された試料を測定室まで移送することが可能な、体液成分の分析器具を提供できる。また空気抜き孔がないため、試料が測定室を通過して外部に漏洩することもない。さらに、撥水撥油性が高くかつ確実であるため、界面活性剤を含むような試料でも、時間が経過しても前記通気性を有する多孔質のプレート部材に浸み込むことがなく、安定した測定が可能となる。   According to the first aspect of the present invention, since the porous plate member forming the flow path has water permeability and oil repellency while having air permeability, the sample in which the reagent is dissolved in the porous plate member is not soaked. It is possible to provide a body fluid component analyzer that can transfer a sample applied to a sample supply port to a measurement chamber by an operation such as pressurization or suction without providing an air vent hole. Further, since there is no air vent hole, the sample does not leak outside through the measurement chamber. Furthermore, since the water and oil repellency is high and reliable, even a sample containing a surfactant is stable without being soaked into the porous plate member having air permeability over time. Measurement is possible.

請求項2に記載の発明は、請求項1において、前記通気性を有する多孔質のプレート部材の材質がセルロースアセテートまたはセルロース混合エステルであることを特徴とする体液成分の分析器具である。   According to a second aspect of the present invention, there is provided the body fluid component analyzing instrument according to the first aspect, wherein the material of the porous plate member having air permeability is cellulose acetate or cellulose mixed ester.

請求項2に記載の発明によれば、積層構造の構成要素である通気性を有する多孔質のプレート部材が、セルロースアセテートまたはセルロース混合エステルからなるため、複合膜形成溶液との反応性が高く、ナノメートルレベルの超薄膜でありかつ耐剥離性の高い撥水撥油性の複合膜を表面に形成できる。したがって、当該通気性を有する多孔質のプレート部材は、撥水撥油性の被膜を形成しても、通気口が塞がれることがほとんど無い。したがって、従来のフッ素系撥水撥油処理に比べ、通気性が高くかつ高い撥水撥油性を保持することが可能である。また、分析器具個体ごとの板厚のばらつきが小さくなるため、測定結果のばらつきが小さい体液成分の分析器具を提供することができる。   According to invention of Claim 2, since the porous plate member which has air permeability which is a component of a laminated structure consists of cellulose acetate or a cellulose mixed ester, its reactivity with a composite film formation solution is high, A water- and oil-repellent composite film that is an ultra-thin film of nanometer level and has high peel resistance can be formed on the surface. Therefore, even if the porous plate member having air permeability forms a water- and oil-repellent film, the vent hole is hardly blocked. Therefore, compared with the conventional fluorine-based water / oil repellent treatment, the air permeability is high and the water / oil repellency can be kept high. Moreover, since the variation in the plate thickness for each analytical instrument is small, it is possible to provide an analytical instrument for a body fluid component with small variations in measurement results.

請求項3に記載の発明は、前記測定室に体液中の特定の成分と反応し呈色する試薬が備えられ、前記試薬に界面活性剤が含まれることを特徴とする請求項2に記載の体液成分の分析器具である。   According to a third aspect of the present invention, the measurement chamber is provided with a reagent that reacts with a specific component in a body fluid and colors, and the reagent includes a surfactant. It is a device for analyzing body fluid components.

請求項3に記載の発明によれば、請求項2に記載の発明による効果が得られると共に、測定室に備えられた試薬が体液中の特定成分と反応して呈色反応が生じるが、当該試薬に含まれる界面活性剤のために、試料に当該試薬が溶解して表面張力が低下する。ここで、もしも当該試薬が溶解した試料が周辺部材に浸み込んでしまうと、本来観察されるべき呈色とは異なる呈色が測定されてしまう。しかし、前記の通気性を有する多孔質のプレート部材は撥水撥油性が高いため、界面活性剤を含むような試料でも、浸み込むことが無く、呈色反応が安定した体液成分の分析器具を提供できる。   According to the invention of claim 3, while the effect of the invention of claim 2 is obtained, the reagent provided in the measurement chamber reacts with a specific component in the body fluid to cause a color reaction. Due to the surfactant contained in the reagent, the reagent dissolves in the sample and the surface tension decreases. Here, if the sample in which the reagent is dissolved soaks into the peripheral member, a coloration different from the color that should be originally observed is measured. However, since the porous plate member having air permeability has high water and oil repellency, it does not penetrate even in a sample containing a surfactant, and it is an instrument for analyzing a body fluid component that has a stable color reaction. Can provide.

請求項4に記載の発明は、試料が内部に供給される試料供給口と、前記試料の測定が行われる測定室と、前記試料供給口と前記測定室とを連通する流路とから構成され、前記流路および前記測定室は複数のプレート部材の積層によって形成され、前記複数のプレート部材のうち少なくとも流路を形成するプレートが通気性を有する多孔質のプレート部材である体液成分の分析器具の製造方法において、前記通気性を有する多孔質のプレート部材を、少なくともフッ化炭素基と炭化水素基とクロロシリル基とを主成分とする物質と、クロロシリル基を主成分とする物質またはアルコキシシリル基を主成分とする物質と、非水系有機溶媒とを含む複合膜形成溶液に接触させる工程を含むことを特徴とする体液成分の分析器具の製造方法である。なお、ここで、フッ化炭素基と炭化水素基とクロロシリル基とを主成分とする物質と、クロロシリル基を主成分とする物質またはアルコキシシリル基を主成分とする物質の混合組成比は、必要とする撥水撥油性に応じて調整可能であるが、1:10〜1:0の範囲が好ましいが、より好ましくは、1:3〜1:0の範囲である。The invention described in claim 4 includes a sample supply port through which a sample is supplied, a measurement chamber in which measurement of the sample is performed, and a flow path that connects the sample supply port and the measurement chamber. The flow channel and the measurement chamber are formed by laminating a plurality of plate members, and at least a plate forming the flow channel among the plurality of plate members is a porous plate member having air permeability, and is a body fluid component analysis instrument In the production method of the above, the porous plate member having air permeability is made of at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, and a substance or an alkoxysilyl group mainly composed of a chlorosilyl group. A method for producing a body fluid component analysis instrument, comprising a step of contacting a composite film forming solution containing a substance containing as a main component and a non-aqueous organic solvent. Here, the mixing composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group and the substance mainly composed of chlorosilyl group or the substance mainly composed of alkoxysilyl group is required. Although it can be adjusted according to the water / oil repellency, the range of 1:10 to 1: 0 is preferable, but the range of 1: 3 to 1: 0 is more preferable.

請求項4に記載の発明によれば、請求項1に係る体液成分の分析器具を製造することができる。   According to the invention described in claim 4, the body fluid component analysis instrument according to claim 1 can be manufactured.

請求項5に記載の発明は、試料が内部に供給される試料供給口と、前記試料の測定が行われる測定室と、前記試料供給口と前記測定室とを連通する流路とから構成され、前記流路および前記測定室は複数のプレート部材の積層によって形成され、前記複数のプレート部材のうち少なくとも流路を形成するプレートは通気性を有する多孔質のプレート部材である体液成分の分析器具の製造方法において、前記通気性を有する多孔質のプレート部材を、少なくともフッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、シラノール縮合触媒またはクロロシリル基を含む物質と、非水系有機溶媒とを含む複合膜形成溶液に接触させる工程を含むことを特徴とする体液成分の分析器具の製造方法である。なお、ここで、フッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、クロロシリル基を含む物質の混合組成比は、必要とする撥水撥油性に応じて調整可能であるが、1:10〜1:0の範囲が好ましいが、より好ましくは、1:3〜1:0の範囲である。The invention according to claim 5 includes a sample supply port through which a sample is supplied, a measurement chamber in which measurement of the sample is performed, and a flow path that connects the sample supply port and the measurement chamber. The flow channel and the measurement chamber are formed by laminating a plurality of plate members, and at least a plate forming the flow channel among the plurality of plate members is a porous plate member having air permeability. In the production method, the porous plate member having air permeability, a substance mainly containing at least a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, a substance containing a silanol condensation catalyst or a chlorosilyl group, A method for producing a body fluid component analytical instrument comprising a step of contacting a composite film forming solution containing a non-aqueous organic solvent. Here, the mixing composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group and the substance containing chlorosilyl group can be adjusted according to the required water and oil repellency. However, the range of 1:10 to 1: 0 is preferable, but the range of 1: 3 to 1: 0 is more preferable.

