JP5230352B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP5230352B2
JP5230352B2 JP2008274038A JP2008274038A JP5230352B2 JP 5230352 B2 JP5230352 B2 JP 5230352B2 JP 2008274038 A JP2008274038 A JP 2008274038A JP 2008274038 A JP2008274038 A JP 2008274038A JP 5230352 B2 JP5230352 B2 JP 5230352B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
refrigerant
pipe
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008274038A
Other languages
Japanese (ja)
Other versions
JP2010101574A (en
Inventor
誠善 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008274038A priority Critical patent/JP5230352B2/en
Publication of JP2010101574A publication Critical patent/JP2010101574A/en
Application granted granted Critical
Publication of JP5230352B2 publication Critical patent/JP5230352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は給湯機に関し、特に熱交換器の熱交換効率を向上させた給湯機に関する。   The present invention relates to a water heater, and more particularly to a water heater that improves the heat exchange efficiency of a heat exchanger.

給湯機で加熱した加熱水を貯湯タンクユニットの貯湯タンクに貯留する貯湯システムが従来より知られている。このような従来の貯湯システムに用いられる貯湯タンクユニットとしては、例えば「前記貯湯タンクユニット1は、湯水を貯湯する貯湯タンク7と、貯湯タンク7の上部に接続された出湯管8と、貯湯タンクの下部に接続された給水管9と、出湯管8から高温水と給水管9から分岐されたバイパス管10から低温水とを混合するミキシング弁11と、ミキシング弁11の下流に接続された給湯管12に設けられた給湯温度センサー13と、給湯管12に設けられた給湯センサー14と、給水管9に設けられた給湯温度センサー15と、給湯管12から分岐され浴槽5に接続された湯張り管16と、この湯張り管16の開閉を行う、湯張り弁17と、湯張り管16を流れる流量を積算する、湯張り流量センサー18と、出湯管8から分岐して、接続された貯湯タンク7の過圧を逃す過圧逃がし弁19と、給水管9に設けられた給水圧を減圧する減圧弁20と、貯湯タンク7の側面上下方向に複数設けられた貯湯温度センサー21と、この貯湯タンクユニット1の制御を行うマイクロコンピューターで主に構成される給湯制御部22と、貯湯タンク7と加熱部2とを往き管23と戻り管24で接続して、湯水を循環させる加熱循環回路25を形成するものである。」(例えば特許文献1参照)というものが提案されている。   2. Description of the Related Art A hot water storage system that stores heated water heated by a water heater in a hot water storage tank of a hot water storage tank unit is conventionally known. As a hot water storage tank unit used in such a conventional hot water storage system, for example, “the hot water storage tank unit 1 includes a hot water storage tank 7 for storing hot water, a hot water pipe 8 connected to the upper part of the hot water storage tank 7, and a hot water storage tank. A water supply pipe 9 connected to the lower part of the water supply pipe, a mixing valve 11 for mixing hot water from the hot water supply pipe 8 and low temperature water from the bypass pipe 10 branched from the water supply pipe 9, and hot water supply connected downstream of the mixing valve 11 A hot water temperature sensor 13 provided in the pipe 12, a hot water sensor 14 provided in the hot water pipe 12, a hot water temperature sensor 15 provided in the water supply pipe 9, and hot water branched from the hot water pipe 12 and connected to the bathtub 5. A branch pipe 16, a hot water valve 17 that opens and closes the hot water pipe 16, a hot water flow rate sensor 18 that integrates the flow rate flowing through the hot water pipe 16, and a hot water pipe 8 are branched. An overpressure relief valve 19 for releasing the continued overpressure of the hot water storage tank 7, a pressure reducing valve 20 for reducing the water supply pressure provided in the water supply pipe 9, and a plurality of hot water storage temperature sensors provided in the vertical direction of the side surface of the hot water storage tank 7. 21, a hot water supply control unit 22 mainly constituted by a microcomputer for controlling the hot water storage tank unit 1, the hot water storage tank 7 and the heating unit 2 are connected by an outgoing pipe 23 and a return pipe 24 to circulate hot water. The heating circulation circuit 25 is formed "(for example, see Patent Document 1).

ところで、水中に溶存できる空気の量は、水の温度が上昇するほど少なくなる。このため、給湯機の熱交換器で水を加熱することにより、水中に溶存していた空気は気泡となって熱交換器(の配管)中に放出される。従来の貯湯システム(例えば特許文献1参照)では、水から放出されたこの空気は、熱交換器中を流れ、加熱水と共に貯湯タンク内に貯留されていた。そして、貯湯タンク内に貯留された空気を、貯湯タンクに設けられた過圧逃がし弁(過圧逃がし弁19)から排出していた。   By the way, the amount of air that can be dissolved in water decreases as the temperature of water increases. For this reason, by heating water with the heat exchanger of a water heater, the air dissolved in the water becomes bubbles and is released into the heat exchanger (pipes thereof). In a conventional hot water storage system (see, for example, Patent Document 1), this air released from water flows through a heat exchanger and is stored in a hot water storage tank together with heated water. And the air stored in the hot water storage tank was discharged from the overpressure relief valve (overpressure relief valve 19) provided in the hot water storage tank.

特開2006−226560号公報(段落0011、図1)JP 2006-226560 A (paragraph 0011, FIG. 1)

従来の給湯機は、熱交換器での水の昇温過程で水から放出された空気は、気泡となって水と共に熱交換器中を流れてしまっていた。このため、熱交換器での水への熱伝達率の低下や、熱交換器中の流路抵抗の増加により、流量が低下し、熱交換器の熱交換効率が低下してしまうという問題点があった。   In the conventional water heater, the air released from the water in the process of raising the temperature of the heat in the heat exchanger flows into the heat exchanger together with water as bubbles. For this reason, the flow rate decreases due to a decrease in the heat transfer rate to water in the heat exchanger and an increase in the flow resistance in the heat exchanger, and the heat exchange efficiency of the heat exchanger decreases. was there.

また、熱交換器に水を流通させるポンプ(以下、給水ポンプという)を最大出力値の大きなものに変更し、熱交換器の熱交換効率の低下を補おうとすると、以下のような問題点があった。   In addition, if the pump that circulates water in the heat exchanger (hereinafter referred to as the feed water pump) is changed to one with a large maximum output value, and the reduction in heat exchange efficiency of the heat exchanger is compensated, the following problems will occur. there were.

