JP2008057857A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2008057857A
JP2008057857A JP2006235224A JP2006235224A JP2008057857A JP 2008057857 A JP2008057857 A JP 2008057857A JP 2006235224 A JP2006235224 A JP 2006235224A JP 2006235224 A JP2006235224 A JP 2006235224A JP 2008057857 A JP2008057857 A JP 2008057857A
Authority
JP
Japan
Prior art keywords
hot water
heat pump
water supply
side opening
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006235224A
Other languages
Japanese (ja)
Inventor
Tetsuei Kuramoto
哲英 倉本
Masahiro Ohama
昌宏 尾浜
Yoshitsugu Nishiyama
吉継 西山
Kazuhiko Marumoto
一彦 丸本
Takayuki Takatani
隆幸 高谷
Toshikatsu Fukunaga
敏克 福永
Toshimoto Kajitani
俊元 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006235224A priority Critical patent/JP2008057857A/en
Publication of JP2008057857A publication Critical patent/JP2008057857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater compact and free from a shortage of hot water. <P>SOLUTION: The heat pump water heater comprises a refrigerant circuit 6 formed by annularly connecting a compressor 1, refrigerant side piping 2a of a hot water supply heat exchanger 2, an expansion valve 3 and an evaporator 4; a hot water storage circuit 14 formed by annularly connecting a hot water storage tank 7, a water circulating pump 8 and water side piping 2b of the hot water supply heat exchanger 2; and a hot water supply circuit 20 for supplying hot water of predetermined temperature by mixing hot water in the hot water storage tank 7 and water in water supply piping 17. An outlet side opening 10a of first hot water supply piping 10 for returning hot water heated in the water side piping 2b, to the upper part of the hot water storage tank 7, and an inlet side opening 15a of first hot water supply piping 15 for taking out hot water from the upper part of the hot water storage tank 7, are arranged to almost face each other. Even when the temperature of hot water discharged from the outlet side opening 10a is low, since the hot water is supplied flowing directly into the inlet side opening 15a, the temperature of hot water in the hot water storage tank 7 is not lowered to attain boiling-up operation of large capacity and high efficiency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプで高効率に沸上げたお湯を給湯に利用するヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater that uses hot water boiled with high efficiency by a heat pump for hot water supply.

従来、ヒートポンプで高効率に沸上げたお湯を給湯に利用するヒートポンプ給湯機として、図3に示すように、沸上げたお湯を貯湯タンク内を経由せず直接給湯するダイレクト給湯機能を有したものがある(例えば、特許文献1参照)。   Conventionally, as a heat pump water heater that uses hot water boiled with high efficiency by a heat pump for hot water supply, as shown in FIG. 3, it has a direct hot water supply function that directly supplies boiled hot water without going through the hot water storage tank. (For example, refer to Patent Document 1).

図3に示すように、従来のヒートポンプ給湯機は、圧縮機101、凝縮器103、減圧装置104、蒸発器105、アキュムレータ106を順次環状に接続してヒートポンプ回路109を構成している。108は、蒸発器105に風を送る送風機である。   As shown in FIG. 3, the conventional heat pump water heater includes a compressor 101, a condenser 103, a decompression device 104, an evaporator 105, and an accumulator 106 that are sequentially connected in an annular shape to constitute a heat pump circuit 109. Reference numeral 108 denotes a blower that sends air to the evaporator 105.

また、ヒートポンプ回路109は、圧縮機101の吐出冷媒を、バイパス弁107を介して蒸発器105にバイパスさせる除霜手段を備えており、さらに、ヒートポンプユニットの大能力化のため、圧縮機101a、凝縮器103a、減圧装置104a、蒸発器105a、アキュムレータ106aからなるもう一つのヒートポンプサイクル109aを備えている。108aは、蒸発器105aに風を送る送風機である。ヒートポンプサイクル109aは、圧縮機101aの吐出冷媒を、バイパス弁107aを介して蒸発器105aにバイパスさせる除霜手段を備えている。   Further, the heat pump circuit 109 includes a defrosting unit that bypasses the refrigerant discharged from the compressor 101 to the evaporator 105 via the bypass valve 107. Further, in order to increase the capacity of the heat pump unit, the compressor 101a, Another heat pump cycle 109a including a condenser 103a, a decompression device 104a, an evaporator 105a, and an accumulator 106a is provided. Reference numeral 108a denotes a blower that sends air to the evaporator 105a. The heat pump cycle 109a includes defrosting means for bypassing the refrigerant discharged from the compressor 101a to the evaporator 105a via the bypass valve 107a.

また、給水管113、減圧弁114を介して給湯タンク111内に供給された水は、給湯タンク111の底部から循環ポンプ112を介して水熱交換器110に運ばれ、ここでヒートポンプ回路109、109aとの熱交換により自身は加熱されて高温の湯となり、給湯タンク111に戻る。この貯湯回路により給湯タンク111内に湯を蓄えることができる。給湯タンク111内に湯を蓄える場合には、給湯タンク111の蓄熱量を確保するためにヒートポンプでの沸上げ温度を高く(75℃〜90℃程度)設定するのが普通である。   Further, the water supplied into the hot water supply tank 111 via the water supply pipe 113 and the pressure reducing valve 114 is carried from the bottom of the hot water supply tank 111 to the water heat exchanger 110 via the circulation pump 112, where the heat pump circuit 109, The heat exchange with 109a heats itself to become hot water and returns to the hot water supply tank 111. Hot water can be stored in the hot water supply tank 111 by this hot water storage circuit. When hot water is stored in the hot water supply tank 111, it is normal to set the boiling temperature at the heat pump high (about 75 ° C. to 90 ° C.) in order to secure the heat storage amount of the hot water supply tank 111.