請求項5に記載の発明によれば、流路を形成する多孔質プレート部材が通気性を有しながら撥水撥油性を有するため、多孔質プレート部材中に試薬を溶解した試料のしみ込みが無く、かつ、空気抜き孔を設けなくとも、加圧または吸引などの操作によって、試料供給口に適用された試料を測定室まで移送することが可能な、体液成分の分析器具を製造することができる。また空気抜き孔がないため、試料が測定室を通過して外部に漏洩することもない。さらに、撥水撥油性が高くかつ確実であるため、界面活性剤を含むような試料でも、時間が経過しても前記通気性を有する多孔質のプレート部材に浸み込むことがなく、安定した測定が可能となる。   According to the invention described in claim 5, since the porous plate member forming the flow path has water permeability and oil repellency while having air permeability, the sample in which the reagent is dissolved in the porous plate member is not soaked. It is possible to manufacture a body fluid component analyzer that can transfer a sample applied to a sample supply port to a measurement chamber by an operation such as pressurization or suction without providing an air vent hole. . Further, since there is no air vent hole, the sample does not leak outside through the measurement chamber. Furthermore, since the water and oil repellency is high and reliable, even a sample containing a surfactant is stable without being soaked into the porous plate member having air permeability over time. Measurement is possible.

請求項6に記載の発明は、試料が内部に供給される試料供給口と、前記試料の測定が行われる測定室と、前記試料供給口と前記測定室とを連通する流路とから構成され、前記流路および前記測定室は複数のプレート部材の積層によって形成され、前記複数のプレート部材のうち少なくとも流路を形成するプレートは通気性を有する多孔質のプレート部材である体液成分の分析器具の製造方法において、前記通気性を有する多孔質のプレート部材を、少なくともフッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、アルコキシシリル基を主成分とする物質と、シラノール縮合触媒またはクロロシリル基を含む物質と、非水系有機溶媒とを含む複合膜形成溶液に接触させる工程を含むことを特徴とする体液成分の分析器具の製造方法である。なお、ここで、フッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、アルコキシシリル基を主成分とする物質またはクロロシリル基を含む物質の混合組成比は、必要とする撥水撥油性に応じて調整可能であるが、1:10〜1:0の範囲が好ましいが、より好ましくは、1:3〜1:0の範囲である。
The invention described in claim 6 includes a sample supply port through which a sample is supplied, a measurement chamber in which measurement of the sample is performed, and a flow path that connects the sample supply port and the measurement chamber. The flow channel and the measurement chamber are formed by laminating a plurality of plate members, and at least a plate forming the flow channel among the plurality of plate members is a porous plate member having air permeability. In the production method of the porous plate member having air permeability, a substance having at least a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as main components, a substance having an alkoxysilyl group as main components, An apparatus for analyzing a body fluid component, comprising a step of contacting a silanol condensation catalyst or a substance containing a chlorosilyl group and a composite film forming solution containing a non-aqueous organic solvent. It is a production method. Here, the mixing composition ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group or the substance containing the chlorosilyl group is required. Although it can be adjusted according to the water and oil repellency, the range of 1:10 to 1: 0 is preferable, but the range of 1: 3 to 1: 0 is more preferable.

請求項6に記載の発明によれば、請求項1に係る体液成分の分析器具を製造することができる。   According to the sixth aspect of the present invention, the body fluid component analysis instrument according to the first aspect can be manufactured.

請求項7に記載の発明は、請求項4〜6のいずれかに記載の製造方法により得られ、前記通気性を有する多孔質のプレート部材の材質がセルロースアセテートまたはセルロース混合エステルであり、前記測定室に体液中の特定の成分と反応し呈色する試薬が備えられ、前記試薬に界面活性剤が含まれることを特徴とする体液成分の分析器具である。   Invention of Claim 7 is obtained by the manufacturing method in any one of Claims 4-6, The material of the said porous plate member which has air permeability is a cellulose acetate or a cellulose mixed ester, The said measurement An analysis device for a body fluid component, wherein the chamber is provided with a reagent that reacts with a specific component in the body fluid to develop a color, and the reagent contains a surfactant.

請求項7に記載の発明によれば、ナノメートルレベルの超薄膜でありかつ耐剥離性の高い撥水撥油性の被膜が多孔質のプレート部材の表面に形成されるため、通気性を有する多孔質のプレート部材が、通気性を維持しつつ高い撥水撥油性を保持することが可能となる。また、分析器具個体ごとの板厚のばらつきが小さくなるため、測定結果のばらつきが小さい体液成分の分析器具を提供することができる。さらに、通気性を有する多孔質のプレート部材は撥水撥油性が高いため、界面活性剤を含むような試料でも、浸み込むことが無く、呈色反応が安定した体液成分の分析器具を提供することができる。   According to the seventh aspect of the present invention, a water- and oil-repellent coating that is a nanometer level ultra-thin film and has high peel resistance is formed on the surface of the porous plate member. The quality plate member can maintain high water and oil repellency while maintaining air permeability. Moreover, since the variation in the plate thickness for each analytical instrument is small, it is possible to provide an analytical instrument for a body fluid component with small variations in measurement results. In addition, the porous plate member with air permeability has high water and oil repellency, so even if the sample contains a surfactant, it does not penetrate and provides an analytical instrument for body fluid components with a stable color reaction. can do.

請求項8に記載の発明は、請求項3または7に記載の体液成分の分析器具を用いて、前記試料供給口に試料を供給する工程と、前記流路と通じて前記試料を前記測定室に移送する工程と、前記試料と前記呈色試料とが呈色反応を起こしたのち前記測定室における吸光度を測定する工程とを備えることを特徴とする体液成分の分析方法である。   According to an eighth aspect of the present invention, there is provided a step of supplying a sample to the sample supply port using the body fluid component analyzing instrument according to the third or seventh aspect, and the sample is introduced into the measurement chamber through the flow path. And a step of measuring absorbance in the measurement chamber after the sample and the color sample have undergone a color reaction, and a method for analyzing a body fluid component.

請求項8に記載の発明によれば、分析器具個々のばらつきを無視でき、高能率で信頼性の高い分析結果が得られる。   According to the invention described in claim 8, the variation of each analytical instrument can be ignored, and a highly efficient and highly reliable analysis result can be obtained.

本発明によれば、流路を形成するプレート部材が通気性を有しながら撥水撥油性を有するため、空気抜き孔を設けなくとも、加圧または吸引などの操作によって、試料供給口に適用された試料を測定室まで移送することが可能な体液成分の分析器具を提供することができる。また空気抜き孔がないため、試料が測定室を通過して外部に漏洩することもない。さらに、撥水撥油性が高くかつ確実であるため、時間が経過しても試料が前記通気性を有する多孔質のプレート部材に浸み込むことはなく、安定した測定が可能となる。   According to the present invention, since the plate member forming the flow channel has air permeability and water and oil repellency, it is applied to the sample supply port by an operation such as pressurization or suction without providing an air vent. It is possible to provide a body fluid component analyzing instrument capable of transferring a sample to a measurement chamber. Further, since there is no air vent hole, the sample does not leak outside through the measurement chamber. Furthermore, since the water and oil repellency is high and reliable, the sample does not penetrate into the porous plate member having air permeability even after a lapse of time, and stable measurement is possible.