図8は、給水ポンプの特性を示す特性図である。例えば、最大出力A1、最低出力A2の給水ポンプAを用いていたとする。熱交換器を流れる水から中程度の空気(気泡)が放出されている状態(図中に示す、通常(気泡中)の圧力損失曲線)では、この給水ポンプAで11[L/min]の流量の水を熱交換器に流通させようとすると、給水ポンプAの出力はA3となる(図中のX点)。このとき、熱交換器を流れる水から多量の空気(気泡)が放出されると(図中に示す、通常(気泡大)の圧力損失曲線)、給水ポンプAで11[L/min]の流量の水を熱交換器に流通させるには、給水ポンプAの出力を最大にする必要がある(図中のY点)。しかしながら、給水ポンプAの出力の増加が遅いと、給水ポンプの揚程が熱交換器中の流路抵抗よりも小さくなり、断水(給湯機から加熱水が流出しない状態)してしまう。   FIG. 8 is a characteristic diagram showing characteristics of the feed water pump. For example, it is assumed that the water supply pump A having the maximum output A1 and the minimum output A2 is used. In a state in which moderate air (bubbles) is released from the water flowing through the heat exchanger (normal (in the bubbles) pressure loss curve shown in the figure), the feed water pump A is 11 [L / min]. If it is going to distribute | circulate the water of a flow volume to a heat exchanger, the output of the feed water pump A will be A3 (X point in a figure). At this time, when a large amount of air (bubbles) is released from the water flowing through the heat exchanger (normal (bubble large) pressure loss curve shown in the figure), the flow rate of 11 [L / min] by the feed water pump A In order to distribute the water in the heat exchanger, it is necessary to maximize the output of the feed water pump A (point Y in the figure). However, if the increase in the output of the feed water pump A is slow, the head of the feed water pump becomes smaller than the flow path resistance in the heat exchanger, and water is cut off (a state in which heated water does not flow out of the water heater).

そこで、この断水を回避するため、給水ポンプAよりも最大出力値の大きな給水ポンプB(最大出力B1、最低出力B2)を用いたとする。しかしながら、給水ポンプAよりも最大出力値の大きな給水ポンプBは、その最低出力も給水ポンプAよりも大きくなってしまう。このため、流量制御範囲が小さくなってしまうという問題点があった。例えば、熱交換器を流れる水から多量の空気(気泡)が放出されいる状態(図中に示す、通常(気泡大)の圧力損失曲線)では、給水ポンプAの流量制御範囲が6[L/min](範囲1)であるのに対し、給水ポンプBの流量制御範囲は5[L/min](範囲2)となってしまう。また、最小制御流量が大きくなってしまい、熱交換器で十分に加熱されていない低温の水が貯湯タンクに流入してしまうという問題点があった。例えば、熱交換器を流れる水からあまり空気(気泡)が放出されいない状態(図中に示す、通常(気泡小)の圧力損失曲線)では、給水ポンプAの最小流量が8[L/min](図中のV点)であるのに対し、給水ポンプBの最小流量は12[L/min](図中のW点)となってしまう。   Therefore, in order to avoid this water break, it is assumed that the feed water pump B (the maximum output B1 and the minimum output B2) having a larger maximum output value than the feed water pump A is used. However, the feed water pump B having a larger maximum output value than the feed water pump A also has a minimum output greater than that of the feed water pump A. For this reason, there existed a problem that the flow control range will become small. For example, in a state where a large amount of air (bubbles) is released from the water flowing through the heat exchanger (normal (bubble large) pressure loss curve shown in the figure), the flow rate control range of the feed water pump A is 6 [L / min] (range 1), whereas the flow rate control range of the feed water pump B is 5 [L / min] (range 2). Further, there is a problem that the minimum control flow rate becomes large, and low-temperature water that is not sufficiently heated by the heat exchanger flows into the hot water storage tank. For example, in a state where not much air (bubbles) is released from the water flowing through the heat exchanger (normal (small bubble) pressure loss curve shown in the figure), the minimum flow rate of the feed water pump A is 8 [L / min]. (V point in the figure), the minimum flow rate of the feed water pump B is 12 [L / min] (W point in the figure).

本発明は上述のような課題を解決するためになされたものであり、熱交換器を流れる気泡の量を抑制し、熱交換器の熱交換効率を向上させた給湯機を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a water heater that suppresses the amount of bubbles flowing through the heat exchanger and improves the heat exchange efficiency of the heat exchanger. To do.

本発明に係る給湯機は、水を加熱する複数の熱交換器を備え、水流れ上流側となる前記熱交換器と水流れ下流側となる前記熱交換器とを接続する配管のうち少なくとも1つの配管には、水流れ上流側から順に、前記配管を流れる水を減圧する減圧手段と、減圧されることにより水から放出される空気を前記配管から排出するエアー抜き手段と、が設けられているものである。   The water heater according to the present invention includes a plurality of heat exchangers for heating water, and at least one of pipes connecting the heat exchanger on the upstream side of the water flow and the heat exchanger on the downstream side of the water flow. The two pipes, in order from the upstream side of the water flow, are provided with a pressure reducing means for reducing the pressure of water flowing through the pipe, and an air venting means for discharging air released from the water by being reduced in pressure from the pipe. It is what.

本発明においては、熱交換器を接続する配管内を流れる水を減圧手段により減圧する。これにより、配管内を流れる水に溶存していた空気は、気泡となって配管内に放出される。そして、この空気(気泡)を、エアー抜き手段によって配管外に放出する。したがって、熱交換器での水への熱伝達率の低下や熱交換器中の流路抵抗の増加を抑制でき、熱交換器の熱交換効率が向上する。   In the present invention, the water flowing in the pipe connecting the heat exchanger is decompressed by the decompression means. Thereby, the air dissolved in the water flowing through the pipe is released into the pipe as bubbles. And this air (bubble) is discharged | emitted out of piping by an air venting means. Accordingly, it is possible to suppress a decrease in the heat transfer rate to water in the heat exchanger and an increase in flow path resistance in the heat exchanger, and the heat exchange efficiency of the heat exchanger is improved.

実施の形態.
本実施の形態では、冷凍サイクル装置を熱源とする給湯機に本発明を実施した場合について説明する。
Embodiment.
In the present embodiment, a case will be described in which the present invention is implemented in a water heater using a refrigeration cycle apparatus as a heat source.

図1は、本発明の実施の形態に係る貯湯システムを示す配管回路図である。なお、図1には、矢印で水の流れ方向も示している。貯湯タンク1は、給湯装置で加熱された高温の湯(加熱水)を貯留するタンクであり、下部が水流入配管31を介して給湯機30と接続され、上部が水流出配管32を介して給湯機30と接続されている。これにより、貯湯タンク1の下部に貯留されている低温水は、水流入配管31を介して給湯機30に流入する。そして、給湯機30で加熱された高温水(加熱水)は、水流出配管32を介して貯湯タンク1に貯留される。なお、給湯機30の詳細については後述する。   FIG. 1 is a piping circuit diagram showing a hot water storage system according to an embodiment of the present invention. In FIG. 1, the direction of water flow is also indicated by arrows. The hot water storage tank 1 is a tank that stores high-temperature hot water (heated water) heated by a hot water supply device, the lower part is connected to the hot water supply 30 via a water inflow pipe 31, and the upper part is connected to a water outflow pipe 32. It is connected to the water heater 30. Thereby, the low temperature water stored in the lower part of the hot water storage tank 1 flows into the water heater 30 through the water inflow pipe 31. The high temperature water (heated water) heated by the hot water heater 30 is stored in the hot water storage tank 1 through the water outflow pipe 32. The details of the water heater 30 will be described later.

