JP5931709B2 - Body fluid component testing equipment - Google Patents

Body fluid component testing equipment Download PDF

Info

Publication number
JP5931709B2
JP5931709B2 JP2012271434A JP2012271434A JP5931709B2 JP 5931709 B2 JP5931709 B2 JP 5931709B2 JP 2012271434 A JP2012271434 A JP 2012271434A JP 2012271434 A JP2012271434 A JP 2012271434A JP 5931709 B2 JP5931709 B2 JP 5931709B2
Authority
JP
Japan
Prior art keywords
sample
measurement chamber
supply port
plate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012271434A
Other languages
Japanese (ja)
Other versions
JP2014115246A (en
Inventor
務 臼井
務 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TTM CO., LTD.
Original Assignee
TTM CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TTM CO., LTD. filed Critical TTM CO., LTD.
Priority to JP2012271434A priority Critical patent/JP5931709B2/en
Priority to CN 201320068524 priority patent/CN203133091U/en
Publication of JP2014115246A publication Critical patent/JP2014115246A/en
Application granted granted Critical
Publication of JP5931709B2 publication Critical patent/JP5931709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、生体の体液成分例えばグルコース、中性脂肪、尿酸、コレステロールなどを測定する検査器具に関するものである。 The present invention relates to a test instrument for measuring biological fluid components such as glucose, neutral fat, uric acid, cholesterol and the like.

従来、この種の検査器具として、特許文献1に記載のものが知られている。その内容は、検体供給口とポンプ接続口を備え、これらの間に検体処理室と測定室を流路を介して連通状に設けている。そして、接続口に接続されたポンプの駆動により検体供給口に供給された検体を検体処理室から測定室に移送し、この測定室で検体の測定を行う。 Conventionally, the thing of patent document 1 is known as this kind of test | inspection instrument. The contents include a sample supply port and a pump connection port, and a sample processing chamber and a measurement chamber are provided in communication with each other through a flow path. Then, the sample supplied to the sample supply port by the drive of the pump connected to the connection port is transferred from the sample processing chamber to the measurement chamber, and the sample is measured in this measurement chamber.

しかし、上記の検査器具は、検体の移送手段としてポンプを用いているので、検体を移送するときの制御が困難となり、また全体構造が複雑となって製品コストが高くなり、しかもランニングコストも高くなる。 However, since the above-described inspection instrument uses a pump as a means for transferring the specimen, it is difficult to control when the specimen is transferred, and the overall structure is complicated, resulting in high product costs and high running costs. Become.

特開平8−114539号公報JP-A-8-114539

そこで、本発明の目的は、検体の移送をポンプなどの機械力を要することなく簡単な押圧操作で確実に行えて、検体の確実な測定を行うことができ、しかもランニングコストも低廉にできる体液成分の検査器具を提供することにある。 Accordingly, an object of the present invention is to make it possible to reliably transfer a specimen by a simple pressing operation without requiring mechanical force such as a pump, to perform reliable measurement of the specimen, and to reduce running costs. It is to provide a component inspection instrument.

上記目的を達成するため、本発明にかかる体液成分の検査器具は、検体が内部に供給される検体供給口と、前記検体の測定が行われる測定室と、前記検体供給口と前記測定室とを連通する流路と、前記検体供給口に供給された前記検体から血球を取り除いて前記流路に供給する血球分離膜とを備え、貫通孔および貫通溝が設けられた、不通水性で通気性のある多孔質材からなるプレートを、二枚の不通水性で不通気性のプレートで厚さ方向に挟み込んで構成された積層板に、前記測定室および前記流路が設けられており、前記測定室は、前記貫通孔と前記二枚の不通水性で不通気性のプレートにより区画され、前記流路は、前記貫通溝と前記二枚の不通水性で不通気性のプレートにより区画されており、前記積層板に接着された基板に、前記検体供給口および前記血球分離膜が設けられている。 In order to achieve the above object, a bodily fluid component testing instrument according to the present invention includes a sample supply port through which a sample is supplied, a measurement chamber in which the sample is measured, the sample supply port, and the measurement chamber. And a blood cell separation membrane that removes blood cells from the sample supplied to the sample supply port and supplies the blood cells to the flow channel, and has a through hole and a through groove, and is impermeable and breathable. The measurement chamber and the flow path are provided in a laminated plate formed by sandwiching a plate made of a porous material with two impermeable and impermeable plates in the thickness direction, and the measurement The chamber is defined by the through hole and the two impermeable and impermeable plates, and the flow path is defined by the through groove and the two impermeable and impermeable plates, On the substrate bonded to the laminate, Body supply port and the blood cell separation membrane is provided.

この検査器具によれば、検体供給口内に供給された検体を測定室に移送するとき、弾性体からなる栓体で検体供給口を覆い、この栓体を押圧して検体を加圧することにより、ポンプなどの大がかりな機械装置を要することなく簡単な押圧操作で確実に行え、しかもランニングコストも低廉となる。また、検体を測定室に移送するため前記栓体を押圧操作したとき、前記流路や測定室の空間に溜っている空気がプレートを介して外部に逃げるので、検体は空間を満たすように順次移送されて、検体の所定量が測定室に速やかに移送される。また、血球分離膜により、血球を分離させて血漿だけが流路から測定室に移送されて血液検査に供される。 According to this test instrument, when the sample supplied into the sample supply port is transferred to the measurement chamber, the sample supply port is covered with a plug made of an elastic body, and the sample is pressed to pressurize the sample. Without requiring a large-scale mechanical device such as a pump, it can be reliably performed with a simple pressing operation, and the running cost is low. In addition, when the stopper is pressed to transfer the sample to the measurement chamber, the air accumulated in the flow path and the measurement chamber space escapes to the outside through the plate, so that the sample fills the space sequentially. As a result, a predetermined amount of the specimen is quickly transferred to the measurement chamber. Further, the blood cells are separated by the blood cell separation membrane, and only the plasma is transferred from the flow path to the measurement chamber and used for the blood test.