また、給水管113から水熱交換器110に直接導入された水をヒートポンプ回路109、109aとの熱交換で加熱して、給湯タンク111を経由せずにシャワーやカランなどの使用端末118、浴槽119へと給湯するダイレクト給湯経路を備えている。このダイレクト給湯経路途中には、水熱交換器110出口の湯と給湯タンク111の湯とを混合するミキシングバルブ120と、ミキシングバルブ120で混合された湯と給水管113の水とを混合するミキシングバルブ121と、ミキシングバルブ121出口の給湯流量を調節する流量調整弁122が設けられており、所定温度の湯が使用端末118や浴槽119から給湯できる構成となっている。116は、浴槽119内の水や湯を追い炊きする際の浴槽循環ポンプである。   In addition, the water directly introduced from the water supply pipe 113 to the water heat exchanger 110 is heated by heat exchange with the heat pump circuits 109 and 109a, and the terminal 118 and the bathtub such as a shower and currant are used without passing through the hot water tank 111. A direct hot water supply path for supplying hot water to 119 is provided. In the middle of this direct hot water supply path, the mixing valve 120 for mixing the hot water at the outlet of the water heat exchanger 110 and the hot water in the hot water supply tank 111, and the mixing of the hot water mixed by the mixing valve 120 and the water in the water supply pipe 113 are mixed. A valve 121 and a flow rate adjustment valve 122 for adjusting the hot water supply flow rate at the outlet of the mixing valve 121 are provided, and hot water having a predetermined temperature can be supplied from the use terminal 118 or the bathtub 119. Reference numeral 116 denotes a bathtub circulation pump when the water and hot water in the bathtub 119 are additionally cooked.

ヒートポンプは、沸上げ温度が低いほど運転効率(COP)が高くなり、大能力での運転が可能であるという特性を有しているため、給湯タンク111を経由せずに給湯する場合には、沸上げ温度を貯湯回路運転時よりも低く(42℃〜65℃程度)設定する。これにより、ヒートポンプ回路109、109aのダイレクト給湯機能により省エネルギー化が可能になるだけでなく、給湯タンク111を備えたことによりヒートポンプ回路109、109aの運転起動時の加熱能力不足を補うことができ給湯負荷に対する応答性が向上する。更に、ヒートポンプ回路109、109aと、給湯タンク111などからなる水循環回路117とを一つの外箱123に収納することで、ヒートポンプユニットとタンクユ
ニットとが分離している従来の電気温水機に比べて本体をコンパクト化でき、施工性が向上する。
特開2003−279133号公報
The heat pump has the characteristics that the lower the boiling temperature is, the higher the operation efficiency (COP) is, and the operation with a large capacity is possible, so when supplying hot water without going through the hot water supply tank 111, The boiling temperature is set lower than that during the hot water storage circuit operation (about 42 ° C. to 65 ° C.). As a result, not only can the energy saving be achieved by the direct hot water supply function of the heat pump circuits 109 and 109a, but the provision of the hot water supply tank 111 can compensate for the lack of heating capacity at the start of operation of the heat pump circuits 109 and 109a. Responsiveness to the load is improved. Furthermore, by storing the heat pump circuits 109 and 109a and the water circulation circuit 117 including the hot water supply tank 111 or the like in one outer box 123, compared to the conventional electric water heater in which the heat pump unit and the tank unit are separated. The main body can be made compact, and workability is improved.
JP 2003-279133 A

しかしながら、前記従来のヒートポンプ給湯機の構成では、ダイレクト給湯運転を行う場合に専用の水回路が必要となり、コストがかさむという問題があった。また、ダイレクト給湯機能を有しないヒートポンプ給湯機では、沸上げ温度を下げた運転を行うとヒートポンプの運転効率は向上するものの、沸上げた湯(42℃〜65℃)が貯湯タンク内に蓄えられていた高温の湯(75℃〜90℃程度)と混合して貯湯タンク内の温度が低下し、貯湯タンクの蓄熱量が減少してしまうという問題があった。例えば、タンク上部に85℃の湯が蓄えられている場合に、ヒートポンプ回路の大能力運転(沸き上げ温度42℃)を行うと、タンク上部では85℃の湯と42℃の湯とが混合して、タンク上部の蓄熱温度が60℃〜65℃程度にまで低下してしまう。ヒートポンプで60℃の湯を更に加熱することは、運転効率が低下するために行わないのが通常である。従って上記例の場合、タンク上部の湯温が85℃から60℃に低下したことにより、約25K(=85℃−65℃)相当の蓄熱量が低下することになるのである。   However, in the configuration of the conventional heat pump water heater, there is a problem that a dedicated water circuit is required when performing a direct hot water supply operation, which increases costs. In heat pump water heaters that do not have a direct hot water supply function, the operation efficiency of the heat pump is improved by operating at a lower boiling temperature, but the heated water (42 ° C to 65 ° C) is stored in the hot water storage tank. There was a problem that the temperature in the hot water storage tank was lowered by mixing with hot hot water (about 75 ° C. to 90 ° C.), and the amount of heat stored in the hot water storage tank was reduced. For example, when 85 ° C hot water is stored in the upper part of the tank and the large capacity operation of the heat pump circuit (boiling temperature 42 ° C) is performed, 85 ° C hot water and 42 ° C hot water are mixed in the upper part of the tank. Thus, the heat storage temperature in the upper part of the tank is lowered to about 60 ° C to 65 ° C. Further heating of hot water at 60 ° C. with a heat pump is usually not performed because of a reduction in operating efficiency. Therefore, in the case of the above example, when the hot water temperature at the upper part of the tank is lowered from 85 ° C. to 60 ° C., the heat storage amount corresponding to about 25 K (= 85 ° C.-65 ° C.) is lowered.