貯湯タンク1の下部は、給水配管3を介して受水槽2と接続されている。この給水配管3には、受水槽2から貯湯タンク1への給水量を制御する給水弁4が設けられている。また、貯湯タンク1の上部には、給湯配管5が接続されている。この給湯配管5の他端は、浴槽23の湯を加熱するための水−水熱交換器21と接続されている。給湯配管5には、貯湯タンク1に貯留されている高温水を水−水熱交換器21に送るための給湯ポンプ6が設けられている。この水−水熱交換器21は、戻り配管7を介して貯湯タンク1の中間部とも接続されている。また、貯湯タンク1の上部には、貯湯タンク内に貯留された空気を大気中に排出するためのエアー抜き弁9が接続されている。なお、給湯ポンプ6は戻り配管7に設けられていてもよい。   A lower part of the hot water storage tank 1 is connected to a water receiving tank 2 through a water supply pipe 3. The water supply pipe 3 is provided with a water supply valve 4 for controlling the amount of water supplied from the water receiving tank 2 to the hot water storage tank 1. A hot water supply pipe 5 is connected to the upper part of the hot water storage tank 1. The other end of the hot water supply pipe 5 is connected to a water-water heat exchanger 21 for heating the hot water in the bathtub 23. The hot water supply pipe 5 is provided with a hot water supply pump 6 for sending high temperature water stored in the hot water storage tank 1 to the water-water heat exchanger 21. The water-water heat exchanger 21 is also connected to an intermediate portion of the hot water storage tank 1 through the return pipe 7. In addition, an air vent valve 9 for discharging the air stored in the hot water storage tank to the atmosphere is connected to the upper part of the hot water storage tank 1. The hot water supply pump 6 may be provided in the return pipe 7.

また、水−水熱交換器21は、浴槽用送り配管24及び浴槽用戻り配管25を介して浴槽23と接続されている。浴槽用送り配管24には、浴槽23に貯留されている水を水−水熱交換器21に送るための循環ポンプ26が設けられている。   The water-water heat exchanger 21 is connected to the bathtub 23 via a bathtub feed pipe 24 and a bathtub return pipe 25. The bathtub feed pipe 24 is provided with a circulation pump 26 for sending water stored in the bathtub 23 to the water-water heat exchanger 21.

給湯配管5は、分岐部8で給湯栓用給湯配管10に分岐している。給湯栓用給湯配管10の他端は、戻り配管7に接続されている。この給湯栓用給湯配管10には、給湯栓11が接続されている。この給湯栓11は、例えば台所、風呂場、洗面所等に設置される。   The hot water supply pipe 5 branches into a hot water supply hot water supply pipe 10 at a branching portion 8. The other end of the hot-water tap hot water supply pipe 10 is connected to the return pipe 7. A hot-water tap 11 is connected to the hot-water tap hot water supply pipe 10. This hot water tap 11 is installed in a kitchen, a bathroom, a washroom, etc., for example.

(給湯機)
次に、給湯機30の詳細について説明する。
図2は、本発明の実施の形態に係る給湯機を示す配管回路図である。なお、図2には、実線の矢印で水の流れ方向を示し、破線の矢印で冷媒の流れ方向を示している。本実施の形態に係る給湯機30は、熱源として冷凍サイクル装置40を用いている。また、この冷凍サイクル装置40には、CO2 冷媒が用いられている。高圧のCO2 冷媒は、超臨界状態になるという特性を有している。つまり、この超臨界状態のCO2 冷媒は、熱交換によって他の流体(ここでは、水)に熱を与えるときに凝縮せず、超臨界状態のままである。このため、状態遷移による損失が少なく、水を高温に加熱するのに適している。
(Water heater)
Next, details of the water heater 30 will be described.
FIG. 2 is a piping circuit diagram showing the water heater according to the embodiment of the present invention. In FIG. 2, the direction of water flow is indicated by solid arrows, and the direction of refrigerant flow is indicated by broken arrows. The water heater 30 according to the present embodiment uses a refrigeration cycle apparatus 40 as a heat source. The refrigeration cycle apparatus 40 uses a CO 2 refrigerant. The high-pressure CO 2 refrigerant has a characteristic of being in a supercritical state. That is, the CO 2 refrigerant in the supercritical state does not condense when heat is given to another fluid (here, water) by heat exchange, and remains in the supercritical state. For this reason, there is little loss by a state transition and it is suitable for heating water to high temperature.

この冷凍サイクル装置40は、放熱器として2つの冷媒−水熱交換器(第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43)を備えている。そして、圧縮機41、第1の冷媒−水熱交換器42、第2の冷媒−水熱交換器43、膨張弁44及び蒸発器45を順次配管で接続することにより、冷凍サイクル装置40を構成している。なお、冷媒はCO2 冷媒に限定されず、種々の冷媒が使用可能である。この場合、第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43は凝縮器として機能する。 The refrigeration cycle apparatus 40 includes two refrigerant-water heat exchangers (first refrigerant-water heat exchanger 42 and second refrigerant-water heat exchanger 43) as radiators. And the refrigeration cycle apparatus 40 is comprised by connecting the compressor 41, the 1st refrigerant | coolant-water heat exchanger 42, the 2nd refrigerant | coolant-water heat exchanger 43, the expansion valve 44, and the evaporator 45 in order by piping. doing. Incidentally, the refrigerant is not limited to CO 2 refrigerant, various refrigerant can be used. In this case, the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43 function as a condenser.

第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43は、貯湯タンク1に貯留されている水が流通する水配管とも接続されている。より具体的には、第1の冷媒−水熱交換器42の一方の水配管接続口は、水流入配管31と接続されている。第1の冷媒−水熱交換器42の他方の水配管接続口と第2の冷媒−水熱交換器43の一方の水配管接続口とは、水流通配管33で接続されている。第2の冷媒−水熱交換器43の他方の水配管接続口は、水流出配管32と接続されている。また、水流通配管33には、水の流れ方向上流側から順に、例えば膨張弁等の減圧手段34、例えばエアー抜き弁等のエアー抜き手段35、及び例えば圧縮機等の昇圧手段36がそれぞれ設けられている。水流入配管31には、貯湯タンク1内の水を第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43に送るための給水ポンプ38が設けられている。   The first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43 are also connected to a water pipe through which water stored in the hot water storage tank 1 flows. More specifically, one water pipe connection port of the first refrigerant-water heat exchanger 42 is connected to the water inflow pipe 31. The other water pipe connection port of the first refrigerant-water heat exchanger 42 and one water pipe connection port of the second refrigerant-water heat exchanger 43 are connected by a water circulation pipe 33. The other water pipe connection port of the second refrigerant-water heat exchanger 43 is connected to the water outflow pipe 32. In addition, the water distribution pipe 33 is provided with a pressure reducing means 34 such as an expansion valve, an air venting means 35 such as an air vent valve, and a pressure boosting means 36 such as a compressor in order from the upstream side in the water flow direction. It has been. The water inflow pipe 31 is provided with a water supply pump 38 for sending the water in the hot water storage tank 1 to the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43.