そしてこの検査器具は、プレートが積層されてなる積層板と、検体供給口および血球分離膜が設けられた基板とを別々に製作し、これらを接着して構成することができるため、製造が容易であり、製造コストを低廉とすることができる。   And this inspection instrument can be manufactured easily because it is possible to separately manufacture a laminated plate formed by laminating plates and a substrate provided with a specimen supply port and a blood cell separation membrane, and to bond them together. Thus, the manufacturing cost can be reduced.

前記測定室や流路には試薬充填部を設けることが好ましい。この試薬充填部には、測定室で検体を測定するために検体と反応させたり、検体の測定時に目的物質との反応を妨害したり測定誤差の要因となる物質を除去するための試薬を充填させる。例えば生体の体液成分である血中グルコースを測定する場合は、NAD、2−(4−ヨードフェニル)−3−(2,4ジニトロフェニル)−5−(2,4ジスルフォフェニル)−2H−テトラゾリウム、ポリビニルピロリドン、リン酸緩衝液、グルコース脱水酵素、ジアホラーゼを含んだ試薬を測定室または流路に滴下して乾燥させておく。一方、尿素窒素やクレアチニンを測定するときには、アスコルビン酸酸化酵素、アルギン酸ナトリウム、オルトフェニレンジアミン、リン酸緩衝液、尿酸酸化酵素、ペルオキシターゼを含んだ試薬を測定室または流路に滴下して乾燥させておく。 It is preferable to provide a reagent filling part in the measurement chamber or the flow path. This reagent filling section is filled with a reagent to react with the sample to measure the sample in the measurement chamber, or to remove a substance that interferes with the target substance during measurement of the sample or causes a measurement error. Let For example, when measuring blood glucose which is a body fluid component of a living body, NAD, 2- (4-iodophenyl) -3- (2,4dinitrophenyl) -5- (2,4disulfophenyl) -2H- A reagent containing tetrazolium, polyvinylpyrrolidone, phosphate buffer, glucose dehydrase, and diaphorase is dropped into a measurement chamber or a channel and dried. On the other hand, when measuring urea nitrogen or creatinine, a reagent containing ascorbic acid oxidase, sodium alginate, orthophenylenediamine, phosphate buffer, uric acid oxidase, and peroxidase is dropped into the measurement chamber or flow path and dried. deep.

前記多孔質材からなるプレートには、複数の測定室に至る複数の流路を設けることもできる。この構成によれば、同一検体の複数種類の測定が可能となる。特に、複数の流路と測定室を設ける場合、従来のポンプ駆動による移送手段ではそれぞれの流路を介して複数の測定室に所定量の検体を移送するのが困難であるのに対し、この発明では、前記栓体の押圧操作により前記流路や測定室の空間に溜っている空気がプレートを介して外部に逃げるので、検体は空間を満たすように前記各流路を経て各測定室に所定量が速やかに移送される。また、前記各流路の途中一部を試薬充填部として、これに試薬をそれぞれ各別に充填させるようにすれば、一緒に配置すると安定性に影響があるような試薬を配置するときに好都合となる。 The plate made of the porous material can be provided with a plurality of flow paths leading to a plurality of measurement chambers. According to this configuration, a plurality of types of measurements of the same sample can be performed. In particular, when a plurality of flow paths and measurement chambers are provided, it is difficult to transfer a predetermined amount of sample to a plurality of measurement chambers via the respective flow paths by the conventional pump-driven transfer means. In the invention, the air accumulated in the flow path and the measurement chamber space escapes to the outside through the plate due to the pressing operation of the plug, so that the sample passes through the flow paths and enters each measurement chamber so as to fill the space. A predetermined amount is quickly transferred. In addition, if a part of each flow path is used as a reagent filling portion and the reagent is filled in each of them, it is convenient when placing a reagent that affects stability when placed together. Become.

前記検体供給口の回りには、検体の流出を防ぐ堰を設けることが好ましい。このようにすれば、前記検体供給口から内部に検体を流出させたりすることなく確実に供給させられる。 A weir is preferably provided around the sample supply port to prevent the sample from flowing out. In this way, the sample can be reliably supplied without flowing out from the sample supply port.

以上のように、本発明によれば、検体の移送をポンプなどの大がかりな機械装置を要することなく簡単な押圧操作で確実に行えて、検体の確実な測定を行うことができ、しかもランニングコストも低廉となる。また、積層板と基板とを別々に製作し、これらを接着して構成することができるため、製造が容易であり、製造コストを低廉とすることができる。 As described above, according to the present invention, the sample can be reliably transferred by a simple pressing operation without requiring a large-scale mechanical device such as a pump, and the sample can be reliably measured. Will be cheaper. Moreover, since a laminated board and a board | substrate can be manufactured separately and these can be adhere | attached and comprised, manufacture is easy and can reduce manufacturing cost.

