JP2005206455A - Stain-proof ceramic product and its producing method - Google Patents

Stain-proof ceramic product and its producing method Download PDF

Info

Publication number
JP2005206455A
JP2005206455A JP2004365223A JP2004365223A JP2005206455A JP 2005206455 A JP2005206455 A JP 2005206455A JP 2004365223 A JP2004365223 A JP 2004365223A JP 2004365223 A JP2004365223 A JP 2004365223A JP 2005206455 A JP2005206455 A JP 2005206455A
Authority
JP
Japan
Prior art keywords
group
ceramic product
mainly composed
film
antifouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004365223A
Other languages
Japanese (ja)
Other versions
JP4759711B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004365223A priority Critical patent/JP4759711B2/en
Publication of JP2005206455A publication Critical patent/JP2005206455A/en
Application granted granted Critical
Publication of JP4759711B2 publication Critical patent/JP4759711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic water repellent, oil repellent and stain-proof product excellent in abrasion resistance, weather resistance and a water droplet releasing property at a ceramic product where water repellent, oil repellent and stain-proof functions are required and to provide its producing method hardly generating hydrochloric acid. <P>SOLUTION: When the ceramic product is produced, an alkoxysilane surfactant is used and then a water repellent, oil repellent and stain-proof film with high durability is formed by a dealcohlization reaction on the surface of the ceramic product. The film at the ceramic product involves at least one layer of composite films containing a substance whose main components are at least a fluorocarbon group, a hydrocarbon group and a silyl group and a substance whose main component is a siloxane group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高耐久性の撥水撥油防汚性被膜が表面に形成された窯業製品に関するものである。詳しくは、撥水撥油防汚機能が要求される食器や花器、衛生陶器、碍子、タイル等の窯業製品に関するものである。 The present invention relates to a ceramic product having a highly durable water- and oil-repellent antifouling film formed on the surface thereof. Specifically, the present invention relates to ceramic products such as tableware, flower vases, sanitary ware, insulators, tiles, etc. that require water / oil / oil repellent functions.

一般にフッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水性化学吸着膜を形成できることはすでによく知られている(例えば、特許文献1参照。)。 It is already well known that a chemisorbed liquid consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular water-repellent chemisorbed film. (For example, refer to Patent Document 1).

このような溶液中での化学吸着単分子膜の製造原理は、基材表面の水酸基などの活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。
特開平02−258032号 公報
The principle of production of a chemisorbed monolayer in such a solution is to form a monolayer using a dehydrochlorination reaction between active hydrogen such as hydroxyl groups on the substrate surface and chlorosilyl groups of chlorosilane-based adsorbents. It is in.
Japanese Patent Laid-Open No. 02-258032

しかしながら、従来の化学吸着膜は吸着剤と基材表面との化学結合のみを用いているため、耐摩耗性に乏しいという課題があった。また、クロロシラン系界面活性剤を用いた方法では、製膜時に塩酸が多量に発生するため、製造は、特別な脱塩酸設備を備えた隔離された場所で行わなければならないという課題があった。 However, since the conventional chemical adsorption film uses only a chemical bond between the adsorbent and the substrate surface, there is a problem that the wear resistance is poor. In addition, in the method using a chlorosilane-based surfactant, a large amount of hydrochloric acid is generated during film formation, so that the production has to be performed in an isolated place equipped with a special dehydrochlorination facility.

本発明は、撥水撥油防汚機能が要求される食器や花器、衛生陶器、碍子、タイル等の窯業製品において、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性の向上を目的とする。また、窯業製品上に撥水撥油防汚膜を形成する際、塩酸を発生させずに(あるいはほんの少量の塩酸の発生で)、耐摩耗性および耐候性等の耐久性、および水滴離水性(滑水性ともいう)、防汚性に優れた被膜を形成することを目的とする。なお、本発明でいう窯業製品には、陶磁器製品、ガラス製品、セラミックス製品、またはほうろう製品が含まれる。具体的には、衛生陶磁器(例えば便器、洗面器、風呂等)、食器(例えば、茶碗、皿、どんぶり、湯呑、コップ、瓶、コーヒー沸かし容器、鍋、すり鉢、カップ等)、花器(水盤、植木鉢、一輪差し等)、水槽(養殖用水槽、鑑賞用水槽等)、化学実験器具(ビーカー、反応容器、試験管、フラスコ、シャーレ、冷却管、撹拌棒、スターラー、乳鉢、バット、注射器)、建材(瓦、タイル、各種コンクリート製品)、ほうろう製品(食器、洗面器、鍋、ヤカン)、電磁調理器用セラミックス製トッププレート等が含まれる。 The present invention is a ceramic product such as tableware, flower vase, sanitary ware, insulators, tiles, etc. that require water / oil / oil repellent antifouling function, durability such as wear resistance and weather resistance, water droplet separation (also referred to as water slidability). ), To improve antifouling properties. In addition, when forming a water- and oil-repellent and antifouling film on ceramic products, without generating hydrochloric acid (or by generating only a small amount of hydrochloric acid), durability such as wear resistance and weather resistance, and water-dropping water-removability An object is to form a film having excellent antifouling properties (also referred to as water slidability). The ceramic products referred to in the present invention include ceramic products, glass products, ceramic products, or enamel products. Specifically, sanitary ceramics (for example, toilet bowls, washbasins, baths, etc.), tableware (for example, tea bowls, dishes, bowls, cups, bottles, coffee-boiled containers, pots, mortars, cups, etc.), vases ( Flowerpots, single-feeders, etc.), water tanks (aquaculture tanks, viewing tanks, etc.), chemical laboratory equipment (beakers, reaction vessels, test tubes, flasks, petri dishes, cooling tubes, stirring rods, stirrers, mortars, bats, syringes), Includes building materials (tiles, tiles, various concrete products), enamel products (tableware, washbasins, pans, kettles), ceramic top plates for electromagnetic cookers, etc.

前記目的を達成するため、第1番目の発明の防汚性窯業製品は、高耐久性の撥水撥油防汚被膜が形成された窯業製品であって、前記撥水撥油防汚性被膜を、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を少なくとも1層含めて構成しておくことを要旨とする。 In order to achieve the object, the antifouling ceramic product of the first invention is a ceramic product on which a highly durable water / oil repellent / antifouling coating is formed, wherein the water / oil repellent / antifouling coating is formed. The gist of the present invention is to include at least one composite film containing at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group.

前記第1番目の発明の防汚性窯業製品によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良して、耐摩耗性且つ耐候性等の耐久性、および離水性に優れた被膜を形成した防汚性窯業製品を提供できる。なお、このとき、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または窯業製品表面に結合固定しておくと、耐久性を向上させる上で都合がよい。 According to the antifouling ceramic product of the first aspect of the present invention, it is possible to improve the defect that it is weak against abrasion of a conventional chemical adsorption film, and to provide a coating excellent in wear resistance, durability such as weather resistance, and water separation Can provide antifouling ceramic products. At this time, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is converted into the silica film and / or the silica film and / or the silica film composed of the substance mainly composed of a siloxane group via the silyl group. Bonding and fixing to the ceramic product surface is convenient for improving durability.

さらに、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質とを、それぞれシリル基およびシロキサン基を介して互いに/または個々に窯業製品表面に結合固定させておくと、耐久性を大幅に向上させる上で都合がよい。また、複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の分子組成比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐久性を大幅に向上させる上で都合がよい。 Furthermore, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group are bonded to each other or individually to the ceramic product surface via the silyl group and the siloxane group, respectively. If fixed, it is convenient for greatly improving the durability. Further, the molecular composition ratio of the substance mainly containing a fluorocarbon group, a hydrocarbon group and a silyl group and the substance mainly containing a siloxane group contained in the composite film is 1:10 to 10: 1, more preferably When it is set to 1: 3 to 5: 1, it is convenient for greatly improving the durability.

また、複合膜の水に対する接触角を95±10度に制御しておくと離水性を向上する上で都合がよい。   Further, controlling the contact angle of the composite membrane with water to 95 ± 10 degrees is advantageous in improving water separation.

さらにまた、下地の窯業製品が、表面にアルカリバリア膜が形成された窯業製品であると耐久性を上げる上で都合がよい。 Furthermore, it is convenient to increase durability when the underlying ceramic product is a ceramic product having an alkali barrier film formed on the surface.

前記目的を達成するため、第2番目の発明の防汚性窯業製品は、高耐久性の撥水撥油防汚性被膜が形成された窯業製品であって、前記被膜を、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜と、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜との2層構造にしておくことを要旨とする。 In order to achieve the above object, the antifouling ceramic product of the second invention is a ceramic product on which a highly durable water / oil repellent antifouling coating is formed, and the coating is at least a fluorocarbon Lower layer composite film containing a substance mainly composed of a group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group, and an upper layer containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group The gist is to have a two-layer structure with the film.

前記した第2番目の発明の防汚性窯業製品によれば、前記第1番目の発明の窯業製品の初期水滴接触角をより大きくでき、第1番目の発明の窯業製品に比べさらに耐久性能を向上させた防汚性窯業製品を提供できる。 According to the antifouling ceramic product of the second invention described above, the initial water droplet contact angle of the ceramic product of the first invention can be made larger, and the durability performance is further improved as compared with the ceramic product of the first invention. Providing improved antifouling ceramic products.

なお、このとき、前記下層複合膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質が、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または窯業製品表面に結合固定し、前記上層膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質がシリル基を介して前記下層複合膜に含まれるシロキサン基に結合固定しておくと、耐久性を向上させる上で都合がよい。   At this time, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group constituting the lower layer composite film passes through the silyl group in a silica film composed of a substance mainly composed of a siloxane group. A substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, which is bonded and fixed to the surface of the silica film and / or ceramic product and constitutes the upper layer film, is contained in the lower layer composite film via the silyl group. Bonding and fixing to the siloxane group is advantageous in improving durability.

また、前記下層複合膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を、それぞれシリル基およびシロキサン基を介して互いにまたは個々に窯業製品表面に、または互いに/または個々にアルカリバリア膜を形成した窯業製品表面に結合固定し、前記上層膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質がシリル基を介して前記下層複合膜に含まれるシロキサン基に結合固定しておくと、耐久性を向上させる上でさらに都合がよい。   In addition, the fluorocarbon group, the hydrocarbon group, and the silyl group as a main component and the siloxane group as a main component constituting the lower layer composite film may be mutually or individually via a silyl group and a siloxane group, respectively. A substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group constituting the upper layer film is bonded to and fixed on the surface of the ceramic product, or on the surface of the ceramic product formed with an alkali barrier film individually or individually. Bonding and fixing to the siloxane group contained in the lower composite film via a group is more convenient for improving durability.

さらに、下層複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の分子組成比が、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐久性を大幅に向上させる上で都合がよい。   Furthermore, the molecular composition ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance mainly composed of a siloxane group contained in the lower layer composite film is preferably 1:10 to 10: 1. When the ratio is set to 1: 3 to 5: 1, it is convenient for greatly improving the durability.

また、下地複合膜の水に対する接触角を95±10度に制御しておくと上層膜の形成密度を向上する上で都合がよい。   Further, it is convenient to improve the formation density of the upper layer film by controlling the contact angle of the base composite film with water to 95 ± 10 degrees.

さらにまた、上層膜の水に対する接触角が105±10度になるように制御しておくと、耐久性能を向上する上で都合がよい。   Furthermore, controlling the contact angle of the upper layer film with water to be 105 ± 10 degrees is advantageous in improving the durability.

さらにまた、下地の窯業製品が、食器や花器、衛生陶器、碍子、タイル、電磁調理器用セラミックス製トッププレート等の窯業製品であると防汚機能を付与する上で好ましい。特に、電気絶縁碍子の場合には、表面での漏電の防止も図れるので都合がよい。また、電磁調理器用セラミックス製トッププレートの場合、あらかじめ表面に微細な突起(0.5〜2mm程度)を複数個設けておいた上で本発明の防汚性被膜を形成しておくと、被膜が直接鍋底に接触することがないので、耐久性を向上させる上で都合がよい。 Furthermore, it is preferable that the base ceramic product is a ceramic product such as tableware, flower vases, sanitary ware, insulators, tiles, ceramic top plates for electromagnetic cookers, etc., in order to impart an antifouling function. In particular, in the case of an electric insulator, it is convenient because it is possible to prevent electric leakage on the surface. Further, in the case of a ceramic top plate for an electromagnetic cooker, when the antifouling film of the present invention is formed after a plurality of fine protrusions (about 0.5 to 2 mm) are provided on the surface in advance, Since it does not directly contact the bottom of the pan, it is convenient for improving durability.

第3番目の発明の防汚性窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒混合希釈して作成した複合膜形成溶液を窯業製品表面に接触させて反応させ被膜を形成する工程と、被膜の形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを少なくとも含むことを要旨とする。 According to a third aspect of the present invention, there is provided a method for producing an antifouling ceramic product, wherein a substance containing a fluorocarbon group, a hydrocarbon group and a chlorosilyl group as a main component and a substance containing a chlorosilyl group as a main component are non-aqueous in a dry atmosphere. A step of bringing a composite film-forming solution prepared by mixing and diluting an organic solvent into contact with the surface of a ceramic product to react to form a coating, and a step of firing the ceramic product with the coating formed in an atmosphere substantially free of oxygen And including at least.

前記第3番目の発明の防汚性窯業製品の製造方法によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良して、耐久性、離水性に優れた(水に対する転落角が極めて低い)被膜を形成した防汚性窯業製品の製造方法を提供できる。 According to the method for producing an antifouling ceramic product of the third aspect of the invention, it is possible to improve the defect of being weak against abrasion of a conventional chemical adsorption film, and to have excellent durability and water separation (the falling angle with respect to water is extremely high). It is possible to provide a method for producing an antifouling ceramic product having a low coating.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300〜450℃で焼成を行うと、被膜を酸化せずに耐摩耗性を向上させる上で都合がよい。 At this time, as an atmosphere that does not substantially contain oxygen, using nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit and firing at 300 to 450 ° C., the film does not oxidize and wear resistance. Convenient for improving

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、耐久性に優れ、且つ離水性に優れた防汚性窯業製品を製造出来て都合がよい。 Further, the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and the substance mainly composed of the chlorosilyl group is 1:10 to 10: 1 (more preferably 1: 1 to 1). 6: 1) is advantageous because it is possible to produce an antifouling ceramic product having excellent durability and water separation.

さらに、焼成時、窯業製品を立てるか、立てた状態でつり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜表面を傷つけることがなくて都合がよい。 Furthermore, it is convenient that the ceramic surface is not damaged, if the ceramic product is stood or hung in the standing state, or is fired while holding the film forming surface up.

さらにまた、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:1〜6:1にすると、高耐久、高離水性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and the chlorosilyl group is a main component. As a substance, SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si instead of a substance mainly composed of a chlorosilyl group (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is 1: 1 to 6 : 1 for high durability and high water separation It is convenient in terms of retention.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると、耐久性を上げる上で都合がよい。 Furthermore, if a ceramic product having an alkali barrier film formed on the surface is used as the underlying ceramic product, it is advantageous in increasing durability.

第4番目の発明の防汚性窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒混合希釈して作成した複合膜形成溶液を窯業製品表面に接触させて反応させ被膜を形成する工程と、前記窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程とを少なくとも含むことを要旨とする。 According to a fourth aspect of the present invention, there is provided a method for producing an antifouling ceramic product, wherein a substance containing a fluorocarbon group, a hydrocarbon group and a chlorosilyl group as a main component and a substance containing a chlorosilyl group as a main component are non-aqueous in a dry atmosphere. A step of bringing a composite film-forming solution prepared by mixing and diluting with an organic solvent into contact with the surface of the ceramic product and reacting to form a coating; and a step of removing or wiping off the excess solution on the surface of the ceramic product using an organic solvent And at least a step of firing in an atmosphere substantially free of oxygen.

前記した第4番目の発明の防汚性窯業製品の製造方法によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良して、耐摩耗性且つ耐候性等の耐久性、および離水性に優れた(滑水性が高い、すなわち水滴転落角が極めて低い)被膜を形成した防汚性窯業製品の製造方法を提供できる。 According to the manufacturing method of the antifouling ceramic product of the fourth invention described above, it is possible to improve the drawback of being weak against abrasion of the conventional chemical adsorption film, durability such as wear resistance and weather resistance, and water separation It is possible to provide a method for producing an antifouling ceramic product having an excellent coating (high sliding property, that is, a very low water drop falling angle).

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300〜450℃(より好ましくは400±20℃)で焼成を行うと、被膜の耐摩耗性を向上させる上で都合がよい。 At this time, as an atmosphere substantially free of oxygen, using nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit and firing at 300 to 450 ° C. (more preferably 400 ± 20 ° C.), This is convenient for improving the wear resistance of the coating.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、耐久性に優れた且つ離水性に優れた防汚性窯業製品を製造出来て都合がよい。 Further, the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and the substance mainly composed of the chlorosilyl group is 1:10 to 10: 1 (more preferably 1: 1 to 1). If it is set to 6: 1), an antifouling ceramic product having excellent durability and water separation can be produced, which is convenient.

さらに、焼成時、窯業製品を起てるか、立てた状態でつり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜を傷つけることがなくて都合がよい。 Furthermore, it is convenient that the ceramic product is not damaged during firing, if the ceramic product is raised, suspended in a standing state, or held and fired with the film-forming surface facing up.

さらにまた、有機溶媒で洗浄する代わりに、洗剤と水で洗浄する方法を用いると、廃液処理の面で環境汚染を少なくできて都合がよい。 Furthermore, using a method of washing with a detergent and water instead of washing with an organic solvent is advantageous in that it can reduce environmental pollution in terms of waste liquid treatment.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:1〜6:1にすると、高耐久性、高離水性を確保する上で都合がよい。 Further, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and a substance mainly composed of a chlorosilyl group. As SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si ( OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is 1: 1 to 6: 1. To ensure high durability and high water separation. Convenient.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると、撥水撥油防汚膜の耐久性を上げる上で都合がよい。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the underlying ceramic product, it is advantageous in increasing the durability of the water / oil repellent / antifouling film.

第5番目の発明の窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した下層複合膜形成溶液を窯業製品表面に接触させて反応させ下層複合膜を形成する工程と、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質を非水系有機溶媒で混合希釈して上層膜形成溶液を作成する工程と、前記下層複合膜が形成された窯業製品表面に前記上層膜形成溶液を接触させて反応させ上層膜を形成する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを少なくとも含むことを要旨とする。 According to a fifth aspect of the present invention, there is provided a method for producing a ceramic product comprising a non-aqueous organic solvent containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group in a dry atmosphere. The lower layer composite film forming solution prepared by mixing and diluting is brought into contact with the ceramic product surface and reacted to form the lower layer composite film, and the main components are fluorocarbon groups, hydrocarbon groups and chlorosilyl groups in a dry atmosphere. A step of mixing and diluting a substance with a non-aqueous organic solvent to create an upper layer film forming solution, and a step of bringing the upper layer film forming solution into contact with the surface of the ceramic product on which the lower layer composite film is formed and reacting to form an upper layer film And at least a step of firing the ceramic product formed with the lower composite film and the upper film in an atmosphere substantially free of oxygen.

前記第5番目の発明の窯業製品の製造方法によれば、前記第2番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた被膜を形成した防汚性窯業製品の製造方法を提供できる。   According to the method for manufacturing a ceramic product of the fifth aspect of the invention, the antifouling ceramic product in which a film having a higher wear resistance and weather resistance is formed than the method of manufacturing the ceramic product of the second aspect of the invention. Can be provided.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300乃至450℃で焼成を行うと、被膜を酸化せずに耐久性を向上させる上で都合がよい。   At this time, if the atmosphere is substantially oxygen-free and nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit is used and firing is performed at 300 to 450 ° C., durability is improved without oxidizing the coating. Convenient for improvement.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できて都合がよい。   Further, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group to the substance mainly composed of chlorosilyl group is 1:10 to 10: 1, more preferably 1: 3. When it is set to ˜5: 1, it is convenient to produce a water and oil repellent antifouling ceramic product excellent in wear resistance and weather resistance.

さらに、焼成時、窯業製品を立てるか、つり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜表面を傷つける恐れが少なくて都合がよい。 Furthermore, it is convenient to raise or suspend ceramic products during firing, or to hold and fire with the film forming surface facing upward, since there is little risk of damaging the surface of the film.

さらにまた、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:3〜5:1にすると、高耐久性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and the chlorosilyl group is a main component. As a substance, SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si instead of a substance mainly composed of a chlorosilyl group (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is from 1: 3 to 5: If it is set to 1, it is necessary to secure high durability. Good.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると、耐久性を上げる上で都合がよい。 Furthermore, if a ceramic product having an alkali barrier film formed on the surface is used as the underlying ceramic product, it is advantageous in increasing durability.

第6番目の発明の窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を窯業製品表面に接触させて反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質を非水系有機溶媒で混合希釈して作成した上層膜形成溶液を、前記下層複合膜が形成された窯業製品表面に接触させて反応させ上層膜を形成する工程と、前記上層膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程と少なくとも含むことを要旨とする。 According to a sixth aspect of the present invention, there is provided a method for producing a ceramic product comprising a non-aqueous organic solvent containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group in a dry atmosphere. The step of forming a lower layer composite film by contacting and reacting the composite film forming solution prepared by mixing and dilution with the surface of the ceramic product, and using an organic solvent for the excess solution on the surface of the ceramic product on which the lower layer composite film is formed An upper film forming solution prepared by mixing and diluting a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group in a dry atmosphere with a non-aqueous organic solvent in a dry atmosphere; The step of contacting and reacting with the ceramic product surface on which the composite film is formed to form an upper layer film, and the excess solution on the ceramic product surface on which the upper layer film is formed are removed by washing or wiping with an organic solvent. And that step, a step of firing in an atmosphere containing substantially no oxygen and summarized in that at least include.

前記第6番目の発明の窯業製品の製造方法によれば、前記第3番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた防汚性窯業製品の製造方法を提供できる。   According to the method for manufacturing a ceramic product of the sixth aspect of the invention, compared with the method for manufacturing a ceramic product of the third aspect of the invention, a method for manufacturing an antifouling ceramic product superior in wear resistance and weather resistance is provided. Can be provided.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300乃至450℃で焼成を行うと、被膜の耐摩耗性、耐候性を向上させる上で都合がよい。   At this time, if the atmosphere is substantially free of oxygen, using nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit and firing at 300 to 450 ° C., the wear resistance and weather resistance of the coating are improved. Convenient for improvement.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できて都合がよい。   Further, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group to the substance mainly composed of chlorosilyl group is 1:10 to 10: 1, more preferably 1: 3 to 3. If it is set to 5: 1, a water and oil repellent antifouling ceramic product excellent in abrasion resistance and weather resistance can be produced, which is convenient.

さらに、焼成時、窯業製品を立てるか、つり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜表面を傷つける恐れが少なくて都合がよい。 Furthermore, it is convenient to raise or suspend ceramic products during firing, or to hold and fire with the film forming surface facing upward, since there is little risk of damaging the surface of the film.

また、有機溶媒で洗浄する代わりに、洗剤と水で洗浄する方法を用いると、廃液処理の面で環境汚染を少なくできて都合がよい。 In addition, using a method of washing with a detergent and water instead of washing with an organic solvent is advantageous because it can reduce environmental pollution in terms of waste liquid treatment.

さらにまた、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:3〜5:1にすると、高耐久性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and the chlorosilyl group is a main component. As a substance, SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si instead of a substance mainly composed of a chlorosilyl group (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is from 1: 3 to 5: If it is set to 1, it is necessary to secure high durability. Good.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると、耐久性を上げる上で都合がよい。 Furthermore, if a ceramic product having an alkali barrier film formed on the surface is used as the underlying ceramic product, it is advantageous in increasing durability.

第7番目の発明の窯業製品の製造方法は、少なくとも窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ被膜を形成する工程と、前記被膜の形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程を含むことを要旨とする。 According to a seventh aspect of the present invention, there is provided a method for producing a ceramic product, wherein at least the surface of the ceramic product has a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as a main component, a substance having an alkoxysilyl group as a main component, and a silanol condensation catalyst. Forming a film by contact reaction of a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent, and firing the ceramic product on which the film is formed in an atmosphere substantially free of oxygen It is made to include.

前記第7番目の発明の窯業製品の製造方法によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良して、塩酸の発生を伴わない耐久性、離水性に優れた(水滴転落角が極めて低い)防汚性窯業製品の製造方法を提供できる。 According to the method for producing a ceramic product of the seventh aspect of the invention, the conventional chemical adsorption film is weak against abrasion, and has excellent durability and water separation without generation of hydrochloric acid (water drop falling angle). Can provide a method for producing antifouling ceramic products.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境汚染を少なくできて都合がよい。 At this time, it is convenient to wash with a detergent and water instead of washing with an organic solvent because environmental pollution can be reduced.

また、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると被膜の酸化を防止し、膜強度を向上する上で都合がよい。 In addition, if an atmosphere containing substantially no oxygen is used as a nitrogen gas or a nitrogen gas containing hydrogen below the explosion limit, baking at 300 to 450 ° C. is advantageous in preventing oxidation of the film and improving the film strength. .