本発明の実施形態に係る分析器具を示す断面図である。It is sectional drawing which shows the analytical instrument which concerns on embodiment of this invention. 本発明の実施形態に係る分析器具を示す分解斜視図である。It is a disassembled perspective view which shows the analytical instrument which concerns on embodiment of this invention. 本発明の実施例と比較例における吸光度測定値の時間変化を示すグラフである。It is a graph which shows the time change of the light absorbency measured value in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 第1プレート
2 第2プレート
3 第3プレート
4 試料供給口
5 流路
51 貫通孔
52 溝
6 測定室
61 貫通孔
62 試薬保持部
DESCRIPTION OF SYMBOLS 1 1st plate 2 2nd plate 3 3rd plate 4 Sample supply port 5 Flow path 51 Through-hole 52 Groove 6 Measurement chamber 61 Through-hole 62 Reagent holding part

つぎに、この発明の実施の形態について図面に基づき説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

まず、図1および図2に本発明に係る分析器具の実施形態を示す。図1は断面図であり、図2は分解斜視図である。本実施形態は、血漿試料を適用して全コレステロールを測定するための形態となっている。なお、別途濾過手段を試料供給口に重ね合わせて設け、血球成分を分離濾過してから供給できるよう構成すれば、全血を試料として適用できる。さらに、濾過手段の中に、高比重リポ蛋白(HDL)以外のリポ蛋白と反応して凝集させる凝集試薬を含有させ、凝集物を当該濾過手段で分離濾過できるよう構成しておけば、全血試料を適用して、高比重リポ蛋白中コレステロール(HDL−C)を選択的に定量することができるような分析器具を実現することができる。   First, FIG. 1 and FIG. 2 show an embodiment of an analytical instrument according to the present invention. 1 is a cross-sectional view, and FIG. 2 is an exploded perspective view. In this embodiment, a plasma sample is applied to measure total cholesterol. Note that whole blood can be applied as a sample if a separate filtration means is provided on the sample supply port so that blood cell components can be supplied after being separated and filtered. Furthermore, if the filtering means contains an agglutinating reagent that reacts and aggregates with lipoproteins other than high-density lipoprotein (HDL), and the aggregate can be separated and filtered by the filtering means, whole blood By applying a sample, an analytical instrument capable of selectively quantifying cholesterol in high density lipoprotein (HDL-C) can be realized.

図1および図2のように、本実施形態に係る分析器具は、第1プレート1と、第2プレート2と、第3プレート3とが、両面テープなどの接着層(図示なし)を介して接着されて構成される。   As shown in FIG. 1 and FIG. 2, the analytical instrument according to the present embodiment includes a first plate 1, a second plate 2, and a third plate 3 via an adhesive layer (not shown) such as a double-sided tape. It is composed by bonding.

第1プレート1には貫通孔からなる試料供給口4が設けられている。第2プレート2には試料供給口4と略同心位置に貫通穴51が設けられ、また離隔した位置に貫通穴61が設けられ、当該2つの貫通穴51、61を溝52が連通している。第3プレート3には、貫通穴61と略同心位置に試薬保持部62が設けられ、試薬(図示なし)が保持される。試薬保持部62は、第3プレート3の当該位置に凹部を設けその中に試薬を充填することによって形成することもできるが、平坦部に試薬を付着させて形成することも可能である。貫通孔51および溝52が流路5を構成し、貫通孔61および試薬保持部62が測定室6を構成する。   The first plate 1 is provided with a sample supply port 4 composed of a through hole. The second plate 2 is provided with a through hole 51 at a position substantially concentric with the sample supply port 4, and a through hole 61 is provided at a distance from the second plate 2, and the groove 52 communicates with the two through holes 51, 61. . The third plate 3 is provided with a reagent holding part 62 substantially concentrically with the through hole 61 to hold a reagent (not shown). The reagent holding part 62 can be formed by forming a recess at the position of the third plate 3 and filling the reagent therein, but it can also be formed by attaching a reagent to a flat part. The through hole 51 and the groove 52 constitute the flow path 5, and the through hole 61 and the reagent holding part 62 constitute the measurement chamber 6.

第1プレート1および第3プレート3には、ポリエチレンテレフタレート(PET)やAS樹脂のようなプラスチック材料が、加工が容易であるため好適である。しかし、試料が漏出することがない流路を形成することができれば、これに限定されるものではない。   For the first plate 1 and the third plate 3, a plastic material such as polyethylene terephthalate (PET) or AS resin is preferable because it can be easily processed. However, the present invention is not limited to this as long as a flow path in which the sample does not leak can be formed.

第2プレート2には、不通水性で通気性のある多孔質材を用いれば、空気抜き孔等を設けることなく試料を測定室3に移送することが可能となる。ここで、第2プレート2について、本来不通水性を有しない材料を適用する場合、通気性を維持したまま不通水性を付与するためは、別途撥水撥油処理を施す必要がある。   If a porous material that is impermeable and breathable is used for the second plate 2, the sample can be transferred to the measurement chamber 3 without providing an air vent or the like. Here, when a material that does not inherently impervious water is applied to the second plate 2, it is necessary to separately perform water and oil repellent treatment in order to impart impermeability while maintaining air permeability.

なお、第2プレート2について、濾紙等を加工して作成するのが簡便である。市販のPTFE膜や、市販のセルロースアセテートまたはセルロース混合エステル製の濾紙を加工して作成可能である。   In addition, it is easy to process the second plate 2 by processing filter paper or the like. It can be produced by processing a commercially available PTFE membrane or a filter paper made of a commercially available cellulose acetate or cellulose mixed ester.

この中でPTFEは本来不通水性を備え、撥水撥油処理が不要であるという点で有利である。しかし、膜厚のばらつきが大きく、積層等の加工により膜厚が変化しやすく復元しにくいという性質があり、これらは吸光度測定結果にばらつきが生じる要因となる。   Of these, PTFE is inherently water-impermeable and is advantageous in that it does not require water / oil repellent treatment. However, there is a large variation in film thickness, and the property that the film thickness is likely to change due to processing such as stacking and is difficult to restore, which causes variations in absorbance measurement results.

これに対し、セルロースアセテートまたはセルロース混合エステルは、膜厚のばらつきは小さく、加工により生じる膜厚の変化は少ないため、吸光度測定結果の再現性を確保する上では有利であるが、部材としては不通水性を備えていない。したがって、第2プレート2として使用する場合、別途撥水撥油処理を施す必要がある。   On the other hand, cellulose acetate or cellulose mixed ester is advantageous in ensuring the reproducibility of the absorbance measurement results because the variation in film thickness is small and the change in film thickness caused by processing is small. It is not water-based. Therefore, when using as the 2nd plate 2, it is necessary to perform a water- and oil-repellent treatment separately.

撥水撥油処理にはフッ素系オリゴマーを用いた表面処理が一般的だが、フッ素系オリゴマーを用いた表面処理では、被膜厚みが厚いため、通気性が損なわれる。これに対して、本発明の実施形態では、少なくともフッ化炭素基と炭化水素基とシリル基とを主成分とする物質1とシロキサン基を主成分とする物質2とを含む複合膜からなる撥水撥油性を有するナノレベルの膜厚の被膜を形成させることによって、通気性を損なうことなく撥水撥油性を付与する。本発明の撥水撥油処理の具体的手順について以下に説明する。   The surface treatment using a fluorine-based oligomer is generally used for the water / oil repellent treatment, but the surface treatment using a fluorine-based oligomer impairs air permeability because the film thickness is thick. On the other hand, in the embodiment of the present invention, a repellent film composed of a composite film containing at least a substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance 2 mainly composed of a siloxane group. By forming a film with a nano-level film thickness having water / oil repellency, water / oil repellency is imparted without impairing air permeability. The specific procedure of the water / oil repellent treatment of the present invention will be described below.