本発明にかかる検査器具の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the test | inspection instrument concerning this invention. 本発明にかかる検査器具の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the test | inspection instrument concerning this invention. 本発明にかかる検査器具を用いて血液検体の測定を行うときの手順を示す縦断面図であり、(a)は、検体供給口に検体を滴下し、栓体で検体供給口を覆った状態を示し、(b)は、栓体を押圧して検体を測定室に移送した状態を示す。It is a longitudinal cross-sectional view which shows the procedure at the time of measuring a blood sample using the test | inspection instrument concerning this invention, (a) is the state which dripped the sample to the sample supply port, and covered the sample supply port with the plug (B) shows the state which pressed the stopper and transferred the sample to the measurement chamber. 血液検体の測定結果を示すグラフである。It is a graph which shows the measurement result of a blood sample.

以下、本発明にかかる検査器具の一実施形態として血液検査器具を図面に基づいて説明する。
図1は血液検査器具の縦断面図を、図2はその分解斜視図を示している。これら各図に示す検査器具100は、基板1と積層板20とが接着されて構成されている。基板1には円形の検体供給口11が形成され、その上部周囲には堰12が設けられている。そして堰12には、上面からさらに突出する環状突起12aが設けられている。また、堰12に内側には、円弧状に突出した突起部13が設けられている。この堰12は、ブチルゴムなどの弾性材料からなる栓体5が密着して、内部空間を密封するよう構成されている。具体的には、この堰12に対して栓体5が当接すると、堰12の環状突起12aが、栓体5の縁部5aに食い込むため、内部空間が確実に密閉される。その状態で栓体5を押圧すると検体供給口11に供給された検体(血液)に加圧力を付与される。栓体5は、図示していない押圧機構により押圧される。
Hereinafter, a blood test instrument as an embodiment of a test instrument according to the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a blood test instrument, and FIG. 2 is an exploded perspective view thereof. The inspection instrument 100 shown in each of these drawings is configured by bonding a substrate 1 and a laminated plate 20. A circular sample supply port 11 is formed in the substrate 1, and a weir 12 is provided around the upper portion thereof. The weir 12 is provided with an annular protrusion 12a that further protrudes from the upper surface. In addition, a protrusion 13 protruding in an arc shape is provided on the inner side of the weir 12. The weir 12 is configured so that the plug body 5 made of an elastic material such as butyl rubber is in close contact with the inner space to seal the interior space. Specifically, when the plug body 5 comes into contact with the weir 12, the annular protrusion 12a of the weir 12 bites into the edge 5a of the plug body 5, so that the internal space is reliably sealed. When the stopper 5 is pressed in this state, a pressure is applied to the sample (blood) supplied to the sample supply port 11. The plug body 5 is pressed by a pressing mechanism (not shown).

また、基板1の下面側には、検体供給口11との対向部位に円形状の凹入部14が設けられており、ここに血球を分離除去する非対称孔径膜からなる血球分離膜6が装入されている。この血球分離膜6は、基板1に接着剤(図示省略)により固定されている。 In addition, a circular concave insertion portion 14 is provided on the lower surface side of the substrate 1 at a portion facing the sample supply port 11, and a blood cell separation membrane 6 made of an asymmetric pore diameter membrane for separating and removing blood cells is inserted therein. Has been. The blood cell separation membrane 6 is fixed to the substrate 1 with an adhesive (not shown).

また、基板1の下面側には、二次元バーコード15が設けられている。二次元バーコード15を読み取ることにより、検体を識別することが可能に構成されている。なお、この二次元バーコード15は、検査器具100において、任意の位置に設けることが可能である。なお、基板1の材料は、加工が容易な樹脂材料が使用され、例えばAS樹脂(スチレン・アクリロニトリル樹脂)が好適に用いられる。 A two-dimensional barcode 15 is provided on the lower surface side of the substrate 1. By reading the two-dimensional barcode 15, the specimen can be identified. The two-dimensional barcode 15 can be provided at an arbitrary position in the inspection instrument 100. In addition, the material of the board | substrate 1 uses the resin material which is easy to process, for example, AS resin (styrene acrylonitrile resin) is used suitably.

また、基板1の上面には、突起16,17が設けられている。この突起16,17は、光学測定または電気測定の際に、検査器具100を位置決めするために用いられる。 Protrusions 16 and 17 are provided on the upper surface of the substrate 1. The protrusions 16 and 17 are used for positioning the inspection instrument 100 during optical measurement or electrical measurement.

積層板20は、接着剤(図示省略)を介して上下方向に積層一体化された3つの第1プレート2、第2プレート3および第3プレート4を備える。積層板20において検体供給口11の側方内部には、検体Aの成分を測定する測定室7が形成され、この測定室7と検体供給口11の間に検体Aの移送用の流路8が形成されている。 The laminated plate 20 includes three first plates 2, a second plate 3 and a third plate 4 which are laminated and integrated in the vertical direction via an adhesive (not shown). In the laminated plate 20, a measurement chamber 7 for measuring the component of the sample A is formed inside the side of the sample supply port 11, and a flow path 8 for transferring the sample A between the measurement chamber 7 and the sample supply port 11. Is formed.