本発明は、前記従来の課題を解決するもので、専用のダイレクト給湯回路を有しなくてもタンクの蓄熱量を減少させることなく、大能力かつ高効率な沸き上げ運転が可能なヒートポンプ給湯機を提供することを目的とする。   The present invention solves the above-described conventional problems, and a heat pump water heater capable of high-capacity and high-efficiency boiling operation without reducing the amount of heat stored in the tank without having a dedicated direct hot water supply circuit. The purpose is to provide.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機と給湯熱交換器の冷媒側配管と膨張弁と蒸発器とを環状に接続して形成した冷媒回路と、貯湯タンクと水循環ポンプと前記給湯熱交換器の水側配管とを環状に接続して形成した貯湯回路と、前記貯湯タンク内の温水と給水配管内の水とを混合して所定温度の湯を供給する給湯回路とを備えたヒートポンプ給湯機において、前記水側配管で加熱された温水を前記貯湯タンクの上部に戻す第1貯湯配管の出口側開口部と、前記貯湯タンクの上部から温水を取り出す第1給湯配管の入口側開口部とを略相対するように配置したもので、第1貯湯配管の出口側開口部から吐出する湯の温度が低くてもそれが、直接第1給湯配管の入口側開口部に流入して給湯に供されるので、高温の湯を貯めた貯湯タンク内の湯温を低下させることなく、即ち貯湯タンクの蓄熱量を減少させることなく、大能力かつ高効率な沸き上げ運転が可能となる。   In order to solve the above conventional problems, a heat pump water heater of the present invention includes a refrigerant circuit formed by annularly connecting a refrigerant side pipe, an expansion valve, and an evaporator of a compressor, a hot water supply heat exchanger, and a hot water storage tank. A hot water storage circuit formed by annularly connecting a water circulation pump and a water side pipe of the hot water heat exchanger, and hot water in the hot water storage tank and water in the water supply pipe are mixed to supply hot water at a predetermined temperature. In a heat pump water heater having a hot water supply circuit, an outlet side opening of a first hot water storage pipe for returning the hot water heated by the water side pipe to the upper part of the hot water storage tank, and a first for taking out the hot water from the upper part of the hot water storage tank. It is arranged so as to be substantially opposite to the inlet side opening of the hot water supply pipe. Even if the temperature of the hot water discharged from the outlet side opening of the first hot water storage pipe is low, it is directly open to the inlet side of the first hot water supply pipe. Since it flows into the section and is used for hot water supply, Without lowering the water temperature in the hot water storage tank reserving the hot water temperature, i.e. without reducing the heat storage amount of the hot water storage tank, it is possible to boiling operation a large capacity and high efficiency.

本発明のヒートポンプ給湯機は、給湯熱交換器の水側配管で加熱された温水は、第1貯湯配管の出口側開口部、第1給湯配管の入口側開口部を介して給湯されるため、沸き上げ温度が低い大能力運転を行っても貯湯タンク内の湯温が低下しない。従って、専用のダイレクト給湯回路を有しておらず、貯湯タンクの容量が比較的小さい場合でも、大能力かつ高効率な沸き上げ運転が可能となり、コンパクトかつ湯切れしないヒートポンプ給湯機を提供できるのである。   In the heat pump water heater of the present invention, the hot water heated by the water side pipe of the hot water heat exchanger is supplied through the outlet side opening of the first hot water storage pipe and the inlet side opening of the first hot water pipe, The hot water temperature in the hot water storage tank does not decrease even when a large capacity operation with a low boiling temperature is performed. Therefore, it does not have a dedicated direct hot water supply circuit, and even when the capacity of the hot water storage tank is relatively small, a large capacity and highly efficient boiling operation is possible, and a compact and heat pump water heater that does not run out can be provided. is there.

第1の発明は、圧縮機と給湯熱交換器の冷媒側配管と膨張弁と蒸発器とを環状に接続して形成した冷媒回路と、貯湯タンクと水循環ポンプと前記給湯熱交換器の水側配管とを環状に接続して形成した貯湯回路と、前記貯湯タンク内の温水と給水配管内の水とを混合して所定温度の湯を供給する給湯回路とを備えたヒートポンプ給湯機において、前記水側配管で加熱された温水を前記貯湯タンクの上部に戻す第1貯湯配管の出口側開口部と、前記
貯湯タンクの上部から温水を取り出す第1給湯配管の入口側開口部とを略相対するように配置したもので、第1貯湯配管の出口側開口部から吐出する湯の温度が低くてもそれが、直接第1給湯配管の入口側開口部に流入して給湯に供されるので、高温の湯を貯めた貯湯タンク内の湯温を低下させることなく、即ち貯湯タンクの蓄熱量を減少させることなく、大能力かつ高効率な沸き上げ運転が可能となる。
A first invention is a refrigerant circuit formed by annularly connecting a refrigerant side pipe, an expansion valve, and an evaporator of a compressor, a hot water supply heat exchanger, a hot water storage tank, a water circulation pump, and a water side of the hot water supply heat exchanger. In a heat pump water heater comprising a hot water storage circuit formed by connecting pipes in a ring shape, and a hot water supply circuit for supplying hot water at a predetermined temperature by mixing hot water in the hot water storage tank and water in the water supply pipe, The outlet side opening of the first hot water storage pipe for returning the hot water heated by the water side pipe to the upper part of the hot water storage tank and the inlet side opening of the first hot water supply pipe for taking out hot water from the upper part of the hot water storage tank are substantially opposed to each other. Even if the temperature of the hot water discharged from the outlet side opening of the first hot water storage pipe is low, it flows directly into the inlet side opening of the first hot water supply pipe and is used for hot water supply. Reduce the temperature of hot water in hot water storage tanks that store hot water No, i.e. without reducing the heat storage amount of the hot water storage tank, it is possible to boiling operation a large capacity and high efficiency.

第2の発明は、特に、第1の発明の第1貯湯配管の出口側開口部を、第1給湯配管の入口側開口部の鉛直上方に配置したもので、第1貯湯配管の出口側開口部から出る湯を第1給湯配管の入口側開口部で確実に受けることができるので、貯湯タンク内の湯温を低下させることなく大能力かつ高効率な沸き上げ運転が可能となる。   In the second invention, in particular, the outlet side opening of the first hot water storage pipe of the first invention is arranged vertically above the inlet side opening of the first hot water supply pipe, and the outlet side opening of the first hot water storage pipe. Since the hot water coming out of the hot water can be reliably received at the opening on the inlet side of the first hot water supply pipe, a high-capacity and high-efficiency boiling operation can be performed without lowering the hot water temperature in the hot water storage tank.