(実施の形態1)
少なくともフッ化炭素基と炭化水素基とクロロシリル基とを主成分とする物質と、クロロシリル基を主成分とする物質またはアルコキシシリル基を主成分とする物質と、非水系有機溶媒とを含む複合膜形成溶液を、密閉容器内でかつ湿度30%以下の雰囲気中(Nガス中、あるいは乾燥空気中で良いが、湿度5%以下なら更に好適である)で調整する。次に、同雰囲気中で、上記処理溶液の適量をステンレス製バットに入れ、多孔質膜(セルロースアセテート、セルロース混合エステルのいずれも可)を上記処理溶液に浸漬する(固液界面反応なので、多孔質膜を複合膜形成溶液に接触させればよい)。この際に、気泡が混入したり、片面がバットに接触することなく、確実に溶液中に浸漬されるように注意する。浸漬時間に厳密な規定はないが、現状では30分程度の時間をとっている。
(Embodiment 1)
A composite film comprising at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, a substance mainly composed of a chlorosilyl group or a substance mainly composed of an alkoxysilyl group, and a non-aqueous organic solvent. The forming solution is adjusted in an airtight container and in an atmosphere with a humidity of 30% or less (in N 2 gas or dry air, but a humidity of 5% or less is more preferable). Next, in the same atmosphere, an appropriate amount of the treatment solution is placed in a stainless steel vat and a porous membrane (either cellulose acetate or cellulose mixed ester is acceptable) is immersed in the treatment solution (because it is a solid-liquid interface reaction, it is porous. The membrane may be brought into contact with the composite film forming solution). At this time, care should be taken to ensure that the solution is immersed in the solution without air bubbles being mixed in or one side contacting the bat. Although there is no strict regulation on the immersion time, the current time is about 30 minutes.

次に、多孔質膜を容器から取り出した後、同雰囲気中で放置して自然乾燥する。溶剤の種類にも依存するが、フッ化炭素系の有機溶媒なら数分程度で溶剤は揮発する。現状では、多孔質膜(枚葉)の四隅のうちの二箇所を持って「つり下げ」て乾燥している。なお、ここで、密閉容器内でかつ湿度30%以下の雰囲気中で処理を行うのは、被膜が形成される際、脱塩酸反応が生じて人体に有害な塩酸ガスが発生するためである。   Next, after removing the porous membrane from the container, the porous membrane is left to dry in the same atmosphere. Although it depends on the type of solvent, in the case of a fluorocarbon organic solvent, the solvent volatilizes within a few minutes. At present, two of the four corners of the porous membrane (sheets) are “suspended” and dried. Here, the reason why the treatment is performed in an airtight container and in an atmosphere having a humidity of 30% or less is that when a film is formed, a hydrochloric acid gas harmful to the human body is generated due to a dehydrochlorination reaction.

最後に、乾燥が終了した多孔質膜を普通の空気中に取り出し、室内に一晩放置する。一晩放置することで、多孔質膜表面に残った未反応クロロシリル基が空気中の水分と完全に反応して、所定の撥水撥油性が得られる。   Finally, the dried porous membrane is taken out in ordinary air and left in the room overnight. By leaving it to stand overnight, the unreacted chlorosilyl group remaining on the surface of the porous membrane completely reacts with moisture in the air, and a predetermined water / oil repellency is obtained.

この方法で、少なくともセルロースアセテート、セルロース混合エステルよりなる多孔質膜は、表面に活性水素を含むため、フッ化炭素基と炭化水素基とクロロシリル基とを主成分とする物質、およびクロロシリル基を主成分とする物質またはアルコキシシリル基を主成分とする物質のクロロシリル基と脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基とを主成分とする物質1とシロキサン基を主成分とする物質2とを含む複合膜からなり撥水撥油性を有する被膜が、ナノメートルレベルの膜厚で多孔質膜表面に化学結合されて形成される。ここで形成される被膜の膜厚はナノメートルレベルであるため、多孔質膜の通気性が損なわれることはほとんど無い。なお、クロロシリル基を主成分とする物質の代わりにアルコキシシリル基を主成分とする物質を用いた場合でも、発生する塩酸が触媒作用をするので、同様に化学結合する。   In this method, the porous film made of at least cellulose acetate and cellulose mixed ester contains active hydrogen on the surface, and therefore the main component is a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and a chlorosilyl group. Dehydrochlorination reaction with a chlorosilyl group of a substance having an alkoxysilyl group as a main component and a substance 1 having a fluorocarbon group, a hydrocarbon group and a silyl group as main components and a siloxane group as a main component A film having a water and oil repellency formed of a composite film containing the substance 2 to be formed is chemically bonded to the surface of the porous film with a film thickness of nanometer level. Since the film thickness formed here is on the nanometer level, the air permeability of the porous film is hardly impaired. Even when a substance mainly composed of an alkoxysilyl group is used instead of a substance mainly composed of a chlorosilyl group, the generated hydrochloric acid has a catalytic action, and thus chemically bonds in the same manner.

なお、このとき、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の混合組成比は、必要とする撥水撥油性に応じて調整可能であるが、1:10〜1:0の範囲が好ましいが、より好ましくは、1:3〜1:0の範囲である。   At this time, the mixing composition ratio of the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance 2 mainly composed of a siloxane group is adjusted according to the required water and oil repellency. While possible, a range of 1:10 to 1: 0 is preferred, but a range of 1: 3 to 1: 0 is more preferred.

(実施の形態2)
少なくともフッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、シラノール縮合触媒またはクロロシリル基を含む物質と、非水系有機溶媒とを含む複合膜形成溶液を湿度30%以下の雰囲気中(Nガス中、あるいは乾燥空気中で良いが、湿度5%以下なら更に好適である)で調整する。次に、普通の空気中で、上記処理溶液の適量をステンレス製バットに入れ、多孔質膜(セルロースアセテート、セルロース混合エステルのいずれも可)を上記処理溶液に浸漬する(固液界面反応なので、多孔質膜を複合膜形成溶液に接触させればよい)。この際に、気泡が混入したり、片面がバットに接触することなく、確実に溶液中に浸漬されるように注意する。浸漬時間に厳密な規定はないが、現状では1時間程度の時間をとっている。
(Embodiment 2)
A composite film forming solution containing at least a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as a main component, a silanol condensation catalyst or a substance containing a chlorosilyl group, and a non-aqueous organic solvent has a humidity of 30% or less. atmosphere (2 gas N, or may be dry air, but more preferred is that if the humidity 5%) to adjust. Next, in normal air, an appropriate amount of the treatment solution is placed in a stainless steel vat, and a porous membrane (either cellulose acetate or cellulose mixed ester is acceptable) is immersed in the treatment solution (since it is a solid-liquid interface reaction, The porous film may be brought into contact with the composite film forming solution). At this time, care should be taken to ensure that the solution is immersed in the solution without air bubbles being mixed in or one side contacting the bat. Although there is no strict regulation on the immersion time, the current time is about 1 hour.

次に、多孔質膜を容器から取り出した後、同雰囲気中で放置して自然乾燥する。溶剤の種類にも依存するが、フッ化炭素系の有機溶媒なら、数分程度で溶剤は揮発する。現状では、多孔質膜(枚葉)の四隅のうちの二箇所を持って「つり下げ」て乾燥している。なお、この場合の被膜形成は、脱アルコール反応であるため、通常の空気中で処理を行っても全く問題はない。   Next, after removing the porous membrane from the container, the porous membrane is left to dry in the same atmosphere. Although depending on the type of solvent, in the case of a fluorocarbon organic solvent, the solvent volatilizes within a few minutes. At present, two of the four corners of the porous membrane (sheets) are “suspended” and dried. In addition, since the film formation in this case is a dealcoholization reaction, there is no problem even if the treatment is performed in normal air.

最後に、乾燥が終了した多孔質膜を室内に一晩放置する。一晩放置することで、多孔質膜表面に残った未反応薬剤と空気中の水分との加水分解反応が進行し、所定の撥水撥油性が得られる。   Finally, the dried porous membrane is left in the room overnight. By leaving it overnight, the hydrolysis reaction between the unreacted drug remaining on the surface of the porous membrane and the moisture in the air proceeds, and a predetermined water and oil repellency is obtained.