(動作)
続いて、本実施の形態に係る貯湯システム100の動作について説明する。貯湯タンク1内に貯留されている水のうち、低温の水は貯湯タンク1の下部に存在する。この低温水は、給水ポンプ38によって第1の冷媒−水熱交換器42へ送られる。第1の冷媒−水熱交換器42に流入した低温水は、第1の冷媒−水熱交換器42を流れるCO2 冷媒によって加熱され、中温の水となって第1の冷媒−水熱交換器42から流出する。第1の冷媒−水熱交換器42から流出した中温水は、水流通配管33を通って第2の冷媒−水熱交換器43に流入する。第2の冷媒−水熱交換器43に流入した中温水は、第2の冷媒−水熱交換器43を流れるCO2 冷媒によって加熱され、高温の水となって第2の冷媒−水熱交換器43から流出する。第2の冷媒−水熱交換器43から流出した高温水は、水流出配管32を通って貯湯タンク1の上部に流入し、貯湯タンク1内に貯留される。なお、第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43における水の加熱工程の詳細と、減圧手段34、エアー抜き手段35及び昇圧手段36の機能の詳細については後述する。
(Operation)
Then, operation | movement of the hot water storage system 100 which concerns on this Embodiment is demonstrated. Of the water stored in the hot water storage tank 1, low-temperature water is present in the lower part of the hot water storage tank 1. This low-temperature water is sent to the first refrigerant-water heat exchanger 42 by the feed water pump 38. The low-temperature water that has flowed into the first refrigerant-water heat exchanger 42 is heated by the CO 2 refrigerant flowing through the first refrigerant-water heat exchanger 42 to become medium-temperature water, and the first refrigerant-water heat exchange is performed. Out of the vessel 42. The medium-temperature water that has flowed out of the first refrigerant-water heat exchanger 42 flows into the second refrigerant-water heat exchanger 43 through the water circulation pipe 33. The intermediate temperature water that has flowed into the second refrigerant-water heat exchanger 43 is heated by the CO 2 refrigerant flowing through the second refrigerant-water heat exchanger 43 to become high-temperature water, and the second refrigerant-water heat exchange is performed. Out of the vessel 43. The high temperature water flowing out from the second refrigerant-water heat exchanger 43 flows into the upper part of the hot water storage tank 1 through the water outflow pipe 32 and is stored in the hot water storage tank 1. The details of the water heating process in the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43 and the details of the functions of the decompression means 34, the air vent means 35, and the pressure boost means 36 are as follows. It will be described later.

貯湯タンク1に貯留されている高温水は、給湯ポンプ6によって、給湯栓11や水−水熱交換器21に送られる。給湯栓11に送られた高温水は、例えば使用者が給湯栓11を開くことにより、給湯栓11から放出される。給湯栓11から放出されなかった水は、給湯栓用給湯配管10を通って戻り配管7に流入する。   The hot water stored in the hot water storage tank 1 is sent to the hot water tap 11 and the water-water heat exchanger 21 by the hot water supply pump 6. The high-temperature water sent to the hot-water tap 11 is discharged from the hot-water tap 11 when the user opens the hot-water tap 11, for example. The water that has not been released from the hot water tap 11 flows into the return pipe 7 through the hot water supply hot water supply pipe 10.

水−水熱交換器21に流入された高温水は、浴槽23に貯留されている水に放熱し、戻り配管7に流入する。戻り配管7に流入した水は、貯湯タンク1の中間部から貯湯タンク1に流入する。一方、浴槽23に貯留されている水は、循環ポンプ26によって、浴槽23、浴槽用戻り配管25、水−水熱交換器21及び浴槽用送り配管24を循環する。この循環過程において、水−水熱交換器21に流入した水が加熱される。   The high-temperature water that has flowed into the water-water heat exchanger 21 radiates heat to the water stored in the bathtub 23 and flows into the return pipe 7. The water flowing into the return pipe 7 flows into the hot water storage tank 1 from the intermediate portion of the hot water storage tank 1. On the other hand, the water stored in the bathtub 23 circulates through the bathtub 23, the bathtub return pipe 25, the water-water heat exchanger 21, and the bathtub feed pipe 24 by the circulation pump 26. In this circulation process, the water flowing into the water-water heat exchanger 21 is heated.

給湯栓11からの放出等により貯湯タンク1に貯留されている水が少なくなると、給水弁4が開き、受水槽2から貯湯タンク1へ水が供給される。   When the amount of water stored in the hot water storage tank 1 is reduced due to discharge from the hot water tap 11 or the like, the water supply valve 4 is opened and water is supplied from the water receiving tank 2 to the hot water storage tank 1.

(水の加熱工程、及び減圧手段34、エアー抜き手段35、昇圧手段36の機能)
ここで、第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43における水の加熱工程の詳細と、減圧手段34、エアー抜き手段35及び昇圧手段36の機能の詳細について説明する。まず、これら詳細の説明に先立って、水中の溶存空気量の特性について説明する。
(Water heating step and functions of the pressure reducing means 34, the air venting means 35, and the pressure increasing means 36)
Here, details of the water heating process in the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43 and details of the functions of the decompression means 34, the air venting means 35, and the pressure boosting means 36 are explained. explain. First, before describing these details, the characteristics of the dissolved air amount in water will be described.

図3は、水中の溶存空気量の特性を示す特性図である。この図3は、横軸に水の温度[℃]を示し、縦軸に水1000[g]中に溶存する空気量[g]を示している。また、図3中における太線の曲線は、水圧が100[kPa]のときの水1000[g]中に溶存する空気量[g]を示し、細線の曲線は、水圧が300[kPa]のときの水1000[g]中に溶存する空気量[g]を示している。
この図3より、水温が低いほど、水中の溶存空気量が多いことがわかる。そして、水温が約40[℃]以上になると、水中の溶存空気量はあまりないことがわかる。また、水圧が高いほど、水中の溶存空気量が多いことがわかる。そして、水圧が高いほど、水中の溶存空気量の温度依存性が高いことがわかる。
FIG. 3 is a characteristic diagram showing characteristics of the amount of dissolved air in water. In FIG. 3, the horizontal axis indicates the water temperature [° C.], and the vertical axis indicates the amount of air [g] dissolved in the water 1000 [g]. Also, the thick curve in FIG. 3 indicates the amount of air [g] dissolved in water 1000 [g] when the water pressure is 100 [kPa], and the thin curve indicates when the water pressure is 300 [kPa]. The amount of air [g] dissolved in 1000 [g] of water is shown.
FIG. 3 shows that the lower the water temperature, the greater the amount of dissolved air in the water. And when water temperature becomes about 40 [degreeC] or more, it turns out that there is not much amount of dissolved air in water. It can also be seen that the higher the water pressure, the greater the amount of dissolved air in the water. And it turns out that the temperature dependence of the amount of dissolved air in water is so high that a water pressure is high.