図1,2に示すように、流路8は以下のように形成されている。すわなち、第1プレート2における検体供給口11と同心位置に、上下方向に延びる貫通孔81を形成するとともに、第1プレート2の下方に配置される第2プレート3に、貫通孔81と対向状に円形の貫通孔82を設け、これから側方に向かって直線状の貫通溝83をくり抜いて、これら貫通孔81と貫通孔82および貫通溝83により流路8を形成している。また、測定室7は以下のように形成されている。すなわち、第2プレート3に設けた貫通溝83の先端側に、円形の貫通孔71を貫通溝83と連通状に形成し、貫通孔71の内部を検体Aの測定室7としている。 As shown in FIGS. 1 and 2, the flow path 8 is formed as follows. That is, a through-hole 81 extending in the vertical direction is formed at a position concentric with the sample supply port 11 in the first plate 2, and the through-hole 81 is formed in the second plate 3 disposed below the first plate 2. A circular through hole 82 is provided in an opposing manner, and a linear through groove 83 is cut out sideways from the side, and the flow path 8 is formed by the through hole 81, the through hole 82, and the through groove 83. The measurement chamber 7 is formed as follows. That is, a circular through hole 71 is formed in communication with the through groove 83 on the tip end side of the through groove 83 provided in the second plate 3, and the inside of the through hole 71 is used as the measurement chamber 7 for the specimen A.

なお、図1,2に示す検査器具100は、8つの測定室7を有している。具体的には、この第2プレート3に、測定室7を形成する円形の8つの貫通孔71が形成されている。また、第1プレート2に設けた貫通孔81と対向する貫通孔82が設けられており、この貫通孔82から延びる一本の貫通溝83aが、分岐部83bで8本の貫通溝83cに分岐し、これら貫通溝83cの先端側に貫通孔71が形成されている。8つの測定室7は、貫通孔71と第1プレート2および第3プレート4により区画される。また、流路8は、貫通溝83と第1プレート2および第3プレート4により区画される。なお流路8には貫通孔81も含まれている。 The inspection instrument 100 shown in FIGS. 1 and 2 has eight measurement chambers 7. Specifically, eight circular through holes 71 forming the measurement chamber 7 are formed in the second plate 3. In addition, a through hole 82 that is opposed to the through hole 81 provided in the first plate 2 is provided, and one through groove 83a extending from the through hole 82 branches into eight through grooves 83c at the branch portion 83b. And the through-hole 71 is formed in the front end side of these through-grooves 83c. The eight measurement chambers 7 are partitioned by the through hole 71, the first plate 2 and the third plate 4. The flow path 8 is defined by the through groove 83, the first plate 2, and the third plate 4. The flow path 8 also includes a through hole 81.

第1プレート2および第3プレート4は、不通水性で不通気性のプレートであり、その材料としては、加工が容易な樹脂材料が使用され、例えばAS樹脂(スチレン・アクリロニトリル樹脂)が好適に用いられる。 The first plate 2 and the third plate 4 are impervious and impervious plates, and as the material, a resin material that can be easily processed is used, for example, an AS resin (styrene acrylonitrile resin) is preferably used. It is done.

一方、第2プレート3としては、不通水性で通気性のある多孔質材である例えばPTFE(四フッ化エチレン樹脂)フィルムが好適に用いられる。このようにすれば、栓体5を押圧操作して検体Aを流路8から測定室7に移送させるとき、これら流路8や測定室7の空間に溜っている空気が第2プレート3を介して外部に逃げ、検体Aが空間を満たすように順次移送されて、検体Aの所定量が測定室7に速やかに移送される。 On the other hand, as the second plate 3, for example, a PTFE (tetrafluoroethylene resin) film that is a porous material that is impermeable and air permeable is preferably used. In this way, when the specimen 5 is transferred from the flow path 8 to the measurement chamber 7 by pressing the stopper 5, the air accumulated in the space of the flow path 8 and the measurement chamber 7 causes the second plate 3 to move. The sample A is sequentially transferred so as to fill the space, and a predetermined amount of the sample A is quickly transferred to the measurement chamber 7.

測定室7には試薬充填部9が設けられている。この試薬充填部9には、測定室7で検体Aを測定するために検体Aと反応させたり、検体Aの測定時に目的物質との反応を妨害したり測定誤差の要因となる物質を除去するための試薬を充填する。この試薬としては、例えば生体の体液成分である血中グルコースを測定する場合は、NAD、2−(4−ヨードフェニル)−3−(2,4ジニトロフェニル)−5−(2,4ジスルフォフェニル)−2H−テトラゾリウム、ポリビニルピロリドン、リン酸緩衝液、グルコース脱水酵素、ジアホラーゼを含んだものを用い、この試薬を測定室7に滴下して乾燥させておく。一方、尿素窒素やクレアチニンを測定するときは、アスコルビン酸酸化酵素、アルギン酸ナトリウム、オルトフェニレンジアミン、リン酸緩衝液、尿酸酸化酵素、ペルオキシターゼを含んだものを用い、この試薬を測定室7に滴下して乾燥させておく。なお、試薬充填部9は流路8の途中の一部に設けてもよい。 A reagent filling unit 9 is provided in the measurement chamber 7. The reagent filling unit 9 is made to react with the sample A in order to measure the sample A in the measurement chamber 7, or remove a substance that interferes with the reaction with the target substance or causes a measurement error when measuring the sample A. Fill the reagent for. As this reagent, for example, when measuring blood glucose which is a body fluid component of a living body, NAD, 2- (4-iodophenyl) -3- (2,4dinitrophenyl) -5- (2,4disulfo) is used. A reagent containing (phenyl) -2H-tetrazolium, polyvinyl pyrrolidone, phosphate buffer, glucose dehydrase, and diaphorase is dropped into the measurement chamber 7 and dried. On the other hand, when measuring urea nitrogen or creatinine, a reagent containing ascorbic acid oxidase, sodium alginate, orthophenylenediamine, phosphate buffer, uric acid oxidase, and peroxidase is dropped into the measurement chamber 7. And let it dry. The reagent filling unit 9 may be provided in a part of the channel 8.