第3の発明は、特に、第1の発明の第1貯湯配管の出口側開口部と第1給湯配管の入口側開口部とを、水平方向で相対するように配置したもので、比較的製作が容易な構成で、貯湯タンク内の湯温を低下させることなく大能力かつ高効率な沸き上げ運転が可能となる。   In particular, the third aspect of the invention is a comparatively manufactured product in which the outlet side opening of the first hot water storage pipe of the first invention and the inlet side opening of the first hot water supply pipe are arranged to face each other in the horizontal direction. However, it is possible to perform boiling operation with high capacity and high efficiency without lowering the hot water temperature in the hot water storage tank.

第4の発明は、特に、第1〜3のいずれかひとつの発明の第1給湯配管の入口側開口部の管径を、第1貯湯配管の出口側開口部の管径よりも大きくしたもので、第1貯湯配管の出口側開口部を出た湯が第1給湯配管の入口側開口部に入らずに貯湯タンク内に留まることを防止し、貯湯タンク内の湯温を低下させることなく大能力かつ高効率な沸き上げ運転が可能となる。   In the fourth invention, in particular, the diameter of the inlet side opening of the first hot water supply pipe of any one of the first to third inventions is made larger than the diameter of the outlet side opening of the first hot water storage pipe. Thus, the hot water that has exited the opening on the outlet side of the first hot water storage pipe is prevented from staying in the hot water tank without entering the opening on the inlet side of the first hot water supply pipe, and the hot water temperature in the hot water storage tank is not lowered. A large-capacity and high-efficiency boiling operation is possible.

第5の発明は、特に、第4の発明の第1貯湯配管の出口側開口部を第1給湯配管の入口側開口部内に挿入したもので、第1貯湯配管の出口側開口部を出た湯が確実に第1給湯配管の入口側開口部を介して給湯されるため、貯湯タンク内の湯温を低下させることなく大能力かつ高効率な沸き上げ運転が可能となる。   In the fifth invention, in particular, the outlet side opening of the first hot water storage pipe of the fourth invention is inserted into the inlet side opening of the first hot water supply pipe, and the outlet side opening of the first hot water storage pipe is exited. Since hot water is reliably supplied through the opening on the inlet side of the first hot water supply pipe, high-capacity and high-efficiency boiling operation can be performed without lowering the temperature of the hot water in the hot water storage tank.

第6の発明は、特に、第1〜4のいずれかひとつの発明の第1貯湯配管の出口側開口部と第1給湯配管の入口側開口部との距離を100mm以下に設定したもので、第1貯湯配管の出口側開口部を出た湯が第1給湯配管の入口側開口部に入らずに貯湯タンク内に留まることを防止し、貯湯タンク内の湯温を低下させることなく大能力かつ高効率な沸き上げ運転が可能となる。   In the sixth invention, in particular, the distance between the outlet side opening of the first hot water storage pipe of any one of the first to fourth inventions and the inlet side opening of the first hot water supply pipe is set to 100 mm or less. The hot water that has exited the opening on the outlet side of the first hot water storage pipe is prevented from staying in the hot water storage tank without entering the opening on the inlet side of the first hot water supply pipe, and has a high capacity without lowering the hot water temperature in the hot water storage tank. In addition, highly efficient boiling operation is possible.

第7の発明は、特に、第1〜6のいずれかひとつの発明のヒートポンプ給湯機のヒートポンプの最大加熱能力が8〜12kWであり、かつ貯湯タンクの容量が100〜150Lとしたもので、コンパクトかつ湯切れを起こさないヒートポンプ給湯機を提供できる。   The seventh invention is particularly compact in that the heat pump water heater of any one of the first to sixth inventions has a maximum heating capacity of 8 to 12 kW and a hot water storage tank capacity of 100 to 150 L. In addition, a heat pump water heater that does not cause hot water shortage can be provided.

第8の発明は、特に、第1〜7のいずれか1つの発明の冷媒回路は、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により給湯熱交換器の水側配管内の水を加熱するもので、前記給湯熱交換器内の冷媒は臨界圧力以上に加圧されているので、前記給湯熱交換器内の水により熱を奪われて温度低下しても凝縮することがない。従って、前記給湯熱交換器の全域で冷媒と水との間の温度差を形成しやすくなり、熱交換効率を高くできる。   In an eighth aspect of the invention, in particular, the refrigerant circuit according to any one of the first to seventh aspects of the invention is a supercritical heat pump cycle in which the refrigerant pressure on the high-pressure side is equal to or higher than the critical pressure, and the refrigerant is pressurized to the critical pressure or higher. The water in the water-side piping of the hot water heat exchanger is heated by the refrigerant, and since the refrigerant in the hot water heat exchanger is pressurized to a critical pressure or higher, heat is taken away by the water in the hot water heat exchanger. Even if the temperature drops, it does not condense. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire area of the hot water heat exchanger, and the heat exchange efficiency can be increased.

第9の発明は、特に、第8の発明の冷媒として二酸化炭素を使用するもので、比較的安価でかつ安定した二酸化炭素を冷媒に使用することで製品コストを抑えるとともに、信頼性を向上させることができる。また、二酸化炭素はオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しいヒートポンプ給湯機を提供できる。   The ninth aspect of the invention uses carbon dioxide as the refrigerant of the eighth aspect of the invention, and reduces the product cost and improves the reliability by using relatively inexpensive and stable carbon dioxide for the refrigerant. be able to. In addition, since carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 of the alternative refrigerant HFC-407C, it can provide a heat pump water heater that is friendly to the global environment.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、本実施の形態におけるヒートポンプ給湯機は、冷媒回路6と、貯湯回路14と、給湯回路20から構成され、冷媒回路6は、圧縮機1と、給湯熱交換器2の冷媒側配管2aと、膨張弁3と、蒸発器4とを環状に接続して形成されている。蒸発器4はファン5を有しており、ファン5により蒸発器4に供給された空気と蒸発器4内の冷媒との間で熱交換が行われ、冷媒が加熱される。   In FIG. 1, the heat pump water heater in the present embodiment includes a refrigerant circuit 6, a hot water storage circuit 14, and a hot water supply circuit 20, and the refrigerant circuit 6 is a refrigerant side pipe of the compressor 1 and the hot water supply heat exchanger 2. 2a, the expansion valve 3, and the evaporator 4 are connected in a ring shape. The evaporator 4 has a fan 5. Heat exchange is performed between the air supplied to the evaporator 4 by the fan 5 and the refrigerant in the evaporator 4, and the refrigerant is heated.