さらに、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと離水性を制御する上で都合がよい。 Furthermore, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group to the substance mainly composed of alkoxysilyl group is 1:10 to 10: 1, more preferably 1: When it is set to 3 to 5: 1, it is convenient for controlling water separation.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2−(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすると高耐久、高離水性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n − ( CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and the main component is an alkoxysilyl group. Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group) , Short chain alkyl groups such as propyl group), or substances having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is It is convenient to ensure high durability and high water separation when the molecular composition ratio during mixing is 1:10 to 10: 1.

また、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると、耐久性を上げる上で都合がよい。 In addition, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, it is convenient to increase durability.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できて都合がよい。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst It is convenient that antifouling ceramic products can be produced in a shorter period of time than in the case of using.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度が好ましい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できて都合がよい。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 is used. The film formation time can be further shortened compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. Convenient.

第8番目の発明の窯業製品の製造方法は、 窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ被膜を形成する工程と、前記窯業製品表面の余分な複合膜形成溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程を含むことを要旨とする。 According to an eighth aspect of the present invention, there is provided a method for producing a ceramic product comprising: a material comprising a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as a main component; a substance comprising an alkoxysilyl group as a main component; a silanol condensation catalyst; A step of forming a film by contact reaction of a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent, and removing or wiping off excess composite film forming solution on the ceramic product surface using an organic solvent The gist is to include a step and a step of firing in an atmosphere substantially free of oxygen.

前記第8番目の発明の窯業製品の製造方法によれば、前記第2番目の発明の方法に比べてより光沢性を保持した防汚性窯業製品の製造方法を提供できる。 According to the method for manufacturing a ceramic product of the eighth aspect of the invention, a method for manufacturing an antifouling ceramic product having higher gloss than the method of the second aspect of the invention can be provided.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境汚染を少なくできて都合がよい。 At this time, it is convenient to wash with a detergent and water instead of washing with an organic solvent because environmental pollution can be reduced.

また、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると膜強度を向上する上で都合がよい。 Further, it is convenient to improve the film strength by baking at 300 to 450 ° C. using nitrogen gas or nitrogen gas containing hydrogen below the explosion limit as an atmosphere substantially free of oxygen.

さらに、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、離水性を制御する上で都合がよい。 Furthermore, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group to the substance mainly composed of alkoxysilyl group is 1:10 to 10: 1, more preferably 1: When it is set to 3 to 5: 1, it is convenient for controlling the water separation.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2−(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすると高耐久、高離水性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n − ( CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and the main component is an alkoxysilyl group. Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group) , Short chain alkyl groups such as propyl group), or substances having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is It is convenient to ensure high durability and high water separation when the molecular composition ratio during mixing is 1:10 to 10: 1.

また、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を上げる上で都合がよい。 Moreover, it is convenient to increase the durability when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できて都合がよい。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst It is convenient that antifouling ceramic products can be produced in a shorter period of time than in the case of using.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できて都合がよい。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film formation time can be further shortened compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. Convenient.

前記目的を達成するため、第9番目の発明の窯業製品製造方法は、窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作製した上層膜形成溶液を接触反応させ上層膜を形成する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程を含むことを要旨とする。 In order to achieve the above object, a ceramic product manufacturing method according to a ninth aspect of the present invention has a ceramic product surface comprising a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as main components and an alkoxysilyl group as a main component. A step of forming a lower layer composite film by contact reaction of a composite film forming solution prepared by mixing and diluting a substance and a silanol condensation catalyst with a non-aqueous organic solvent, and a surface of the ceramic product on which the lower layer composite film is formed is fluorocarbon. Forming an upper film by contacting and reacting an upper film forming solution prepared by mixing and diluting a group mainly composed of a group, a hydrocarbon group and an alkoxysilyl group and a silanol condensation catalyst with a non-aqueous organic solvent; The gist is to include a step of firing the ceramic product on which the film and the upper layer film are formed in an atmosphere substantially free of oxygen.

前記第9番目の発明の窯業製品の製造方法によれば、前記第7番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた防汚性窯業製品の製造方法を提供できる。   According to the method for manufacturing a ceramic product of the ninth invention, compared with the method for manufacturing a ceramic product of the seventh invention, there is provided a method for manufacturing an antifouling ceramic product having more wear resistance and weather resistance. Can be provided.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境への負荷を少なくできて都合がよい。   At this time, instead of washing with an organic solvent, washing with a detergent and water is advantageous because it can reduce the burden on the environment.

さらに、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できて都合がよい。 Furthermore, when using nitrogen gas or nitrogen gas containing hydrogen below the explosion limit as an atmosphere substantially free of oxygen and firing at 300 to 450 ° C., the water and oil repellent and antifouling properties are excellent in abrasion resistance and weather resistance. It is convenient to be able to manufacture ceramic products.

また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できて都合がよい。   Further, the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group is 1:10 to 10: 1, more preferably 1: When it is set to 3 to 5: 1, it is convenient to produce a water and oil repellent antifouling ceramic product excellent in wear resistance and weather resistance.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いると、高耐久性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n (CH 2 ) 2 ] 2 Si (OA) 2 , or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and a substance mainly composed of an alkoxysilyl group Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group, In place of a compound represented by a short-chain alkyl group such as a propyl group) or a substance mainly composed of an alkoxysilyl group, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (However, m is an integer. Using (number) is convenient in securing high durability.

なお、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を省いた場合でも、離水性に優れ且つ高耐久性を確保する上では実用上問題はない。   Even when only the step of forming the lower layer composite film is repeated a plurality of times and the upper layer film forming step is omitted, there is no practical problem in ensuring excellent water separation and high durability.

また、下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行うと、初期撥水性に優れ且つ高耐久性を確保する上で都合がよい。   Further, when the upper layer film forming step is performed after the step of forming the lower layer composite film is repeated a plurality of times, it is convenient to ensure excellent initial water repellency and high durability.

さらにまた、下地窯業製品として、あらかじめ表面にアルカリバリア膜が形成された窯業製品を用いると、耐候性を確保する上で都合がよい。   Furthermore, when a ceramic product having an alkali barrier film formed on the surface in advance is used as the base ceramic product, it is convenient for ensuring weather resistance.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できて都合がよい。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst It is convenient that antifouling ceramic products can be produced in a shorter period of time than in the case of using.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できて都合がよい。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film formation time can be further shortened compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. Convenient.

第10番目の発明の窯業製品の製造方法は、窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、前記下層複合膜が形成された窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作製した上層膜形成溶液を接触反応させ上層膜を形成する工程と、前記上層膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程を含むことを要旨とする。 According to a tenth aspect of the present invention, there is provided a method for producing a ceramic product comprising: a material having a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as a main component; a substance having an alkoxysilyl group as a main component; and a silanol condensation catalyst on the ceramic product surface. A step of forming a lower layer composite film by contact reaction of a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent, and an extra solution on the ceramic product surface on which the lower layer composite film is formed using an organic solvent A step of washing or wiping off, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and a silanol condensation catalyst on the surface of the ceramic product on which the lower layer composite film is formed with a non-aqueous organic solvent The upper layer film forming solution prepared by mixing and dilution is contact-reacted to form an upper layer film, and the excess solution on the ceramic product surface on which the upper layer film is formed is removed by washing with an organic solvent. A step of wiping removed, and summarized in that comprising the step of calcining in an atmosphere substantially free of oxygen ceramic products lower composite film and an upper film is formed.

前記第10番目の発明の窯業製品の製造方法によれば、前記第8番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた防汚性窯業製品の製造方法を提供できる。   According to the method for manufacturing a ceramic product of the tenth aspect of the present invention, there is provided a method for manufacturing an antifouling ceramic product that is more excellent in wear resistance and weather resistance than the method of manufacturing the ceramic product of the eighth aspect. Can be provided.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境への負荷を少なくできて都合がよい。   At this time, instead of washing with an organic solvent, washing with a detergent and water is advantageous because it can reduce the burden on the environment.

さらに、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると、被膜表面が耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できて都合がよい。 Further, when an atmosphere containing substantially no oxygen is used as a nitrogen gas or a nitrogen gas containing hydrogen below the explosive limit and baked at 300 to 450 ° C., the water and oil repellency is excellent in wear resistance and weather resistance on the coating surface. Convenient to manufacture antifouling ceramic products.

また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくと、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できて都合がよい。   In addition, when the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group is 1:10 to 10: 1, It is convenient to manufacture water and oil repellent antifouling ceramic products with excellent wear and weather resistance.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2−(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いると、高耐久性を確保する上で都合がよい。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n − ( CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and the main component is an alkoxysilyl group. Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group) , Short chain alkyl groups such as propyl group), or substances having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is Use of (integer) is convenient for ensuring high durability.

なお、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を省いても、離水性に優れ且つ高耐久性を確保する上で都合がよい。   Even if only the step of forming the lower layer composite film is repeated a plurality of times and the upper layer film forming step is omitted, it is convenient for ensuring excellent water separation and high durability.

また、下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行うと、初期撥水性に優れ且つ高耐久性を確保する上で問題はない。   In addition, when the upper layer film forming step is performed after repeating the step of forming the lower layer composite film a plurality of times, there is no problem in securing excellent water repellency and high durability.

さらにまた、下地窯業製品として、あらかじめ表面にアルカリバリア膜が形成された窯業製品を用いると、耐候性を確保する上で都合がよい。   Furthermore, when a ceramic product having an alkali barrier film formed on the surface in advance is used as the base ceramic product, it is convenient for ensuring weather resistance.

また、下地窯業製品として食器や花器、衛生陶器、碍子、タイル等の窯業製品を用いると、撥水防汚膜の機能を発揮させる上で都合がよい。   In addition, if ceramic products such as tableware, flower vases, sanitary ware, insulators, tiles, etc. are used as the base ceramic products, it is convenient for exerting the function of the water-repellent antifouling film.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できて都合がよい。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst It is convenient that antifouling ceramic products can be produced in a shorter period of time than in the case of using.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できて都合がよい。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film formation time can be further shortened compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. Convenient.

以上説明したように、本発明の防汚性窯業製品では、窯業製品表面に、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質(シリカ)を含む複合膜を形成することにより、耐候性、および耐摩耗性が極めて高く、高性能の離水特性や防汚特性を示す食器や花器、衛生陶器、碍子、タイル等の防汚性窯業製品を提供できる効果がある。 As described above, in the antifouling ceramic product of the present invention, the surface of the ceramic product has at least a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group (silica). ) Anti-fouling ceramic products such as tableware, flower vases, sanitary ware, insulators and tiles that have extremely high weather resistance and abrasion resistance and show high-performance water separation and antifouling properties. There is an effect that can provide.

さらに、碍子の場合には、表面汚れや塩害等による電気絶縁性能の劣化を防止できる効果もある。また、電磁調理器用セラミックス製トッププレートの場合、あらかじめ表面に微細な突起(0.5〜2mm程度)を複数個設けておいた上で本発明の防汚性被膜を形成しておくと、被膜が直接鍋底に接触することがないので、耐久性を向上させる効果がある。 Furthermore, in the case of insulators, there is an effect that it is possible to prevent deterioration of electrical insulation performance due to surface contamination, salt damage, or the like. Further, in the case of a ceramic top plate for an electromagnetic cooker, when the antifouling film of the present invention is formed after a plurality of fine protrusions (about 0.5 to 2 mm) are provided on the surface in advance, Is not directly in contact with the bottom of the pan, and has the effect of improving durability.

また、本発明の撥水撥油防汚窯業製品では、アルコキシシラン系の界面活性剤とシラノール縮合触媒と非水系の有機溶媒を用い、窯業製品表面に、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質(シリカ)を含む複合膜を少なくとも1層含む防汚膜を形成することにより、耐候性、および耐摩耗性が極めて高く、高性能の離水特性を示す撥水撥油防汚窯業製品を全く塩酸を発生させることなく製造提供できる効果がある。 Further, in the water / oil repellent / antifouling ceramic product of the present invention, an alkoxysilane-based surfactant, a silanol condensation catalyst, and a non-aqueous organic solvent are used, and at least a fluorocarbon group and a hydrocarbon group are formed on the surface of the ceramic product. By forming an antifouling film comprising at least one composite film containing a silyl group-based material and a siloxane group-based material (silica), the weather resistance and wear resistance are extremely high, There is an effect that it is possible to manufacture and provide a water and oil repellent antifouling ceramic product exhibiting water separation characteristics of performance without generating hydrochloric acid at all.

本発明は、高耐久性で且つ高離水性(水滴転落角が小さい)の食器や花器、衛生陶器、碍子、タイル等の窯業製品を提供するものである。 The present invention provides ceramic products such as tableware, flower vases, sanitary ware, insulators, tiles, etc. that are highly durable and have high water separation (small water drop falling angle).

第1番目の発明の防汚性窯業製品は、高耐久性の撥水撥油防汚被膜が形成された窯業製品であって、前記撥水撥油防汚性被膜を、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を少なくとも1層形成した窯業製品である。 The antifouling ceramic product of the first invention is a ceramic product in which a highly durable water and oil repellent and antifouling coating is formed, and the water and oil repellent and antifouling coating is at least a fluorocarbon group. And a ceramic product in which at least one composite film containing a substance mainly composed of hydrocarbon group and silyl group and a substance mainly composed of siloxane group is formed.

前記第1番目の発明の防汚性窯業製品では、従来の化学吸着膜の摩耗に弱いという欠点を改良して、耐摩耗性且つ耐候性等の耐久性、および離水性に優れた被膜を形成した防汚性窯業製品を提供できる。なお、このとき、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または窯業製品表面に結合固定しておくことで、被膜の耐摩耗、耐候性等の耐久性を大幅に向上できる作用がある。 In the antifouling ceramic product of the first invention, the conventional chemical adsorption film is weak against abrasion and forms a film having excellent wear resistance, durability such as weather resistance, and water separation. Can provide antifouling ceramic products. At this time, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is converted into the silica film and / or the silica film and / or the silica film composed of the substance mainly composed of a siloxane group via the silyl group. By bonding and fixing to the ceramic product surface, there is an effect that the durability such as abrasion resistance and weather resistance of the coating can be greatly improved.

さらに、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質とを、それぞれシリル基およびシロキサン基を介して互いに/または個々に窯業製品表面に結合固定させておくと、耐久性を大幅に向上させる上で都合がよい。また、複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の分子組成比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、さらに耐久性を向上できる作用がある。 Furthermore, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group are bonded to each other or individually to the ceramic product surface via the silyl group and the siloxane group, respectively. If fixed, it is convenient for greatly improving the durability. Further, the molecular composition ratio of the substance mainly containing a fluorocarbon group, a hydrocarbon group and a silyl group and the substance mainly containing a siloxane group contained in the composite film is 1:10 to 10: 1, more preferably When it is set to 1: 3 to 5: 1, there is an effect that durability can be further improved.

また、複合膜の水に対する接触角を95±10度に制御しておくと、水滴撥水性を保ちながら水滴転落性等の離水性を向上できる作用がある。   Further, when the contact angle of the composite film with respect to water is controlled to 95 ± 10 degrees, there is an effect that water separation such as water drop falling property can be improved while water droplet water repellency is maintained.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると、耐候性を向上できる作用がある。一方、電磁調理器用セラミックス製トッププレートの場合、あらかじめ表面に微細な突起(0.5〜2mm程度)を複数個設けておくと、被膜が直接鍋底に接触することがないので、本発明の防汚性被膜の耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the underlying ceramic product, the weather resistance can be improved. On the other hand, in the case of a ceramic top plate for an electromagnetic cooker, if a plurality of fine protrusions (about 0.5 to 2 mm) are provided on the surface in advance, the coating does not directly contact the bottom of the pan. There exists an effect | action which can improve the durability of a dirty film.

第2番目の発明の防汚性窯業製品は、高耐久性の撥水撥油防汚性被膜が形成された窯業製品であって、前記撥水撥油防汚性被膜を、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜と、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜を形成した窯業製品である。 The antifouling ceramic product of the second invention is a ceramic product on which a highly durable water and oil repellent and antifouling coating is formed, wherein the water and oil repellent and antifouling coating is at least carbon fluoride. Lower layer composite film containing a substance mainly composed of a group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group, and an upper layer containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group A ceramic product with a film.

前記第2番目の発明の防汚性窯業製品によれば、前記第1番目の発明の窯業製品の初期水滴接触角をより大きくでき、第1番目の発明の窯業製品に比べさらに耐久性能を向上できる作用がある。 According to the antifouling ceramic product of the second invention, the initial water droplet contact angle of the ceramic product of the first invention can be made larger, and the durability performance is further improved compared to the ceramic product of the first invention. There is an action that can be done.

なお、このとき、前記下層複合膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質を、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または窯業製品表面に結合固定し、前記上層膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質をシリル基を介して前記下層複合膜に含まれるシロキサン基に結合固定しておくと、耐久性を向上できる作用がある。   At this time, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group constituting the lower layer composite film is passed through the silyl group in a silica film composed of a substance mainly composed of a siloxane group. The lower layer composite film contains a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, which is bonded and fixed to the surface of the silica film and / or ceramic product and constitutes the upper layer film through the silyl group. When bonded and fixed to the siloxane group, the durability can be improved.

また、前記下層複合膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を、それぞれシリル基およびシロキサン基を介して互いに/または個々に窯業製品表面に結合固定し、前記上層膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質がシリル基を介して前記下層複合膜に含まれるシロキサン基に結合固定しておくと、耐久性を向上できる作用がある。   In addition, the fluorocarbon group, the hydrocarbon group, and the silyl group as a main component and the siloxane group as a main component constituting the lower layer composite film may be mutually and / or individually via a silyl group and a siloxane group, respectively. Bonded and fixed to the ceramic product surface, and the substance mainly composed of fluorocarbon group, hydrocarbon group and silyl group constituting the upper layer film is bonded and fixed to the siloxane group contained in the lower layer composite film through the silyl group If this is done, the durability can be improved.

さらに、下層複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の分子組成比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐久性を大幅に向上できる作用がある。   Furthermore, the molecular composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and silyl group and the substance mainly composed of siloxane group contained in the lower layer composite film is preferably 1:10 to 10: 1. If 1: 3 to 5: 1, the durability can be greatly improved.

また、下地複合膜の水に対する接触角を95±10度に制御しておくと上層膜の形成密度を向上できる作用がある。   Further, if the contact angle of the base composite film with respect to water is controlled to 95 ± 10 degrees, there is an effect that the formation density of the upper layer film can be improved.

さらにまた、上層膜の水に対する接触角を105±10度になるように制御しておくと、初期撥水性および耐久性能を向上できる作用がある。   Furthermore, when the contact angle of the upper layer film with respect to water is controlled to be 105 ± 10 degrees, there is an effect that the initial water repellency and durability can be improved.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐候性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the weather resistance can be improved.

第3番目の発明の防汚性窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒混合希釈して作成した複合膜形成溶液を窯業製品表面に接触させて反応させ被膜を形成する工程と、被膜の形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを少なくとも含む。 According to a third aspect of the present invention, there is provided a method for producing an antifouling ceramic product comprising a non-aqueous system comprising a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group in a dry atmosphere. A step of bringing a composite film-forming solution prepared by mixing and diluting an organic solvent into contact with the surface of a ceramic product to react to form a coating, and a step of firing the ceramic product with the coating formed in an atmosphere substantially free of oxygen And at least.

前記第3番目の発明の防汚性窯業製品の製造方法によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良し、耐久性、離水性に優れた(水に対する転落角が極めて低い)被膜を形成した防汚性窯業製品を製造提供できる作用がある。 According to the method for producing an antifouling ceramic product of the third aspect of the present invention, the disadvantage of being weak against abrasion of a conventional chemical adsorption film is improved, and durability and water separation are excellent (the falling angle with respect to water is extremely low). ) It has the effect of being able to manufacture and provide antifouling ceramic products with coatings formed.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300〜450℃で焼成を行うと、被膜を酸化せずに耐摩耗性を向上できる作用がある。 At this time, as an atmosphere that does not substantially contain oxygen, using nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit and firing at 300 to 450 ° C., the film does not oxidize and wear resistance. Has the effect of improving.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、耐久性に優れ、且つ離水性に優れた防汚性窯業製品を製造向上できる作用がある。 Further, the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and the substance mainly composed of the chlorosilyl group is 1:10 to 10: 1 (more preferably 1: 1 to 1). 6: 1) has an effect of improving the production of antifouling ceramic products having excellent durability and water separation.

さらに、焼成時、窯業製品を立てるか、立てた状態でつり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜表面を傷つけることなく焼成できる作用がある。 Furthermore, when firing, when a ceramic product is stood or hung in an upright state or held and fired with the film-forming surface up, there is an effect that the film surface can be fired without damaging it.

さらにまた、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:1〜6:1にすると、高耐久、高離水性共に向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and the chlorosilyl group is a main component. As a substance, SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si instead of a substance mainly composed of a chlorosilyl group (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is 1: 1 to 6: When set to 1, both high durability and high water separation are improved. Kill there is action.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

第4番目の発明の防汚性窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒混合希釈して作成した複合膜形成溶液を窯業製品表面に接触させて反応させ被膜を形成する工程と、前記窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程とを少なくとも含む。 According to a fourth aspect of the present invention, there is provided a method for producing an antifouling ceramic product, wherein a substance containing a fluorocarbon group, a hydrocarbon group and a chlorosilyl group as a main component and a substance containing a chlorosilyl group as a main component are non-aqueous in a dry atmosphere. A step of bringing a composite film-forming solution prepared by mixing and diluting with an organic solvent into contact with the surface of the ceramic product and reacting to form a coating; and a step of removing or wiping off the excess solution on the surface of the ceramic product using an organic solvent And a step of firing in an atmosphere substantially free of oxygen.

前記した第4番目の発明の防汚性窯業製品の製造方法には、耐摩耗性且つ耐候性等の耐久性、および離水性に優れた(滑水性が高い、すなわち水滴転落角が極めて低い)被膜を形成した防汚性窯業製品を製造出来る作用がある。 In the method for producing an antifouling ceramic product according to the fourth aspect of the invention, the wear resistance and durability such as weather resistance, and water separation are excellent (the water sliding property is high, that is, the water drop falling angle is extremely low). It has the effect of producing antifouling ceramic products with a coating formed.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300〜450℃(より好ましくは400±20℃)で焼成を行うと、被膜の耐摩耗性を大幅に向上できる作用がある。 At this time, as an atmosphere substantially free of oxygen, using nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit and firing at 300 to 450 ° C. (more preferably 400 ± 20 ° C.), There exists an effect | action which can improve the abrasion resistance of a film significantly.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、耐久性に優れた且つ離水性に優れた防汚性窯業製品を製造できる作用がある。 Further, the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and the substance mainly composed of the chlorosilyl group is 1:10 to 10: 1 (more preferably 1: 1 to 1). 6: 1) has the effect of producing an antifouling ceramic product having excellent durability and water separation.

さらに、焼成時、窯業製品を起てるか、立てた状態でつり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜を傷つけずに焼成できる作用がある。 Further, when firing, when a ceramic product is raised, suspended in a standing state, or held and fired with the film forming surface facing upward, there is an effect that the film can be fired without damaging the film.

さらにまた、有機溶媒で洗浄する代わりに、洗剤と水を用いて洗浄する方法を用いると、廃液処理の面で環境汚染を少なくできる作用がある。 Furthermore, using a method of washing with a detergent and water instead of washing with an organic solvent has the effect of reducing environmental pollution in terms of waste liquid treatment.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:1〜6:1にすると、高耐久性、高離水性を向上できる作用がある。 Further, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and a substance mainly composed of a chlorosilyl group. As SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si ( OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is 1: 1 to 6: 1. Can improve high durability and high water separation. There is a use.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

第5番目の発明の窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して下層作成した複合膜形成溶液を窯業製品表面に接触させて反応させ下層複合膜を形成する工程と、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質を非水系有機溶媒で混合希釈して上層膜形成溶液を作成する工程と、前記下層複合膜が形成された窯業製品表面に前記上層膜形成溶液を接触させて反応させ上層膜を形成する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを少なくとも含む。 According to a fifth aspect of the present invention, there is provided a method for producing a ceramic product comprising a non-aqueous organic solvent containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group in a dry atmosphere. A process of forming a lower composite film by bringing the composite film forming solution prepared by mixing and dilution into contact with the ceramic product surface and reacting with it, and having a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group as main components in a dry atmosphere A step of mixing and diluting a substance with a non-aqueous organic solvent to create an upper layer film forming solution, and a step of bringing the upper layer film forming solution into contact with the surface of the ceramic product on which the lower layer composite film is formed and reacting to form an upper layer film And firing at least a ceramic product on which the lower composite film and the upper film are formed in an atmosphere substantially free of oxygen.