測定室7で検体Aを測定するにあたっては、透過光や反射光を用いた光学測定や電気測定が採用される。透過光を用いる光学測定の場合は、第1プレート2および第3プレート4における、測定室7と隣接する箇所について、透明部Tを設けるとともに、プレート同士を接着する接着剤層(図示省略)が、測定室7に隣接する箇所において、光の透過を妨げないようにして、測定室7で試薬と検体Aにより呈色反応を行わせて、第3プレート4の下方から光を照射し、第1プレート2の上部で透過光を受光することにより、測定室7での吸光度を測定する。なお、第1プレート2および第3プレート4について透明部Tを設ける方法として、第1プレート2および第3プレート4を透明な樹脂で構成し、透明部T以外の箇所を黒色に着色することが好適である。 In measuring the specimen A in the measurement chamber 7, optical measurement or electrical measurement using transmitted light or reflected light is employed. In the case of optical measurement using transmitted light, an adhesive layer (not shown) for providing a transparent portion T and adhering the plates to each other in the first plate 2 and the third plate 4 adjacent to the measurement chamber 7 is provided. In a location adjacent to the measurement chamber 7, a color reaction is performed with the reagent and the specimen A in the measurement chamber 7 so as not to prevent light transmission, and light is irradiated from below the third plate 4. The absorbance in the measurement chamber 7 is measured by receiving the transmitted light at the top of the 1 plate 2. As a method of providing the transparent portion T for the first plate 2 and the third plate 4, the first plate 2 and the third plate 4 are made of a transparent resin, and portions other than the transparent portion T are colored black. Is preferred.

透明部T以外の箇所を黒色に着色するには、第1プレート2および第3プレート4の内側の面(すなわち第2プレート3側の面)に、印刷を施すことにより黒色の部分を形成することが好適である。このようにすると、透明部T以外は印刷層が覆う一方で透明部Tには印刷層が存在しないため、透明部Tに窪みが形成される。この窪みに液体試薬を塗布し、乾燥させれば、容易に試薬を測定室に配置することができる。 In order to color portions other than the transparent portion T in black, a black portion is formed by printing on the inner surfaces of the first plate 2 and the third plate 4 (that is, the surface on the second plate 3 side). Is preferred. If it does in this way, since a printing layer covers except a transparent part T, but there is no printing layer in the transparent part T, a hollow is formed in the transparent part T. If a liquid reagent is applied to the depression and dried, the reagent can be easily placed in the measurement chamber.

上記のように、多孔質材からなる第2プレート3に複数の流路8と測定室7を形成すれば、ひとつの検体Aから複数種類の測定が可能となる。特に、複数の測定室7と流路8を設ける場合、従来のポンプ駆動による移送手段では各流路8を介して複数の測定室7に所定量の検体Aを移送するのが困難であるのに対し、栓体5の押圧操作により流路8や測定室7の空間に溜っている空気が第2プレート3を介して外部に逃げるので、検体Aは空間を満たすように各流路8を経て各測定室7に所定量が速やかに移送される。また、各測定室7や流路8の途中の一部を試薬充填部として、これらに試薬をそれぞれ各別に充填させるようにすれば、一緒に配置すると安定性に影響を与えるような試薬を配置するときに好都合となる。 As described above, if a plurality of flow paths 8 and measurement chambers 7 are formed in the second plate 3 made of a porous material, a plurality of types of measurements can be performed from one specimen A. In particular, when a plurality of measurement chambers 7 and flow paths 8 are provided, it is difficult to transfer a predetermined amount of specimen A to the plurality of measurement chambers 7 through the respective flow paths 8 by a conventional pump-driven transfer means. On the other hand, the air accumulated in the flow path 8 and the space of the measurement chamber 7 escapes to the outside through the second plate 3 by the pressing operation of the plug 5, so that the specimen A passes through the flow paths 8 so as to fill the space. Then, a predetermined amount is quickly transferred to each measurement chamber 7. In addition, if a part of each measurement chamber 7 or channel 8 is used as a reagent filling part and each of them is filled with a reagent separately, a reagent that affects stability when placed together is placed. When it comes to convenience.

なお、測定室7で検体Aを測定するにあたっては、電気測定を行うことも可能である。すなわち、測定室7に一対の電極を配置し、これらに通電することによって検体Aの電導度などを測定する。 In measuring the specimen A in the measurement chamber 7, electrical measurement can also be performed. That is, by arranging a pair of electrodes in the measurement chamber 7 and energizing them, the conductivity of the specimen A is measured.

また、積層板20には、その一辺に二つの切欠21,22が設けられている。この切欠21,22は、各プレートの一辺の同じ位置に設けられた、切欠2a,3a,4aおよび切欠2b,3b,4bが、それぞれ重ね合わされて構成される。この切欠21,22は、光学測定または電気測定の際に、検査器具100を位置決めするために用いられる。 Further, the laminated plate 20 is provided with two notches 21 and 22 on one side thereof. The notches 21 and 22 are configured by overlapping notches 2a, 3a, and 4a and notches 2b, 3b, and 4b provided at the same position on one side of each plate. The notches 21 and 22 are used to position the inspection instrument 100 during optical measurement or electrical measurement.