貯湯回路14は、貯湯タンク7と水循環ポンプ8と給湯熱交換器2の水側配管2bとを環状に接続して形成されている。貯湯タンク7底部の水は、水循環ポンプ8によって給湯熱交換器2の水側配管2bに搬送され、ここで給湯熱交換器2の冷媒側配管2a内の冷媒と熱交換して自身は高温の湯となり、第1貯湯配管10を介して貯湯タンク7の上部に戻される。貯湯タンク7の底部には貯湯タンク7に水を補給するための給水配管17が減圧弁116を介して、貯湯タンク7の上部には貯湯タンク7から湯を取り出すための第1給湯配管15がそれぞれ接続されており、混合弁18を介してシャワーやカラン等の給湯端末19に給湯する給湯回路20を形成している。貯湯タンク7の側壁面には、残湯量センサー13a、13b、13cが設置されており、貯湯タンク7の壁面温度を測定することにより貯湯タンク7内の残湯量を検出することができる。   The hot water storage circuit 14 is formed by annularly connecting the hot water storage tank 7, the water circulation pump 8, and the water side pipe 2 b of the hot water supply heat exchanger 2. The water at the bottom of the hot water storage tank 7 is transported to the water side pipe 2b of the hot water heat exchanger 2 by the water circulation pump 8, where it exchanges heat with the refrigerant in the refrigerant side pipe 2a of the hot water heat exchanger 2 and has its own high temperature. It becomes hot water and is returned to the upper part of the hot water storage tank 7 through the first hot water storage pipe 10. A water supply pipe 17 for supplying water to the hot water storage tank 7 is provided at the bottom of the hot water storage tank 7 via a pressure reducing valve 116, and a first hot water supply pipe 15 for extracting hot water from the hot water storage tank 7 is provided above the hot water storage tank 7. Each is connected to form a hot water supply circuit 20 for supplying hot water to a hot water supply terminal 19 such as a shower or a currant through the mixing valve 18. Residual hot water amount sensors 13 a, 13 b, and 13 c are installed on the side wall surface of the hot water storage tank 7, and the remaining hot water amount in the hot water storage tank 7 can be detected by measuring the wall surface temperature of the hot water storage tank 7.

また、第1貯湯配管10の出口側開口部10aと第1給湯配管15の入口側開口部15aとは、貯湯タンク7の内部において、100mm以下の間を置いて、互いに略相対するように配置している。   Further, the outlet side opening 10a of the first hot water storage pipe 10 and the inlet side opening 15a of the first hot water supply pipe 15 are arranged so as to be substantially opposed to each other with a gap of 100 mm or less in the hot water storage tank 7. is doing.

11は、給湯熱交換器2に流入する水の温度を検出する入水温度センサーで、12は、給湯熱交換器2から流出する水の温度を検出する出湯温度センサーである。9は、給湯熱交換器2から流出する湯を、貯湯タンク7の上部又は下部のいずれかに供給するために切り替える三方切替弁である。   11 is an incoming water temperature sensor that detects the temperature of water flowing into the hot water supply heat exchanger 2, and 12 is a hot water temperature sensor that detects the temperature of water flowing out of the hot water supply heat exchanger 2. Reference numeral 9 denotes a three-way switching valve for switching to supply hot water flowing out from the hot water supply heat exchanger 2 to either the upper part or the lower part of the hot water storage tank 7.

従来、冷媒回路6と貯湯タンク7とはそれぞれ個別のユニット内に収納されていた(分離型と呼ぶ)が、本実施の形態では、冷媒回路6と貯湯回路14と給湯回路20とを同一のキャビネット(図示せず)内に収納した構成(一体型と呼ぶ)としている。   Conventionally, the refrigerant circuit 6 and the hot water storage tank 7 are housed in separate units (referred to as a separate type), but in the present embodiment, the refrigerant circuit 6, the hot water storage circuit 14, and the hot water supply circuit 20 are the same. It is set as the structure (it calls an integrated type) accommodated in the cabinet (not shown).

これにより、ヒートポンプ給湯機のコンパクト化による省スペース化や設置配管工事の施工性向上を図っている。また、ヒートポンプ給湯機のコンパクト化と湯切れ防止とを両立するために、貯湯タンク7の容量は100〜150L、ヒートポンプの最大加熱能力は8〜12kW程度に設定するのが良い。   Thereby, the space saving by the downsizing of the heat pump water heater and the workability improvement of the installation piping work are aimed at. Moreover, in order to make the heat pump water heater compact and prevent the hot water from running out, it is preferable to set the capacity of the hot water storage tank 7 to 100 to 150 L and the maximum heating capacity of the heat pump to about 8 to 12 kW.

給湯負荷が発生した場合、貯湯タンク7内の湯は、第1給湯配管15の入口側開口部15aから第1給湯配管15を介し、混合弁18で給水配管17からの水と混合されて所定温度(38℃〜48℃程度)の湯となって給湯端末19から給湯される。また、貯湯タンク7内の残湯量が所定値よりも少なくなった場合(例えば、残湯量センサー13cの検出温度が45℃未満になった場合)には、湯切れ(貯湯タンク7内の湯がなくなること)防止のためにヒートポンプによる沸き上げ運転を行う。そして、更に貯湯タンク7内の湯が少なくなった場合(例えば、残湯量センサー13bの検出温度が45℃未満になった場合)には、ヒートポンプを最大加熱能力(例えば、10kW)で運転して湯切れを防止するのである。   When a hot water supply load is generated, the hot water in the hot water storage tank 7 is mixed with water from the water supply pipe 17 through the first hot water supply pipe 15 through the first hot water supply pipe 15 from the inlet side opening 15a of the first hot water supply pipe 15 and is predetermined. Hot water having a temperature (about 38 ° C. to 48 ° C.) is supplied from the hot water supply terminal 19. In addition, when the remaining hot water amount in the hot water storage tank 7 is less than a predetermined value (for example, when the detected temperature of the remaining hot water amount sensor 13c is lower than 45 ° C.), the hot water has run out (the hot water in the hot water storage tank 7 has In order to prevent it from disappearing, perform a heating operation with a heat pump. When the hot water in the hot water storage tank 7 is further reduced (for example, when the temperature detected by the remaining hot water amount sensor 13b is lower than 45 ° C.), the heat pump is operated at the maximum heating capacity (for example, 10 kW). It prevents hot water from running out.