この方法で、少なくともセルロースアセテート、セルロース混合エステルよりなる多孔質膜は、表面に活性水素を含むため、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質のアルコキシシリル基とシラノール触媒の存在下で脱アルコール反応して、少なくともフッ化炭素基と炭化水素基とシリル基とを主成分とする物質1を含み撥水撥油性を有する被膜が、ナノメートルレベルの膜厚で多孔質膜表面に化学結合されて形成される。ここで形成される被膜の膜厚はナノメートルレベルであるため、多孔質膜の通気性が損なわれることはほとんど無い。   In this method, since the porous film made of at least cellulose acetate and cellulose mixed ester contains active hydrogen on the surface, the alkoxysilyl group and silanol of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. A film having a water- and oil-repellent property containing a substance 1 mainly composed of at least a fluorocarbon group, a hydrocarbon group, and a silyl group and having a water- and oil-repellent property is porous with a film thickness of nanometer level. It is formed by chemically bonding to the surface of the membrane. Since the film thickness formed here is on the nanometer level, the air permeability of the porous film is hardly impaired.

(実施の形態3)
少なくともフッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、アルコキシシリル基を主成分とする物質と、シラノール縮合触媒またはクロロシリル基を含む物質と、非水系有機溶媒とを含む複合膜形成溶液を湿度30%以下の雰囲気中(Nガス中、あるいは乾燥空気中で良いが、湿度5%以下なら更に好適である)で調整する。次に、普通の空気中で、上記処理溶液の適量をステンレス製バットに入れ、多孔質膜(セルロースアセテート、セルロース混合エステルのいずれも可)を上記処理溶液に浸漬する(固液界面反応なので、多孔質膜を複合膜形成溶液に接触させればよい)。この際に、気泡が混入したり、片面がバットに接触することなく、確実に溶液中に浸漬されるように注意する。浸漬時間に厳密な規定はないが、現状では1時間程度の時間をとっている。
(Embodiment 3)
A substance mainly comprising at least a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group; a substance mainly comprising an alkoxysilyl group; a substance containing a silanol condensation catalyst or a chlorosilyl group; and a non-aqueous organic solvent. composite film-forming solution 30% in less ambient humidity comprising (N 2 gas, or may be dry air, but more preferred is that if the humidity 5%) to adjust. Next, in normal air, an appropriate amount of the treatment solution is placed in a stainless steel vat, and a porous membrane (either cellulose acetate or cellulose mixed ester is acceptable) is immersed in the treatment solution (since it is a solid-liquid interface reaction, The porous film may be brought into contact with the composite film forming solution). At this time, care should be taken to ensure that the solution is immersed in the solution without air bubbles being mixed in or one side contacting the bat. Although there is no strict regulation on the immersion time, the current time is about 1 hour.

次に、多孔質膜を容器から取り出した後、同雰囲気中で放置して自然乾燥する。溶剤の種類にも依存するが、フッ化炭素系の有機溶媒なら、数分程度で溶剤は揮発する。現状では、多孔質膜(枚葉)の四隅のうちの二箇所を持って「つり下げ」て乾燥している。なお、この場合の被膜形成は、脱アルコール反応であるため、通常の空気中で処理を行っても全く問題はない。   Next, after removing the porous membrane from the container, the porous membrane is left to dry in the same atmosphere. Although depending on the type of solvent, in the case of a fluorocarbon organic solvent, the solvent volatilizes within a few minutes. At present, two of the four corners of the porous membrane (sheets) are “suspended” and dried. In addition, since the film formation in this case is a dealcoholization reaction, there is no problem even if the treatment is performed in normal air.

最後に、乾燥が終了した多孔質膜を室内に一晩放置する。一晩放置することで、多孔質膜表面に残った未反応薬剤と空気中の水分との加水分解反応が進行し、所定の撥水撥油性が得られる。   Finally, the dried porous membrane is left in the room overnight. By leaving it overnight, the hydrolysis reaction between the unreacted drug remaining on the surface of the porous membrane and the moisture in the air proceeds, and a predetermined water and oil repellency is obtained.

この方法では、少なくともセルロースアセテート、セルロース混合エステルよりなる多孔質膜は、表面に活性水素を含むため、フッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質およびアルコキシシリル基を主成分とする物質のアルコキシシリル基とシラノール触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基とを主成分とする物質1とシロキサン基を主成分とする物質2とを含む複合膜からなり撥水撥油性を有する被膜が、ナノメートルレベルの膜厚で多孔質膜表面に化学結合されて形成される。ここで形成される被膜の膜厚はナノメートルレベルであるため、多孔質膜の通気性が損なわれることはほとんど無い。   In this method, since the porous membrane comprising at least cellulose acetate and cellulose mixed ester contains active hydrogen on the surface, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group and an alkoxysilyl group are contained. Substance 1 mainly composed of fluorocarbon group, hydrocarbon group and silyl group and substance mainly composed of siloxane group by dealcoholization reaction in the presence of silanol catalyst and alkoxysilyl group of substance mainly composed of substance 2 is formed by chemically bonding to the surface of the porous film with a thickness of nanometer level. Since the film thickness formed here is on the nanometer level, the air permeability of the porous film is hardly impaired.

なお、このとき、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の混合組成比は、必要とする撥水撥油性に応じて調整可能であるが、1:10〜1:0の範囲が好ましいが、より好ましくは、1:3〜1:0の範囲である。   At this time, the mixing composition ratio of the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance 2 mainly composed of a siloxane group is adjusted according to the required water and oil repellency. While possible, a range of 1:10 to 1: 0 is preferred, but a range of 1: 3 to 1: 0 is more preferred.

なお、本プロセスによると、実施の形態2に比べ、より高密度で耐久性の高い撥水撥油性を有する被膜が形成されることは、特開2005−206790に記載されている。   In addition, it is described in Unexamined-Japanese-Patent No. 2005-206790 that according to this process, compared with Embodiment 2, the coating film which has higher density and durability and water / oil repellency is formed.

次に、第3プレート3について説明する。第3プレート3には、試薬保持部62において試薬(図示なし)が塗布・乾燥されて保持される。本実施の形態では、測定対象を総コレステロールとし、そのため試薬としては下記に示す調整のものを使用したが、この調整の試薬に限られるものではない。なお、下記の濃度は塗布時における濃度である。   Next, the third plate 3 will be described. On the third plate 3, a reagent (not shown) is applied and dried in the reagent holding unit 62 and held. In the present embodiment, the measurement target is total cholesterol, and therefore, the reagent shown below is used as the reagent. However, the reagent is not limited to this adjustment reagent. In addition, the following density | concentration is a density | concentration at the time of application | coating.

試薬の調製
コレステロールエステラーゼ(CE) 200U/mL
コレステロール脱水素酵素(CHDH) 150U/mL
ジアフォラーゼ(DI) 200U/mL
ニコチンアミドアデニンジヌクレオチド(NAD) 20mM
水溶性テトラゾリウム塩(WST−4) 60mM
界面活性剤(トリトン(登録商標)X−100) 1.0%w/v
グッド緩衝剤(TAPS)pH8.5 200mM
Reagent preparation
Cholesterol esterase (CE) 200 U / mL
Cholesterol dehydrogenase (CHDH) 150 U / mL
Diaphorase (DI) 200 U / mL
Nicotinamide adenine dinucleotide (NAD) 20 mM
Water-soluble tetrazolium salt (WST-4) 60 mM
Surfactant (Triton (registered trademark) X-100) 1.0% w / v
Good buffer (TAPS) pH 8.5 200 mM

次に、本実施形態に係る器具を用いた分析の手順および器具の作用について説明する。   Next, the analysis procedure using the instrument according to this embodiment and the function of the instrument will be described.