次に、上記の検査器具100を用いて血液検査を行うときの手順を図3に基づいて説明する。
先ず、基板1に設けた検体供給口11から血球分離膜6上に検体Aを供給する(図3(a)参照)。このとき、検体供給口11の回りには堰12が設けられているので、検体Aの流出を招くことなく、これを検体供給口11の内部に確実に供給させられる。また、堰12に内側には円弧状に突出した突起部13が設けられているので、指先の皮膚の表面を穿刺し、穿刺部から出る血液を突起部13ですくい取ることにより、検体供給口11に向けて血液を誘導することができる。この後、同図のように検体供給口11に栓体5を被嵌させてから、この栓体5を押圧機構で押圧することにより、血球分離膜6上に供給された検体Aに加圧力が付与されて、検体Aは血球分離膜6を通過し、このとき血球が分離されて血漿だけが流路8を通って測定室7に移送される(図3(b)参照。なお、積層板20の内部に移送された検体Aは図示していない)。以上のように、栓体5を押圧して検体供給口11内に供給された検体Aを流路8から測定室7へと移送することにより、ポンプなどの機械力を要することなく簡単な操作で検体Aの移送が確実に行え、しかもランニングコストも低廉となる。
Next, a procedure for performing a blood test using the above-described test instrument 100 will be described with reference to FIG.
First, the sample A is supplied onto the blood cell separation membrane 6 from the sample supply port 11 provided in the substrate 1 (see FIG. 3A). At this time, since the weir 12 is provided around the sample supply port 11, the sample A can be reliably supplied into the sample supply port 11 without causing the sample A to flow out. Further, since the protruding portion 13 protruding in an arc shape is provided on the inside of the weir 12, the specimen supply port can be obtained by puncturing the surface of the fingertip skin and scooping blood from the puncturing portion with the protruding portion 13. The blood can be induced toward the head 11. Thereafter, the plug 5 is fitted into the sample supply port 11 as shown in the figure, and then the plug 5 is pressed by a pressing mechanism, whereby the pressure applied to the sample A supplied onto the blood cell separation membrane 6 is increased. The specimen A passes through the blood cell separation membrane 6, and at this time, the blood cells are separated, and only the plasma is transferred to the measurement chamber 7 through the flow path 8 (see FIG. 3B). The specimen A transferred to the inside of the plate 20 is not shown). As described above, by pressing the stopper 5 and transferring the sample A supplied into the sample supply port 11 from the flow path 8 to the measurement chamber 7, a simple operation can be performed without requiring mechanical force such as a pump. Thus, the sample A can be reliably transferred and the running cost can be reduced.

また、図1,2のように、流路8の一部を形成する第2プレート3を不通水性で通気性のある多孔質材(例えばPTFE)で形成することにより、検体Aを測定室7に移送するため栓体5を押圧操作したとき、流路8や測定室7の空間に溜っている空気が第2プレート3を介して外部に逃げるので、検体Aは空間を満たすように順次移送されて、検体Aの所定量が測定室7に速やかに移送される。特に図1,2に示すように、多孔質材からなる第2プレート3に複数の流路8と測定室7の一部を形成する場合、従来のポンプ駆動による移送手段では各流路8を介して複数の測定室7に所定量の検体Aを移送するのは困難であるのに対し、栓体5の押圧操作により流路8や測定室7の空間に溜っている空気が第2プレート3を介して外部に逃げることによって、各流路8から各測定室7への検体Aの速やかに移送が行える。 In addition, as shown in FIGS. 1 and 2, the second plate 3 forming a part of the flow path 8 is formed of a porous material (eg, PTFE) that is impermeable and breathable, so that the specimen A is measured in the measurement chamber 7. When the plug body 5 is pressed to transfer the sample A, the air accumulated in the space of the flow path 8 and the measurement chamber 7 escapes to the outside through the second plate 3, so that the specimen A is sequentially transferred to fill the space. Then, a predetermined amount of the specimen A is quickly transferred to the measurement chamber 7. In particular, as shown in FIGS. 1 and 2, when a plurality of flow paths 8 and a part of the measurement chamber 7 are formed on the second plate 3 made of a porous material, each flow path 8 is formed by a conventional pump-driven transfer means. It is difficult to transfer a predetermined amount of the specimen A to the plurality of measurement chambers 7 through the air, but the air accumulated in the space of the flow path 8 and the measurement chamber 7 by the pressing operation of the plug 5 is the second plate. By escaping to the outside through 3, the specimen A can be quickly transferred from each flow path 8 to each measurement chamber 7.

そして、測定室7に送られた検体Aは、測定室7の吸光度を測定することにより、検体Aの測定が行われる。あるいは、測定室7に一対の電極が設けられている場合には、電極により検体Aの電気測定が行われる。 The sample A sent to the measurement chamber 7 is measured for the sample A by measuring the absorbance in the measurement chamber 7. Alternatively, when a pair of electrodes is provided in the measurement chamber 7, electrical measurement of the specimen A is performed by the electrodes.