この水中の溶存空気量の特性を踏まえて、第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43における水の加熱工程の詳細と、減圧手段34、エアー抜き手段35及び昇圧手段36の機能の詳細について以下に説明する。   Based on the characteristics of the amount of dissolved air in the water, details of the water heating process in the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43, the decompression means 34, and the air vent means 35 Details of the function of the booster 36 will be described below.

図4は、本発明の実施の形態に係る冷媒−水熱交換器内における、放出空気量と水の温度との関係を示す特性図である。なお、この図4では、実線が本実施の形態に係る冷媒−水熱交換器(第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43)内での放出空気量を示し、破線が従来の冷媒−水熱交換器内での放出空気量を示している。また、図5は、この冷媒−水熱交換器内における水の圧力と温度との関係を示す特性図である。なお、この図5では、実線が本実施の形態に係る冷媒−水熱交換器(第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43)内での水の圧力変化を示し、破線が従来の冷媒−水熱交換器内での水の圧力変化を示している。   FIG. 4 is a characteristic diagram showing the relationship between the amount of discharged air and the temperature of water in the refrigerant-water heat exchanger according to the embodiment of the present invention. In FIG. 4, the solid line indicates the amount of air released in the refrigerant-water heat exchanger (the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43) according to the present embodiment. The broken line indicates the amount of air released in the conventional refrigerant-water heat exchanger. FIG. 5 is a characteristic diagram showing the relationship between water pressure and temperature in the refrigerant-water heat exchanger. In FIG. 5, the solid line indicates the pressure of water in the refrigerant-water heat exchanger (the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43) according to the present embodiment. A change is shown and the broken line has shown the pressure change of the water in the conventional refrigerant | coolant-water heat exchanger.

第1の冷媒−水熱交換器42に流入した低温の水(A点)は、第1の冷媒−水熱交換器42を流れるCO2 冷媒に加熱されて中温の水となり、第1の冷媒−水熱交換器42から流出する(B点)。このとき、水温の増加に伴って、水中に溶存していた空気の一部が気泡となって放出される。この気泡の発生等による圧力損失によって、水圧が低下する。第1の冷媒−水熱交換器42から流出した中温水と気泡は、減圧手段34に流入して減圧される(C点)。このとき、水圧の低下に伴って、水中に溶存していた空気の一部が気泡となって放出される。減圧手段34から流出した中温水と気泡は、エアー抜き手段35(又はエアー抜き手段35と水流通配管33との配管接続部37)を通過する過程で、エアー抜き手段35によって気泡のみが大気中に排出される(D点)。このため、エアー抜き手段35を通過した水は、溶存空気量が少ない水となっている。 The low-temperature water (point A) flowing into the first refrigerant-water heat exchanger 42 is heated by the CO 2 refrigerant flowing through the first refrigerant-water heat exchanger 42 to become medium-temperature water, and the first refrigerant -Outflow from the water heat exchanger 42 (point B). At this time, as the water temperature increases, part of the air dissolved in the water is released as bubbles. The water pressure decreases due to pressure loss due to the generation of bubbles. The medium-temperature water and bubbles that have flowed out of the first refrigerant-water heat exchanger 42 flow into the decompression means 34 and are decompressed (point C). At this time, part of the air dissolved in the water is released as bubbles as the water pressure decreases. The medium-temperature water and air bubbles that have flowed out from the decompression means 34 pass through the air venting means 35 (or the pipe connection part 37 between the air venting means 35 and the water circulation pipe 33), and only the air bubbles are in the atmosphere by the air venting means 35. (D point). For this reason, the water that has passed through the air venting means 35 is water with a small amount of dissolved air.

エアー抜き手段35によって気泡が大気中に排出された中温水は、昇圧手段36で昇圧され(E点)、第2の冷媒−水熱交換器43に流入する。そして、第2の冷媒−水熱交換器43を流れるCO2 冷媒に加熱されて高温の水となり、第2の冷媒−水熱交換器43から流出する(F点)。このとき、第2の冷媒−水熱交換器43に流入する中温水は溶存空気量が少ない。したがって、第2の冷媒−水熱交換器43で発生する気泡を抑制できるので、第2の冷媒−水熱交換器43での熱交換効率の低下を抑制できる。つまり、本実施の形態に係る第2の冷媒−水熱交換器43は、従来の冷媒−水熱交換器よりも熱交換効率が向上する。 The medium-temperature water from which bubbles are discharged into the atmosphere by the air venting unit 35 is pressurized by the boosting unit 36 (point E) and flows into the second refrigerant-water heat exchanger 43. And it is heated by the CO2 refrigerant | coolant which flows through the 2nd refrigerant | coolant-water heat exchanger 43, becomes high temperature water, and flows out out of the 2nd refrigerant | coolant-water heat exchanger 43 (F point). At this time, the medium temperature water flowing into the second refrigerant-water heat exchanger 43 has a small amount of dissolved air. Therefore, since air bubbles generated in the second refrigerant-water heat exchanger 43 can be suppressed, a decrease in heat exchange efficiency in the second refrigerant-water heat exchanger 43 can be suppressed. That is, the second refrigerant-water heat exchanger 43 according to the present embodiment has higher heat exchange efficiency than the conventional refrigerant-water heat exchanger.

なお、本実施の形態では昇圧手段36を設けているが、昇圧手段36は必ずしも設けられている必要はない。昇圧手段36が設けられていなくても、第2の冷媒−水熱交換器43に流入する中温水は溶存空気量が少ないので、第2の冷媒−水熱交換器43での熱交換効率の低下を抑制できる。しかしながら、昇圧手段36で昇圧することにより、第2の冷媒−水熱交換器43に流入する中温水は、空気の許容溶存量が増加する。このため、第2の冷媒−水熱交換器43で発生する気泡をさらに抑制でき、第2の冷媒−水熱交換器43での熱交換効率の低下をさらに抑制できる。   Although the booster 36 is provided in the present embodiment, the booster 36 is not necessarily provided. Even if the boosting means 36 is not provided, the amount of dissolved air in the medium-temperature water flowing into the second refrigerant-water heat exchanger 43 is small, so that the heat exchange efficiency of the second refrigerant-water heat exchanger 43 is improved. Reduction can be suppressed. However, by increasing the pressure by the pressure increasing means 36, the permissible dissolved amount of air increases in the medium temperature water flowing into the second refrigerant-water heat exchanger 43. For this reason, the bubble which generate | occur | produces in the 2nd refrigerant | coolant-water heat exchanger 43 can further be suppressed, and the fall of the heat exchange efficiency in the 2nd refrigerant | coolant-water heat exchanger 43 can further be suppressed.