試料供給口4に試料を滴下する。滴下された試料は、流路が撥水撥油性を有しているため、毛管現象による自然流入は発生せず、加圧または吸引操作をすることによって流路5に流入する。ここで加圧操作および吸引操作の方法は任意であるが、例えば加圧操作は、試料供給口4を覆うような弾性体の栓体を設け、それを加圧することによって実現され、吸引操作は、第2プレート2の一部にポンプを接続して吸引することによって実現される。   A sample is dropped into the sample supply port 4. Since the flow channel has water and oil repellency, the dropped sample does not naturally flow due to capillary action and flows into the flow channel 5 by pressurization or suction operation. Here, the pressure operation and the suction operation method are arbitrary. For example, the pressure operation is realized by providing an elastic plug covering the sample supply port 4 and pressurizing it. This is realized by connecting a pump to a part of the second plate 2 for suction.

試料は測定室6に到達した後、試薬保持部62に保持された試薬と呈色反応する。ここで第1のプレート1および第3のプレート3は、測定室6の位置において透明に構成されている。したがって、呈色反応が完了するのに必要な時間が経過した後、外部の光源から測定室6に向け照射した入射光と、測定室6を透過した透過光とを検出することによって、測定室6における吸光度を測定することができ、そして得られた吸光度に基づき、試料中の所望の成分を定量することが可能となる。   After the sample reaches the measurement chamber 6, it undergoes a color reaction with the reagent held in the reagent holding unit 62. Here, the first plate 1 and the third plate 3 are configured to be transparent at the position of the measurement chamber 6. Accordingly, after the time required for completing the color reaction has elapsed, the measurement chamber is detected by detecting the incident light irradiated from the external light source toward the measurement chamber 6 and the transmitted light transmitted through the measurement chamber 6. The absorbance at 6 can be measured, and based on the absorbance obtained, the desired component in the sample can be quantified.

以下、さらに具体的な実施例を用いて説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although it demonstrates using a more concrete Example, this invention is not limited to a following example.

ここで、第2プレート2として採用する素材の違いが吸光度の再現性に与える影響を確認するため、以下の7種の素材を用いた場合の吸光度のばらつきについて試験を行った。
(1)セルロースアセテート膜 孔径0.80μm (ADVANTEC社製、C080A)
(2)セルロースアセテート膜 孔径0.45μm (ADVANTEC社製、C045A)
(3)セルロースアセテート膜 孔径0.20μm (ADVANTEC社製、C020A)
(4)セルロース混合エステル膜 孔径0.45μm (ADVANTEC社製、A045A)
(5)セルロース混合エステル膜 孔径0.20μm (ADVANTEC社製、A020A)
(6)PTFE膜(1軸延伸) 孔径1.00μm (住友電工ファインポリマー社製、WP100)
(7)PTFE膜(2軸延伸) 孔径1.00μm (住友電工ファインポリマー社製、FP100)
上記素材を用いて分析器具を作成し、青色色素液(品名:食用色素青色1号(ブリリアントブルーFCF、東京化成製)、濃度:0.04%(W/V)水溶液)を試料として供給し、測定室に導入し、波長635nmにおける吸光度を測定した。なお、(1)から(5)については、本来不通水性を有していないため、少なくともフッ化炭素基と炭化水素基とクロロシリル基とを主成分とする物質と、クロロシリル基を主成分とする物質またはアルコキシシリル基を主成分とする物質と、非水系有機溶媒とを含む複合膜形成溶液である市販のWR−LIVE1−3((有)かがわ学生ベンチャー社製)を用いて、撥水撥油処理を施している。一方、(6)および(7)は、材料が本来不通水性を有しているため、撥水撥油処理を施していない。サンプル数はそれぞれ20とし、平均吸光度、標準偏差および変動係数を求めた。表1に試験結果を示す。
Here, in order to confirm the influence of the difference in the materials used as the second plate 2 on the reproducibility of the absorbance, a test was conducted on the variation in absorbance when the following seven materials were used.
(1) Cellulose acetate membrane pore size 0.80 μm (manufactured by ADVANTEC, C080A)
(2) Cellulose acetate membrane, pore diameter 0.45 μm (ADVANTEC, C045A)
(3) Cellulose acetate membrane pore size 0.20 μm (manufactured by ADVANTEC, C020A)
(4) Cellulose mixed ester membrane, pore diameter 0.45 μm (ADVANTEC, A045A)
(5) Cellulose mixed ester membrane pore size 0.20 μm (A020A, manufactured by ADVANTEC)
(6) PTFE membrane (uniaxial stretching) Pore diameter 1.00 μm (Sumitomo Electric Fine Polymer, WP100)
(7) PTFE membrane (biaxial stretching) Pore diameter 1.00 μm (Sumitomo Electric Fine Polymer, FP100)
An analytical instrument is prepared using the above materials, and a blue dye solution (product name: Food Color Blue No. 1 (Brilliant Blue FCF, manufactured by Tokyo Chemical Industry Co., Ltd.), concentration: 0.04% (W / V) aqueous solution) is supplied as a sample. The sample was introduced into a measurement chamber, and the absorbance at a wavelength of 635 nm was measured. Since (1) to (5) are not inherently impervious to water, at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and a chlorosilyl group as a main component. Using a commercially available WR-LIFE1-3 (manufactured by Kagawa Student Venture Co., Ltd.), which is a composite film forming solution containing a substance or a substance mainly composed of an alkoxysilyl group and a non-aqueous organic solvent. Water and oil repellent treatment is applied. On the other hand, (6) and (7) are not subjected to water / oil repellent treatment because the material originally has water impermeability. The number of samples was 20 and the average absorbance, standard deviation, and coefficient of variation were determined. Table 1 shows the test results.

Figure 0005237972
Figure 0005237972

上記の通り、セルロースアセテート膜およびセルロース混合エステル膜を採用した分析器具を用いての吸光度測定については、変動係数は小さく良好な測定再現性を示した。それに対して、PTFE膜を採用した分析器具を用いての吸光度測定については、変動係数が大きく、明らかに大きなばらつきが確認できた。これは、PTFE膜自体の膜厚のばらつきが大きいことに加え、分析器具を作成する際、積層等の加工により膜厚が変化しやすく、復元しにくいという性質に起因する。したがって、不通水性で通気性のある多孔質材として、セルロースアセテートまたはセルロース混合エステルを使用することが、測定結果のばらつきが小さく高精度な分析器具を実現する上で好適である。   As described above, the absorbance measurement using an analytical instrument employing a cellulose acetate membrane and a cellulose mixed ester membrane showed a small measurement coefficient and good measurement reproducibility. On the other hand, with respect to absorbance measurement using an analytical instrument employing a PTFE membrane, the coefficient of variation was large, and a large variation was clearly confirmed. This is due to the fact that the film thickness of the PTFE film itself varies greatly, and when the analytical instrument is created, the film thickness is likely to change due to processing such as lamination, and is difficult to restore. Therefore, it is preferable to use cellulose acetate or cellulose mixed ester as a porous material that is impermeable and breathable in order to realize a highly accurate analytical instrument with little variation in measurement results.

次に、時間の経過による吸光度測定値の変化を確認するため、本発明の実施例および比較例の2つについて、試料を測定室6に移送した時点から10分間、波長635nmにおける吸光度を測定した。   Next, in order to confirm the change in the absorbance measurement value with the passage of time, the absorbance at a wavelength of 635 nm was measured for 10 minutes from the time when the sample was transferred to the measurement chamber 6 for the Example of the present invention and the Comparative Example. .