次に、具体的な実施例を挙げて説明する。同実施例では、血液中のグルコースを測定する場合を説明する。
基板1、第1プレート2と第3プレート4としてAS樹脂(スチレン・アクリロニトリル樹脂)製のものを用い、第2プレート3としては厚み75μmで孔径1μmのPTFEフィルムを用いた。また、栓体5としてブチルゴム製のものを用い、血球分離膜6としては非対称孔径膜を用いた。
Next, specific examples will be described. In this embodiment, a case where glucose in blood is measured will be described.
The substrate 1, the first plate 2 and the third plate 4 were made of AS resin (styrene / acrylonitrile resin), and the second plate 3 was a PTFE film having a thickness of 75 μm and a pore diameter of 1 μm. In addition, a plug made of butyl rubber was used as the plug body 5, and an asymmetric pore diameter membrane was used as the blood cell separation membrane 6.

また、試薬充填部9とした測定室7に、NAD3.6wt%、WST−3[2−(4−ヨードフェニル)−3−(2,4ジニトロフェニル)−5−(2,4ジスルフォフェニル)−2H−テトラゾリウム;同仁化学社製]の5.2wt%、ポリビニルピロリドン0.1wt%、pH7.5の50mMリン酸緩衝液、グルコース脱水酵素2KU/ml、ジアホラーゼ1KU/mlを含んだ試薬の10μlを滴下して乾燥させた。 In addition, NAD 3.6 wt%, WST-3 [2- (4-iodophenyl) -3- (2,4 dinitrophenyl) -5- (2,4 disulfophenyl) is contained in the measurement chamber 7 which is the reagent filling unit 9. ) -2H-tetrazolium; manufactured by Dojin Chemical Co.], a reagent containing 5.2 wt%, polyvinylpyrrolidone 0.1 wt%, pH 7.5 50 mM phosphate buffer, glucose dehydrase 2 KU / ml, diaphorase 1 KU / ml 10 μl was added dropwise and dried.

そして、検体供給口11から内部に、グルコース濃度がそれぞれ70mg/dl、150mg/dl、300mg/dlである血液の検体Aを滴下し、この後検体供給口11に栓体5を被嵌させて、これを押圧操作して検体Aを流路8から測定室7に移送させた。 Then, a blood sample A having glucose concentrations of 70 mg / dl, 150 mg / dl, and 300 mg / dl is dropped from the sample supply port 11 into the inside, and then the plug 5 is fitted into the sample supply port 11. The specimen A was transferred from the flow path 8 to the measurement chamber 7 by pressing this.

検体Aの測定は、430nmの透過光を用いて、その吸光度を測定した。この結果、図4のグラフに示す通りである。同グラフから明らかなように、いずれの検体Aでも確実な測定を行える。 The specimen A was measured for its absorbance using 430 nm transmitted light. As a result, it is as shown in the graph of FIG. As is apparent from the graph, any sample A can be reliably measured.

100 検査器具
11 検体供給口
12 堰
1 基板
20 積層板
2 第1プレート
3 第2プレート(多孔質材からなるプレート)
4 第3プレート
6 血球分離膜
7 測定室
71 貫通孔
8 流路
82 貫通孔
83 貫通溝
A 検体
DESCRIPTION OF SYMBOLS 100 Inspection instrument 11 Specimen supply port 12 Weir 1 Board | substrate 20 Laminated board 2 1st plate 3 2nd plate (plate which consists of porous materials)
4 Third plate 6 Blood cell separation membrane 7 Measurement chamber 71 Through hole 8 Channel 82 Through hole 83 Through groove A Sample

Claims (3)

検体が内部に供給される検体供給口と、
前記検体の測定が行われる測定室と、
前記検体供給口と前記測定室とを連通する流路と、
前記検体供給口に供給された前記検体から血球を取り除いて前記流路に供給する血球分離膜とを備え、
貫通孔および貫通溝が設けられた、不通水性で通気性のある多孔質材からなるプレートを、二枚の不通水性で不通気性のプレートで厚さ方向に挟み込んで構成された積層板に、前記測定室および前記流路が設けられており、
前記測定室は、前記貫通孔と前記二枚の不通水性で不通気性のプレートにより区画され、前記流路は、前記貫通溝と前記二枚の不通水性で不通気性のプレートにより区画されており、
前記積層板に接着された基板に、前記検体供給口および前記血球分離膜が設けられており、
前記検体供給口の回りに前記検体の流出を防ぐ堰が設けられており、
前記堰の内側に、円弧状に突出した突起部が設けられている
ことを特徴とする体液成分の検査器具。
A sample supply port through which a sample is supplied;
A measurement chamber in which measurement of the specimen is performed;
A flow path communicating the sample supply port and the measurement chamber;
A blood cell separation membrane that removes blood cells from the sample supplied to the sample supply port and supplies them to the flow path;
In a laminated plate constituted by sandwiching a plate made of a porous material having water permeability and air permeability provided with a through hole and a through groove between two impermeable and air-permeable plates in the thickness direction, The measurement chamber and the flow path are provided;
The measurement chamber is defined by the through hole and the two impermeable and impermeable plates, and the flow path is defined by the through groove and the two impermeable and impermeable plates. And
The sample supply port and the blood cell separation membrane are provided on the substrate bonded to the laminate,
A weir is provided around the sample supply port to prevent the sample from flowing out,
A bodily fluid component testing instrument , wherein a protrusion projecting in an arc shape is provided inside the weir .
前記堰の上面に、上面からさらに突出する環状突起が設けられていることを特徴とする請求項1に記載の体液成分の検査器具。 The bodily fluid component testing instrument according to claim 1, wherein an annular protrusion further protruding from the upper surface is provided on the upper surface of the weir . 前記多孔質材からなるプレートに、複数の前記貫通孔および複数の前記貫通溝が形成されていることを特徴とする請求項1または2に記載の体液成分の検査器具。
3. The body fluid component testing instrument according to claim 1 , wherein a plurality of the through holes and a plurality of the through grooves are formed in the plate made of the porous material .
JP2012271434A 2012-12-12 2012-12-12 Body fluid component testing equipment Active JP5931709B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012271434A JP5931709B2 (en) 2012-12-12 2012-12-12 Body fluid component testing equipment
CN 201320068524 CN203133091U (en) 2012-12-12 2013-02-06 Device for examining body fluid components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271434A JP5931709B2 (en) 2012-12-12 2012-12-12 Body fluid component testing equipment