前記第5番目の発明の窯業製品の製造方法を用いれば、前記第3番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた被膜を形成した防汚性窯業製品を製造できる作用がある。   If the method for producing a ceramic product according to the fifth invention is used, the antifouling ceramic product having a film having a more excellent wear resistance and weather resistance than the method for producing a ceramic product according to the third invention is formed. There is an effect that can be manufactured.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300乃至450℃で焼成を行うと、被膜を酸化せずに耐久性を向上できる作用がある。   At this time, if the atmosphere is substantially oxygen-free and nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit is used and firing is performed at 300 to 450 ° C., durability is improved without oxidizing the coating. There is an action that can be improved.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐摩耗性、耐候性共に優れた撥水撥油防汚性窯業製品を製造できる作用がある。   Further, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group to the substance mainly composed of chlorosilyl group is 1:10 to 10: 1, more preferably 1: 3 to 3. If it is set to 5: 1, it has the effect | action which can manufacture the water-repellent | oil-repellent | oil-repellent antifouling ceramic products excellent in abrasion resistance and a weather resistance.

さらに、焼成時、窯業製品を起てるか、立てた状態でつり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜を傷つけずに焼成できる作用がある。 Further, when firing, when a ceramic product is raised, suspended in a standing state, or held and fired with the film forming surface facing upward, there is an effect that the film can be fired without damaging the film.

さらにまた、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:3〜5:1にすると、高耐久性を向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and the chlorosilyl group is a main component. As a substance, SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si instead of a substance mainly composed of a chlorosilyl group (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is from 1: 3 to 5: When set to 1, it can improve high durability. A.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

第6番目の発明の窯業製品の製造方法は、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した下層複合膜形成溶液を窯業製品表面に接触させて反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質を非水系有機溶媒で混合希釈して上層膜形成溶液を作成する工程と、前記下層複合膜が形成された窯業製品表面に前記上層膜形成溶液を接触させて反応させ上層膜を形成する工程と、前記上層膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程と少なくとも含むことを要旨とする。 According to a sixth aspect of the present invention, there is provided a method for producing a ceramic product comprising a non-aqueous organic solvent containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group in a dry atmosphere. A step of forming a lower layer composite film by contacting and reacting the lower layer composite film forming solution prepared by mixing and dilution with the surface of the ceramic product, and using an organic solvent for the excess solution on the ceramic product surface on which the lower layer composite film is formed Cleaning and wiping and removing, and mixing and diluting a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group with a non-aqueous organic solvent in a dry atmosphere; A step of bringing the upper layer film-forming solution into contact with the surface of the ceramic product on which the lower layer composite film is formed and reacting to form an upper layer film; and an extra solvent on the surface of the ceramic product on which the upper layer film is formed using an organic solvent. for A step of washing off or wiping removed Te, and calcining in an atmosphere substantially free of oxygen and summarized in that at least include.

前記第6番目の発明の窯業製品の製造方法によれば、前記第4番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた防汚性窯業製品の製造方法を提供できる。   According to the method for manufacturing a ceramic product of the sixth aspect of the present invention, the method for manufacturing an antifouling ceramic product that is more excellent in wear resistance and weather resistance than the method of manufacturing the ceramic product of the fourth aspect of the invention is provided. Can be provided.

なお、このとき、実質的に酸素を含まない雰囲気として、窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガスを用い、300乃至450℃で焼成を行うと、被膜の耐摩耗性、耐候性を向上できる作用がある。   At this time, if the atmosphere is substantially free of oxygen, using nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit and firing at 300 to 450 ° C., the wear resistance and weather resistance of the coating are improved. There is an action that can be improved.

また、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐摩耗性、耐候性をさらに向上できる作用がある。   Further, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group to the substance mainly composed of chlorosilyl group is 1:10 to 10: 1, more preferably 1: 3. When it is set to ˜5: 1, there is an effect of further improving the wear resistance and weather resistance.

さらに、焼成時、窯業製品を立てるか、つり下げるか、あるいは被膜形成面を上にして保持焼成すると、被膜表面を傷つけること無く焼成できる作用がある。 Furthermore, when firing, when a ceramic product is set up, suspended, or held and fired with the film forming surface facing upward, there is an effect that the film surface can be fired without damaging it.

また、有機溶媒で洗浄する代わりに、洗剤と水で洗浄する方法を用いると、廃液処理の面で環境汚染を少なくできる作用がある。 In addition, using a method of washing with a detergent and water instead of washing with an organic solvent has the effect of reducing environmental pollution in terms of waste liquid treatment.

さらにまた、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:3〜5:1にすると、高耐久性を向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, and the chlorosilyl group is a main component. As a substance, SiCl 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si instead of a substance mainly composed of a chlorosilyl group (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is from 1: 3 to 5: When set to 1, it can improve high durability. A.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

第7番目の発明の窯業製品の製造方法は、少なくとも窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ被膜を形成する工程と、前記被膜の形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程を含むことを要旨とする。 According to a seventh aspect of the present invention, there is provided a method for producing a ceramic product, wherein at least the surface of the ceramic product has a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as a main component, a substance having an alkoxysilyl group as a main component, and a silanol condensation catalyst. Forming a film by contact reaction of a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent, and firing the ceramic product on which the film is formed in an atmosphere substantially free of oxygen It is made to include.

前記第7番目の発明の窯業製品の製造方法によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良して、塩酸の発生を伴わない耐久性、離水性に優れた(水滴転落角が極めて低い)防汚性窯業製品の製造方法を提供できる。 According to the method for producing a ceramic product of the seventh aspect of the invention, the conventional chemical adsorption film is weak against abrasion, and has excellent durability and water separation without generation of hydrochloric acid (water drop falling angle). Can provide a method for producing antifouling ceramic products.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境汚染を少なくできる作用がある。 At this time, instead of washing with an organic solvent, washing with a detergent and water has the effect of reducing environmental pollution.

また、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると被膜の酸化を防止し、膜強度を向上できる作用がある。 Further, when nitrogen gas containing nitrogen gas or hydrogen below the explosion limit is used as an atmosphere substantially free of oxygen and baking is performed at 300 to 450 ° C., it has an effect of preventing film oxidation and improving film strength.

さらに、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと離水性をさらに向上できる作用がある。 Furthermore, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group to the substance mainly composed of alkoxysilyl group is 1:10 to 10: 1, more preferably 1: When it is set to 3 to 5: 1, there is an effect that water separation can be further improved.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2−(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすると耐久、離水性を向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n − ( CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and the main component is an alkoxysilyl group. Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group) , Short chain alkyl groups such as propyl group), or substances having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is When the molecular composition ratio at the time of mixing is 1:10 to 10: 1, the durability and water separation can be improved.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造でき作用がある。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst Compared to the use of, antifouling ceramic products can be produced in a shorter time.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できる作用がある。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film-forming time can be further reduced compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. There is an effect.

第8番目の発明の窯業製品の製造方法は、 窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ被膜を形成する工程と、前記窯業製品表面の余分な複合膜形成溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程を含む。 According to an eighth aspect of the present invention, there is provided a method for producing a ceramic product comprising: a material comprising a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as a main component; a substance comprising an alkoxysilyl group as a main component; a silanol condensation catalyst; A step of forming a film by contact reaction of a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent, and removing or wiping off excess composite film forming solution on the ceramic product surface using an organic solvent And firing in an atmosphere substantially free of oxygen.

前記第8番目の発明の窯業製品の製造方法を用いれば、前記第7番目の発明の方法に比べてより表面光沢性に優れた防汚性窯業製品を製造提供でき作用がある。 If the method for producing a ceramic product of the eighth invention is used, it is possible to produce and provide an antifouling ceramic product having superior surface gloss compared to the method of the seventh invention.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水を用いて洗浄すると環境汚染を少なくできる作用がある。 At this time, instead of washing with an organic solvent, washing with a detergent and water has the effect of reducing environmental pollution.

また、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると膜強度を向上できる作用がある。 Further, when an atmosphere containing substantially no oxygen is used as a nitrogen gas or a nitrogen gas containing hydrogen below the explosion limit and baked at 300 to 450 ° C., the film strength can be improved.

さらに、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくことは、離水性を容易に制御できる作用がある。 Furthermore, the molecular mixing ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group to the substance mainly composed of alkoxysilyl group is 1:10 to 10: 1, more preferably 1: Setting 3 to 5: 1 has an effect of easily controlling water separation.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2−(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすると耐久・離水性を同時に向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n − ( CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and the main component is an alkoxysilyl group. Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group) , Short chain alkyl groups such as propyl group), or substances having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is When the molecular composition ratio at the time of mixing is 1:10 to 10: 1, the durability and water separation can be improved at the same time.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できる作用がある。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst Compared to the use of, the antifouling ceramic product can be produced in a shorter time.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できる作用がある。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film-forming time can be further reduced compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. There is an effect.

第9番目の発明の窯業製品製造方法は、窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を窯業製品に接触反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作製した上層膜形成溶液を接触反応させ上層膜を形成する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程を含む。 According to a ninth aspect of the present invention, there is provided a ceramic product manufacturing method comprising: a material having a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as a main component; a substance having an alkoxysilyl group as a main component; and a silanol condensation catalyst on the ceramic product surface. A step of forming a lower layer composite film by contacting and reacting a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent to a ceramic product, and a fluorocarbon group and a hydrocarbon on the surface of the ceramic product on which the lower layer composite film is formed Forming an upper film by contacting and reacting an upper film forming solution prepared by mixing and diluting a group mainly composed of an alkoxysilyl group and a silanol condensation catalyst with a non-aqueous organic solvent, and a lower composite film and an upper film And a step of firing the ceramic product formed with an atmosphere substantially free of oxygen.

前記第9番目の発明の窯業製品の製造方法によれば、前記第7番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた防汚性窯業製品を製造提供できる作用がある。   According to the method for manufacturing a ceramic product of the ninth invention, it is possible to manufacture and provide an antifouling ceramic product that is more excellent in wear resistance and weather resistance than the method of manufacturing a ceramic product of the seventh invention. There is an effect.

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境への負荷を少なくできる作用がある。   At this time, instead of washing with an organic solvent, washing with a detergent and water has an effect of reducing the burden on the environment.

さらに、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できる作用がある。 Furthermore, when using nitrogen gas or nitrogen gas containing hydrogen below the explosion limit as an atmosphere substantially free of oxygen and firing at 300 to 450 ° C., the water and oil repellent and antifouling properties are excellent in abrasion resistance and weather resistance. It has the effect of producing ceramic products.

また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1、より好ましくは1:3〜5:1にしておくと、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できる作用がある。   Further, the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group is 1:10 to 10: 1, more preferably 1: When it is set to 3 to 5: 1, there is an action capable of producing a water and oil repellent antifouling ceramic product excellent in wear resistance and weather resistance.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いると、高耐久性を向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n (CH 2 ) 2 ] 2 Si (OA) 2 , or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and a substance mainly composed of an alkoxysilyl group Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group, In place of a compound represented by a short-chain alkyl group such as a propyl group) or a substance mainly composed of an alkoxysilyl group, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (However, m is an integer. When the number is used, there is an effect that high durability can be improved.

なお、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を省いた場合でも、離水性に優れ且つ高耐久性を確保する上で、実用上は問題ない。   Even when only the step of forming the lower layer composite film is repeated a plurality of times and the upper layer film forming step is omitted, there is no practical problem in securing excellent water separation and high durability.

また、下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行うと、初期撥水性に優れ且つ高耐久性を向上できる作用がある。   Further, when the upper layer film forming step is performed after repeating the step of forming the lower layer composite film a plurality of times, there is an effect that the initial water repellency is excellent and the high durability can be improved.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できる作用がある。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst Compared to the use of, the antifouling ceramic product can be produced in a shorter time.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できる作用がある。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film-forming time can be further reduced compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. There is an effect.

第10番目の発明の窯業製品の製造方法は、窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を窯業製品表面に接触反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、前記下層複合膜が形成された窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作製した上層膜形成溶液を接触反応させ上層膜を形成する工程と、前記上層膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程を含む。 According to a tenth aspect of the present invention, there is provided a method for producing a ceramic product comprising: a material having a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as a main component; a substance having an alkoxysilyl group as a main component; and a silanol condensation catalyst on the ceramic product surface. A step of forming a lower layer composite film by contacting and reacting a composite film forming solution prepared by mixing and diluting with a non-aqueous organic solvent on the surface of the ceramic product, and an extra solution on the surface of the ceramic product on which the lower layer composite film is formed. The step of washing or wiping off using a solvent, and the surface of the ceramic product on which the lower layer composite film is formed, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, and a silanol condensation catalyst are removed. Using an organic solvent, the step of forming an upper layer film by contact reaction of the upper layer film-forming solution prepared by mixing and diluting with an aqueous organic solvent, and an extra solvent on the ceramic product surface on which the upper layer film has been formed And a step of washing off or wiping off and the step of firing in an atmosphere containing substantially no oxygen ceramic products lower composite film and an upper film is formed.

前記第10番目の発明の窯業製品の製造方法では、前記第8番目の発明の窯業製品の製造方法に比べ、より耐摩耗性、耐候性に優れた防汚性窯業製品を製造提供できる作用がある。。   The method for producing a ceramic product according to the tenth aspect of the present invention has the effect of producing and providing an antifouling ceramic product having superior wear resistance and weather resistance as compared with the method for producing a ceramic product of the eighth aspect. is there. .

なお、このとき、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると環境への負荷を少なくできる作用がある。   At this time, instead of washing with an organic solvent, washing with a detergent and water has an effect of reducing the burden on the environment.

さらに、実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成すると、被膜表面が耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できる作用がある。 Further, when an atmosphere containing substantially no oxygen is used as a nitrogen gas or a nitrogen gas containing hydrogen below the explosive limit and baked at 300 to 450 ° C., the water and oil repellency is excellent in wear resistance and weather resistance on the coating surface. It has the effect of producing antifouling ceramic products.

また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくと、耐摩耗性、耐候性に優れた撥水撥油防汚性窯業製品を製造できる作用がある。   In addition, when the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group is 1:10 to 10: 1, Water and oil repellent antifouling ceramic products with excellent wear and weather resistance can be produced.

さらにまた、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2−(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いると、高耐久性を向上できる作用がある。 Furthermore, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n − ( CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and the main component is an alkoxysilyl group. Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl group or an ethyl group) , Short chain alkyl groups such as propyl group), or substances having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is Use of an integer) has an effect of improving high durability.

なお、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を省いても、離水性に優れ且つ高耐久性を確保する上では問題ない。   Even if only the step of forming the lower layer composite film is repeated a plurality of times and the upper layer film forming step is omitted, there is no problem in ensuring excellent water separation and high durability.

また、下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行うと、初期撥水性に優れ且つ高耐久性を向上できる作用がある。   Further, when the upper layer film forming step is performed after repeating the step of forming the lower layer composite film a plurality of times, there is an effect that the initial water repellency is excellent and the high durability can be improved.

さらにまた、下地の窯業製品として、表面にアルカリバリア膜が形成された窯業製品を用いると耐久性を向上できる作用がある。 Furthermore, when a ceramic product having an alkali barrier film formed on the surface is used as the base ceramic product, the durability can be improved.

なお、ここで、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、被膜形成時の反応速度を向上でき、シラノール縮合触媒を用いた場合に比べより短時間で防汚性窯業製品を製造できる作用がある。 Here, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst, the reaction rate during film formation can be improved, and the silanol condensation catalyst Compared to the use of, the antifouling ceramic product can be produced in a shorter time.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(通常1:9〜9:1で使用可能であるが、1:1程度でよい。)して用いると、シラノール縮合触媒のみ、あるいはケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を単独で用いた場合に比べさらに製膜時間を短縮できる作用がある。 Also, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed (usually 1: 9 to 9: 1, but about 1: 1 When used, the film-forming time can be further reduced compared to the case where only a silanol condensation catalyst or a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound is used alone. There is an effect.

以下、本発明の実施の形態を詳細に説明する。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described in detail.
(Embodiment 1)

まず、第1番目の発明である食器や花器、衛生陶器、碍子、タイル等の防汚性窯業製品について製造方法(第3および第4番目の発明)と共に説明する。 First, the antifouling ceramic products such as tableware, flower vases, sanitary ware, insulators, tiles and the like, which are the first invention, will be described together with the manufacturing methods (third and fourth inventions).

例えば、乾燥雰囲気中(湿度35%以下が良い。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質として、CF3(CF2(CHSiCl3(nは正数)と、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリルキ基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)にそれぞれ0.01M/Lの濃度になるように溶解して(この場合、前者と後者の分子組成比1:1になる)複合膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is good) Is a positive number) and a substance having a chlorosilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or a chlorosilyloxy group as a main component Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5) 3, SiH 2 (OC 2 H 5) 2 or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5,) 2) m OC 2 H 5 (but, m is an integer), Yes, contains almost no non-aqueous water Solvents (e.g., hexadecane) each dissolved to a concentration of 0.01 M / L (in this case, the former and the latter molecular composition ratio 1: 1) to create a composite film-forming solution.

次に、食器や花器、衛生陶器、碍子、タイル等の窯業製品(例えばタイル3)をよく洗浄し、乾燥後、表面に前記複合膜形成溶液を塗布し1、2時間反応させる。   Next, ceramic products (for example, tile 3) such as tableware, flower vases, sanitary ware, insulators, and tiles are thoroughly washed and dried, and then the composite film forming solution is applied to the surface and allowed to react for 1 to 2 hours.

このとき、タイル3表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記タイル3表面で二つの物質のSiCl3基と前記水酸基や吸着水とが脱塩酸反応して、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質が混合反応した状態で−SiO−結合を介して前記タイル3表面に結合する。 At this time, since the surface of the tile 3 contains a large number of hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the SiCl 3 groups of the two substances and the hydroxyl group or adsorbed water undergo a dehydrochlorination reaction on the surface of the tile 3. In addition, a substance having a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group as main components and a substance having a chlorosilyl group as main components are mixed and reacted with each other and bonded to the surface of the tile 3 through a —SiO— bond.

すなわち、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1に変化して前記−SiO−結合を介して、タイル3表面やシロキサン基を主成分とする物質2と結合し、一方、クロロシリル基を主成分とする物質は、シロキサン基を主成分とする物質2に変化して前前記−SiO−結合介して、タイル3表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質1と結合する。 That is, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group is changed to the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and is changed through the -SiO- bond. Thus, the surface of the tile 3 and the substance 2 having a siloxane group as a main component are combined, while the substance having a chlorosilyl group as a main component is changed to the substance 2 having a siloxane group as a main component before the -SiO- bond. Through this, it binds to the surface of the tile 3 and the substance 1 whose main component is a fluorocarbon group, a hydrocarbon group, and a silyl group.

その後、表面の余分な複合膜形成溶液を洗浄除去する(第4番目の発明、有機溶媒を用いてふき取り除去しても良い。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2を含み、且つ露出している水酸基4や内部の水酸基4’を多数含む複合膜5(可視光に対する透過率は、99%以上)を前記タイル3表面に形成できる。(図1(a)) Thereafter, the excess composite film forming solution on the surface is removed by washing (fourth invention, may be wiped off using an organic solvent). When the fluorocarbon group and hydrocarbon group are several nanometers thick, A composite film 5 containing a substance 1 having a silyl group as a main component and a substance 2 having a siloxane group as a main component, and having a large number of exposed hydroxyl groups 4 and internal hydroxyl groups 4 '(transmittance to visible light is 99 % Or more) can be formed on the surface of the tile 3. (Fig. 1 (a))

なお、前記洗浄工程を省き、前記非水系有機溶媒を蒸発させる(第3番目の発明)か、あるいは布等でふき取ると、数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2を含み、且つ水酸基を多数含む複合膜(可視光に対する透過率は、98%以上)が前記タイル表面に形成できた。この場合、洗浄した場合に比べ厚さが厚くなり、表面光沢性は洗浄除去した場合に比べ劣るが、利点は、より耐久性を向上できることにある。 If the non-aqueous organic solvent is evaporated (third invention) or wiped off with a cloth or the like without the washing step, a fluorocarbon group, hydrocarbon group and silyl group having a thickness of several tens of nanometers are formed. A composite film containing a substance 1 having a main component and a substance 2 having a siloxane group as a main component and containing many hydroxyl groups (transmittance to visible light of 98% or more) could be formed on the tile surface. In this case, the thickness is thicker than that obtained by washing, and the surface gloss is inferior to that obtained by washing, but the advantage is that durability can be further improved.

その後、前記複合膜(洗浄したもの、あるいは溶媒を蒸発させた、又はふき取ったものでも良い。)が形成されたそれぞれのタイルを300〜450℃、30〜120分程度の条件で加熱処理を行うと、膜中に残っていた水酸基4が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜6に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる耐摩耗性で且つ耐候性が高い撥水撥油性の複合膜7となり、高耐久性防汚性タイルを製造できる(図1(b))。 Thereafter, each tile on which the composite film (which has been washed, or the solvent has been evaporated or wiped off) is formed is subjected to heat treatment at 300 to 450 ° C. for about 30 to 120 minutes. Then, the hydroxyl group 4 remaining in the film undergoes a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 6. As a result, the water- and oil-repellent composite film 7 having high wear resistance and high weather resistance, comprising the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and the substance 2 mainly composed of a siloxane group. Thus, a highly durable antifouling tile can be produced (FIG. 1 (b)).

なお、300〜450℃で焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても被膜が酸化することなく焼成できる。 When using nitrogen gas containing 3% hydrogen (explosion limit is 4%) as the atmosphere gas when firing at 300 to 450 ° C., the coating film is formed even if some oxygen is mixed into the furnace when the furnace door is opened and closed. It can be fired without oxidation.

このときの防汚性タイル3の水に対する接触角は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の組成に依存するので、組成を変えれば、95±10度に制御できる。また、0.02mlの水滴に対する転落角は35度以下に制御できる。 The contact angle of the antifouling tile 3 with respect to water at this time depends on the composition of the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance 2 mainly composed of a siloxane group. If the composition is changed, it can be controlled to 95 ± 10 degrees. Moreover, the falling angle for 0.02 ml water droplets can be controlled to 35 degrees or less.

なお、複合膜形成溶液の溶媒を蒸発させて被膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では50〜150℃程度がよい。 When forming a film by evaporating the solvent of the composite film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is because it can be removed by evaporation earlier. About 50-150 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では150〜350℃程度がよい。 On the other hand, when washing with a non-aqueous organic solvent, the higher the boiling point of the non-aqueous solvent used in the composite film-forming solution is, the more stable it is.

また、複合膜形成溶液のフッ化炭素基と炭化水素基とロシリル基を主成分とする物質とクロロシリル基を主成分とする物質の分子組成比を変えて、複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2の分子組成比を、好ましくは1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質100%で作成した被膜の場合に比べて大幅に耐摩耗性を向上できる。 In addition, the fluorocarbon group contained in the composite film can be changed by changing the molecular composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and rosilyl group and substance mainly composed of chlorosilyl group in the composite film forming solution. And the molecular composition ratio of the substance 1 mainly composed of hydrocarbon group and silyl group and the substance 2 mainly composed of siloxane group is preferably 1:10 to 10: 1 (more preferably 1: 1 to 6: 1). ), The wear resistance can be greatly improved as compared with the case of a film made of 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group.

参考として、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質がCF3(CF2(CHSiClであり、クロロシリル基を主成分とする物質がSiClであり、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質が100%の被膜(比較例1)と、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質とクロロシリル基を主成分とする物質の組成が2:1の場合のタイル3表面の被膜(実施例1)の耐摩耗試験における接触角変化の結果を図2に比較して示す。
一方、複合膜形成溶液のフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質1とクロロシリル基を主成分とする物質2の分子組成比を1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、水に対する接触角を95±10度(1:1〜6:1の場合は、100±5度)に制御でき、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質100%で作成した被膜(接触角は約110度)の場合に比べて大幅に水滴離水性能を向上(水滴転落角度を小さく)できる。
As a reference, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group is CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , and a substance mainly composed of a chlorosilyl group is SiCl 4. 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group (Comparative Example 1), and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group. The results of contact angle change in the abrasion resistance test of the coating on the surface of the tile 3 (Example 1) when the composition of the substance and the substance mainly composed of chlorosilyl groups is 2: 1 are shown in FIG.
On the other hand, the molecular composition ratio of the substance 1 mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group and the substance 2 mainly composed of chlorosilyl group in the composite film forming solution is 1:10 to 10: 1 (more preferably Is 1: 1-6: 1), the contact angle with water can be controlled to 95 ± 10 degrees (in the case of 1: 1-6: 1, 100 ± 5 degrees). Compared with the case of a film (contact angle is about 110 degrees) made of 100% of a substance mainly composed of hydrogen groups and chlorosilyl groups, the water-drop separation performance can be greatly improved (the water drop falling angle is reduced).

参考として、各種実験で得た水滴に対する接触角(他の物質を用いて得たデータも含めている。)と転落角(離水性能に関係する。)の関係を図3に示す。 As a reference, FIG. 3 shows the relationship between the contact angle for water droplets obtained in various experiments (including data obtained using other substances) and the falling angle (related to water separation performance).