これら2つの相違点は第2プレート2の撥水撥油処理のみであり、本発明の実施例においては、第2プレート2として、セルロースアセテート膜(孔径 0.80μm、ADVANTEC社製)に、上述のWR−LIVE1−3((有)かがわ学生ベンチャー社製)を用いて撥水撥油処理を施したものを用いた。それに対して比較例においては、第2プレート2として、セルロースアセテート膜(孔径 0.80μm、ADVANTEC社製)に一般的なフッ素系撥水撥油処理であるフッ素樹脂溶液(FS−1010、フロロテクノロジー社製)を適用したものを用いた。   These two differences are only in the water and oil repellent treatment of the second plate 2. In the embodiment of the present invention, the cellulose acetate membrane (pore size 0.80 μm, manufactured by ADVANTEC) is used as the second plate 2. WR-Live1-3 (manufactured by Kagawa Student Venture Co., Ltd.) was used for water / oil repellent treatment. On the other hand, in the comparative example, as the second plate 2, a fluororesin solution (FS-1010, Fluorotechnology), which is a general fluorine-based water and oil repellent treatment for a cellulose acetate membrane (pore size 0.80 μm, manufactured by ADVANTEC). Used).

第2プレート2以外の部品は共通であり、第1プレート1および第3プレート3はポリエステルフィルム(東レ製ルミラー)188μmに、カーボンインク(東洋インキ製SSリオフェーズC−A)をスクリーン印刷(♯300ポリエステル製、乳剤厚:15μm)したものであり、プレートの接着には両面テープ(日東電工製5601、基材PET:4μm、アクリル系接着剤:3μm×2面、総厚10μm)を用いた。流路5の長さは20mmで、流路5の幅は0.3mmである。また、測定室6は直径1.2mmの大きさである。   Parts other than the second plate 2 are the same, and the first plate 1 and the third plate 3 are screen-printed with carbon ink (SS Rio Phase C-A manufactured by Toyo Ink) on polyester film (Toray Lumirror) 188 μm (# 300 polyester, emulsion thickness: 15 μm), and a double-sided tape (5601 manufactured by Nitto Denko, base material PET: 4 μm, acrylic adhesive: 3 μm × 2 surfaces, total thickness 10 μm) was used for bonding the plate. . The length of the flow path 5 is 20 mm, and the width of the flow path 5 is 0.3 mm. The measurement chamber 6 has a diameter of 1.2 mm.

試料には総コレステロール濃度が220mg/dLの血清を用い、これを試料供給口4に10μL滴下し、与圧することによって測定室6に導入した。試料が測定室6に到達した時点で波長635nmの光における吸光度測定を開始し、4秒おきに10分間この測定を継続してタイムコースを得た。   As a sample, serum having a total cholesterol concentration of 220 mg / dL was introduced into the measurement chamber 6 by dropping 10 μL of the serum into the sample supply port 4 and applying pressure. When the sample reached the measurement chamber 6, the measurement of absorbance in light having a wavelength of 635 nm was started, and this measurement was continued for 10 minutes every 4 seconds to obtain a time course.

図3に、吸光度測定値の時間による変化を示す。比較例では、試料が測定室6に移送され、試薬が溶解し始めたころから、第2プレート2への浸み込みが生じており、発色した色素がプレートに移行することによって、吸光度測定値は漸減している。それに対して本発明の実施例では、試料が測定室に移送され、試薬が溶解したあとも第2プレート2への浸み込みは生じず、10分間の吸光度測定値は安定している。なお、試薬の中に含まれる界面活性剤のため、試薬が溶解した試料の表面張力は30mN/mと小さいにもかかわらず、試料は第2プレート2に浸み込んでおらず、撥水撥油機能は十分高いことが確認された。   FIG. 3 shows changes in absorbance measurement values with time. In the comparative example, since the sample is transferred to the measurement chamber 6 and the reagent starts to dissolve, the second plate 2 has been soaked, and the dye that has developed color moves to the plate. Is gradually decreasing. On the other hand, in the embodiment of the present invention, after the sample is transferred to the measurement chamber and the reagent is dissolved, the penetration into the second plate 2 does not occur, and the absorbance measurement value for 10 minutes is stable. Note that because of the surfactant contained in the reagent, the sample is not soaked in the second plate 2 even though the surface tension of the sample in which the reagent is dissolved is as small as 30 mN / m. It was confirmed that the oil function was sufficiently high.

Claims (8)

試料が内部に供給される試料供給口と、
前記試料の測定が行われる測定室と、
前記試料供給口と前記測定室とを連通する流路と
から構成され、
前記流路および前記測定室は複数のプレート部材の積層によって形成され、
前記複数のプレート部材のうち少なくとも流路を形成するプレートは通気性を有する多孔質のプレート部材であり、
前記通気性を有する多孔質のプレート部材の表面が、少なくともフッ化炭素基と炭化水素基とシリル基とを主成分とする物質1とシロキサン基を主成分とする物質2とを含み且つ表面に化学結合した撥水撥油性の複合膜で被われている
ことを特徴とする体液成分の分析器具。
A sample supply port through which a sample is supplied;
A measurement chamber in which measurement of the sample is performed;
The flow path that connects the sample supply port and the measurement chamber,
The flow path and the measurement chamber are formed by stacking a plurality of plate members,
The plate forming at least the flow path among the plurality of plate members is a porous plate member having air permeability,
The surface of the porous plate member having air permeability includes at least a substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance 2 mainly composed of a siloxane group on the surface. A body fluid component analyzer characterized by being covered with a chemically bonded water- and oil-repellent composite membrane.
前記通気性を有する多孔質のプレート部材の材質がセルロースアセテートまたはセルロース混合エステルである
ことを特徴とする請求項1に記載の体液成分の分析器具。
The body fluid component analysis instrument according to claim 1, wherein a material of the porous plate member having air permeability is cellulose acetate or cellulose mixed ester.
前記測定室に体液中の特定の成分と反応し呈色する試薬が備えられ、
前記試薬に界面活性剤が含まれる
ことを特徴とする請求項2に記載の体液成分の分析器具。
The measurement chamber is provided with a reagent that reacts with a specific component in the body fluid and colors,
The analytical device for body fluid components according to claim 2, wherein the reagent contains a surfactant.
試料が内部に供給される試料供給口と、
前記試料の測定が行われる測定室と、
前記試料供給口と前記測定室とを連通する流路と
から構成され、
前記流路および前記測定室は複数のプレート部材の積層によって形成され、
前記複数のプレート部材のうち少なくとも流路を形成するプレートが通気性を有する多孔質のプレート部材である体液成分の分析器具の製造方法において、
前記通気性を有する多孔質のプレート部材を、少なくともフッ化炭素基と炭化水素基とクロロシリル基とを主成分とする物質と、クロロシリル基を主成分とする物質またはアルコキシシリル基を主成分とする物質と、非水系有機溶媒とを含む複合膜形成溶液に接触させる工程を含む
ことを特徴とする体液成分の分析器具の製造方法。
A sample supply port through which a sample is supplied;
A measurement chamber in which measurement of the sample is performed;
The flow path that connects the sample supply port and the measurement chamber,
The flow path and the measurement chamber are formed by stacking a plurality of plate members,
In the method for producing a body fluid component analysis instrument, wherein the plate forming at least the flow path among the plurality of plate members is a porous plate member having air permeability,
The porous plate member having air permeability has at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, and a substance mainly composed of a chlorosilyl group or an alkoxysilyl group. A method for producing a body fluid component analysis instrument, comprising the step of contacting a composite film forming solution containing a substance and a non-aqueous organic solvent.
試料が内部に供給される試料供給口と、
前記試料の測定が行われる測定室と、
前記試料供給口と前記測定室とを連通する流路と
から構成され、
前記流路および前記測定室は複数のプレート部材の積層によって形成され、
前記複数のプレート部材のうち少なくとも流路を形成するプレートは通気性を有する多孔質のプレート部材である体液成分の分析器具の製造方法において、
前記通気性を有する多孔質のプレート部材を、少なくともフッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、シラノール縮合触媒またはクロロシリル基を含む物質と、非水系有機溶媒とを含む複合膜形成溶液に接触させる工程を含む
ことを特徴とする体液成分の分析器具の製造方法。
A sample supply port through which a sample is supplied;
A measurement chamber in which measurement of the sample is performed;
The flow path that connects the sample supply port and the measurement chamber,
The flow path and the measurement chamber are formed by stacking a plurality of plate members,
In the method of manufacturing a body fluid component analysis instrument, the plate forming at least the flow path among the plurality of plate members is a porous plate member having air permeability.
The porous plate member having air permeability, a substance mainly containing at least a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, a substance containing a silanol condensation catalyst or a chlorosilyl group, and a non-aqueous organic solvent A method for producing a body fluid component analytical instrument, comprising the step of bringing the composite film forming solution into contact.
試料が内部に供給される試料供給口と、
前記試料の測定が行われる測定室と、
前記試料供給口と前記測定室とを連通する流路と
から構成され、
前記流路および前記測定室は複数のプレート部材の積層によって形成され、
前記複数のプレート部材のうち少なくとも流路を形成するプレートは通気性を有する多孔質のプレート部材である体液成分の分析器具の製造方法において、
前記通気性を有する多孔質のプレート部材を、少なくともフッ化炭素基と炭化水素基とアルコキシシリル基とを主成分とする物質と、アルコキシシリル基を主成分とする物質と、シラノール縮合触媒またはクロロシリル基を含む物質と、非水系有機溶媒とを含む複合膜形成溶液に接触させる工程を含む
ことを特徴とする体液成分の分析器具の製造方法。
A sample supply port through which a sample is supplied;
A measurement chamber in which measurement of the sample is performed;
The flow path that connects the sample supply port and the measurement chamber,
The flow path and the measurement chamber are formed by stacking a plurality of plate members,
In the method of manufacturing a body fluid component analysis instrument, the plate forming at least the flow path among the plurality of plate members is a porous plate member having air permeability.
The porous plate member having air permeability is formed by using a substance mainly containing at least a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, a substance mainly containing an alkoxysilyl group, a silanol condensation catalyst, or chlorosilyl. A method for producing a body fluid component analysis instrument, comprising a step of contacting a composite film forming solution containing a group-containing substance and a non-aqueous organic solvent.
請求項4〜6のいずれかに記載の製造方法により得られ、
前記通気性を有する多孔質のプレート部材の材質がセルロースアセテートまたはセルロース混合エステルであり、
前記測定室に体液中の特定の成分と反応し呈色する試薬が備えられ、
前記試薬に界面活性剤が含まれる
ことを特徴とする体液成分の分析器具。
Obtained by the production method according to any one of claims 4 to 6,
The material of the porous plate member having air permeability is cellulose acetate or cellulose mixed ester,
The measurement chamber is provided with a reagent that reacts with a specific component in the body fluid and colors,
A surfactant is contained in the reagent. A body fluid component analysis instrument.
請求項3または7に記載の体液成分の分析器具を用いて、
前記試料供給口に試料を供給する工程と、
前記流路と通じて前記試料を前記測定室に移送する工程と、
前記試料と前記呈色試料とが呈色反応を起こしたのち前記測定室における吸光度を測定する工程とを備える
ことを特徴とする体液成分の分析方法。
Using the body fluid component analysis instrument according to claim 3 or 7,
Supplying a sample to the sample supply port;
Transferring the sample to the measurement chamber through the flow path;
And a step of measuring absorbance in the measurement chamber after the sample and the color sample have undergone a color reaction. A method for analyzing a body fluid component.
JP2009549946A 2008-01-18 2008-01-18 Body fluid component analyzer Active JP5237972B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050648 WO2009090756A1 (en) 2008-01-18 2008-01-18 Body fluid analyzer