Publications (2)

Publication Number Publication Date
JP2014115246A JP2014115246A (en) 2014-06-26
JP5931709B2 true JP5931709B2 (en) 2016-06-08

Family

ID=48941062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271434A Active JP5931709B2 (en) 2012-12-12 2012-12-12 Body fluid component testing equipment

Country Status (2)

Country Link
JP (1) JP5931709B2 (en)
CN (1) CN203133091U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289934B (en) * 2015-06-23 2020-01-03 台达电子工业股份有限公司 Pipeline mixer
KR101830759B1 (en) * 2015-10-26 2018-02-21 광운대학교 산학협력단 Smart pipette for on-site whole blood analysis
KR101986429B1 (en) * 2017-11-16 2019-06-10 (주) 비비비 Lab on a chip having negative pressure generator and using method thereof
EP4170354A4 (en) * 2020-06-22 2024-01-17 Sekisui Chemical Co., Ltd. Inspection chip and liquid introduction method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2156226C (en) * 1994-08-25 1999-02-23 Takayuki Taguchi Biological fluid analyzing device and method
JP3856436B2 (en) * 2002-03-01 2006-12-13 松下電器産業株式会社 Biosensor
WO2003093836A1 (en) * 2002-04-30 2003-11-13 Arkray, Inc. Analysis instrument, sample analysis method and analysis device using the instrument, and method of forming opening in the instrument
US8003049B2 (en) * 2004-09-30 2011-08-23 Arkray, Inc. Analyzer
GB0525997D0 (en) * 2005-12-21 2006-02-01 Oxford Biosensors Ltd Micro-fluidic structures
JP2007248101A (en) * 2006-03-14 2007-09-27 Ttm:Kk Inspection instrument of liquid fluid and inspection method using it
EP2196806A1 (en) * 2007-09-14 2010-06-16 TTM Co., Ltd. Liquid fluid testing instrument and testing method
WO2009037784A1 (en) * 2007-09-21 2009-03-26 Tya K. K. Analytical instrument for body fluid component
WO2009110089A1 (en) * 2008-03-07 2009-09-11 株式会社ティー・ワイ・エー Instrument for analyzing body fluid
JP5339554B2 (en) * 2009-07-03 2013-11-13 株式会社ティー・ティー・エム Body fluid component analyzer
JP2011103826A (en) * 2009-11-19 2011-06-02 Nitto Boseki Co Ltd Method for measuring adp or specific substance producing adp by enzymatic reaction by dry chemistry and examination instrument used therefor
US10670586B2 (en) * 2010-04-14 2020-06-02 Nitto Boseki Co., Ltd. Test instrument for measuring analyte in sample by an aggregation assay using a metal colloid and using a reagent attached in a dry state in a reaction chamber, and method for measuring analyte using same
EP2637788A1 (en) * 2010-11-10 2013-09-18 Boehringer Ingelheim Microparts GmbH Device for filtering blood

Also Published As

Publication number Publication date
JP2014115246A (en) 2014-06-26
CN203133091U (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP2007248101A (en) Inspection instrument of liquid fluid and inspection method using it
EP2737315B1 (en) Cartridge for diagnostic testing
Songjaroen et al. Blood separation on microfluidic paper-based analytical devices
JP5931709B2 (en) Body fluid component testing equipment
KR101155763B1 (en) Ion sensor for fluid and method for its manufacture
KR20060049242A (en) Flow modulation devices
KR20060049246A (en) Methods for modulation of flow in a flow pathway
CN111213060B (en) Microfluidic metering and delivery system
JP6782565B2 (en) Biosensor chip and biosensor device
EP2196806A1 (en) Liquid fluid testing instrument and testing method
JP7196162B2 (en) Microfluidic device with laterally insertable electrodes
JP4733838B2 (en) Body fluid component inspection method and inspection instrument used therefor
US20220357347A1 (en) Device and method to evaluate a fluid sample on a single-use multianalyte consumable
KR20150039051A (en) Blood filter device separating plasma or serum from blood and the use thereof
WO2009110089A1 (en) Instrument for analyzing body fluid
US20150238954A1 (en) Fluid analysis cartridge
US10105478B2 (en) Analysis cartridge with filter unit
JP4945709B2 (en) Liquid fluid inspection instrument and inspection method
EP2806971B1 (en) Cartridge and method for processing a fluid
TW201623955A (en) A biosensor with structure of micro chamber
US20210069702A1 (en) Microfluidic sensing device and cartridge, and corresponding methods
JP4852029B2 (en) Test solution analysis chip
JP2014142245A (en) Target substance analysis microchip and analysis method
MXPA98004835A (en) Device for the determination of an analyte in a fluid corpo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250