なお、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXpCl3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group include the following substances.
CF 3 (CF 2 ) n (R) m SiX p Cl 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, p is 0, 1 or 2)

さらに、具体的には、以下に示す(1)-(7)が挙げられる。
(1) CF3CH2O(CH215SiCl3
(2) CF3(CH22Si(CH32(CH215SiCl3
(3) CF3(CH26Si(CH32(CH29 SiCl3
(4) CF3COO(CH215SiCl3
(5) CF3(CF27(CH22SiCl3
(6) CF3(CF25(CH22SiCl3
(7) CF3(CF2764SiCl3
More specifically, the following (1) to (7) are mentioned.
(1) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(4) CF 3 COO (CH 2 ) 15 SiCl 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 SiCl 3

また、クロロシリル基を主成分とする物質として、SiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリルキ基を主成分とする物質の代わりにSi(OCHやSi(OCで表される化合物を用いることが可能である。 In addition, as a substance having a chlorosilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or a substance having a chlorosilyl group as a main component Instead, a compound represented by Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4 can be used.

さらに、Si(OCHやSi(OCの代わりに、SiH(OCH3、SiH2(OCH2、または(CHO)3Si(OSi(OCH2OCH(但し、mは整数)や、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)も使用できる。 Furthermore, instead of Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4 , SiH (OCH 3 ) 3 , SiH 2 (OCH 3 ) 2 , or (CH 3 O) 3 Si (OSi (OCH 3 )) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5) 2 ) m OC 2 H 5 (where m is an integer) can also be used.

なお、このとき、Si(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)は、脱塩酸反応はしないが、フッ化炭素基およびクロロシリル基を含む化学吸着剤が反応して発生する塩酸が触媒となり、基材表面とシロキサン結合を形成する。 At this time, Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5, where m is an integer Although no dehydrochlorination reaction is performed, hydrochloric acid generated by the reaction of a chemical adsorbent containing a fluorocarbon group and a chlorosilyl group serves as a catalyst to form a siloxane bond with the substrate surface.

また、上記クロロシラン系の化学吸着剤の代わりに、全てのクロロシリル基をイソシアネート基に置き換えたイソシアネート系の化学吸着剤、例えば下記に示す(1)-(5)が挙げられる。 Further, instead of the chlorosilane-based chemical adsorbent, isocyanate-based chemical adsorbents in which all chlorosilyl groups are replaced with isocyanate groups, for example, (1) to (5) shown below can be mentioned.

(1) CF3(CH2rSiXp(NCO)3-p
(2) CF3(CH2rSiXp(NCO)3-p
(3) CF3(CH2sO(CH2tSiXp(NCO)3-p
(4) CF3(CH2uSi(CH32(CH2vSiXp(NCO)3-p
(5) CF3 COO(CH2wSiXp(NCO)3-p
(但し、好ましい範囲としてrは1〜25、sは0〜12、tは1〜20、uは0〜12、vは1〜20、wは1〜25を示す。)
(1) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(2) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(3) CF 3 (CH 2 ) s O (CH 2 ) t SiX p (NCO) 3-p
(4) CF 3 (CH 2 ) u Si (CH 3 ) 2 (CH 2 ) v SiX p (NCO) 3-p
(5) CF 3 COO (CH 2 ) w SiX p (NCO) 3-p
(However, as a preferable range, r is 1 to 25, s is 0 to 12, t is 1 to 20, u is 0 to 12, v is 1 to 20, and w is 1 to 25.)

さらに、前記の吸着剤に加えて、下記に示す(1)-(7)の具体的吸着化合物が挙げられ、いずれも実施の形態2にも同様に使用できる。 Furthermore, in addition to the adsorbents described above, the following specific adsorbing compounds (1) to (7) can be mentioned, and any of them can be used in the second embodiment as well.

(1) CF3CH2O(CH215Si(NCO)3
(2) CF3(CH22Si(CH32(CH215Si(NCO)3
(3) CF3(CH26Si(CH32(CH29Si(NCO)3
(4) CF3COO(CH215Si(NCO)3
(5) CF3(CF27(CH22Si(NCO)3
(6) CF3(CF25(CH22Si(NCO)3
(7) CF3(CF2764Si(NCO)3
なお、この場合は、塩酸が発生しないメリットがある。
(1) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(4) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (NCO) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (NCO) 3
In this case, there is an advantage that hydrochloric acid is not generated.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent that does not contain water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、ノナン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specifically usable are petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, nonane, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl modified silicone, polyether silicone, etc. Can be mentioned.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭硝子社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include chlorofluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

さらにまた、実施の形態1に置いて、タイルの代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したタイルを用いると、下地タイルからのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。 (一般の窯業製品でも同様である。さらに、電磁調理器用セラミックス製トッププレートの場合、あらかじめ表面に微細な突起(0.5〜2mm程度)を複数個設けておくと、被膜が直接鍋底に接触することがないので、本発明の防汚性被膜の耐久性をより一層向上できる。) Furthermore, in the first embodiment, a silica film or a titanium oxide film formed using a sol-gel method, a CVD method, or a silicon nitride film formed using polysilazane or the like is used as an alkali barrier film instead of a tile. When tiles formed with a thickness of several nanometers to several tens of microns are used, elution of alkali components from the underlying tile can be reduced, and weather resistance and water resistance can be further improved. (The same applies to general ceramic products. Furthermore, in the case of a ceramic top plate for an electromagnetic cooker, if a plurality of fine protrusions (about 0.5 to 2 mm) are provided on the surface in advance, the coating directly contacts the pan bottom. Therefore, the durability of the antifouling film of the present invention can be further improved.)

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、タイル以外では、必要する耐摩耗性あるいは防汚性に応じて、適宜表面エネルギーを調整して用いればよい。
(実施の形態2)
In addition to tiles, the surface energy may be appropriately adjusted according to the required wear resistance or antifouling property.
(Embodiment 2)

次に、第2番目の発明である防汚性窯業製品(例えばタイル)について製造方法(第5および第6番目の発明)と共に説明する。 Next, the antifouling ceramic product (for example, tile) which is the second invention will be described together with the manufacturing method (the fifth and sixth inventions).

前記実施の形態1において、表面の余分な複合膜形成溶液を洗浄除去し(第4番目の発明の途中)、あるいは前記洗浄工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取って(第3番目の発明の途中)複合膜(実施の形態2では下層複合膜となる。)を形成後、さらにもう1層、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1を含む上層膜を形成する(第5および第6番目の発明)。 In Embodiment 1, excess composite film forming solution on the surface is removed by washing (middle of the fourth invention), or the washing step is omitted and the non-aqueous organic solvent is evaporated, or with a cloth or the like After wiping off (in the middle of the third invention) to form a composite film (which is a lower layer composite film in the second embodiment), another layer is composed of a fluorocarbon group, a hydrocarbon group, and a silyl group as main components. An upper layer film containing the material 1 to be formed is formed (fifth and sixth inventions).

例えば、乾燥雰囲気中(湿度35%以下が良い。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質として、CF3(CF2(CHSiCl3(nは正数)を用い、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)に0.01M/Lの濃度になるように溶解して上層膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is good) Is a positive number) and dissolved in an organic solvent containing almost no non-aqueous water (for example, hexadecane) to a concentration of 0.01 M / L to prepare an upper layer film-forming solution.

次に、下層複合膜の形成されたタイル3表面に前記上層膜形成溶液を塗布し1、2時間反応させる。   Next, the upper layer film-forming solution is applied to the surface of the tile 3 on which the lower layer composite film is formed, and reacted for 1 to 2 hours.

このとき、下層複合膜5の形成されたタイル3の表面は、図1(a)に示すように、水酸基4、4’すなわち活性水素が多数残っている。そこで、前記タイル3表面でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質のクロロシリル基(−SiCl3)基と前記表面に露出した水酸基4とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1’が−SiO−結合を介して前記タイル3表面に結合する。 At this time, the surface of the tile 3 on which the lower composite film 5 is formed has a large number of hydroxyl groups 4, 4 ′, that is, active hydrogen, as shown in FIG. Therefore, a chlorosilyl group (—SiCl 3 ) group of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group on the surface of the tile 3 and a hydroxyl group 4 exposed on the surface undergo a dehydrochlorination reaction, thereby A substance 1 ′ mainly composed of a carbonized carbon group, a hydrocarbon group, and a silyl group is bonded to the surface of the tile 3 through a —SiO— bond.

すなわち、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1’に変化して前記−SiO−結合を介して、タイル3表面で露出している水酸基4と結合して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1を含む被膜になる。 That is, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group is changed to a substance 1 ′ mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and the —SiO— bond is changed. Thus, the film is bonded to the hydroxyl group 4 exposed on the surface of the tile 3 to form a coating film containing the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group.

その後、表面の余分な上層膜形成溶液を洗浄除去する(第6番目の発明、有機溶媒を用いてふき取り除去しても良い。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる下層複合膜と、前記下層複合膜表面に結合したフッ化炭素基と炭化水素基とシリル基を主成分とする物質1よりなる上層膜8よりなる2層構造の被膜をタイル3表面に形成できる。 Thereafter, the excess upper layer film-forming solution on the surface is washed away (sixth invention, may be wiped off using an organic solvent), and a fluorocarbon group and a hydrocarbon group having a thickness of several nanometers A lower layer composite film composed of a substance 1 having a silyl group as a main component and a substance 2 having a siloxane group as a main component, and a fluorocarbon group, a hydrocarbon group and a silyl group bonded to the surface of the lower layer composite film as main components A film having a two-layer structure made of the upper film 8 made of the substance 1 can be formed on the surface of the tile 3.

その後、さらに前記2層構造の被膜(洗浄したもの、あるいは蒸発又はふき取ったものでも良い。)が形成されたそれぞれのタイル3を300〜450℃、30〜120分程度の条件で加熱処理を行うと、膜内部に残っているSiOH基の水酸基4’が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜6’に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる下層複合膜7’とフッ化炭素基と炭化水素基とシリル基を主成分とする物質1よりなる上層膜8は、耐摩耗性、耐候性の高い撥水撥油性の2層膜9となり、水滴の接触角がおおむね110度の高耐久性の防汚性タイル3を製造できる(図1(c))。この膜は、2層構造でも、可視光に対する透過率はほぼ99%以上であるので、下地タイルの表面光沢が失われることはない。 Thereafter, each tile 3 on which the two-layer coating film (which has been washed, or evaporated or wiped) may be further subjected to heat treatment at 300 to 450 ° C. for about 30 to 120 minutes. Then, the hydroxyl group 4 ′ of the SiOH group remaining inside the film undergoes a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 6 ′. As a result, the lower layer composite film 7 ′ made of the substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and the substance 2 mainly composed of a siloxane group, the fluorocarbon group, the hydrocarbon group and the silyl group. The upper layer film 8 made of the substance 1 containing as a main component becomes a water- and oil-repellent two-layer film 9 with high wear resistance and weather resistance, and a highly durable antifouling tile with a water droplet contact angle of approximately 110 degrees. 3 can be manufactured (FIG. 1 (c)). Even if this film has a two-layer structure, the transmittance for visible light is approximately 99% or more, so the surface gloss of the underlying tile is not lost.

なお、前記洗浄除去する工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取る(第5番目の発明)と、洗浄した場合に比べ厚さが厚い数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1よりなる上層膜(2層構造でも可視光に対する透過率は、98%以上)が前記タイル3表面に形成できる。なお、この場合には、被膜の膜厚が厚くなり、表面光沢性は洗浄除去した場合に比べ劣るが、実用上は全く問題が無く、より耐久性を向上できる。 If the non-aqueous organic solvent is evaporated or wiped off with a cloth (fifth invention) without the washing and removing step, a tens of nanometer-thick fluorine having a thickness larger than that of the washing is obtained. An upper layer film (substance of 98% or more with respect to visible light even in a two-layer structure) made of the substance 1 mainly composed of carbonized carbon group, hydrocarbon group and silyl group can be formed on the surface of the tile 3. In this case, the film thickness of the coating is increased, and the surface gloss is inferior to that obtained by washing and removal, but there is no problem in practical use and the durability can be further improved.

このときの防汚性タイルの水に対する初期接触角は、最表面の上層膜の物性で決まり、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質として、例えば、CF3(CF2(CHSiCl3(nは正数)を用いた場合、おおむね105±10度に制御できる。また、0.02mlの水滴に対する転落角はほぼ45度以下に制御できる。 The initial contact angle with respect to water of the antifouling tile at this time is determined by the physical properties of the uppermost film on the outermost surface, and as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group, for example, CF 3 (CF 2 ) When n (CH 2 ) 2 SiCl 3 (n is a positive number) is used, it can be controlled to approximately 105 ± 10 degrees. Moreover, the falling angle with respect to 0.02 ml of water droplets can be controlled to about 45 degrees or less.

なお、上層膜形成溶液の溶媒を蒸発させて上層膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では50〜150℃程度がよい。 When the upper layer film is formed by evaporating the solvent of the upper layer film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is. Then, about 50-150 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では150〜350℃程度がよい。 On the other hand, when washing with a non-aqueous organic solvent, the higher the boiling point of the non-aqueous solvent used in the composite film-forming solution is, the more stable it is.

参考として、フッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質としてCF3(CF2(CHSiClを用いた場合の2層構造の被膜の(実施例2)の耐摩耗試験における接触角変化の結果を図2に比較して示す。 As a reference, a film having a two-layer structure when CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group (Example) The result of contact angle change in the wear resistance test of 2) is shown in comparison with FIG.

また、水滴の転落角は、20マイクロリットルの水滴の場合、およそ45度であり、実施の形態1に比べ、接触角が大きくなる分、大きくなる(図3参照)欠点があるが、耐摩耗性はさらに大幅に向上できる。 In addition, the drop angle of the water droplet is about 45 degrees in the case of a 20 microliter water droplet, which is larger than the first embodiment as the contact angle increases (see FIG. 3). The sex can be further greatly improved.

なお、上層膜形成用のフッ化炭素基と炭化水素基とクロロシリル基のみを主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXpCl3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group for forming the upper layer film include the following substances.
CF 3 (CF 2 ) n (R) m SiX p Cl 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, p is 0, 1 or 2)

さらに、具体的には、以下に示す(1)-(7)が挙げられる。
(1) CF3CH2O(CH215SiCl3
(2) CF3(CH22Si(CH32(CH215SiCl3
(3) CF3(CH26Si(CH32(CH29 SiCl3
(4) CF3COO(CH215SiCl3
(5) CF3(CF27(CH22SiCl3
(6) CF3(CF25(CH22SiCl3
(7) CF3(CF2764SiCl3
More specifically, the following (1) to (7) are mentioned.
(1) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(4) CF 3 COO (CH 2 ) 15 SiCl 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 SiCl 3

また、上記クロロシラン系の化学吸着剤の代わりに、全てのクロロシリル基をイソシアネート基に置き換えたイソシアネート系の化学吸着剤、例えば下記に示す(1)-(5)が挙げられる。 Further, instead of the chlorosilane-based chemical adsorbent, isocyanate-based chemical adsorbents in which all chlorosilyl groups are replaced with isocyanate groups, for example, (1) to (5) shown below can be mentioned.

(1) CF3(CH2rSiXp(NCO)3-p
(2) CF3(CH2rSiXp(NCO)3-p
(3) CF3(CH2sO(CH2tSiXp(NCO)3-p
(4) CF3(CH2uSi(CH32(CH2vSiXp(NCO)3-p
(5) CF3 COO(CH2wSiXp(NCO)3-p
(但し、好ましい範囲としてrは1〜25、sは0〜12、tは1〜20、uは0〜12、vは1〜20、wは1〜25を示す。)
(1) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(2) CF 3 (CH 2 ) r SiX p (NCO) 3-p
(3) CF 3 (CH 2 ) s O (CH 2 ) t SiX p (NCO) 3-p
(4) CF 3 (CH 2 ) u Si (CH 3 ) 2 (CH 2 ) v SiX p (NCO) 3-p
(5) CF 3 COO (CH 2 ) w SiX p (NCO) 3-p
(However, as a preferable range, r is 1 to 25, s is 0 to 12, t is 1 to 20, u is 0 to 12, v is 1 to 20, and w is 1 to 25.)

さらに、前記の吸着剤に加えて、下記に示す(1)-(7)の具体的吸着化合物が挙げられる。 Furthermore, in addition to the above adsorbents, the following specific adsorbing compounds (1) to (7) can be mentioned.

(1) CF3CH2O(CH215Si(NCO)3
(2) CF3(CH22Si(CH32(CH215Si(NCO)3
(3) CF3(CH26Si(CH32(CH29Si(NCO)3
(4) CF3COO(CH215Si(NCO)3
(5) CF3(CF27(CH22Si(NCO)3
(6) CF3(CF25(CH22Si(NCO)3
(7) CF3(CF2764Si(NCO)3
なお、この場合は、塩酸が発生しないメリットがある。
(1) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(4) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (NCO) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (NCO) 3
In this case, there is an advantage that hydrochloric acid is not generated.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent that does not contain water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、ノナン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specifically usable are petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, nonane, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl modified silicone, polyether silicone, etc. Can be mentioned.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭硝子社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include chlorofluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

さらにまた、実施の形態2においても、実施の形態1と同様に、タイルの代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したタイルを用いると、タイルからのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。(一般の窯業製品でも同様) Furthermore, in the second embodiment, as in the first embodiment, instead of tiles, silicon nitride formed using a silica film, a titanium oxide film, or polysilazane formed using a sol-gel method, a CVD method, or the like. When a tile formed with a thickness of several nanometers to several tens of microns using a film or the like as an alkali barrier film is used, elution of alkali components from the tile can be reduced, and weather resistance and water resistance can be further improved. (The same applies to general ceramic products)

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、この方法では、製造する窯業製品の目的に合わせて、適宜表面エネルギーを調整して用いることが可能である。
(実施の形態3)
In this method, the surface energy can be appropriately adjusted and used in accordance with the purpose of the ceramic product to be manufactured.
(Embodiment 3)

さらに、第1番目の発明である防汚性窯業製品(例えばタイル)について、他の製造方法(第7及び第8番目の発明)と共に説明する。 Furthermore, the antifouling ceramic product (for example, tile) which is the first invention will be described together with other manufacturing methods (seventh and eighth inventions).

まずはじめに、乾燥雰囲気中(湿度50%以下が良い。)でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3(nは正数、Aは、メチル基、エチル基等のアルキル基)と、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)とを、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)にそれぞれ0.01M/Lの濃度になるように溶解して(この場合、前者と後者の分子組成比1:1になる)、さらにシラノール縮合触媒を0.0001M/Lの濃度になるように添加溶解して複合膜形成溶液を作成する。 First, CF 3 (CF 2 ) n (CH 2 ) 2 Si () is a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less). OA) 3 (n is a positive number, A is an alkyl group such as a methyl group or an ethyl group) and Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA ) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a short-chain alkyl group such as a methyl group, an ethyl group, or a propyl group), or alkoxy Instead of a substance containing silyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) contains almost non-aqueous water No organic solvent (eg For example, hexadecane) is dissolved to a concentration of 0.01 M / L (in this case, the former and the latter have a molecular composition ratio of 1: 1), and the silanol condensation catalyst is further added to a concentration of 0.0001 M / L. The composite film forming solution is prepared by adding and dissolving so that.

次に、下地タイル13をよく洗浄し、表面に前記複合膜形成溶液を塗布し1〜2時間反応させる。   Next, the underlying tile 13 is thoroughly cleaned, and the composite film forming solution is applied to the surface and reacted for 1 to 2 hours.

このとき、タイル13表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記タイル13表面で二つの物質の−Si(OA)3基と前記水酸基や吸着水とが、シラノール縮合触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質が混合反応した状態で−SiO−結合を介して前記タイル13表面に結合する。 At this time, since the surface of the tile 13 contains a large number of hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the -Si (OA) 3 group of the two substances and the hydroxyl groups and adsorbed water on the surface of the tile 13 In a state where a dealcoholization reaction is carried out in the presence of a silanol condensation catalyst, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and a substance mainly composed of an alkoxysilyl group are mixed and reacted with —SiO—. It couple | bonds with the said tile 13 surface through coupling | bonding.

すなわち、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11に変化して前記−SiO−結合を介して、タイル13表面やシロキサン基を主成分とする物質12と結合し、一方、アルコキシシリル基を主成分とする物質は、シロキサン基を主成分とする物質12に変化して前前記−SiO−結合介して、タイル13表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質11と結合する。 That is, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group is changed to the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and the —SiO— bond is changed. And the surface of the tile 13 and the substance 12 having a siloxane group as a main component, while the substance having an alkoxysilyl group as a main component is changed to the substance 12 having a siloxane group as a main component before the -SiO 2 -Bonded with the surface of the tile 13 and the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group through the bond.

その後、表面の余分な複合膜形成溶液を洗浄除去する(第8番目の発明、有機溶媒を用いてふき取り除去しても良い。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12を含み、且つ露出している水酸基14や内部の水酸基14’を多数含む複合膜15(可視光に対する透過率は、99%以上)を前記タイル13表面に形成できる。(図4(a)) Thereafter, the excess composite film forming solution on the surface is washed away (8th invention, may be wiped off using an organic solvent). When the fluorocarbon group and the hydrocarbon group are several nanometers thick, A composite film 15 containing a substance 11 mainly containing a silyl group and a substance 12 containing a siloxane group as a main component and containing many exposed hydroxyl groups 14 and internal hydroxyl groups 14 '(transmittance to visible light is 99 % Or more) can be formed on the surface of the tile 13. (Fig. 4 (a))

なお、前記洗浄除去する工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取る(第7番目の発明)と、数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12を含み、且つ水酸基を多数含む複合膜15(可視光に対する透過率は、98%以上)が前記タイル13表面に形成できた。この場合、洗浄した場合に比べ厚さが厚くなり、表面光沢性は洗浄除去した場合に比べ劣るが、利点は、より耐久性を向上できることにある。 The step of washing and removing is omitted and the non-aqueous organic solvent is evaporated or wiped off with a cloth (seventh invention) to obtain a tens of nanometer-thick fluorocarbon group, hydrocarbon group and silyl group. A composite film 15 containing a substance 11 having a group as a main component and a substance 12 having a siloxane group as a main component and containing a large number of hydroxyl groups (the transmittance for visible light is 98% or more) could be formed on the surface of the tile 13. . In this case, the thickness is thicker than that obtained by washing, and the surface gloss is inferior to that obtained by washing, but the advantage is that durability can be further improved.

その後、前記複合膜(洗浄したもの。あるいは溶媒を蒸発させた、又はふき取ったものでも良い。)が形成されたそれぞれのタイルを300〜450℃、30〜120分程度の条件で加熱処理を行うと、膜中に残っていた水酸基14,14’が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜16に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12よりなる耐摩耗性で且つ耐候性が高い撥水撥油性の複合膜17となり、高耐久性撥水撥油防汚タイル13を製造できる(図4(b))。 Thereafter, each tile on which the composite film (washed, or the solvent has been evaporated or wiped off) is formed is subjected to heat treatment at 300 to 450 ° C. for about 30 to 120 minutes. Then, the hydroxyl groups 14 and 14 ′ remaining in the film undergo a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 16. As a result, the water- and oil-repellent composite film 17 having high wear resistance and high weather resistance is composed of the substance 11 mainly composed of fluorocarbon group, hydrocarbon group and silyl group, and the substance 12 mainly composed of siloxane group. Thus, a highly durable water / oil repellent antifouling tile 13 can be produced (FIG. 4B).

このときの撥水撥油防汚タイルの水に対する接触角は、物質11と物質12の組成に依存するので、組成を変えれば、ほぼ95±10度に制御できる。また、0.02mlの水滴に対する転落角は35度以下に制御できる。 The contact angle of the water-repellent / oil-repellent antifouling tile with respect to water depends on the composition of the substances 11 and 12, and can be controlled to approximately 95 ± 10 degrees by changing the composition. Moreover, the falling angle for 0.02 ml water droplets can be controlled to 35 degrees or less.

なお、複合膜形成溶液の溶媒を蒸発させて被膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では40〜300℃程度がよい。 When forming a film by evaporating the solvent of the composite film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is because it can be removed by evaporation earlier. About 40-300 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では300〜350℃程度がよい。 On the other hand, in the case of washing with a non-aqueous organic solvent, the boiling point of the non-aqueous solvent used in the composite film forming solution is more stable as it is higher, but is preferably about 300 to 350 ° C. in terms of handling.

なお、前記2つの製造方法に置いて、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると、製造における環境負荷を低減出来る。 In addition, in place of washing with an organic solvent instead of washing with the two manufacturing methods, the environmental load in production can be reduced.

また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくと、耐久性と離水性を同時に向上出来る。 Further, when the molecular mixing ratio of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group and the substance mainly composed of the alkoxysilyl group is set to 1:10 to 10: 1, durability is maintained. Property and water separation can be improved at the same time.

さらにまた、複合膜形成溶液のフッ化炭素基と炭化水素基とロシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の分子組成比を変えて、複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12の分子組成比を、好ましくは1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質100%で作成した被膜の場合に比べて大幅に耐摩耗性を向上できる。 Furthermore, the fluorination contained in the composite film can be changed by changing the molecular composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and rosilyl group and the substance mainly composed of alkoxysilyl group in the composite film forming solution. The molecular composition ratio of the substance 11 mainly composed of carbon group, hydrocarbon group and silyl group to the substance 12 mainly composed of siloxane group is preferably 1:10 to 10: 1 (more preferably 1: 1 to 6). 1), the wear resistance can be greatly improved as compared with the case of a film made of 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group.