ここで、図5に注目すると、水温が50[℃]付近となる範囲で圧力損失が大きくなっている。これは、本実施の形態で用いているCO2 冷媒の特性に起因する。
図6は、本発明の実施の形態に係る冷媒−水熱交換器を流通する水及びCO2 冷媒の温度とエンタルピとの関係を示す特性図である。この図6は、第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43を流れる水及びCO2 冷媒のそれぞれの温度変化を示している。なお、本実施の形態では、第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43を流れる水とCO2 冷媒とは対向流となっている。このため、第1の冷媒−水熱交換器42に流入してから第2の冷媒−水熱交換器43を流出するまでのCO2 冷媒の温度変化は、図6における右から左への温度変化となる。また、第1の冷媒−水熱交換器42に流入してから第2の冷媒−水熱交換器43を流出するまでの水の温度変化は、図6における左から右への温度変化となる。
Here, paying attention to FIG. 5, the pressure loss increases in the range where the water temperature is around 50 ° C. This is due to the characteristics of the CO 2 refrigerant used in the present embodiment.
FIG. 6 is a characteristic diagram showing the relationship between the temperature and enthalpy of water and CO 2 refrigerant flowing through the refrigerant-water heat exchanger according to the embodiment of the present invention. FIG. 6 shows changes in the temperatures of water and CO 2 refrigerant flowing through the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43. In the present embodiment, the water flowing through the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43 and the CO 2 refrigerant are in a counterflow. For this reason, the temperature change of the CO 2 refrigerant from the time when it flows into the first refrigerant-water heat exchanger 42 to the time when it flows out of the second refrigerant-water heat exchanger 43 is the temperature from right to left in FIG. It becomes a change. Moreover, the temperature change of the water from flowing into the first refrigerant-water heat exchanger 42 to flowing out of the second refrigerant-water heat exchanger 43 is a temperature change from left to right in FIG. .

図6からわかるように、CO2 冷媒の温度が50[℃]付近となる範囲で、CO2 冷媒と水との温度差が小さくなっている。つまり、50[℃]付近ではCO2 冷媒と水との熱交換効率が悪くなっている。このため、CO2 冷媒の温度が50[℃]付近となる範囲では、水の加熱に時間がかかる。つまり、50[℃]付近の水を加熱するために必要な配管長さが長くなってしまう。したがって、図5に示すように、水温が50[℃]付近となる範囲で圧力損失が大きくなってしまう。このことから、水温が50[℃]付近となる前に、水を減圧して気泡を大気中に排出することが好ましい。水温が50[℃]付近となっている状態において、気泡に起因する圧力損失を低減できるので、第2の冷媒−水熱交換器43での熱交換効率の低下を抑制できる。 As can be seen from Figure 6, the temperature of CO 2 refrigerant within an amount of around 50 [° C.], the temperature difference between the CO 2 refrigerant and water is small. That is, in the vicinity of 50 [° C.], the heat exchange efficiency between the CO 2 refrigerant and water is poor. For this reason, in the range where the temperature of the CO 2 refrigerant is around 50 [° C.], it takes time to heat water. That is, the piping length necessary for heating water near 50 [° C.] becomes long. Therefore, as shown in FIG. 5, the pressure loss becomes large in the range where the water temperature is around 50 [° C.]. For this reason, it is preferable to decompress the water and discharge the bubbles into the atmosphere before the water temperature reaches around 50 [° C.]. In the state where the water temperature is in the vicinity of 50 [° C.], the pressure loss due to the bubbles can be reduced, so that the decrease in heat exchange efficiency in the second refrigerant-water heat exchanger 43 can be suppressed.

このように構成された給湯機30においては、第1の冷媒−水熱交換器42と第2の冷媒−水熱交換器43とを接続する水流通配管33に減圧手段34及びエアー抜き手段35が設けられている。このため、第2の冷媒−水熱交換器43に流入する中温水は溶存空気量が少ないので、第2の冷媒−水熱交換器43での熱交換効率の低下を抑制できる。つまり、本実施の形態に係る第2の冷媒−水熱交換器43は、従来の冷媒−水熱交換器よりも熱交換効率が向上する。   In the water heater 30 configured as described above, the pressure reducing means 34 and the air venting means 35 are connected to the water circulation pipe 33 that connects the first refrigerant-water heat exchanger 42 and the second refrigerant-water heat exchanger 43. Is provided. For this reason, since the amount of dissolved air is small in the medium temperature water flowing into the second refrigerant-water heat exchanger 43, a decrease in heat exchange efficiency in the second refrigerant-water heat exchanger 43 can be suppressed. That is, the second refrigerant-water heat exchanger 43 according to the present embodiment has higher heat exchange efficiency than the conventional refrigerant-water heat exchanger.

また、エアー抜き手段35と第2の冷媒−水熱交換器43との間には昇圧手段36が設けられているので、第2の冷媒−水熱交換器43に流入する中温水は、空気の許容溶存量が増加する。このため、第2の冷媒−水熱交換器43で発生する気泡をさらに抑制でき、第2の冷媒−水熱交換器43での熱交換効率の低下をさらに抑制できる。   Further, since the pressure increasing means 36 is provided between the air venting means 35 and the second refrigerant-water heat exchanger 43, the medium temperature water flowing into the second refrigerant-water heat exchanger 43 is air. The allowable dissolved amount of increases. For this reason, the bubble which generate | occur | produces in the 2nd refrigerant | coolant-water heat exchanger 43 can further be suppressed, and the fall of the heat exchange efficiency in the 2nd refrigerant | coolant-water heat exchanger 43 can further be suppressed.

また、水温が50[℃]付近となる前に、水を減圧して気泡を大気中に排出することで、水温が50[℃]付近のときの気泡に起因する圧力損失を低減できるので、第2の冷媒−水熱交換器43での熱交換効率の低下を抑制できる。   In addition, pressure loss due to bubbles when the water temperature is around 50 [° C.] can be reduced by reducing the pressure of the water and discharging the bubbles into the atmosphere before the water temperature becomes around 50 [° C.] A decrease in heat exchange efficiency in the second refrigerant-water heat exchanger 43 can be suppressed.

なお、本実施の形態ではエアー抜き手段35の水流通配管33への接続方法について特に言及しなかったが、エアー抜き手段35と水流通配管33との接続部である配管接続部37に水の速度を減速させる減速部を設けてもよい。   In the present embodiment, the connection method of the air venting means 35 to the water circulation pipe 33 is not particularly mentioned. However, the pipe connection part 37 that is the connection part of the air venting means 35 and the water circulation pipe 33 is connected with water. You may provide the deceleration part which decelerates speed.