尚、沸き上げ温度を一定(例えば85℃)に固定したままヒートポンプの加熱能力を増大させると、圧縮機1の電流値や吐出圧力が許容範囲を超えてしまうため、ヒートポンプを最大加熱能力で運転する場合は沸き上げ温度を通常よりも低め(例えば42℃〜65℃)に設定する。   Note that if the heating capacity of the heat pump is increased while the boiling temperature is fixed (for example, 85 ° C.), the current value and discharge pressure of the compressor 1 exceed the allowable range, so the heat pump is operated at the maximum heating capacity. When performing, the boiling temperature is set lower than usual (for example, 42 ° C. to 65 ° C.).

以上のように構成されたヒートポンプ給湯機について、以下その動作、作用を説明する。   About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

冬期や、中間期の給湯負荷が多い時期では、貯湯タンク7内には比較的高温(70〜85℃)の湯が多く蓄えられている。高温で蓄熱することにより、貯湯タンク7の容量を小型化することができる。一方、夏期のように給湯負荷が少ない時期では、貯湯タンク7内に比較的低温(65℃)の湯を少なく蓄えることで、ヒートポンプの運転効率を向上させると共に、無駄な沸き上げ運転を防止することができる。   During the winter season or a period when the hot water supply load is high in the intermediate period, a large amount of hot water (70 to 85 ° C.) is stored in the hot water storage tank 7. By storing heat at a high temperature, the capacity of the hot water storage tank 7 can be reduced. On the other hand, at a time when the hot water supply load is low, such as in the summer, by storing a relatively small amount of hot water (65 ° C.) in the hot water storage tank 7, the operation efficiency of the heat pump is improved and unnecessary heating operation is prevented. be able to.

貯湯タンク7の残湯量が所定量よりも少なくなった場合(例えば、残湯量センサー13bの検出温度が45℃未満になった場合)、ヒートポンプを最大加熱能力(例えば、10kW)、沸き上げ温度を42℃として運転して湯切れを防止する。   When the amount of remaining hot water in the hot water storage tank 7 is lower than a predetermined amount (for example, when the detected temperature of the remaining hot water amount sensor 13b is lower than 45 ° C.), the heat pump is set to the maximum heating capacity (for example, 10 kW), Operate at 42 ° C to prevent running out of hot water.

この時、第1貯湯配管10の出口側開口部10aと第1給湯配管15の入口側開口部15aとは、貯湯タンク7の内部において互いに略相対するように配置しているので、ヒートポンプユニットで沸き上げられた42℃の湯は、第1貯湯配管10の出口側開口部10aから貯湯タンク7に流入後すぐに第1給湯配管15の入口側開口部15aを介して給湯に使用される。このため、貯湯タンク7の上部に蓄えられていた比較的高温(70〜85℃)の湯とヒートポンプユニットで沸き上げられた42℃の湯とが混合して貯湯タンク7上部の湯の温度が低下することを防止できるのである。   At this time, the outlet side opening 10a of the first hot water storage pipe 10 and the inlet side opening 15a of the first hot water supply pipe 15 are disposed so as to be substantially opposed to each other inside the hot water storage tank 7, so that the heat pump unit The boiled water at 42 ° C. is used for hot water supply via the inlet side opening 15a of the first hot water supply pipe 15 immediately after flowing into the hot water storage tank 7 from the outlet side opening 10a of the first hot water storage pipe 10. For this reason, the relatively hot (70 to 85 ° C.) hot water stored in the upper part of the hot water storage tank 7 and the 42 ° C. hot water boiled by the heat pump unit are mixed together, so that the temperature of the hot water in the upper part of the hot water storage tank 7 is increased. It is possible to prevent the decrease.

また、貯湯タンク7内の残湯量が多い場合であっても、浴槽(図示せず)の湯張りなど多量に湯を使用することが予めわかっている場合には、給湯開始と共にヒートポンプユニットを最大能力で運転しても良い。また、上記実施の形態では、ヒートポンプユニットの最大加熱能力を10kW、沸き上げ温度を42℃としたが、これらの値にはある程度の幅(例えば、ヒートポンプユニットの最大加熱能力を8〜12kW程度、沸き上げ温度を38〜65℃程度)を持たせても良い。   Even if the amount of remaining hot water in the hot water storage tank 7 is large, if it is known in advance that a large amount of hot water will be used, such as filling a bathtub (not shown), the heat pump unit is set to the maximum at the start of hot water supply. You may drive with your ability. Moreover, in the said embodiment, although the maximum heating capability of the heat pump unit was 10 kW and the boiling temperature was 42 ° C., these values had a certain range (for example, the maximum heating capability of the heat pump unit was about 8 to 12 kW, The boiling temperature may be about 38 to 65 ° C.).

上記実施の形態では、第1貯湯配管10の出口側開口部10aを、第1給湯配管15の入口側開口部15aの真上、すなわち、鉛直上方に配置したが、図2(a)に示すように、第1貯湯配管10の出口側開口部10aと第1給湯配管15の入口側開口部15aとを、水平方向で相対するように配置してもよい。この場合は、比較的製作が容易になる。   In the said embodiment, although the exit side opening part 10a of the 1st hot water supply piping 10 was arrange | positioned just above the entrance side opening part 15a of the 1st hot water supply piping 15, ie, perpendicular | vertical upper direction, it shows to Fig.2 (a). As described above, the outlet side opening 10a of the first hot water storage pipe 10 and the inlet side opening 15a of the first hot water supply pipe 15 may be arranged to face each other in the horizontal direction. In this case, manufacturing becomes relatively easy.

また、図2(b)に示すように、第1給湯配管15の入口側開口部15aの管径を、第1貯湯配管10の出口側開口部10aの管径よりも大きくすれば、ヒートポンプユニットで沸き上げられた湯は、より確実に第1貯湯配管10の出口側開口部10a、貯湯タンク7、第1給湯配管15の入口側開口部15aを介して給湯に使用されるため、貯湯タンク7上部の湯の温度が低下することを防止することができる。   In addition, as shown in FIG. 2 (b), if the pipe diameter of the inlet side opening 15 a of the first hot water supply pipe 15 is made larger than the pipe diameter of the outlet side opening 10 a of the first hot water storage pipe 10, the heat pump unit. The hot water boiled in is used for hot water supply through the outlet side opening 10a of the first hot water storage pipe 10, the hot water storage tank 7, and the inlet side opening 15a of the first hot water supply pipe 15 more reliably. 7 It can prevent that the temperature of the hot water of the upper part falls.

さらに、図2(c)に示すように、第1貯湯配管10の出口側開口部10aを第1給湯配管15の入口側開口部15a内に挿入するようにすれば、第1貯湯配管10の出口側開口部10aを出た湯が確実に第1給湯配管15の入口側開口部15aを介して給湯されるため、貯湯タンク7内の湯温を低下させることなく大能力かつ高効率な沸き上げ運転が可能となる。   Furthermore, as shown in FIG. 2C, if the outlet side opening 10a of the first hot water storage pipe 10 is inserted into the inlet side opening 15a of the first hot water supply pipe 15, the first hot water storage pipe 10 Since the hot water that has exited the outlet side opening 10a is reliably supplied through the inlet side opening 15a of the first hot water supply pipe 15, it has a large capacity and high efficiency without boiling down the hot water temperature in the hot water storage tank 7. Raising operation is possible.

また、本実施の形態では、冷媒として二酸化炭素を用いると共に、冷媒回路6のサイクルを、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしているが、もちろん高圧側の冷媒圧力が臨界圧力以下のヒートポンプサイクルでもよい。またこの場合、冷媒としてはフロンガス、アンモニアなどを用いても良い。   Further, in the present embodiment, carbon dioxide is used as the refrigerant, and the cycle of the refrigerant circuit 6 is a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure. Of course, the refrigerant pressure on the high pressure side is critical. A heat pump cycle under pressure may be used. In this case, chlorofluorocarbon, ammonia, or the like may be used as the refrigerant.

以上のように、本発明にかかるヒートポンプ給湯機は、貯湯タンク内の湯温を低下させることがなく、大能力かつ高効率な沸き上げ運転ができるもので、貯湯タンクの容量が比較的小さいヒートポンプ給湯機に対して極めて有効である。   As described above, the heat pump water heater according to the present invention can perform a high-capacity and high-efficiency boiling operation without lowering the hot water temperature in the hot water storage tank, and has a relatively small capacity of the hot water storage tank. It is extremely effective for water heaters.

本発明の実施の形態1におけるヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 of the present invention (a)同ヒートポンプ給湯機の貯湯タンク内配管の他の例を示す構成図(b)同貯湯タンク内配管の他の例を示す構成図(c)同貯湯タンク内配管の他の例を示す部分拡大断面図(A) The block diagram which shows the other example of piping in the hot water storage tank of the heat pump water heater (b) The block diagram which shows the other example of piping in the hot water storage tank (c) The other example of piping in the hot water storage tank is shown Partial enlarged sectional view 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 圧縮機
2 給湯熱交換器
2a 給湯熱交換器の冷媒側配管
2b 給湯熱交換器の水側配管
3 膨張弁
4 蒸発器
5 ファン
6 冷媒回路
7 貯湯タンク
8 水循環ポンプ
9 三方切替弁
10 第1貯湯配管
10a 第1貯湯配管の出口側開口部
11 入水温度センサー
12 出湯温度センサー
13a、13b、13c 残湯量センサー
14 貯湯回路
15 第1給湯配管
15a 第1給湯配管の入口側開口部
16 減圧弁
17 給水配管
18 混合弁
19 給湯端末
20 給湯回路
DESCRIPTION OF SYMBOLS 1 Compressor 2 Hot-water supply heat exchanger 2a Refrigerant-side piping of hot-water supply heat exchanger 2b Water-side piping of hot-water supply heat exchanger 3 Expansion valve 4 Evaporator 5 Fan 6 Refrigerant circuit 7 Hot water storage tank 8 Water circulation pump 9 Three-way switching valve 10 1st Hot water storage pipe 10a Outlet side opening of first hot water storage pipe 11 Incoming water temperature sensor 12 Hot water temperature sensor 13a, 13b, 13c Remaining hot water amount sensor 14 Hot water storage circuit 15 First hot water supply pipe 15a Inlet side opening of first hot water supply pipe 16 Pressure reducing valve 17 Water supply pipe 18 Mixing valve 19 Hot water supply terminal 20 Hot water supply circuit

Claims (9)