参考として、フッ化炭素基と炭化水素基とアルコキシシリル基のみを主成分とする物質がCF3(CF2(CHSi(OA)であり、アルコキシシリル基を主成分とする物質がSi(OA)であり、シラノール触媒としてジブチル錫ジアセチルアセトナートを用いた場合、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の組成が2:1の場合のタイル表面の被膜(実施例3)と、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質のみの(100%)のタイル表面の被膜(比較例2)との耐摩耗試験における接触角変化の結果を図5に比較して示す。 As a reference, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group is CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OA) 3 , and the alkoxysilyl group is a main component. When the substance to be used is Si (OA) 4 and dibutyltin diacetylacetonate is used as the silanol catalyst, the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, and the alkoxysilyl group as a main component The tile surface coating (Example 3) in the case of the composition of the material to be 2: 1 and the (100%) tile surface of the material mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group The result of the contact angle change in the abrasion resistance test with the coating (Comparative Example 2) is shown in comparison with FIG.

なお、複合膜形成溶液のフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質11とアルコキシシリル基を主成分とする物質12の分子組成比を1:10〜10:1(より好ましくは1:1〜6:1)にしておくと、水に対する接触角を95±10度(1:1〜6:1の場合は、100±5度)に制御でき、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質100%で作成した被膜(接触角は約110度)の場合に比べて大幅に水滴離水性能を向上(水滴転落角度を小さく)できる。 Note that the molecular composition ratio of the substance 11 mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group and substance 12 mainly composed of alkoxysilyl group in the composite film forming solution is 1:10 to 10: 1 ( More preferably, the contact angle with respect to water can be controlled to 95 ± 10 degrees (in the case of 1: 1 to 6: 1, 100 ± 5 degrees). Compared with the case of a film (contact angle is about 110 degrees) made of 100% of a substance mainly composed of a hydrocarbon group and an alkoxysilyl group, the water-drop water separation performance can be greatly improved (the water drop falling angle is reduced).

なお、フッ化炭素基と炭化水素基とアルコキシシリル基のみを主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXp(OA)3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group include the following substances.
CF 3 (CF 2 ) n (R) m SiX p (OA) 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, A is a short-chain alkyl group such as methyl group, ethyl group or propyl group, p is 0, 1 or 2)

より具体的には、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、あるいは[CF3(CF2(CHSiOA(nは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)が上げられる。 More specifically, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) can be used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ) N (CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is a short group such as a methyl group, an ethyl group, or a propyl group) Chain alkyl group).

さらに、具体的には、以下に示す(1)〜(18)があげられる。
(1) CF3CH2O(CH215Si(OCH3
(2) CF3(CH22Si(CH32(CH215Si(OCH3
(3) CF3(CH26Si(CH32(CH29 Si(OCH3
(4) CF3COO(CH215Si(OCH3
(5) CF3(CF27(CH22Si(OCH3
(6) CF3(CF25(CH22Si(OCH3
(7) CF3(CF2764Si(OCH3
(8) CF3CH2O(CH215Si(OC3
(9) CF3(CH22Si(CH32(CH215Si(OC3
(10) CF3(CH26Si(CH32(CH29 Si(OC3
(11) CF3COO(CH215Si(OC3
(12) CF3(CF27(CH22Si(OC3
(13) CF3(CF25(CH22Si(OC3
(14) CF3(CF2764Si(OC3
(15)[CF3(CF2(CH222Si(OCH32
(16)[CF3(CF2(CH222Si(OC22
(17)[CF3(CF2(CH22SiOCH3
(18)[CF3(CF2(CH22SiOC2
が上げられる。
More specifically, the following (1) to (18) are mentioned.
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (OCH 3 ) 3
(8) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CH 2 ) 2 Si (CH 3) 2 (CH 2) 15 Si (OC 2 H 5) 3
(10) CF 3 (CH 2 ) 6 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(13) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(14) CF 3 (CF 2 ) 7 C 6 H 4 Si (OC 2 H 5 ) 3
(15) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OCH 3 ) 2
(16) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OC 2 H 5 ) 2
(17) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOCH 3
(18) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOC 2 H 5
Is raised.

また、アルコキシシリル基を主成分とする物質として、Si(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物を用いることが可能である。 Moreover, Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (provided that the alkoxysilyl group is a main component) m is an integer, and A is a short chain alkyl group such as a methyl group, an ethyl group, or a propyl group).

さらに、アルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)も使用できる。なお、これらの物質を添加すれば、基材表面と脱塩酸反応して少量の塩酸を生じるので、実質的に助触媒として働き、さらに製膜速度を速める効果がある。 Further, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) can be used in place of the substance having an alkoxysilyl group as a main component. If these substances are added, a small amount of hydrochloric acid is generated by dehydrochlorination reaction with the surface of the base material, so that it substantially acts as a promoter and further has an effect of increasing the film forming speed.

さらにまた、シラノール縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能である。 Furthermore, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate can be used.

なお、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、反応時間を2倍程度早くでき、製膜時間を半分程度に短縮できる。 If a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the reaction time can be shortened by about twice and the film formation time can be halved. It can be shortened to the extent.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1)して用いると、さらに反応時間を数倍程度早くでき、製膜時間を数分の一に短縮できる。 Moreover, when a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed and used (1: 9 to 9: 1), the reaction time is several times longer. The film formation time can be shortened to a fraction.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が40〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent that does not contain water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 40 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、ノナン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specifically usable are petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, nonane, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl modified silicone, polyether silicone, etc. Can be mentioned.

また、フッ化炭素系溶媒には、フロン系溶媒の365LIVE(大和化学工業(株)製品)や、フロリナート(3M社製品)、アフルード(旭硝子社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を少量添加しても良い。 In addition, fluorocarbon solvents include fluorocarbon solvents 365 LIVE (Daiwa Chemical Industry Co., Ltd. product), Fluorinert (3M product), Afludo (Asahi Glass product), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, a small amount of an organic chlorine-based solvent such as chloroform may be added.

さらにまた、実施の形態1に置いて、タイルの代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したタイルを用いると、下地タイルからのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。(一般の窯業製品でも同様。) Furthermore, in the first embodiment, a silica film or a titanium oxide film formed using a sol-gel method, a CVD method, or a silicon nitride film formed using polysilazane or the like is used as an alkali barrier film instead of a tile. When tiles formed with a thickness of several nanometers to several tens of microns are used, elution of alkali components from the underlying tile can be reduced, and weather resistance and water resistance can be further improved. (The same applies to general ceramic products.)

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、この方法でも、製造する窯業製品の目的に合わせて、適宜表面エネルギーを調整して用いることが可能である。
(実施の形態4)
Even in this method, the surface energy can be appropriately adjusted and used in accordance with the purpose of the ceramic product to be manufactured.
(Embodiment 4)

また、第2番目の発明である窯業製品について、もう一つの製造方法(第9及び第10番目の発明)と共に説明する。 The ceramic product according to the second invention will be described together with another manufacturing method (the ninth and tenth inventions).

前記実施の形態3において、下地タイル表面の余分な複合膜形成溶液を洗浄除去し(第10番目の発明の途中)、あるいは前記洗浄工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取って(第9番目の発明の途中)、複合膜(本実施の形態4では下層複合膜となる。)を形成後、さらにもう1層、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11を含む上層膜を形成する。 In Embodiment 3, excess composite film forming solution on the surface of the underlying tile is removed by washing (middle of the tenth invention), or the washing step is omitted to evaporate the non-aqueous organic solvent, or cloth Or the like (in the middle of the ninth invention) to form a composite film (lower layer composite film in the fourth embodiment), and then another layer, a fluorocarbon group, a hydrocarbon group, and a silyl group. An upper layer film containing the substance 11 containing as a main component is formed.

例えば、乾燥雰囲気中(湿度50%以下が良い。)でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3(nは正数)を用い、非水系の水をほとんど含まない有機溶媒(例えば、ヘキサデカン)に0.01M/Lの濃度になるように溶解し、さらにシラノール縮合触媒を0.0001M/Lの濃度になるように添加溶解して上層膜形成溶液を作成する。 For example, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less). ) 3 (n is a positive number), dissolved in an organic solvent containing almost no non-aqueous water (for example, hexadecane) to a concentration of 0.01 M / L, and further a silanol condensation catalyst was added to 0.0001 M / L. An upper layer film-forming solution is prepared by adding and dissolving to a concentration of L.

次に、実施の形態3と同様の方法で形成され、まだ焼成されてない下層複合膜の形成されたタイル13表面に、前記上層膜形成溶液を塗布し1乃至2時間反応させる。   Next, the upper layer film-forming solution is applied to the surface of the tile 13 formed by the same method as in the third embodiment and formed with the lower layer composite film that has not been fired yet, and is reacted for 1 to 2 hours.

このとき、下層複合膜15の形成されたタイル13の表面は、図4(a)に示すように、水酸基14、14’すなわち活性水素が多数残っている。そこで、前記タイル13表面でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質のアルコキシシリル基(−Si(OA)3)基と前記表面に露出した水酸基14とがシラノール縮合触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11’が−SiO−結合を介して前記タイル13表面に結合する。 At this time, as shown in FIG. 4A, the surface of the tile 13 on which the lower layer composite film 15 is formed has a large number of hydroxyl groups 14, 14 ′, that is, active hydrogen. Therefore, silanol condensation occurs between the alkoxysilyl group (—Si (OA) 3 ) group of the substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group on the surface of the tile 13 and the hydroxyl group 14 exposed on the surface. A dealcoholization reaction is performed in the presence of a catalyst, and a substance 11 ′ mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is bonded to the surface of the tile 13 through a —SiO— bond.

すなわち、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質は、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11’に変化して前記−SiO−結合を介して、タイル13表面で露出している水酸基14と結合して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11を含む被膜になる。 That is, the substance having a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group as main components is changed to a substance 11 ′ having a fluorocarbon group, a hydrocarbon group, and a silyl group as main components, and the —SiO— bond is changed. Thus, a film containing the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is formed by bonding with the hydroxyl group 14 exposed on the surface of the tile 13.

その後、表面の余分な上層膜形成溶液を洗浄除去する(有機溶媒を用いてふき取り除去しても良い。第10番目の発明。)と、数ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12よりなる下層複合膜と、前記下層複合膜表面に結合したフッ化炭素基と炭化水素基とシリル基を主成分とする物質11よりなる上層膜18よりなる2層構造の被膜19を製造できる。 Thereafter, the excess upper layer film-forming solution on the surface is washed away (it may be removed by wiping with an organic solvent. The tenth invention), and a fluorocarbon group and a hydrocarbon group having a thickness of several nanometers A lower layer composite film composed of a substance 11 mainly containing a silyl group and a substance 12 mainly containing a siloxane group, and a fluorocarbon group, a hydrocarbon group and a silyl group bonded to the surface of the lower layer composite film. A coating 19 having a two-layer structure made of the upper film 18 made of the substance 11 can be manufactured.

その後、さらに前記2層構造の被膜(洗浄したもの、あるいは蒸発又はふき取ったものでも良い。)が形成されたそれぞれのタイル13を300〜450℃、(より好ましくは、400±20℃が良い。)30〜120分程度の条件で加熱処理を行うと、膜内部に残っているSiOH基の水酸基14’が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜16’に変化する。その結果、フッ化炭素基と炭化水素基とシリル基を主成分とする物質11とシロキサン基を主成分とする物質12よりなる下層複合膜17’とフッ化炭素基と炭化水素基とシリル基を主成分とする物質11よりなる上層膜18は、耐摩耗性、耐候性の高い撥水撥油性の2層膜19となり、水滴の接触角がおおむね105±5度の高耐久性の撥水撥油防汚タイルを製造できる(図4(c))。この膜は、2層構造でも、可視光に対する透過率はほぼ98%以上であるので、下地表面の光沢を損なうことはない。 Thereafter, each tile 13 on which the two-layered film (washed or evaporated or wiped) may be formed is preferably 300 to 450 ° C. (more preferably 400 ± 20 ° C.). When the heat treatment is performed for about 30 to 120 minutes, the hydroxyl group 14 'of the SiOH group remaining inside the film undergoes a dehydration reaction to form a polysiloxane bond and change to a network-like silica film 16'. As a result, the lower layer composite film 17 ′ composed of the substance 11 mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and the substance 12 mainly composed of a siloxane group, the fluorocarbon group, the hydrocarbon group, and the silyl group. The upper layer film 18 made of the substance 11 having the main component is a water- and oil-repellent two-layer film 19 having high wear resistance and weather resistance, and a highly durable water-repellent water contact angle of approximately 105 ± 5 degrees. An oil-repellent antifouling tile can be produced (FIG. 4C). Even if this film has a two-layer structure, the visible light transmittance is approximately 98% or more, so the gloss of the underlying surface is not impaired.

なお、前記洗浄除去する工程を省き、前記非水系有機溶媒を蒸発させるか、あるいは布等でふき取る(第9番目の発明)と、洗浄した場合に比べ厚さが厚い数十ナノメートル厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質11よりなる上層膜(2層構造でも可視光に対する透過率は、98%以上)が前記タイル表面に形成できる。なお、この場合には、被膜の膜厚が厚くなり、表面光沢性は洗浄除去した場合に比べ劣るが、実用上は全く問題が無く、より耐久性を向上できる。 If the non-aqueous organic solvent is evaporated or wiped off with a cloth or the like (the ninth invention) without the washing and removing step, a fluorine film having a thickness of several tens of nanometers is obtained as compared with the case of washing. An upper film (having a transmittance of 98% or more with respect to visible light even in a two-layer structure) made of the substance 11 mainly composed of a carbonized carbon group, a hydrocarbon group, and a silyl group can be formed on the tile surface. In this case, the film thickness of the coating is increased, and the surface gloss is inferior to that obtained by washing and removal, but there is no problem in practical use and the durability can be further improved.

このときの撥水撥油防汚タイルの水に対する初期接触角は、最表面の上層膜の物性で決まり、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、例えば、CF3(CF2(CHSi(OA)3(nは正数)を用いた場合、おおむね105±10度に制御できる。また、0.02mlの水滴に対する転落角はほぼ45度以下に制御できる。 The initial contact angle with respect to the water of the water / oil / oil repellent antifouling tile at this time is determined by the physical properties of the uppermost film on the outermost surface, and as a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, When CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 (n is a positive number) is used, it can be controlled to approximately 105 ± 10 degrees. Moreover, the falling angle with respect to 0.02 ml of water droplets can be controlled to about 45 degrees or less.

なお、上層膜形成溶液の溶媒を蒸発させて上層膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では40〜300℃程度がよい。 When the upper layer film is formed by evaporating the solvent of the upper layer film forming solution, the lower the boiling point of the non-aqueous solvent used in the composite film forming solution is, the more convenient it is. Then, about 40-300 degreeC is good.

一方、非水系の有機溶媒で洗浄する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、高いほど安定しているが、取扱いの上では300〜350℃程度がよい。 On the other hand, in the case of washing with a non-aqueous organic solvent, the boiling point of the non-aqueous solvent used in the composite film forming solution is more stable as it is higher, but is preferably about 300 to 350 ° C. in terms of handling.

なお、前記2つの製造方法に置いて、有機溶媒で洗浄する代わりに、洗剤と水で洗浄すると、製造における環境負荷を低減出来る。 In addition, in place of washing with an organic solvent instead of washing with the two manufacturing methods, the environmental load in production can be reduced.

参考として、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)を用いた場合の2層構造のタイル表面の被膜の(実施例4)の耐摩耗試験における接触角変化の結果を実施例3および比較例2の結果と共に図5に示す。 As a reference, the tile surface of a two-layer structure when CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OA) 3 is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group FIG. 5 shows the results of contact angle change in the wear resistance test of (Example 4) of this film together with the results of Example 3 and Comparative Example 2.

また、水滴の転落角は、20マイクロリットルの水滴の場合、およそ45度であり、実施例4の結果に比べ接触角が大きくなる分、水滴の転落角が大きくなる欠点がある(図3参照)が、耐摩耗性はさらに大幅に向上できる。 In addition, the drop angle of the water droplet is about 45 degrees in the case of a 20 microliter water drop, and there is a drawback that the drop angle of the water drop becomes larger as the contact angle becomes larger than the result of Example 4 (see FIG. 3). However, the wear resistance can be further greatly improved.

なお、上層膜形成用のフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、一般には、以下のような物質が挙げられる。
CF3(CF2n(R)mSiXp(OA)3-p
(但しnは0または整数、好ましくは1〜22の整数、Rはアルキル基、フェニル基、ビニル基、エチニル基、シリコン若しくは酸素原子を含む置換基、mは0又は1、XはH,アルキル基,アルコキシル基,含フッ素アルキル基又は含フッ素アルコキシ基の置換基、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基、pは0、1または2)
In general, examples of the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group for forming the upper layer film include the following substances.
CF 3 (CF 2 ) n (R) m SiX p (OA) 3-p
(Where n is 0 or an integer, preferably an integer of 1 to 22, R is an alkyl group, phenyl group, vinyl group, ethynyl group, a substituent containing silicon or an oxygen atom, m is 0 or 1, X is H, alkyl Group, alkoxyl group, fluorine-containing alkyl group or substituent of fluorine-containing alkoxy group, A is a short-chain alkyl group such as methyl group, ethyl group or propyl group, p is 0, 1 or 2)

より具体的には、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、CF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、あるいは[CF3(CF2(CHSiOA(nは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)が上げられる。 More specifically, CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) can be used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ) N (CH 2 ) 2 ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is a short group such as a methyl group, an ethyl group, or a propyl group) Chain alkyl group).

さらに、具体的には、以下に示す(1)〜(18)が上げられる。
(1) CF3CH2O(CH215Si(OCH3
(2) CF3(CH22Si(CH32(CH215Si(OCH3
(3) CF3(CH26Si(CH32(CH29 Si(OCH3
(4) CF3COO(CH215Si(OCH3
(5) CF3(CF27(CH22Si(OCH3
(6) CF3(CF25(CH22Si(OCH3
(7) CF3(CF2764Si(OCH3
(8) CF3CH2O(CH215Si(OC3
(9) CF3(CH22Si(CH32(CH215Si(OC3
(10) CF3(CH26Si(CH32(CH29 Si(OC3
(11) CF3COO(CH215Si(OC3
(12) CF3(CF27(CH22Si(OC3
(13) CF3(CF25(CH22Si(OC3
(14) CF3(CF2764Si(OC3
(15)[CF3(CF2(CH222Si(OCH32
(16)[CF3(CF2(CH222Si(OC22
(17)[CF3(CF2(CH22SiOCH3
(18)[CF3(CF2(CH22SiOC2
が上げられる。
More specifically, the following (1) to (18) are raised.
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(5) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 (CF 2 ) 7 C 6 H 4 Si (OCH 3 ) 3
(8) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CH 2 ) 2 Si (CH 3) 2 (CH 2) 15 Si (OC 2 H 5) 3
(10) CF 3 (CH 2 ) 6 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(13) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(14) CF 3 (CF 2 ) 7 C 6 H 4 Si (OC 2 H 5 ) 3
(15) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OCH 3 ) 2
(16) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 2 Si (OC 2 H 5 ) 2
(17) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOCH 3
(18) [CF 3 (CF 2 ) 3 (CH 2 ) 2 ] 3 SiOC 2 H 5
Is raised.

また、アルコキシシリル基を主成分とする物質として、Si(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物を用いることが可能である。 Moreover, Si (OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (provided that the alkoxysilyl group is a main component) m is an integer, and A is a short chain alkyl group such as a methyl group, an ethyl group, or a propyl group).

さらに、アルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)も使用できる。なお、これらの物質を添加すれば、基材表面と脱塩酸反応して少量の塩酸を生じるので、実質的に助触媒として働き、さらに製膜速度を速める効果がある。 Further, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer) can be used in place of the substance having an alkoxysilyl group as a main component. If these substances are added, a small amount of hydrochloric acid is generated by dehydrochlorination reaction with the surface of the base material, so that it substantially acts as a promoter and further has an effect of increasing the film forming speed.

さらにまた、シラノール縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能である。 Furthermore, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate can be used.

なお、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、反応時間を2倍程度早くでき、製膜時間を短縮できる。 If a ketimine compound, or an organic acid, aldimine compound, enamine compound, oxazolidine compound, or aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the reaction time can be shortened by about twice and the film forming time can be shortened. it can.

また、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1)して用いると、さらに反応時間を数倍程度早くでき、製膜時間を数分の一に短縮できる Moreover, when a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed and used (1: 9 to 9: 1), the reaction time is several times longer. It can be done quickly and the film formation time can be reduced to a fraction of that.

さらに、非水系溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50〜300℃のものが使用に適している。 Further, as the non-aqueous solvent, it is possible to use a hydrocarbon solvent that does not contain water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable for use. Yes.

具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、ノナン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、オクタン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。 Specifically usable are petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, nonane, isoparaffin, normal paraffin, decalin, industrial gasoline, octane, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, alkyl-modified silicone. And polyether silicone.

また、フッ化炭素系溶媒には、フロン系溶媒の365LIVE(大和化学工業(株)製品)や、フロリナート(3M社製品)、アフルード(旭硝子社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を少量添加しても良い。 In addition, fluorocarbon solvents include fluorocarbon solvents 365 LIVE (Daiwa Chemical Industry Co., Ltd. product), Fluorinert (3M product), Afludo (Asahi Glass product), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, a small amount of an organic chlorine-based solvent such as chloroform may be added.

また、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を行わなくとも、耐久性が高く且つ撥水撥油特性にかなり優れた窯業製品を提供できる。 Further, it is possible to provide a ceramic product having high durability and considerably excellent water and oil repellency characteristics without repeating the upper layer film forming step by repeating only the step of forming the lower layer composite film a plurality of times.

さらにまた、実施の形態1に置いて、タイルの代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜や酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等をアルカリバリア膜として数ナノメートル乃至数十ミクロン程度の厚みで形成したタイルを用いると、下地タイルからのアルカリ成分溶出を削減でき、耐候、耐水性をさらに向上できる。(一般の窯業製品でも同様) Furthermore, in the first embodiment, a silica film or a titanium oxide film formed using a sol-gel method, a CVD method, or a silicon nitride film formed using polysilazane or the like is used as an alkali barrier film instead of a tile. When tiles formed with a thickness of several nanometers to several tens of microns are used, elution of alkali components from the underlying tile can be reduced, and weather resistance and water resistance can be further improved. (The same applies to general ceramic products)

ここで、焼成時、実質的に酸素を含まない雰囲気、例えば爆発限界以下の水素を混ぜた窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても微量の不純物酸素を水素で除去でき、被膜の酸化を完全に防止できる。 Here, when firing, an atmosphere that does not contain oxygen, for example, nitrogen gas mixed with hydrogen below the explosion limit, is used. It can be removed with hydrogen, and oxidation of the film can be completely prevented.

なお、この方法でも、製造する窯業製品の目的に合わせて、適宜表面エネルギーを調整して用いることが可能である。 Even in this method, the surface energy can be appropriately adjusted and used in accordance with the purpose of the ceramic product to be manufactured.

以下、本発明の具体的な実施例を比較例とともに説明する。なお、以下の実施例においては、とくに記載していない限り分子組成比はモル比を意味する。 Hereinafter, specific examples of the present invention will be described together with comparative examples. In the following examples, the molecular composition ratio means a molar ratio unless otherwise specified.

乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3と、クロロシリル基を主成分とする物質としてSiClを、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、それぞれ0.02M/Lと0.01M/Lの濃度(2:1)になるように溶解して、複合膜形成溶液を作成した。 CF as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is preferable. 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , SiCl 4 as a substance mainly composed of a chlorosilyl group, and 0% each in a 5% chloroform-containing dimethyl silicone solution containing almost no water as a non-aqueous organic solvent. A composite film forming solution was prepared by dissolving to a concentration (2: 1) of 0.02 M / L and 0.01 M / L.

次に、窯業製品の代表例である陶器製のタイルをよく洗浄し、乾燥後、乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で表面に前記複合膜形成溶液を塗布し、室温で1〜2時間放置反応させた。   Next, ceramic tiles, which are typical examples of ceramic products, are thoroughly washed, dried, and then in a dry atmosphere (humidity is 35% or less. When the temperature is higher than this, the film-forming substance is hydrolyzed and the film becomes cloudy. .) Was applied to the surface and allowed to react at room temperature for 1-2 hours.

このとき、タイル表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記タイル表面で二つの物質の≡SiCl基と前記水酸基や吸着水とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質が混合した状態で前記タイル表面に結合した。 At this time, since the tile surface contains many hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the ≡SiCl group of the two substances and the hydroxyl group or adsorbed water react with each other on the tile surface to cause dehydrochlorination reaction. Bonded to the tile surface in a mixed state of a substance mainly composed of carbonized carbon group, hydrocarbon group and silyl group and a substance mainly composed of siloxane group.

フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、前記シリル基を介して、タイル表面やシロキサン基を主成分とする物質と結合し、シロキサン基を主成分とする物質は、シロキサン基を介して、タイル表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質と結合した。 A substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group is bonded to a tile surface or a substance mainly composed of a siloxane group via the silyl group. Bonded with the surface of the tile or a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group via a siloxane group.

その後、表面の余分な複合膜形成溶液をエタノールで洗浄除去すると、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記タイル表面に形成できた。 Thereafter, when the excess composite film forming solution on the surface is washed away with ethanol, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 5 nm are obtained. A composite film containing it could be formed on the tile surface.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でタイルを加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略30nm厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を、前記タイル表面に形成できた。また、ふき取った場合には、略10nm厚みとなった。 Note that the non-aqueous organic solvent is evaporated without washing (in this case, when the tile is heated at 60 to 100 ° C., the evaporation of the solvent can be accelerated and the evaporation time can be shortened). A composite film containing a material mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a material mainly composed of a siloxane group having a thickness of 30 nm could be formed on the tile surface. When wiped off, the thickness was approximately 10 nm.

その後、複合膜が形成されたそれぞれのタイルを実質的に酸素を含まない雰囲気、例えば窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガス中で400℃30分程度の加熱処理を行うと、−SiCl3基が吸着水と反応して生成された≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、耐摩耗性、且つ耐候性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質よりなる撥水撥油性の複合膜となり、250℃以下で焼成した場合に比べおよそ3倍の高耐久撥水撥油防汚性のタイルを製造できた。 After that, when each tile on which the composite film is formed is subjected to heat treatment at 400 ° C. for about 30 minutes in an atmosphere substantially free of oxygen, for example, nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit, Most of the ≡SiOH groups produced by the reaction of SiCl 3 groups with adsorbed water undergo a dehydration reaction to form polysiloxane bonds and change to a mesh-like silica film, resulting in high wear resistance and high weather resistance. It becomes a water- and oil-repellent composite film composed of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, and is approximately three times as much as when fired at 250 ° C. or less. A highly durable water and oil repellent antifouling tile could be manufactured.

また、400℃30分の焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉扉開閉時に炉内へ多少の酸素混入があっても被膜が酸化することなく焼成できた。 When nitrogen gas containing 3% hydrogen (explosion limit is 4%) is used as the atmosphere gas during firing at 400 ° C. for 30 minutes, the coating film is formed even if some oxygen is mixed into the furnace when the furnace door is opened and closed. Firing was possible without oxidation.

なお、このとき、防汚性タイルの水に対する接触角は、洗浄の有無に関わらず、略103度であった。 At this time, the contact angle of the antifouling tile with respect to water was approximately 103 degrees regardless of whether or not cleaning was performed.

また、0.02mlの水滴の転落角は略30度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復6000回のこすりに対して95度以上を維持できた。さらにまた、あらかじめタイル表面にアルカリバリア膜を形成したタイルを用いれば、さらに耐水性を向上できた。 Further, the falling angle of 0.02 ml water droplets was about 30 degrees. Furthermore, in the abrasion test, the contact angle with respect to water was able to maintain 95 degrees or more with respect to the reciprocating 6000 times of rubbing on the conditions of a load of 500 g / 4cm < 2 >. Furthermore, if a tile having an alkali barrier film previously formed on the tile surface was used, the water resistance could be further improved.

さらにまた、タイルの代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜(酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等でも良い。)をアルカリバリア膜として約十ミクロン程度の厚みで形成したタイルを用いると、タイルからのアルカリ成分溶出を相当削減でき、耐候、耐水性をさらに向上できた。(一般の窯業製品でも同様) Furthermore, instead of the tile, a silica film (such as a titanium oxide film or a silicon nitride film formed using polysilazane) formed by using a sol-gel method or a CVD method may be used as an alkali barrier film, and about 10 microns. When a tile formed with a thickness of 5 mm was used, the elution of alkali components from the tile could be considerably reduced, and the weather resistance and water resistance could be further improved. (The same applies to general ceramic products)

ここで、クロロシリルキ基を主成分とする物質であるSiClの代わりに、Si(OCHやSi(OCで表される化合物を用いてもほぼ同様の結果が得られた。
なお、このとき、Si(OCHやSi(OCは、脱塩酸反応はしないが、フッ化炭素基およびクロロシリル基を含む化学吸着剤が反応して発生する塩酸が触媒となり、基材表面とシロキサン結合を形成する。
さらに、SiClの代わりに、SiH(OCH3、SiH2(OCH2、または(CHO)3Si(OSi(OCH2OCH(但し、mは整数)や、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)も使用できた。
(比較例1)
Here, in place of SiCl 4 which is a substance mainly composed of a chlorosilyl group, a similar result can be obtained even if a compound represented by Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4 is used. It was.
At this time, Si (OCH 3 ) 4 and Si (OC 2 H 5 ) 4 do not undergo a dehydrochlorination reaction, but hydrochloric acid generated by reaction of a chemical adsorbent containing a fluorocarbon group and a chlorosilyl group is a catalyst. Thus, a siloxane bond is formed with the substrate surface.
Further, instead of SiCl 4 , SiH (OCH 3 ) 3 , SiH 2 (OCH 3 ) 2 , or (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), , SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is Integer) could also be used.
(Comparative Example 1)

実施例1において、クロロシリル基を主成分とする物質SiClを除き同様の条件で防汚性タイルを試作した。基本性能である水に対する接触角を測定すると、112度であった。 In Example 1, an antifouling tile was prototyped under the same conditions except for the material SiCl 4 having a chlorosilyl group as a main component. When the contact angle with water, which is the basic performance, was measured, it was 112 degrees.

また、水滴の転落角は、0.02mlの水滴で、当初略50度であった。さらに、摩耗試験を行った。加重500g/4cmの条件下での耐摩耗性評価結果を、実施例1と共に図2に示す。 The drop angle of the water droplet was 0.02 ml, and was about 50 degrees initially. In addition, a wear test was performed. The wear resistance evaluation results under the conditions of weighting 500 g / 4 cm 2, shown in FIG. 2 with Example 1.

実用性を考慮した上で離水性能が最も好都合な接触角95度(図3参照)で見ると、往復2800回までしか耐えられなかった。また、図2から明らかなように、接触角が95度となる点で比較すると、実施例1のタイルに比べ1/2以下の耐摩耗性しか得られなかった。 In view of practicality, the contact angle of 95 degrees (see FIG. 3) with the most favorable water separation performance was able to withstand only up to 2800 round trips. Further, as apparent from FIG. 2, when compared with the point that the contact angle becomes 95 degrees, only wear resistance of 1/2 or less was obtained as compared with the tile of Example 1.

以上の実験より、従来技術で製造した防汚性タイルは、本発明の製造方法を用いて製造した防汚性タイルに比べ、水に対する接触角は110度以上と高いが、そのため離水性能が劣るという欠点があることが確かめられた。また、耐摩耗性も劣ることが確認できた。 From the above experiment, the antifouling tile manufactured by the conventional technique has a higher contact angle with water of 110 degrees or more than the antifouling tile manufactured by using the manufacturing method of the present invention, and therefore the water separation performance is inferior. It has been confirmed that there is a drawback. It was also confirmed that the wear resistance was inferior.

実施例1において、タイル表面の余分な複合膜形成溶液をエタノールで洗浄除去して、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜を形成した後、引き続いて、以下の工程を追加して2層構造の撥水撥油膜を形成した。 In Example 1, an excessive composite film forming solution on the tile surface was removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group having a thickness of about 5 nm and a siloxane group were mainly used. After the formation of the lower layer composite film containing the substance as a component, the following steps were subsequently added to form a water / oil repellent film having a two-layer structure.

追加した工程を以下に示す。
すなわち、あらかじめ乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で、フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3を用い、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、0.01M/Lの濃度になるように溶解して、上層膜形成溶液を作成しておいた。
The added process is shown below.
That is, in a dry atmosphere (humidity of 35% or less is good. If the humidity is higher than this, the film-forming substance is hydrolyzed and the film becomes cloudy), and the main component is a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group. CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is used as the substance to be used, and a concentration of 0.01 M / L is added to a 5% chloroform-containing dimethyl silicone solution containing almost no water, which is a non-aqueous organic solvent. An upper layer film-forming solution was prepared by dissolving in

次に、下層複合膜の形成されたタイルを準備し、表面に前記複合膜形成溶液を乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で塗布し、室温で1〜2時間放置反応させた。   Next, a tile on which a lower composite film is formed is prepared, and the composite film forming solution is dried on the surface in a dry atmosphere (humidity is 35% or less. If the temperature is higher than this, the film forming substance is hydrolyzed and the film becomes cloudy. And allowed to react at room temperature for 1-2 hours.

このとき、タイル表面の下層複合膜はある程度水酸基すなわち活性水素が露出しているので、前記タイル表面でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質の≡SiCl基と前記水酸基とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質が前記タイル表面に前記シリル基を介して結合した。 At this time, the lower layer composite film on the tile surface is exposed to hydroxyl groups, that is, active hydrogen, to some extent. Therefore, the ≡SiCl group and the hydroxyl group of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group on the tile surface. As a result of dehydrochlorination reaction, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group was bonded to the tile surface via the silyl group.

その後、表面の余分な上層膜形成溶液をエタノールで洗浄除去すると、略7nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を下層とし、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む被膜を上層膜とした2層構造の被膜を前記タイル表面に形成できた。 Thereafter, the excess upper layer film forming solution on the surface is removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, having a thickness of about 7 nm. It was possible to form a coating having a two-layer structure on the surface of the tile, with the composite film including the lower layer as the upper layer and the coating containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group as the upper layer film.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でタイルを加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略50nm厚みの2層構造の被膜を前記タイル表面に形成できた。
また、ふき取った場合には、略20nm厚みとなった。
Note that the non-aqueous organic solvent is evaporated without washing (in this case, when the tile is heated at 60 to 100 ° C., the evaporation of the solvent can be accelerated and the evaporation time can be shortened). A 50 nm thick two-layer coating could be formed on the tile surface.
When wiped off, the thickness was approximately 20 nm.

以下、実施例1と同様に、2層構造の被膜が形成されたそれぞれのタイルを実質的に酸素を含まない雰囲気、例えば窒素ガスあるいは爆発限界以下の水素を混ぜた窒素ガス中で400℃30分程度の加熱処理を行うと、膜中に残っていた≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、実施例1に比べ、さらに撥水性が高く且つ耐摩耗性、耐候性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜よりなる、2層構造の被膜が形成された高耐久性防汚性タイルを製造できた。なお、この場合も250℃以下で焼成した場合に比べ、5倍以上の高耐久撥水撥油防汚性のタイルを製造できた。しかしながら、470℃以上で加熱した場合には、酸素を含まない雰囲気中であっても被膜は分解してしまった。 Hereinafter, in the same manner as in Example 1, each tile on which a coating having a two-layer structure is formed has an oxygen-free atmosphere, for example, nitrogen gas or nitrogen gas mixed with hydrogen below the explosion limit at 400 ° C. 30. When heat treatment is performed for about a minute, most of the ≡SiOH groups remaining in the film undergo a dehydration reaction to form a polysiloxane bond and change to a network-like silica film. An underlayer composite film containing a fluorocarbon group, a hydrocarbon group, a silyl group as a main component, and a siloxane group as a main component, and a fluorocarbon group, which has high water repellency and high wear resistance and weather resistance; A highly durable antifouling tile having a two-layer coating film comprising an upper layer film containing a substance mainly composed of a hydrocarbon group and a silyl group could be produced. In this case as well, a highly durable water / oil / oil repellent and antifouling tile 5 times or more than that when fired at 250 ° C. or lower could be produced. However, when heated at 470 ° C. or higher, the film was decomposed even in an atmosphere containing no oxygen.

なお、このときも、防汚性タイルの水に対する接触角は、洗浄の有無に関わらず、略110±3度以内であった。 Also at this time, the contact angle of the antifouling tile with respect to water was within about 110 ± 3 degrees regardless of whether or not cleaning was performed.

また、0.02mlの水滴の転落角は略45度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復9000回のこすりに対して95度以上を維持できた。加重500g/4cmの条件下での耐摩耗性評価結果を、実施例1および比較例1と共に図2に示す。
さらにまた、あらかじめタイル表面にアルカリバリア膜を形成したタイルを用いれば、さらに耐水性を向上できた。
Further, the falling angle of 0.02 ml water droplets was about 45 degrees. Furthermore, in the abrasion test, the contact angle with water was able to maintain 95 degrees or more with respect to 9000 times of rubbing under conditions of a load of 500 g / 4 cm 2 . FIG. 2 shows the results of evaluation of wear resistance under the condition of a weight of 500 g / 4 cm 2 together with Example 1 and Comparative Example 1.
Furthermore, if a tile having an alkali barrier film previously formed on the tile surface was used, the water resistance could be further improved.

乾燥雰囲気中(湿度50%以下が良い。)でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3と、アルコキシシリル基を主成分とする物質としてSi(OA)(Aは、アルキル基を表す。)を、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、それぞれ0.02M/Lと0.01M/Lの濃度(2:1)になるように溶解し、さらにシラノール縮合触媒としてジブチル錫ジアセチルアセトナートを0.0001M/Lの濃度になるように添加溶解して、複合膜形成溶液を作成した。 CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OA) 3 as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less) , Si (OA) 4 (A represents an alkyl group) as a substance having an alkoxysilyl group as a main component is added to a 5% chloroform-containing dimethylsilicone solution containing almost no water as a non-aqueous organic solvent. Dissolve to a concentration of 02M / L and 0.01M / L (2: 1), and add and dissolve dibutyltin diacetylacetonate as a silanol condensation catalyst to a concentration of 0.0001M / L. A composite film forming solution was prepared.

次に、タイルをよく洗浄し、乾燥後、乾燥雰囲気中(湿度50%以下が良い。)で表面に前記複合膜形成溶液を塗布し、室温で1〜2時間放置反応させた。   Next, the tile was thoroughly washed and dried, and then the composite film forming solution was applied to the surface in a dry atmosphere (humidity of 50% or less), and allowed to react at room temperature for 1 to 2 hours.

このとき、タイル表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記タイル表面で二つの物質の≡SiOA基と前記水酸基や吸着水とがシラノール縮合触媒下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質が混合した状態で前記タイル表面に結合した。 At this time, since the tile surface contains many hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the ≡SiOA group of the two substances on the tile surface and the hydroxyl group or adsorbed water are dealcoholized under a silanol condensation catalyst. It reacted and bonded to the tile surface in a state where a substance mainly composed of fluorocarbon group, hydrocarbon group and silyl group and a substance mainly composed of siloxane group were mixed.

このとき、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質は、前記シリル基を介して、タイル表面やシロキサン基を主成分とする物質と結合し、シロキサン基を主成分とする物質は、シロキサン基を介して、タイル表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質と結合した。 At this time, the substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group is bonded to the tile surface or a substance mainly composed of a siloxane group via the silyl group, and the siloxane group is mainly composed. The substance to be bonded to the tile surface or a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group via a siloxane group.

その後、表面の余分な複合膜形成溶液をエタノールで洗浄除去すると、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記タイル表面に形成できた。 Thereafter, when the excess composite film forming solution on the surface is washed away with ethanol, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 5 nm are obtained. A composite film containing it could be formed on the tile surface.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60〜100℃でタイルを加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略30nm厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を、前記タイル表面に形成できた。また、単に布でふき取った場合には、略10nm厚みとなった。 The non-aqueous organic solvent is evaporated without washing (in this case, heating the tile at 60 to 100 ° C. can accelerate the evaporation of the solvent and shorten the evaporation time). A composite film containing a material mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a material mainly composed of a siloxane group having a thickness of 30 nm could be formed on the tile surface. Moreover, when it wiped off only with the cloth, it became about 10 nm thickness.

その後、複合膜が形成されたそれぞれのタイルを実質的に酸素を含まない雰囲気、例えば窒素ガス、あるいは爆発限界以下の水素を含む窒素ガス中で400℃20分程度の加熱処理を行うと、≡SiOA基が吸着水と反応して生成された≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、耐摩耗性、且つ耐候性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質よりなる撥水撥油性の複合膜となり、250℃で焼成した場合に比べおよそ3倍の高耐久性で且つ撥水撥油防汚性のタイルを製造できた。 Thereafter, when each tile formed with the composite film is subjected to a heat treatment at 400 ° C. for about 20 minutes in an atmosphere substantially free of oxygen, for example, nitrogen gas or nitrogen gas containing hydrogen below the explosion limit, ≡ Most of the ≡SiOH groups produced by the reaction of SiOA groups with adsorbed water undergo a dehydration reaction to form polysiloxane bonds and change into a mesh-like silica film, which is a highly wear-resistant and weather-resistant fluoride. It becomes a water- and oil-repellent composite film composed of a substance mainly composed of carbonated hydrocarbon group, hydrocarbon group and silyl group and a substance mainly composed of siloxane group, and is approximately three times as durable as when fired at 250 ° C. And water- and oil-repellent and antifouling tiles could be produced.

なお、400℃30分の焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉内へ多少の酸素混入があっても被膜が酸化することなく焼成できた。 In addition, when nitrogen gas containing 3% hydrogen (explosion limit is 4%) is used as an atmospheric gas during firing at 400 ° C. for 30 minutes, the coating does not oxidize even if some oxygen is mixed into the furnace. Baked.

なお、このとき、複合膜の光透過率は、洗浄の有無基関わらず、波長400〜700nmの光に対して99%以上であった。また、撥水撥油防汚タイルの水に対する接触角は、洗浄の有無に関わらず、略103度であった。 At this time, the light transmittance of the composite film was 99% or more with respect to light having a wavelength of 400 to 700 nm regardless of whether or not cleaning was performed. Moreover, the contact angle with respect to the water of a water-repellent | oil-repellent | oil-repellent antifouling tile was about 103 degree | times irrespective of the presence or absence of washing | cleaning.

また、0.02mlの水滴の転落角は略30度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復6000回のこすりに対して96度以上を維持できた。 Further, the falling angle of 0.02 ml water droplets was about 30 degrees. Furthermore, in the abrasion test, the contact angle with water was able to maintain 96 degrees or more with respect to 6000 rubbing reciprocations under the condition of a load of 500 g / 4 cm 2 .

さらにまた、タイルの代わりに、ゾルゲル法やCVD法等を用いて形成したシリカ膜(酸化チタン膜、あるいはポリシラザンを用いて形成した窒化シリコン膜等でも良い。)をアルカリバリア膜として約十ミクロン程度の厚みで形成したタイルを用いると、タイルからのアルカリ成分溶出を相当削減でき、耐候、耐水性をさらに向上できた。(一般の窯業製品でも同様)
(比較例2)
Furthermore, instead of the tile, a silica film (such as a titanium oxide film or a silicon nitride film formed using polysilazane) formed by using a sol-gel method or a CVD method may be used as an alkali barrier film, and about 10 microns. When a tile formed with a thickness of 5 mm was used, the elution of alkali components from the tile could be considerably reduced, and the weather resistance and water resistance could be further improved. (The same applies to general ceramic products)
(Comparative Example 2)

実施例3において、アルコキシシリル基を主成分とする物質Si(OA)を除き同様の条件で撥水撥油防汚タイルを試作した。基本性能である水に対する接触角を測定すると、112度であった。 In Example 3, a water and oil repellent and antifouling tile was produced under the same conditions except for the substance Si (OA) 4 having an alkoxysilyl group as a main component. When the contact angle with water, which is the basic performance, was measured, it was 112 degrees.

また、水滴の転落角は、0.02mlの水滴で、当初略50度であった。さらに、摩耗試験を行った。加重500g/4cmの条件下での耐摩耗性評価結果を、実施例3、4の結果と共に図5に示す。 The drop angle of the water droplet was 0.02 ml, and was about 50 degrees initially. In addition, a wear test was performed. FIG. 5 shows the results of the evaluation of wear resistance under the condition of a weight of 500 g / 4 cm 2 together with the results of Examples 3 and 4.

実用性を考慮した上で離水性能が最も好都合な接触角95度(図3参照)で見ると、往復2800回までしか耐えられなかった。また、図から明らかなように、接触角が95度となる点で比較すると、実施例4のタイルに比べ1/2以下の耐摩耗性しか得られなかった。 In view of practicality, the contact angle of 95 degrees (see FIG. 3) with the most favorable water separation performance was able to withstand only up to 2800 round trips. Further, as apparent from the figure, when compared with the point that the contact angle is 95 degrees, only wear resistance of 1/2 or less was obtained compared to the tile of Example 4.

以上の実験より、アルコキシシリル基を主成分とする物質Si(OA)を除き製造した撥水撥油防汚タイルは、実用性が全くないわけではないが、アルコキシシリル基を主成分とする物質Si(OA)を添加して製造した撥水撥油防汚タイルに比べ、水に対する接触角は105度以上と高い故に離水性能が劣るという欠点があることが確かめられた。また、耐摩耗性も劣ることが確認できた。 From the above experiments, the water- and oil-repellent antifouling tiles manufactured by excluding the substance Si (OA) 4 having an alkoxysilyl group as a main component are not practical, but have an alkoxysilyl group as a main component. Compared to the water / oil repellent / antifouling tile produced by adding the substance Si (OA) 4 , it was confirmed that the water contact performance was high at 105 degrees or more, so that the water separation performance was inferior. It was also confirmed that the wear resistance was inferior.

実施例3において、タイル表面の余分な複合膜形成溶液をエタノールで洗浄除去して、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜を形成した後、引き続いて、以下の工程を追加して2層構造の撥水撥油膜を形成した。 In Example 3, the excess composite film forming solution on the tile surface was removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group having a thickness of about 5 nm and a siloxane group were mainly used. After the formation of the lower layer composite film containing the substance as a component, the following steps were subsequently added to form a water / oil repellent film having a two-layer structure.

追加した工程を以下に示す。
すなわち、あらかじめ乾燥雰囲気中(湿度50%以下が良い。)で、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3を用い、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、0.01M/Lの濃度になるように溶解し、さらにシラノール縮合触媒としてジブチル錫アセテートを0.0001M/Lの濃度になるように添加溶解して、上層膜形成溶液を作成しておいた。
The added process is shown below.
That is, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group in a dry atmosphere (humidity is preferably 50% or less) in advance. OA) 3 and dissolved in a 5% chloroform-containing dimethyl silicone solution containing almost no water, which is a non-aqueous organic solvent, so as to have a concentration of 0.01 M / L, and dibutyltin acetate is further added as a silanol condensation catalyst. An upper layer film-forming solution was prepared by adding and dissolving to a concentration of 0.0001 M / L.

次に、下層複合膜の形成されたタイルを準備し、さらに前記下層複表面に、前記複合膜形成溶液を乾燥雰囲気中(湿度50%以下が良い。)で塗布し、室温で1〜2時間放置反応させた。   Next, a tile on which a lower composite film is formed is prepared, and further, the composite film forming solution is applied to the lower composite surface in a dry atmosphere (humidity is preferably 50% or less), and at room temperature for 1 to 2 hours. The reaction was allowed to stand.

このとき、タイル表面の下層複合膜の表面にはある程度水酸基すなわち活性水素が露出しているので、前記タイル表面でフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質の≡SiOA基と前記水酸基とがシラノール触媒の存在下で脱アルコール反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質が前記タイル表面に前記シリル基を介して結合した。 At this time, since a hydroxyl group, that is, active hydrogen is exposed to some extent on the surface of the lower layer composite film on the tile surface, ≡SiOA of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group on the tile surface. The group and the hydroxyl group were subjected to dealcoholization reaction in the presence of a silanol catalyst, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group was bonded to the tile surface via the silyl group.

その後、表面の余分な上層膜形成溶液をエタノールで洗浄除去すると、略7nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を下層とし、フッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む被膜を上層膜とした2層構造の被膜を前記タイル表面に形成できた。 Thereafter, the excess upper layer film forming solution on the surface is removed by washing with ethanol, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group, having a thickness of about 7 nm. It was possible to form a coating having a two-layer structure on the surface of the tile, with the composite film including the lower layer as the upper layer and the coating containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group as the upper layer film.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でタイルを加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略50nm厚みの2層構造の被膜を前記タイル表面に形成できた。
また、布でふき取った場合には、略20nm厚みとなった。
Note that the non-aqueous organic solvent is evaporated without washing (in this case, when the tile is heated at 60 to 100 ° C., the evaporation of the solvent can be accelerated and the evaporation time can be shortened). A 50 nm thick two-layer coating could be formed on the tile surface.
Moreover, when it wiped off with the cloth, it became about 20 nm thickness.