図7は、本発明の実施の形態に係る減速部の一例を示す断面模式図である。例えば図7(a)に示すように、配管接続部37の配管断面積を大きくし、減速部50としてもよい。減速部50の直径S1は、減速部50の前後の配管直径S2よりも大きくなっている。つまり、減速部50の断面積は、減速部50の前後の断面積よりも大きくなっている。これにより、減速部50を流れる水は減速し、エアー抜き手段35へ気泡が流入(上昇)しやすくなる。また、例えば図7(b)に示すように、配管接続部37に減速板51を設け、減速部50としてもよい。減速板51に衝突した水は減速し、エアー抜き手段35へ気泡が流入(上昇)しやすくなる。また、図7(a)に示す配管直径を大きくした減速部50内に減速板51を用いてももちろんよい。図7に示す減速部50は例示であり、水を減速させられる機構であれば、種々の構成が可能である。   FIG. 7 is a schematic cross-sectional view showing an example of the speed reducing portion according to the embodiment of the present invention. For example, as shown in FIG. 7A, the pipe cross-sectional area of the pipe connection part 37 may be increased to form the speed reduction part 50. The diameter S1 of the speed reduction part 50 is larger than the pipe diameter S2 before and after the speed reduction part 50. That is, the cross-sectional area of the speed reduction part 50 is larger than the cross-sectional area before and after the speed reduction part 50. As a result, the water flowing through the speed reducing unit 50 is decelerated, and the air bubbles easily flow into (up) the air venting means 35. Further, for example, as shown in FIG. 7B, a speed reduction plate 51 may be provided in the pipe connection portion 37 to form the speed reduction portion 50. The water that has collided with the speed reducing plate 51 decelerates, and bubbles easily flow into (up) the air venting means 35. Of course, the speed reducing plate 51 may be used in the speed reducing portion 50 having a large pipe diameter shown in FIG. The speed reduction part 50 shown in FIG. 7 is an exemplification, and various configurations are possible as long as the mechanism can reduce the speed of water.

また、本実施の形態では2つの冷媒−水熱交換器(第1の冷媒−水熱交換器42及び第2の冷媒−水熱交換器43)を用いて水を加熱したが、冷媒−水熱交換器は複数であればその数は任意である。このとき、各冷媒−水熱交換器を接続する水流通配管の全てに減圧手段34、エアー抜き手段35及び昇圧手段36を設けてもよいし、各冷媒−水熱交換器を接続する水流通配管の一部に減圧手段34、エアー抜き手段35及び昇圧手段36を設けてもよい。   In this embodiment, water is heated using two refrigerant-water heat exchangers (first refrigerant-water heat exchanger 42 and second refrigerant-water heat exchanger 43). The number of heat exchangers is arbitrary as long as it is plural. At this time, the decompression means 34, the air vent means 35, and the pressure increase means 36 may be provided in all the water circulation pipes connecting the refrigerant-water heat exchangers, or the water circulation connecting the refrigerant-water heat exchangers. You may provide the pressure reduction means 34, the air venting means 35, and the pressure | voltage rise means 36 in a part of piping.

また、本実施の形態では給湯機30を貯湯タンク1に接続した貯湯システム100としたが、貯湯タンク1を介さずに給湯機30を給湯栓11等に接続してももちろんよい。   In the present embodiment, the hot water storage system 100 is connected to the hot water storage tank 1, but the hot water supply system 30 may be connected to the hot water tap 11 or the like without using the hot water storage tank 1.

また、本実施の形態では給湯機30の熱源として冷凍サイクル装置40を用いたが、給湯機30の熱源は任意である。例えば、熱交換器にコイルを巻き付けて高周波電流を流し、熱交換器に発生する渦電流によって熱交換器内を流れる水を誘導加熱してもよい。このとき、水温が40[℃]付近となる前に、水を減圧して気泡を大気中に排出するとよい。図3に示すように、40[℃]付近以上の温度では、水の溶存空気量は少ない。したがって、この温度の前に水を減圧して気泡を大気中に排出することで、第2の冷媒−水熱交換器43で発生する気泡を抑制でき、第2の冷媒−水熱交換器43での熱交換効率の低下を抑制できる。   In the present embodiment, the refrigeration cycle apparatus 40 is used as the heat source of the water heater 30, but the heat source of the water heater 30 is arbitrary. For example, a coil may be wound around the heat exchanger to pass a high-frequency current, and water flowing in the heat exchanger may be induction-heated by an eddy current generated in the heat exchanger. At this time, before the water temperature reaches around 40 [° C.], it is preferable to decompress the water and discharge the bubbles to the atmosphere. As shown in FIG. 3, the dissolved air amount of water is small at a temperature of about 40 ° C. or higher. Therefore, by reducing the pressure of water before this temperature and discharging the bubbles to the atmosphere, the bubbles generated in the second refrigerant-water heat exchanger 43 can be suppressed, and the second refrigerant-water heat exchanger 43 can be suppressed. Decrease in heat exchange efficiency can be suppressed.

実施の形態に係る貯湯システムを示す配管回路図である。It is a piping circuit diagram which shows the hot water storage system which concerns on embodiment. 実施の形態に係る給湯機を示す配管回路図である。It is a piping circuit diagram which shows the water heater based on Embodiment. 水中の溶存空気量の特性を示す特性図である。It is a characteristic view which shows the characteristic of the amount of dissolved air in water. 実施の形態に係る冷媒−水熱交換器内における、放出空気量と水の温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the amount of discharge | released air and the temperature of water in the refrigerant | coolant-water heat exchanger which concerns on embodiment. 実施の形態に係る冷媒−水熱交換器内における水の圧力と温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the pressure and temperature of the water in the refrigerant | coolant-water heat exchanger which concerns on embodiment. 実施の形態に係る冷媒−水熱交換器を流通する水及びCO2 冷媒の温度とエンタルピとの関係を示す特性図である。Refrigerant according to the embodiment - is a characteristic diagram showing the relationship between the temperature and enthalpy of water and CO 2 refrigerant flowing through the water heat exchanger. 実施の形態に係る減速部の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the deceleration part which concerns on embodiment. 循環ポンプの特性を示す特性図である。It is a characteristic view which shows the characteristic of a circulation pump.