Publications (2)

Publication Number Publication Date
JPWO2009090756A1 JPWO2009090756A1 (en) 2011-05-26
JP5237972B2 true JP5237972B2 (en) 2013-07-17

Family

ID=40885166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009549946A Active JP5237972B2 (en) 2008-01-18 2008-01-18 Body fluid component analyzer

Country Status (2)

Country Link
JP (1) JP5237972B2 (en)
WO (1) WO2009090756A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999662B2 (en) 2012-01-22 2015-04-07 Arkray, Inc. Method for producing dry reagent, dry reagent, and analysis tool using same
CN205246522U (en) * 2015-12-26 2016-05-18 深圳市前海安测信息技术有限公司 Blood sugar tests data acquisition facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224090A (en) * 2001-02-07 2002-08-13 Tya:Kk Inspection method for body fluid component and inspection instrument used thereof
JP2005206447A (en) * 2003-09-17 2005-08-04 Kazufumi Ogawa Water repellent oil repellent anti-fouling glass panel, method of manufacturing the same and automobile and electromagnetic cooking device using the same
JP2005206455A (en) * 2003-12-22 2005-08-04 Kazufumi Ogawa Stain-proof ceramic product and its producing method
JP2005290582A (en) * 2004-03-31 2005-10-20 Kazufumi Ogawa Water-repelling, oil-repelling and anti-staining apparel product and method for producing the same
JP2007248101A (en) * 2006-03-14 2007-09-27 Ttm:Kk Inspection instrument of liquid fluid and inspection method using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075780A (en) * 2002-08-13 2004-03-11 Sekisui Chem Co Ltd Modifying material for hydrophilic surface
JP2007138003A (en) * 2005-11-17 2007-06-07 Fujifilm Corp Method for producing water-repellent porous material and water-repellent porous material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224090A (en) * 2001-02-07 2002-08-13 Tya:Kk Inspection method for body fluid component and inspection instrument used thereof
JP2005206447A (en) * 2003-09-17 2005-08-04 Kazufumi Ogawa Water repellent oil repellent anti-fouling glass panel, method of manufacturing the same and automobile and electromagnetic cooking device using the same
JP2005206455A (en) * 2003-12-22 2005-08-04 Kazufumi Ogawa Stain-proof ceramic product and its producing method
JP2005290582A (en) * 2004-03-31 2005-10-20 Kazufumi Ogawa Water-repelling, oil-repelling and anti-staining apparel product and method for producing the same
JP2007248101A (en) * 2006-03-14 2007-09-27 Ttm:Kk Inspection instrument of liquid fluid and inspection method using it

Also Published As

Publication number Publication date
JPWO2009090756A1 (en) 2011-05-26
WO2009090756A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
FI91331C (en) Sensor
US6555061B1 (en) Multi-layer reagent test strip
JP2007248101A (en) Inspection instrument of liquid fluid and inspection method using it
US6551496B1 (en) Microstructured bilateral sensor
US20080190783A1 (en) Electrode For Electrochemical Sensor
JP4417738B2 (en) Method and test strip for determining blood glucose
JP2005230009A (en) Test element having single layered reaction film
WO2010113997A1 (en) Microchannel chip and method for gas-liquid phase separation using same
Zhang et al. Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples
JP2013257310A (en) Biosensor
EP2196806A1 (en) Liquid fluid testing instrument and testing method
CN1540345A (en) Smart testing strip filled with capillary
JP5237972B2 (en) Body fluid component analyzer
WO2013150781A1 (en) Breathable sheet imparted with oil repellent properties
KR20150059413A (en) Test method of sample and microfluidic device
WO2009110089A1 (en) Instrument for analyzing body fluid
JP5931709B2 (en) Body fluid component testing equipment
JP4733838B2 (en) Body fluid component inspection method and inspection instrument used therefor
JP2010008413A (en) Method for measuring analyte in bodily fluid
Memisevic et al. Characterization of a novel ultra-low refractive index material for biosensor application
JP4945709B2 (en) Liquid fluid inspection instrument and inspection method
JP4493535B2 (en) Test paper
WO2011022121A2 (en) Analyte sensor fabrication
CN110187092A (en) It is a kind of to soak anisotropic mesh screen and its preparation method and application
EP3009519A1 (en) Test device, reactive element and arrangement for urease activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250