以下、実施例3と同様に、2層構造の被膜が形成されたそれぞれのタイルを実質的に酸素を含まない雰囲気である窒素ガスまたは爆発限界以下の水素を含む窒素ガス中で400℃20分程度の加熱処理を行うと、膜中に残っていた≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、実施例3に比べ、耐摩耗性が1.5倍と高く、且つ撥水性と耐候性に優れたフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜よりなる、2層構造の被膜が形成された高耐久性撥水撥油防汚タイルを製造できた。なお、この場合も250℃で焼成した場合に比べ、5倍以上の高耐久性で且つ撥水撥油防汚性のタイルを製造できた。 Hereinafter, in the same manner as in Example 3, each tile on which a two-layered film is formed is subjected to 400 ° C. for 20 minutes in nitrogen gas that is an atmosphere that does not substantially contain oxygen, or in nitrogen gas that contains hydrogen below the explosion limit. When heat treatment is performed to the extent, most of the ≡SiOH groups remaining in the film undergo a dehydration reaction to form a polysiloxane bond and change to a network-like silica film. An underlayer composite film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and a substance mainly composed of a siloxane group, which has a property as high as 1.5 times and excellent in water repellency and weather resistance; A highly durable water- and oil-repellent and antifouling tile having a two-layered film formed of an upper layer film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group could be produced. In this case as well, a tile having a water repellent, oil repellent and antifouling property 5 times higher than that when fired at 250 ° C. could be produced.

なお、撥水撥油防汚タイルの水に対する接触角は、洗浄の有無に関わらず、略105±3度以内であった。 The contact angle of the water / oil / oil repellent antifouling tile with respect to water was within about 105 ± 3 degrees, regardless of whether or not cleaning was performed.

また、0.02mlの水滴の転落角は略45度であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復9000回のこすりに対して95度以上を維持できた。さらにまた、あらかじめタイル表面にアルカリバリア膜を形成したタイルを用いれば、さらに耐水性を向上できた。 Further, the falling angle of 0.02 ml water droplets was about 45 degrees. Furthermore, in the abrasion test, the contact angle with water was able to maintain 95 degrees or more with respect to 9000 times of rubbing under conditions of a load of 500 g / 4 cm 2 . Furthermore, if a tile having an alkali barrier film previously formed on the tile surface was used, the water resistance could be further improved.

なお、製造コストは高くなるが、下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行えば、さらに耐久性に優れたタイルが得られたことは言うまでもない。 In addition, although manufacturing cost becomes high, it goes without saying that if the process of forming the lower layer composite film is repeated a plurality of times and then the process of forming the upper layer film is performed, a tile having further excellent durability can be obtained.

さらに、下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を行わなくとも、撥水撥油特性にかなり優れたいタイルを製造できたことは言うまでもない。 Further, it is needless to say that a tile that is considerably excellent in water and oil repellency can be produced without repeating the step of forming the lower layer composite film a plurality of times and without performing the step of forming the upper layer film.

なお、400℃30分の焼成時、雰囲気ガスとして3%の水素(爆発限界は4%。)を含む窒素ガスを用いると、炉内へ多少酸素混入があっても被膜が酸化することなく焼成できた。 When nitrogen gas containing 3% hydrogen (explosion limit is 4%) is used as the atmospheric gas during firing at 400 ° C. for 30 minutes, firing is performed without oxidizing the coating even if there is some oxygen in the furnace. did it.

さらに、実施例3及び4において、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物が利用できた。
例えば、実施例3及び4において、上述のシラノール縮合触媒の代わりに、ケチミン化合物(ジャパンエポキシレジン社のH3、およびチッソ社のサイラエースS340を用いてみたが、性能はほぼ同じであった。)を同じ濃度で用いた場合、反応時間を30分まで短縮できた。
Furthermore, in Examples 3 and 4, a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound could be used instead of the above-mentioned silanol condensation catalyst.
For example, in Examples 3 and 4, a ketimine compound (H3 from Japan Epoxy Resin and Silaace S340 from Chisso was used in place of the silanol condensation catalyst described above, the performance was almost the same). When used at the same concentration, the reaction time could be shortened to 30 minutes.

さらに、実施例3及び4において、上述のシラノール縮合触媒とケチミン化合物、又はアルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を1:9〜9:1で混合して用いると、さらにさらに反応時間を20〜3分まで短縮できた。
例えば、実施例3及び4において、上述のシラノール縮合触媒濃度を半分にして、上述のケチミン化合物(例えば、S340)を等モル混合した場合(1:1)、反応時間を10分まで短縮できた。
Furthermore, in Examples 3 and 4, when the above-mentioned silanol condensation catalyst and ketimine compound, or aldimine compound, enamine compound, oxazolidine compound, and aminoalkylalkoxysilane compound are used in a mixture of 1: 9 to 9: 1, further, The reaction time could be shortened to 20-3 minutes.
For example, in Examples 3 and 4, when the above-mentioned silanol condensation catalyst concentration was halved and the above-mentioned ketimine compound (for example, S340) was equimolarly mixed (1: 1), the reaction time could be shortened to 10 minutes. .

なお、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 The ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3,10- Tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadecadiene, 2, , 4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza-4,19 -There is trieicosadiene.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3−(CF2−(CH−SiCl3と、クロロシリル基を主成分とする物質としてSiClとを、非水系有機溶媒である水をほとんど含まない5%クロロホルム含有ジメチルシリコーン溶液に、それぞれ0.02M/Lと0.01M/Lの濃度(2:1)になるように溶解して、複合膜形成溶液を作成した。 CF as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a chlorosilyl group in a dry atmosphere (humidity of 35% or less is preferable. 3 - (CF 2) 7 - (CH 2) 2 and -SiCl 3, and SiCl 4 as a material mainly containing chlorosilyl groups, 5% chloroform containing dimethyl silicone solution containing little water which is a non-aqueous organic solvent The composite film forming solution was prepared by dissolving in a concentration of 0.02 M / L and 0.01 M / L (2: 1), respectively.

次に、磁器製の皿をよく洗浄し、乾燥後、乾燥雰囲気中(湿度35%以下が良い。これ以上になると、被膜形成物質が加水分解して被膜が白濁した。)で表面に前記複合膜形成溶液を塗布し、室温で1〜2時間放置反応させた。   Next, the porcelain dish is thoroughly washed, dried, and then dried on the surface in a dry atmosphere (humidity is preferably 35% or less. When the temperature is higher than this, the film-forming substance is hydrolyzed and the film becomes cloudy). A film forming solution was applied and allowed to react at room temperature for 1 to 2 hours.

このとき、皿表面は水酸基すなわち活性水素を多数含み、且つ吸着水で被われているので、前記磁器製の皿表面で二つの物質の≡SiCl基と前記水酸基や吸着水とが脱塩酸反応して、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質が混合した状態で前記磁器製の皿表面に結合した。 At this time, since the dish surface contains many hydroxyl groups, that is, active hydrogen, and is covered with adsorbed water, the ≡SiCl group of the two substances and the hydroxyl group or adsorbed water undergo a dehydrochlorination reaction on the porcelain dish surface. Then, the substance having the fluorocarbon group, the hydrocarbon group and the silyl group as main components and the substance having the siloxane group as main components were mixed and bonded to the surface of the porcelain dish.

フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質は、前記シリル基を介して、磁器製の皿表面やシロキサン基を主成分とする物質と結合し、シロキサン基を主成分とする物質は、シロキサン基を介して、磁器製の皿表面やフッ化炭素基と炭化水素基とシリル基を主成分とする物質と結合した。 A substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group is bonded to a porcelain dish surface or a substance mainly composed of a siloxane group via the silyl group, and the siloxane group is composed mainly of the siloxane group. The substance to be bonded was bonded to a porcelain dish surface or a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group via a siloxane group.

その後、表面の余分な複合膜形成溶液をエタノールで洗浄除去すると、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記磁器製の皿表面に形成できた。 Thereafter, when the excess composite film forming solution on the surface is washed away with ethanol, a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 5 nm are obtained. A composite film containing it could be formed on the surface of the porcelain dish.

なお、洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃で磁器製の皿を加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、略30nm厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を、前記磁器製の皿表面に形成できた。また、ふき取った場合には、略10nm厚みとなった。 The non-aqueous organic solvent is evaporated without washing (in this case, heating the porcelain dish at 60 to 100 ° C. can accelerate the evaporation of the solvent and shorten the evaporation time). A composite film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group having a thickness of about 30 nm could be formed on the surface of the porcelain dish. When wiped off, the thickness was approximately 10 nm.

その後、複合膜が形成されたそれぞれの磁器製の皿を、さらに不活性ガスである窒素ガス中で400℃30分程度の加熱処理を行うと、被膜内の−SiCl3基が吸着水と反応して生成された≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、耐摩耗性で且つ耐水性の高いフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる撥水撥油性の複合膜となり、高耐久性で且つ水切り特性に優れた防汚性の磁器製の皿を製造できた。 Then, when each porcelain dish on which the composite film is formed is further subjected to a heat treatment at 400 ° C. for about 30 minutes in nitrogen gas as an inert gas, the —SiCl 3 group in the coating reacts with the adsorbed water. Most of the ≡SiOH groups generated in this way undergo a dehydration reaction to form polysiloxane bonds and change to a network-like silica film, which is a wear-resistant and water-resistant fluorocarbon group and hydrocarbon group. And a water- and oil-repellent composite film composed of a substance 1 containing silyl groups as a main component and a substance 2 containing siloxane groups as a main component, and an antifouling porcelain dish having high durability and excellent drainage characteristics. I was able to manufacture it.

なお、このとき、複合膜の光透過率は、洗浄の有無基関わらず、波長400〜700nmの光に対して98%以上であったので、下地の色調や光沢は、被膜形成前と全く変わりがなかった。また、防汚性磁器製の皿の水滴接触角は、洗浄工程の有無に関わらず、略104度(臨界表面エネルギーは12mN/m程度) であり、テフロン(登録商標)コート並み以上の撥油性が付与できた。 At this time, the light transmittance of the composite film was 98% or more with respect to light having a wavelength of 400 to 700 nm regardless of whether or not the film was washed. There was no. In addition, the water droplet contact angle of the antifouling porcelain dish is approximately 104 degrees (critical surface energy is about 12 mN / m) regardless of whether or not the cleaning process is performed, and the oil repellency is equivalent to or higher than that of a Teflon (registered trademark) coat. Could be granted.

また、0.02mlの水滴の転落角は略30度であった。この数値は、食器を立て掛けると水滴がほぼ全て流れ落ちるレベルであり、水切り特性は抜群であった。さらに、摩耗試験では、加重500g/4cmの条件下で、水に対する接触角は、往復6000回のこすりに対して95度以上を維持できた。この条件は、布巾で表面を数十万回拭う条件に相当する。 Further, the falling angle of 0.02 ml water droplets was about 30 degrees. This value is a level at which almost all water drops flow down when the tableware is stood, and the draining characteristics are outstanding. Furthermore, in the abrasion test, the contact angle with respect to water was able to maintain 95 degrees or more with respect to the reciprocating 6000 times of rubbing on the conditions of a load of 500 g / 4cm < 2 >. This condition corresponds to the condition of wiping the surface hundreds of thousands of times with a cloth.

なお、加熱処理を行う前に、もう一度同じ製膜工程を繰り返し、その後加熱処理を行うと、2層構造の防汚膜を形成できた。この場合、被膜の耐久性もさらに向上できたことはいうまでもない。 In addition, before performing heat processing, when the same film-forming process was repeated once and heat processing was performed after that, the antifouling film | membrane of 2 layer structure was able to be formed. In this case, needless to say, the durability of the coating could be further improved.

さらにまた、2層目の被膜形成時にフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質の組成比を4:1に変えて最表面層を形成したら、水に対する初期接触角を109度にできた。また、耐摩耗試験では、1.8倍の耐久性が得られた。
(比較例3)
Furthermore, the outermost surface layer is formed by changing the composition ratio of the substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group to the substance mainly composed of chlorosilyl group at the time of forming the second layer film. Once formed, the initial contact angle for water was 109 degrees. In the abrasion resistance test, 1.8 times durability was obtained.
(Comparative Example 3)

実施例7において、クロロシリル基を主成分とする物質SiClを除き同様の条件で撥水撥油防汚磁器製の皿を試作した。すなわち、フッ化炭素基と炭化水素基とシリル基を主成分とする物質100%で作製した。この場合、基本性能である水に対する接触角を測定すると、112度であった。 In Example 7, a dish made of water and oil repellent antifouling porcelain was produced under the same conditions except for the substance SiCl 4 mainly composed of chlorosilyl groups. That is, it was made of 100% of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group. In this case, when the contact angle with water, which is the basic performance, was measured, it was 112 degrees.

また、水滴の転落角は、0.02mlの水滴で、当初略50度であった。 The drop angle of the water droplet was 0.02 ml, and was about 50 degrees initially.

実用性を考慮した上で離水性能が最も好都合な接触角95度で見ると、往復2800回までしか耐えられなかった。 In view of practicality, the contact angle of 95 degrees, the most favorable water separation performance, could withstand up to 2800 round trips.

したがって、水に対する接触角は110度以上と極めて高いので、良好な防汚機能を磁器製の皿に付与できた。また、ある程度の耐久性もあった。 Therefore, since the contact angle with respect to water is as extremely high as 110 degrees or more, a good antifouling function can be imparted to the porcelain dish. There was also some durability.

しかしながら、フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を形成した場合に比べて、耐久性に劣ることが確認できた。また、撥水性が高い、水滴転落角が高くなり、水切りが悪くなった。 However, it was confirmed that the durability was inferior compared to the case where a composite film containing a substance mainly containing a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly containing a siloxane group was formed. Further, the water repellency was high, the water drop falling angle was high, and the drainage was poor.

一方、実施例7及び比較例3に置いて、通常の磁器製の皿の代わりに、ゾルゲル法を用いて表面にシリカ膜を約10ミクロンの厚みで形成した磁器製の皿を用いると、下地磁器製の皿からのアルカリ成分溶出を削減でき、耐候、耐水性を倍以上向上できた。(一般の窯業製品でも同様) On the other hand, in Example 7 and Comparative Example 3, instead of a normal porcelain dish, a porcelain dish having a silica film formed on the surface with a thickness of about 10 microns using a sol-gel method is used. Alkaline component elution from porcelain dishes can be reduced, and weather resistance and water resistance can be improved more than twice. (The same applies to general ceramic products)

まず、磁器製の皿を用意し、よく洗浄して乾燥した。次に、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質として、例えば、CF3(CF27(CH22Si(Si(OC253)を59.7重量%、アルコキシシリル基を主成分とする物質としてSi(OC25を40重量%、シラノール縮合触媒として、例えば、ジブチル錫オキサイド)を0.3重量%となるようそれぞれ秤量調整し、水をほとんど含まないシリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に総量で0.2重量%程度の濃度(好ましくい濃度は、0.05〜1%程度)になるように溶かして複合膜形成溶液とした。 First, a porcelain dish was prepared, washed thoroughly and dried. Next, for example, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (Si (OC 2 H 5 ) 3 ) 59 is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. .7% by weight, Si (OC 2 H 5 ) 4 as a substance having an alkoxysilyl group as a main component, 40% by weight, and silanol condensation catalyst as, for example, dibutyltin oxide, 0.3% by weight Adjusted and dissolved in a silicone solvent containing almost no water, such as hexamethyldisiloxane solvent, to a total concentration of about 0.2% by weight (preferably about 0.05 to 1%). A film forming solution was obtained.

この複合膜形成溶液を、普通の空気中で(相対湿度57%、別の実験では70%でも問題なかった。)で前記磁器製の皿表面に塗布し、溶媒を蒸発させた。このとき、磁器製の皿表面は水酸基が多数含まれているので、前記フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の≡Si(OC25)基と前記磁器製の皿表面の水酸基や吸着水がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱C25OH)反応し、さらに、磁器製の皿表面の未反応のフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質も空気中の水分と脱アルコール反応して、磁器製の皿表面全面に亘り表面と化学結合して、略40nm厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2を含む複合膜を前記磁器製の皿表面に形成できた。 The composite film-forming solution was applied to the surface of the porcelain dish in normal air (relative humidity 57%, 70% in another experiment). The solvent was evaporated. At this time, since the porcelain dish surface contains a large number of hydroxyl groups, ≡Si of the substance mainly composed of the fluorocarbon group, the hydrocarbon group and the alkoxysilyl group and the substance mainly composed of the alkoxysilyl group. The (OC 2 H 5 ) group reacts with the hydroxyl group and adsorbed water on the surface of the porcelain dish in the presence of a silanol condensation catalyst, and in this case, de-C 2 H 5 OH, and further, the porcelain dish The surface of the porcelain dish is also subjected to a dealcoholization reaction between the unreacted fluorocarbon group, hydrocarbon group, alkoxysilyl group-based material, and alkoxysilyl group-based material as well as moisture in the air. A composite film comprising a substance 1 mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance 2 mainly composed of a siloxane group, which is chemically bonded to the surface over the entire surface, is manufactured by the above porcelain. Was formed on the surface of the dish.

一方、表面の余分な複合膜形成溶液をエタノールで洗浄除去(第5番目の発明)すると、略5nm程度の厚みのフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2を含む複合膜が前記磁器製の皿表面に形成できた。また、ふき取った場合には、略15nm厚みとなった。 On the other hand, when the excessive composite film forming solution on the surface is removed by washing with ethanol (fifth invention), the substance 1 and siloxane having a fluorocarbon group, a hydrocarbon group, and a silyl group as main components having a thickness of about 5 nm. A composite film containing the substance 2 containing the group as a main component could be formed on the surface of the porcelain dish. When wiped off, the thickness was approximately 15 nm.

その後、複合膜が形成されたそれぞれの磁器製の皿を不活性ガスである窒素ガス中で400℃30分程度の加熱処理を行うと、−Si(OC25)基が吸着水と反応して生成された≡SiOH基の大部分が脱水反応して、ポリシロキサン結合を形成し網目状のシリカ膜に変化して、耐摩耗性、且つ離水性(滑水性ともいう)に優れたフッ化炭素基と炭化水素基とシリル基を主成分とする物質1とシロキサン基を主成分とする物質2よりなる防汚性の複合膜となり、実施例7とほぼ同様の物性を有する高耐久性且つ水切り特性に優れた防汚性の磁器製の皿を製造できた。 Then, when each porcelain dish on which the composite film is formed is subjected to a heat treatment at 400 ° C. for about 30 minutes in an inert gas, nitrogen gas, the —Si (OC 2 H 5 ) group reacts with the adsorbed water. Most of the ≡SiOH groups generated in this way undergo a dehydration reaction to form polysiloxane bonds and change to a mesh-like silica film, which is a fluorescein with excellent wear resistance and water separation (also referred to as water slidability). Highly durable having substantially the same physical properties as in Example 7 with a composite film having antifouling properties consisting of a substance 1 mainly composed of carbonized carbon, hydrocarbon and silyl groups and a substance 2 mainly composed of siloxane groups. Moreover, an antifouling porcelain dish excellent in draining characteristics could be produced.

なお、加熱処理を行う前に、もう一度同じ製膜工程を繰り返し、その後加熱処理を行うと、2層構造の防汚膜を形成できた。この場合、被膜の耐久性もさらに向上できたことはいうまでもない。 In addition, before performing heat processing, when the same film-forming process was repeated once and heat processing was performed after that, the antifouling film | membrane of 2 layer structure was able to be formed. In this case, needless to say, the durability of the coating could be further improved.

さらにまた、2層目の被膜形成時にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の組成比を変えて、例えば、1:0、すなわちフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質のみで最表面層を形成したら、水に対する初期接触角を111度にできた。また、耐摩耗試験では、1.7倍の耐久性が得られた。   Furthermore, the composition ratio of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and a substance mainly composed of an alkoxysilyl group is changed at the time of forming the second layer film, for example, 1: 0. That is, when the outermost surface layer was formed only of a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group, the initial contact angle with respect to water could be 111 degrees. In the abrasion resistance test, 1.7 times durability was obtained.

実施例8において、アルコキシシリル基を主成分とする物質Si(OC25を除き、同様の条件で1層の撥水撥油防汚膜を形成した。基本性能である水に対する接触角を測定すると、111度であった。また、水切り特性能や耐久性は、実施例7や8に比べてやや劣るが、その他の物性値は、比較例3とほぼ同等であり、実用に供し得る防汚性の磁器製の皿を製造できた。 In Example 8, a single layer of water / oil repellent / antifouling film was formed under the same conditions except for the substance Si (OC 2 H 5 ) 4 having an alkoxysilyl group as a main component. When the contact angle with water, which is the basic performance, was measured, it was 111 degrees. Further, the drainage characteristic ability and durability are slightly inferior to those of Examples 7 and 8, but other physical property values are almost the same as those of Comparative Example 3, and an antifouling porcelain dish that can be put to practical use is used. I was able to manufacture it.

一方、実施例8及び9に置いて、磁器製の皿の代わりに、ゾルゲル法を用いて表面にシリカ膜を約10ミクロンの厚みで形成した磁器製の皿を用いると、下地磁器製の皿からのアルカリ成分溶出を削減でき、耐候、耐水性を倍以上向上できた。さらに、下地が電磁調理器用セラミックス製トッププレートの場合、防汚被膜形成前に、あらかじめトッププレート表面に微細な突起(0.5〜2mm程度)を複数個設けておくと、被膜が直接鍋底に接触することがなくなり、被膜の耐久性を向上できた。 On the other hand, in place of the porcelain dish in Example 8 and 9, when a porcelain dish having a silica film formed on the surface with a thickness of about 10 microns by using the sol-gel method is used, a base porcelain dish Elution of alkaline components from the water, and improved weather resistance and water resistance more than double. Furthermore, when the base is a ceramic top plate for an electromagnetic cooker, before the antifouling film is formed, if a plurality of fine protrusions (about 0.5 to 2 mm) are provided on the top plate surface in advance, the film is directly applied to the pan bottom. The contact was eliminated and the durability of the coating could be improved.

本発明の防汚性タイルの製造工程を示したものであり、(a)は実施例1における被膜形成後のタイル表面、(b)は実施例1における焼成後の撥水撥油防汚膜が形成されたタイル表面、(c)は実施例2における2層構造の撥水撥油防汚膜が形成されたタイル表面をそれぞれ分子レベルまで拡大した断面概念図。The manufacturing process of the antifouling tile of this invention is shown, (a) is the tile surface after film formation in Example 1, (b) is the water-repellent and oil-repellent antifouling film after baking in Example 1. (C) is a conceptual cross-sectional view in which the tile surface on which the two-layered water- and oil-repellent and antifouling film of Example 2 is formed is enlarged to the molecular level. 実施例1および2と比較例1で製作した防汚性タイルの耐摩耗性試験結果を比較して示した図。The figure which compared and showed the abrasion resistance test result of the antifouling tile manufactured in Example 1 and 2 and the comparative example 1. FIG. 本発明を行うに当たり、予備実験で得たデータをプロットしたものであり、水に対する接触角と転落角の関係を示した図。The figure which plotted the data obtained by the preliminary experiment in performing this invention, and showed the relationship between the contact angle with respect to water, and a fall angle. 本発明の撥水撥油防汚タイルの製造工程を示したものであり、(a)は実施例3における被膜形成後のタイル表面、(b)は実施例3における焼成後の撥水撥油防汚膜が形成されたタイル表面、(c)は実施例4における焼成後の2層構造の撥水撥油防汚膜が形成されたタイル表面をそれぞれ分子レベルまで拡大した断面概念図。The manufacturing process of the water-repellent / oil-repellent antifouling tile of the present invention is shown, (a) is the tile surface after the coating is formed in Example 3, and (b) is the water- and oil-repellent after firing in Example 3. The tile surface on which the antifouling film was formed, (c) is a conceptual cross-sectional view in which the tile surface on which the water- and oil-repellent antifouling film having a two-layer structure after firing in Example 4 is formed is enlarged to the molecular level. 実施例3および4と比較例2で製作した撥水撥油防汚タイルの耐摩耗性試験結果を比較して示した図。The figure which compared and showed the abrasion resistance test result of the water-repellent | oil-repellent | oil-repellent antifouling tile manufactured in Example 3 and 4 and the comparative example 2. FIG.