符号の説明Explanation of symbols

1 貯湯タンク、2 受水槽、3 給水配管、4 給水弁、5 給湯配管、6 給湯ポンプ、7 戻り配管、8 分岐部、9 エアー抜き弁、10 給湯栓用給湯配管、11 給湯栓、21 水−水熱交換器、23 浴槽、24 浴槽用送り配管、25 浴槽用戻り配管、26 循環ポンプ、30 給湯機、31 水流入配管、32 水流出配管、33 水流通配管、34 減圧手段、35 エアー抜き手段、36 昇圧手段、37 配管接続部、38 給水ポンプ、40 冷凍サイクル装置、41 圧縮機、42 第1の冷媒−水熱交換器、43 第2の冷媒−水熱交換器、44 膨張弁、45 蒸発器、50 減速部、51 減速板、100 貯湯システム。   DESCRIPTION OF SYMBOLS 1 Hot water storage tank, 2 Receiving tank, 3 Water supply piping, 4 Water supply valve, 5 Hot water supply piping, 6 Hot water supply pump, 7 Return piping, 8 Branch part, 9 Air vent valve, 10 Hot water supply piping for hot water tap, 11 Hot water tap, 21 -Water heat exchanger, 23 bathtubs, 24 bathtub feed pipes, 25 bathtub return pipes, 26 circulation pumps, 30 water heaters, 31 water inflow pipes, 32 water outflow pipes, 33 water circulation pipes, 34 decompression means, 35 air Extraction means, 36 pressurizing means, 37 piping connection part, 38 feed water pump, 40 refrigeration cycle apparatus, 41 compressor, 42 first refrigerant-water heat exchanger, 43 second refrigerant-water heat exchanger, 44 expansion valve , 45 evaporator, 50 reduction part, 51 reduction plate, 100 hot water storage system.

Claims (7)

水を加熱する複数の熱交換器を備え、
水流れ上流側となる前記熱交換器と水流れ下流側となる前記熱交換器とを接続する配管のうち少なくとも1つの配管には、
水流れ上流側から順に、
前記配管を流れる水を減圧する減圧手段と、
減圧されることにより水から放出される空気を前記配管から排出するエアー抜き手段と、
が設けられていることを特徴とする給湯機。
With multiple heat exchangers to heat water,
At least one pipe among the pipes connecting the heat exchanger on the upstream side of the water flow and the heat exchanger on the downstream side of the water flow,
From the upstream side of the water flow,
Decompression means for decompressing water flowing through the pipe;
Air venting means for discharging air released from water by being decompressed from the pipe;
A water heater characterized by that.
前記エアー抜き手段と該エアー抜き手段よりも水流れ下流側となる前記熱交換器とを接続する配管には、
昇圧手段が設けられていることを特徴とする請求項1に記載の給湯機。
In the pipe connecting the air venting means and the heat exchanger on the downstream side of the water flow from the air venting means,
2. The water heater according to claim 1, further comprising a booster.
前記熱交換器は冷凍サイクル装置の一部を構成し、該冷凍サイクル装置を循環する冷媒と水とが熱交換する冷媒−水冷媒熱交換器であり、
前記冷凍サイクル装置にはCO2 冷媒を用い、
前記減圧手段は、
50℃以下の水を減圧することを特徴とする請求項1又は請求項2に記載の給湯機。
The heat exchanger is a refrigerant-water refrigerant heat exchanger that constitutes a part of the refrigeration cycle apparatus and heat exchange between the refrigerant circulating in the refrigeration cycle apparatus and water,
The refrigeration cycle apparatus uses a CO 2 refrigerant,
The decompression means includes
The water heater according to claim 1 or 2, wherein water at 50 ° C or less is decompressed.
前記エアー抜き手段の配管接続部には、
水の速度を減速させる減速部が設けられていることを特徴とする請求項1〜請求項3のいずれか一項に記載の給湯機。
In the pipe connection part of the air venting means,
The water heater according to any one of claims 1 to 3, further comprising a speed reduction unit that reduces the speed of water.
前記減速部は、
配管の断面積が、前記減速部の前後に接続された配管の断面積と比べて大きくなっている部分であることを特徴とする請求項4に記載の給湯機。
The deceleration part is
The hot water heater according to claim 4, wherein a cross-sectional area of the pipe is a portion that is larger than a cross-sectional area of the pipe connected before and after the speed reduction portion.
前記減速部には、
水の速度を減速させる減速板が設けられていることを特徴とする請求項4又は請求項5に記載の給湯機。
In the deceleration part,
The water heater according to claim 4 or 5, wherein a speed reducing plate for reducing the speed of water is provided.
前記減圧手段は、40℃以下の水を減圧することを特徴とする請求項1〜請求項6のいずれか一項に記載の給湯機。   The hot water supply device according to any one of claims 1 to 6, wherein the decompression means decompresses water of 40 ° C or less.
JP2008274038A 2008-10-24 2008-10-24 Water heater Active JP5230352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274038A JP5230352B2 (en) 2008-10-24 2008-10-24 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274038A JP5230352B2 (en) 2008-10-24 2008-10-24 Water heater

Publications (2)

Publication Number Publication Date
JP2010101574A JP2010101574A (en) 2010-05-06
JP5230352B2 true JP5230352B2 (en) 2013-07-10

Family

ID=42292365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274038A Active JP5230352B2 (en) 2008-10-24 2008-10-24 Water heater

Country Status (1)

Country Link
JP (1) JP5230352B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537949U (en) * 1976-07-02 1978-01-24
JPS58129164A (en) * 1982-01-27 1983-08-02 株式会社日立製作所 Hot-water supply device for heat pump
JPS6380167A (en) * 1986-09-19 1988-04-11 松下電器産業株式会社 Heat pump hot-water supply machine
JP4378900B2 (en) * 2001-08-03 2009-12-09 株式会社デンソー Heat pump type water heater
JP4039404B2 (en) * 2004-07-14 2008-01-30 株式会社デンソー Parallel multiple water heater

Also Published As

Publication number Publication date
JP2010101574A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US9010281B2 (en) Hot water supply system
JP2008111574A (en) Heat pump heat supply system
JP4956731B2 (en) Hot water system
CN105102902A (en) Hot-water supply device
JP5678688B2 (en) Heat pump water heater
JP5268152B2 (en) Hot water storage water heater
JP5230352B2 (en) Water heater
JP2009250462A (en) Heat pump water heater
JP2008057857A (en) Heat pump water heater
JP2007147107A (en) Hot-water storage type hot-water supply device
JP5111221B2 (en) Water heater
JP4957026B2 (en) Heat pump heat supply system
JP5023607B2 (en) Hot water supply apparatus and control method thereof
JP6302725B2 (en) Heat pump type water heater and heat pump unit
JP2009216335A (en) Heat pump water heater
JP2017194219A (en) Storage water heater
JP5874024B2 (en) Hot water storage hot water supply system
JP5178142B2 (en) Hot water storage water heater
JP5264408B2 (en) Heat pump water heater
JP5741256B2 (en) Hot water storage water heater
JP4155162B2 (en) Hot water storage water heater
JP2010032112A (en) Hot water supply device
JP5312170B2 (en) Hot water supply system and control method thereof
JP2008309410A (en) Heat pump type hot water supply device
JP2010121843A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250