圧縮機と給湯熱交換器の冷媒側配管と膨張弁と蒸発器とを環状に接続して形成した冷媒回路と、貯湯タンクと水循環ポンプと前記給湯熱交換器の水側配管とを環状に接続して形成した貯湯回路と、前記貯湯タンク内の温水と給水配管内の水とを混合して所定温度の湯を供給する給湯回路とを備えたヒートポンプ給湯機において、前記水側配管で加熱された温水を前記貯湯タンクの上部に戻す第1貯湯配管の出口側開口部と、前記貯湯タンクの上部から温水を取り出す第1給湯配管の入口側開口部とを略相対するように配置したことを特徴とするヒートポンプ給湯機。 A refrigerant circuit formed by annularly connecting the refrigerant side piping of the compressor, the hot water supply heat exchanger, the expansion valve, and the evaporator, and a hot water storage tank, a water circulation pump, and the water side piping of the hot water supply heat exchanger are connected annularly. In the heat pump water heater comprising a hot water storage circuit formed and a hot water supply circuit that mixes hot water in the hot water storage tank and water in the water supply pipe to supply hot water at a predetermined temperature, the heat pump is heated by the water side pipe. The outlet side opening of the first hot water storage pipe returning the hot water to the upper part of the hot water storage tank and the inlet side opening of the first hot water supply pipe for taking out the hot water from the upper part of the hot water storage tank are arranged so as to be substantially opposed to each other. A heat pump hot water supply machine. 第1貯湯配管の出口側開口部を、第1給湯配管の入口側開口部の鉛直上方に配置したことを特徴とする請求項1に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1, wherein the outlet side opening of the first hot water storage pipe is arranged vertically above the inlet side opening of the first hot water supply pipe. 第1貯湯配管の出口側開口部と第1給湯配管の入口側開口部とを、水平方向で相対するように配置したことを特徴とする請求項1に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1, wherein the outlet side opening of the first hot water storage pipe and the inlet side opening of the first hot water supply pipe are arranged to face each other in the horizontal direction. 第1給湯配管の入口側開口部の管径を、第1貯湯配管の出口側開口部の管径よりも大きくしたことを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ給湯機。 The heat pump hot water supply according to any one of claims 1 to 3, wherein the pipe diameter of the inlet side opening of the first hot water supply pipe is larger than the pipe diameter of the outlet side opening of the first hot water storage pipe. Machine. 第1貯湯配管の出口側開口部を第1給湯配管の入口側開口部内に挿入したことを特徴とする請求項4に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 4, wherein the outlet side opening of the first hot water storage pipe is inserted into the inlet side opening of the first hot water supply pipe. 第1貯湯配管の出口側開口部と第1給湯配管の入口側開口部との距離を100mm以下に設定したことを特徴とする請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 4, wherein a distance between an outlet side opening of the first hot water storage pipe and an inlet side opening of the first hot water supply pipe is set to 100 mm or less. ヒートポンプの最大加熱能力が8〜12kWであり、かつ貯湯タンクの容量が100〜150Lであることを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプ給湯機。 The maximum heating capacity of the heat pump is 8 to 12 kW, and the capacity of the hot water storage tank is 100 to 150 L, The heat pump water heater according to any one of claims 1 to 6. 冷媒回路は、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により給湯熱交換器の水側配管内の水を加熱する請求項1〜7のいずれか1項に記載のヒートポンプ給湯機。 The refrigerant circuit is a supercritical heat pump cycle in which a refrigerant pressure on a high-pressure side becomes equal to or higher than a critical pressure, and heats water in a water-side pipe of a hot water supply heat exchanger with a refrigerant whose pressure is increased to the critical pressure or higher. The heat pump water heater according to any one of 7. 冷媒として二酸化炭素を使用することを特徴とする請求項8に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 8, wherein carbon dioxide is used as the refrigerant.
JP2006235224A 2006-08-31 2006-08-31 Heat pump water heater Pending JP2008057857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235224A JP2008057857A (en) 2006-08-31 2006-08-31 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235224A JP2008057857A (en) 2006-08-31 2006-08-31 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2008057857A true JP2008057857A (en) 2008-03-13

Family

ID=39240820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235224A Pending JP2008057857A (en) 2006-08-31 2006-08-31 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2008057857A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026645A1 (en) 2008-09-05 2010-03-11 日鍛バルブ株式会社 Cam shaft phase variable device in engine for automobile
JP2010144954A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Heat pump water heater
CN102393075A (en) * 2011-11-29 2012-03-28 骆金山 Heat pump water heater evaporator chamber used for absorbing heat of compressor and preventing frosting
CN104729086A (en) * 2013-12-24 2015-06-24 罗伟强 Heat-pump water heater
CN105466077A (en) * 2016-01-20 2016-04-06 马鞍山市博浪热能科技有限公司 Water-mixing-preventing constant-flow energy-saving water tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026645A1 (en) 2008-09-05 2010-03-11 日鍛バルブ株式会社 Cam shaft phase variable device in engine for automobile
JP2010144954A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Heat pump water heater
CN102393075A (en) * 2011-11-29 2012-03-28 骆金山 Heat pump water heater evaporator chamber used for absorbing heat of compressor and preventing frosting
CN104729086A (en) * 2013-12-24 2015-06-24 罗伟强 Heat-pump water heater
CN105466077A (en) * 2016-01-20 2016-04-06 马鞍山市博浪热能科技有限公司 Water-mixing-preventing constant-flow energy-saving water tank
CN105466077B (en) * 2016-01-20 2018-02-02 马鞍山市博浪热能科技有限公司 A kind of mixed-proof constant flow rate energy-saving cistern

Similar Documents

Publication Publication Date Title
JP2009092323A (en) Heat pump water heater
JP4124258B2 (en) Heat pump water heater
JP2005195211A (en) Heat pump water heater
JP2008057857A (en) Heat pump water heater
JP2006220357A (en) Heat pump water heater
JP2008039340A (en) Hot water supply device
JP2007192458A (en) Heat pump water heater
JP2004263954A (en) Heat pump hot water supply device
JP4375095B2 (en) Heat pump water heater
JP2006250367A (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP4403983B2 (en) Water heater
JP2007139258A (en) Hot water storage type water heater
JP2011169584A (en) Heat pump water heater
JP2006145047A (en) Hot water storage type water heater
JP2006132889A (en) Hot water storage type heat pump hot water supply apparatus
JP2005121331A (en) Hot water supply device
JP2013083376A (en) Hot water supply system
JP2006002959A (en) Heat pump type water heater
JP3890322B2 (en) Heat pump water heater
JP2008039339A (en) Hot water supply device
JP2005233444A (en) Heat pump hot-water supply device
JP4155162B2 (en) Hot water storage water heater
JP2006057865A (en) Heat pump water heater
JP3972886B2 (en) Water heater