符号の説明Explanation of symbols

1、1’ フッ化炭素基と炭化水素基とシリル基を主成分とする物質
2 シロキサン基を主成分とする物質2
3 陶器製のタイル
4、4’ 水酸基
5 水酸基4を多数含む複合膜
6 網目状のシリカ膜
6’ 網目状のシリカ膜
7 撥水撥油防汚性の複合膜
7’下層複合膜
8 上層膜
9 2層構造撥水撥油防汚性膜
11、11’ フッ化炭素基と炭化水素基とシリル基を主成分とする物質
12 シロキサン基を主成分とする物質2
13 タイル
14、14’ 水酸基
15 水酸基4を多数含む複合膜
16 網目状のシリカ膜
16’ 網目状のシリカ膜
17 撥水撥油防汚性の複合膜
17’下層複合膜
18 上層膜
19 2層構造撥水撥油防汚性膜
1, 1 'Substance 2 mainly composed of fluorocarbon group, hydrocarbon group and silyl group 2 Substance 2 mainly composed of siloxane group
3 Porcelain tile 4, 4 'hydroxyl group 5 composite film 6 containing many hydroxyl groups 4 network-like silica film 6' network-like silica film 7 water-repellent / oil-repellent / anti-fouling composite film 7 'lower layer composite film 8 upper layer film 9 Two-layer water / oil repellent / antifouling film 11, 11 ′ Substance 12 mainly composed of fluorocarbon group, hydrocarbon group and silyl group 12 Substance 2 mainly composed of siloxane group
13 Tile 14, 14 'Hydroxyl 15 Composite film 16 containing many hydroxyl groups 4 Reticulated silica film 16' Reticulated silica film 17 Water repellent / oil repellent / antifouling composite film 17 'Lower layer composite film 18 Upper layer film 19 2 layers Structure Water and oil repellent antifouling film

Claims (35)

高耐久性の撥水撥油防汚被膜が形成された窯業製品であって、前記撥水撥油防汚性被膜が、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜を少なくとも1層含んでいることを特徴とする防汚性窯業製品。   A ceramic product on which a highly durable water / oil repellent / antifouling coating is formed, wherein the water / oil repellent / antifouling coating comprises at least a fluorocarbon group, a hydrocarbon group and a silyl group as main components. And an antifouling ceramic product comprising at least one layer of a composite film containing a substance mainly composed of a siloxane group. フッ化炭素基と炭化水素基とシリル基を主成分とする物質が、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または窯業製品の表面に結合固定されていることを特徴とする請求項1に記載の防汚性窯業製品。   A substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group is bonded to the surface of the silica film and / or ceramic product through the silyl group in a silica film composed of a substance mainly composed of a siloxane group. The antifouling ceramic product according to claim 1, wherein the antifouling ceramic product is bonded and fixed. フッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質がそれぞれシリル基およびシロキサン基を介して互いに/または個々に窯業製品の表面に結合固定されていることを特徴とする請求項1に記載の防汚性窯業製品。   A substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group are bonded and fixed to the surface of the ceramic product through the silyl group and the siloxane group, respectively, or individually. The antifouling ceramic product according to claim 1, wherein 高耐久性の撥水撥油防汚性被膜が形成された窯業製品であって、前記被膜が、少なくともフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む下層複合膜とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む上層膜の2層構造膜を含むことを特徴とする防汚性窯業製品。   A ceramic product on which a highly durable water / oil / oil repellent antifouling film is formed, wherein the film is mainly composed of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a siloxane group. An antifouling ceramic product characterized by comprising a two-layer structure film comprising a lower layer composite film containing a substance and an upper layer film containing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group. 前記下層複合膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質が、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または窯業製品表面に結合固定されており、前記上層膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質がシリル基を介して前記下層複合膜に含まれるシロキサン基に結合固定されてことを特徴とする請求項4に記載の防汚性窯業製品。   A substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group constituting the lower layer composite film is a silica film composed of a substance mainly composed of a siloxane group. / Or a siloxane group that is bonded and fixed to the surface of the ceramic product, and a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group constituting the upper layer film is contained in the lower layer composite film via the silyl group The antifouling ceramic product according to claim 4, wherein the antifouling ceramic product is bonded and fixed to. 前記下層複合膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質が、それぞれシリル基およびシロキサン基を介して互いにまたは個々に窯業製品表面に結合固定されており、前記上層膜を構成するフッ化炭素基と炭化水素基とシリル基を主成分とする物質がシリル基を介して前記下層複合膜に含まれるシロキサン基に結合固定されてことを特徴とする請求項4に記載の防汚性窯業製品。   A material mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a material mainly composed of a siloxane group constituting the lower layer composite film are ceramic products individually or individually via a silyl group and a siloxane group, respectively. Bonded and fixed on the surface, a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group constituting the upper layer film is bonded and fixed to a siloxane group contained in the lower layer composite film via the silyl group. The antifouling ceramic product according to claim 4. 複合膜に含まれるフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の分子組成比が、1:10〜10:1であることを特徴とする請求項1乃至6に記載の防汚性窯業製品。   The molecular composition ratio of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group and a substance mainly composed of a siloxane group contained in the composite film is 1:10 to 10: 1. The antifouling ceramic product according to any one of claims 1 to 6. 複合膜の水に対する接触角が95±10度に制御されていることを特徴とする請求項1乃至7に記載の防汚性窯業製品。   8. The antifouling ceramic product according to claim 1, wherein a contact angle of the composite membrane with respect to water is controlled to 95 ± 10 degrees. 上層膜の水に対する接触角が105±10度に制御されていることを特徴とする請求項4乃至6に記載の防汚性窯業製品。   7. The antifouling ceramic product according to claim 4, wherein a contact angle of the upper layer film with water is controlled to 105 ± 10 degrees. 窯業製品として、あらかじめ表面にアルカリバリア膜が形成された窯業製品を用いることを特徴とする請求項1乃至6に記載の防汚性窯業製品。 7. The antifouling ceramic product according to claim 1, wherein a ceramic product having an alkali barrier film formed on the surface in advance is used as the ceramic product. 窯業製品が食器、花器、衛生陶器、碍子、タイル、および電磁調理器用セラミック製トッププレートであることを特徴とする請求項1乃至10に記載の防汚性窯業製品。 11. The antifouling ceramic product according to claim 1, wherein the ceramic product is a ceramic top plate for tableware, flower vase, sanitary ware, insulator, tile, and electromagnetic cooker. 少なくとも下地窯業製品表面に、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触させて反応させ被膜を形成する工程と、被膜の形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。 Prepared by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group, and chlorosilyl group and a substance mainly composed of chlorosilyl group in a dry atmosphere with a non-aqueous organic solvent on the surface of at least the base ceramic product. An antifouling ceramic industry comprising a step of forming a film by bringing a composite film-forming solution into contact with each other and a step of firing the ceramic product on which the film is formed in an atmosphere substantially free of oxygen Product manufacturing method. 少なくとも下地窯業製品表面に、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触させて反応させ被膜を形成する工程と、前記窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。   Prepared by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group, and chlorosilyl group and a substance mainly composed of chlorosilyl group in a dry atmosphere with a non-aqueous organic solvent on the surface of at least the base ceramic product. A step of bringing a composite film-forming solution into contact with each other to form a film; a step of removing or wiping off an excess solution on the surface of the ceramic product using an organic solvent; and a substantially oxygen-free atmosphere. A method for producing an antifouling ceramic product, comprising a step of firing. フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくことを特徴とする請求項12および13に記載の防汚性窯業製品の製造方法。   The molecular mixing ratio of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group is set to 1:10 to 10: 1. 14. A method for producing an antifouling ceramic product according to 12 and 13. フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすることを特徴とする請求項12乃至14に記載の防汚性窯業製品の製造方法。 CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, and SiCl is used as a substance mainly composed of a chlorosilyl group. 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si (OC 2 ) instead of a substance having a chlorosilyl group as a main component. H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , Or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is 1:10 to 10: 1 13. A method according to claim 12, wherein Method for producing antifouling ceramic product according to 4. 少なくとも下地窯業製品表面に、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触させて反応させ下層複合膜を形成する工程と、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質を非水系有機溶媒で混合希釈して作成した上層膜形成溶液を前記下層複合膜が形成された窯業製品表面に接触させて反応させ上層膜を形成する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。 Prepared by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group, and chlorosilyl group and a substance mainly composed of chlorosilyl group in a dry atmosphere with a non-aqueous organic solvent on the surface of at least the base ceramic product. Mixing and diluting a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group in a dry atmosphere with a non-aqueous organic solvent The upper layer film forming solution thus prepared is brought into contact with the ceramic product surface on which the lower layer composite film is formed to react with it, and an upper layer film is formed; and the ceramic product on which the lower layer composite film and the upper layer film are formed is substantially oxygenated. A method for producing an antifouling ceramic product, comprising a step of firing in an atmosphere not containing the antifouling ceramic product. 少なくとも下地窯業製品表面に、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質とクロロシリル基を主成分とする物質とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触させて反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、乾燥雰囲気中でフッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質を非水系有機溶媒で混合希釈して作成した上層膜形成溶液を前記下層複合膜が形成された窯業製品表面に接触させ反応させて上層膜を形成する工程と、前記上層膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。   Prepared by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group, and chlorosilyl group and a substance mainly composed of chlorosilyl group in a dry atmosphere with a non-aqueous organic solvent on the surface of at least the base ceramic product. A step of contacting and reacting the composite film forming solution to form a lower layer composite film; a step of removing or wiping off an excess solution on the ceramic product surface on which the lower layer composite film is formed using an organic solvent; and drying. Contact the surface of the ceramic product on which the lower layer composite film is formed with the upper layer film formation solution prepared by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group and chlorosilyl group with a non-aqueous organic solvent in the atmosphere. A step of forming an upper layer film by reacting, and a step of washing or wiping off an excess solution on the surface of the ceramic product on which the upper layer film is formed using an organic solvent; Method for producing antifouling ceramic product characterized in that it comprises a step of firing in an atmosphere containing no. フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質と、クロロシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくことを特徴とする請求項16および17に記載の防汚性窯業製品の製造方法。   The molecular mixing ratio of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group and a substance mainly composed of a chlorosilyl group is set to 1:10 to 10: 1. 16. A method for producing an antifouling ceramic product according to 16 and 17. フッ化炭素基と炭化水素基とクロロシリル基を主成分とする物質としてCF3(CF2(CHSiCl3(nは整数)を用い、クロロシリル基を主成分とする物質としてSiClやSiHCl3、SiH2Cl2、Cl3Si(OSiCl2Cl(但し、mは整数)、あるいはクロロシリル基を主成分とする物質の代わりにSi(OCHやSi(OC、(CHO)3Si(OSi(OCH2OCH(但し、mは整数)、SiH(OC3、SiH2(OC2、または(CO)3Si(OSi(OC2OC(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすることを特徴とする請求項16乃至18に記載の防汚性窯業製品の製造方法。 CF 3 (CF 2 ) n (CH 2 ) 2 SiCl 3 (n is an integer) is used as a substance mainly composed of a fluorocarbon group, a hydrocarbon group and a chlorosilyl group, and SiCl is used as a substance mainly composed of a chlorosilyl group. 4 or SiHCl 3 , SiH 2 Cl 2 , Cl 3 Si (OSiCl 2 ) m Cl (where m is an integer), or Si (OCH 3 ) 4 or Si (OC 2 ) instead of a substance having a chlorosilyl group as a main component. H 5 ) 4 , (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (where m is an integer), SiH (OC 2 H 5 ) 3 , SiH 2 (OC 2 H 5 ) 2 , Or (C 2 H 5 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5 (where m is an integer), and the molecular composition ratio during mixing is 1:10 to 10: 1 17. A device according to claim 16, wherein Method for producing antifouling ceramic product according to 8. 少なくとも下地窯業製品表面に、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ被膜を形成する工程と、前記被膜の形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。 At least the surface of the base ceramic product is mixed and diluted with a non-aqueous organic solvent with a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group, a substance mainly composed of an alkoxysilyl group and a silanol condensation catalyst. An antifouling property comprising a step of forming a film by contact reaction of the prepared composite film forming solution, and a step of firing the ceramic product on which the film is formed in an atmosphere substantially free of oxygen. Manufacturing method for ceramic products. 少なくとも下地窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ被膜を形成する工程と、前記窯業製品表面の余分な複合膜形成溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。   Prepared by mixing and diluting at least the surface of the ceramic products with a non-aqueous organic solvent with a substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group, a substance mainly composed of alkoxysilyl group and a silanol condensation catalyst. A step of forming a film by contact-reacting the composite film forming solution, a step of removing or wiping off an excess of the composite film forming solution on the surface of the ceramic product using an organic solvent, and a substantially oxygen-free atmosphere. A method for producing an antifouling ceramic product, comprising a step of baking in the soil. フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質と、アルコキシシリル基を主成分とする物質の分子混合比を、1:10〜10:1にしておくことを特徴とする請求項20および21に記載の防汚性窯業製品の製造方法。   A molecular mixing ratio of a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and a substance mainly composed of an alkoxysilyl group is set to 1:10 to 10: 1. The method for producing an antifouling ceramic product according to claim 20 or 21. フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用い、混合時の分子組成比を1:10〜10:1にすることを特徴とする請求項20乃至22に記載の防汚性窯業製品の製造方法。 CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n (CH 2 ) 2 as substances mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and Si ( OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl or ethyl group, a propyl group, etc. Instead of a compound represented by a short-chain alkyl group) or a substance having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (provided that m is an integer) The method for producing an antifouling ceramic product according to any one of claims 20 to 22, wherein the molecular composition ratio during mixing is 1:10 to 10: 1. 少なくとも窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した上層膜形成溶液を接触反応させ上層膜を形成する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。 Prepared by mixing and diluting at least the surface of ceramic products with a substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group, substance based on alkoxysilyl group and silanol condensation catalyst with non-aqueous organic solvent. A step of forming a lower layer composite film by contact reaction of the composite film forming solution, and a silanol condensation with a substance mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group on the ceramic product surface on which the lower layer composite film is formed The step of forming an upper layer film by contact reaction of an upper layer film forming solution prepared by mixing and diluting a catalyst with a non-aqueous organic solvent, and the ceramic product formed with the lower layer composite film and the upper layer film are substantially free of oxygen. A method for producing an antifouling ceramic product, comprising a step of firing in an atmosphere. 窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した複合膜形成溶液を接触反応させ下層複合膜を形成する工程と、前記下層複合膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、前記下層複合膜が形成された窯業製品表面にフッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とシラノール縮合触媒とを非水系有機溶媒で混合希釈して作成した上層膜形成溶液を接触反応させ上層膜を形成する工程と、前記上層膜が形成された窯業製品表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程と、下層複合膜及び上層膜が形成された窯業製品を実質的に酸素を含まない雰囲気中で焼成する工程とを含むことを特徴とする防汚性窯業製品の製造方法。 Composite made by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group, substance mainly composed of alkoxysilyl group and silanol condensation catalyst on non-aqueous organic solvent on the surface of ceramic products A step of contacting a film-forming solution to form a lower layer composite film; a step of removing or wiping off an excess solution on the ceramic product surface on which the lower layer composite film is formed using an organic solvent; and the lower layer composite film The upper layer film forming solution prepared by mixing and diluting a substance mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group and silanol condensation catalyst with non-aqueous organic solvent is contact-reacted A step of forming an upper layer film, a step of washing or wiping off an excess solution on the ceramic product surface on which the upper layer film is formed using an organic solvent, a lower layer composite film and Method for producing antifouling ceramic product characterized in that it comprises a step of firing ceramic products layer film formed in an atmosphere containing substantially no oxygen. フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質とアルコキシシリル基を主成分とする物質の混合時の分子組成比を1:10〜10:1にすることを特徴とする請求項24および25に記載の防汚性窯業製品の製造方法。 A molecular composition ratio at the time of mixing a substance mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group and a substance mainly composed of an alkoxysilyl group is set to 1:10 to 10: 1. A method for producing an antifouling ceramic product according to claim 24 and 25. フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質としてCF3(CF2(CHSi(OA)3、[CF3(CF2(CHSi(OA)、または[CF3(CF2(CHSiOA(nは整数、Aはアルキル基)を用い、アルコキシシリル基を主成分とする物質としてSi(OA)4、SiH(OA)3、SiH2(OA)2、または(AO)3Si(OSi(OA)2OA(但し、mは整数、Aはメチル基又はエチル基、プロピル基等の短鎖アルキル基)で表される化合物、あるいはアルコキシシリル基を主成分とする物質の代わりに、SiCl4、SiHCl3、SiH2Cl2、またはCl3Si(OSiCl2Cl(但し、mは整数)を用いることを特徴とする請求項24乃至26に記載の防汚性窯業製品の製造方法。 CF 3 (CF 2 ) n (CH 2 ) 2 Si (OA) 3 , [CF 3 (CF 2 ) n (CH 2 ) 2 as substances mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group. ] 2 Si (OA) 2 or [CF 3 (CF 2 ) n (CH 2 ) 2 ] 3 SiOA (n is an integer, A is an alkyl group), and Si ( OA) 4 , SiH (OA) 3 , SiH 2 (OA) 2 , or (AO) 3 Si (OSi (OA) 2 ) m OA (where m is an integer, A is a methyl or ethyl group, a propyl group, etc. Instead of a compound represented by a short-chain alkyl group) or a substance having an alkoxysilyl group as a main component, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , or Cl 3 Si (OSiCl 2 ) m Cl (provided that m is an integer) The method for producing an antifouling ceramic product according to any one of claims 24 to 26. 下層複合膜を形成する工程のみを複数回繰り返し、上層膜形成工程を行わないことを特徴とする請求項24および27に記載の防汚性窯業製品の製造方法。 The method for producing an antifouling ceramic product according to claim 24 and 27, wherein only the step of forming the lower layer composite film is repeated a plurality of times, and the upper layer film forming step is not performed. 下層複合膜を形成する工程を複数回繰り返した後、上層膜形成工程を行うことを特徴とする請求項24乃至27に記載の防汚性窯業製品の製造方法。 28. The method for producing an antifouling ceramic product according to claim 24, wherein an upper layer film forming step is performed after the step of forming the lower layer composite film is repeated a plurality of times. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項20乃至29に記載の防汚性窯業製品の製造方法。 30. The production of an antifouling ceramic product according to any one of claims 20 to 29, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used in place of the silanol condensation catalyst. Method. シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合して用いることを特徴とする請求項20乃至29に記載の防汚性窯業製品の製造方法。 30. The production of an antifouling ceramic product according to any one of claims 20 to 29, wherein a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are mixed and used. Method. 有機溶媒で洗浄する代わりに、洗剤と水で洗浄することを特徴とする請求項13,17,21,および25に記載の防汚性窯業製品の製造方法。   26. The method for producing an antifouling ceramic product according to claim 13, 17, 21 and 25, wherein the product is washed with a detergent and water instead of washing with an organic solvent. 実質的に酸素を含まない雰囲気として窒素ガスまたは爆発限界以下の水素を含む窒素ガスを用い、300乃至450℃で焼成することを特徴とする請求項12,13,16,17,20,21,24,および25に記載の防汚性窯業製品の製造方法。   Baking is performed at 300 to 450 ° C. using nitrogen gas or nitrogen gas containing hydrogen below the explosion limit as an atmosphere substantially free of oxygen. 26. A method for producing an antifouling ceramic product according to 24 or 25. 下地窯業製品として、あらかじめ表面にアルカリバリア膜が形成された窯業製品を用いることを特徴とする請求項12,13,16,17,20,21,24,および25に記載の防汚性窯業製品の製造方法。 26. The antifouling ceramic product according to claim 12, 13, 16, 17, 20, 21, 24, and 25, wherein a ceramic product having an alkali barrier film previously formed on the surface is used as the base ceramic product. Manufacturing method. 下地窯業製品が食器や花器、衛生陶器、碍子、タイルであることを特徴とする請求項12,13,16,17,20,21,24,および25に記載の防汚性窯業製品の製造方法。 26. The method for producing an antifouling ceramic product according to claim 12, 13, 16, 17, 20, 21, 24, and 25, wherein the base ceramic product is a tableware, flower vase, sanitary ware, insulator, or tile. .
JP2004365223A 2003-12-22 2004-12-17 Antifouling ceramic products and their manufacturing methods Expired - Fee Related JP4759711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365223A JP4759711B2 (en) 2003-12-22 2004-12-17 Antifouling ceramic products and their manufacturing methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003423953 2003-12-22
JP2003423953 2003-12-22
JP2004365223A JP4759711B2 (en) 2003-12-22 2004-12-17 Antifouling ceramic products and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2005206455A true JP2005206455A (en) 2005-08-04
JP4759711B2 JP4759711B2 (en) 2011-08-31

Family

ID=34913889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365223A Expired - Fee Related JP4759711B2 (en) 2003-12-22 2004-12-17 Antifouling ceramic products and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP4759711B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117436A (en) * 2007-11-02 2009-05-28 Kazufumi Ogawa Solar energy utilizing device, and manufacturing method thereof
WO2009090756A1 (en) * 2008-01-18 2009-07-23 Tya K. K. Body fluid analyzer
US20100183861A1 (en) * 2007-12-27 2010-07-22 Kazufumi Ogawa Light-reflection coating composition and films

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132637A (en) * 1990-09-26 1992-05-06 Matsushita Electric Ind Co Ltd Glass and production thereof
JPH04240171A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Stainproof ceramic product and production thereof
JPH05161844A (en) * 1991-12-16 1993-06-29 Matsushita Electric Ind Co Ltd Preparation of chemisorption film
JPH08325037A (en) * 1995-05-30 1996-12-10 Matsushita Electric Ind Co Ltd Water repellent-oil repellent stainproof glass and its production
JPH10292057A (en) * 1997-02-20 1998-11-04 Matsushita Electric Ind Co Ltd Chemisorbent film, its production and chemisorbent solution used therefor
JP2001287971A (en) * 2000-03-31 2001-10-16 Matsushita Electric Ind Co Ltd Antifouling film, method for producing the same, antifouling glass for automobile using the same film, method for producing the same glass and automobile using the same glass
JP2005177655A (en) * 2003-12-22 2005-07-07 Kazufumi Ogawa Stainproof jewelry product and its producing method
JP2005206447A (en) * 2003-09-17 2005-08-04 Kazufumi Ogawa Water repellent oil repellent anti-fouling glass panel, method of manufacturing the same and automobile and electromagnetic cooking device using the same
JP2005206790A (en) * 2003-12-22 2005-08-04 Kazufumi Ogawa Water repellent and oil repellent antifouling treating agent and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132637A (en) * 1990-09-26 1992-05-06 Matsushita Electric Ind Co Ltd Glass and production thereof
JPH04240171A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Stainproof ceramic product and production thereof
JPH05161844A (en) * 1991-12-16 1993-06-29 Matsushita Electric Ind Co Ltd Preparation of chemisorption film
JPH08325037A (en) * 1995-05-30 1996-12-10 Matsushita Electric Ind Co Ltd Water repellent-oil repellent stainproof glass and its production
JPH10292057A (en) * 1997-02-20 1998-11-04 Matsushita Electric Ind Co Ltd Chemisorbent film, its production and chemisorbent solution used therefor
JP2001287971A (en) * 2000-03-31 2001-10-16 Matsushita Electric Ind Co Ltd Antifouling film, method for producing the same, antifouling glass for automobile using the same film, method for producing the same glass and automobile using the same glass
JP2005206447A (en) * 2003-09-17 2005-08-04 Kazufumi Ogawa Water repellent oil repellent anti-fouling glass panel, method of manufacturing the same and automobile and electromagnetic cooking device using the same
JP2005177655A (en) * 2003-12-22 2005-07-07 Kazufumi Ogawa Stainproof jewelry product and its producing method
JP2005206790A (en) * 2003-12-22 2005-08-04 Kazufumi Ogawa Water repellent and oil repellent antifouling treating agent and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117436A (en) * 2007-11-02 2009-05-28 Kazufumi Ogawa Solar energy utilizing device, and manufacturing method thereof
US20100183861A1 (en) * 2007-12-27 2010-07-22 Kazufumi Ogawa Light-reflection coating composition and films
WO2009090756A1 (en) * 2008-01-18 2009-07-23 Tya K. K. Body fluid analyzer
JP5237972B2 (en) * 2008-01-18 2013-07-17 株式会社ティー・ワイ・エー Body fluid component analyzer

Also Published As

Publication number Publication date
JP4759711B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5279507B2 (en) Storage-stable coating composition for wear- and weather-resistant application of easy-clean properties to smooth inorganic surfaces
JP4718549B2 (en) Sealing method of natural stone
KR102089108B1 (en) Perfluoropolyether-modified polysilazane and method for producing the same, surface treatment agent and article treated with said surface treatment agent
CN1422311A (en) Silicone compositions, method of making and using VOC free, non-flammable creams, paste and pwoder for treating non porous surfaces
JP2004130785A (en) Easily cleanable apparatus which can be easily cleaned and provided with heat resistant surface coating
JP4654443B2 (en) Manufacturing method of solar energy utilization device
TW201003785A (en) Aminosilanes for shallow trench isolation films
JP5262722B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
EP1245658B1 (en) Hydrophobic article
JP4759711B2 (en) Antifouling ceramic products and their manufacturing methods
JP2005206790A (en) Water repellent and oil repellent antifouling treating agent and its manufacturing method
JP5343271B2 (en) Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same
JP5358935B2 (en) Water and oil repellent and antifouling treatment agent, method for producing the same, article produced using the same, method for producing the same, and product equipped with the article
JP2009138228A (en) Precious metal product having water repellency, oil repellency and antifouling property, and manufacturing method therefor
JP4401907B2 (en) Easily washable articles for members used around water in a dwelling house and method for producing the same
JP5589215B2 (en) Solar energy utilization apparatus and manufacturing method thereof
WO2003022462A1 (en) Self-cleaning surfaces using polysiloxane coating composition with photocatalytic property
JPH08319137A (en) Water-repellent glass article and its production
JPH089510B2 (en) Antifouling ceramic product and manufacturing method thereof
JP6031653B2 (en) Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method
JP6077659B2 (en) Coating composition
JP2010227883A (en) Method of manufacturing water-repellent article, and water-repellent article obtained by the method
CN110938373B (en) Fluorine-free oleophobic coating and application thereof
JP3693290B2 (en) Ceramic surface protective film composition
WO2010134545A1 (en) Waterdrop slidable article and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees