JP2005195211A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2005195211A
JP2005195211A JP2004000587A JP2004000587A JP2005195211A JP 2005195211 A JP2005195211 A JP 2005195211A JP 2004000587 A JP2004000587 A JP 2004000587A JP 2004000587 A JP2004000587 A JP 2004000587A JP 2005195211 A JP2005195211 A JP 2005195211A
Authority
JP
Japan
Prior art keywords
hot water
mixing valve
water
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004000587A
Other languages
Japanese (ja)
Inventor
Akira Fujitaka
章 藤高
Keijiro Kunimoto
啓次郎 國本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004000587A priority Critical patent/JP2005195211A/en
Priority to CNB2005100040315A priority patent/CN100445664C/en
Publication of JP2005195211A publication Critical patent/JP2005195211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater having a reduced size without causing runout of hot water. <P>SOLUTION: The heat pump water heater comprises a refrigerant circuit 5 consisting of a compressor 1, a radiator 2, a pressure reducer 3, and an air heat exchanger 4, a water circuit to which a hot water storage tank 6, a circulation pump 7, and the radiator 2 are connected, and a hot water supply circuit 17. The hot water supply circuit 17 is connected to the water circuit 9, a water pipe 10 for supplying city water, and a tapping pipe 11 for tapping hot water from the hot water storage tank 6. The tapping pipe 11 and an outlet pipe from the radiator 2 are connected to a first mixing valve 12, and the first mixing valve 12 and a city water pipe 13 are connected to a second mixing valve 14. The outlet pipe of the second mixing valve 14 is connected to a hot water supply terminal 15 and a bathtub 16. The refrigerant circuit 5 is operated in accordance with a tapping signal for supplying hot water heated by the water circuit 9 and hot water in the hot water storage tank 6 at the same time which are mixed with city water with the second mixing valve 14 and tapped at a preset temperature. Thus, the capacity of the hot water storage tank 6 is reduced, and thus the size of the heat pump water heater is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はヒートポンプを利用したヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater using a heat pump.

図8は、従来のヒートポンプ給湯機の代表的な構成を示すものである(例えば、特許文献1参照)。図8に示すように、この種のヒートポンプ給湯機は、圧縮機1、放熱器2、減圧装置3、空気熱交換器4からなる冷媒回路5と、貯湯槽6、循環ポンプ7、放熱器2を接続した水回路9から構成されている。冷媒回路5の空気熱交換器4で大気から吸熱して放熱器2で放熱し、貯湯槽6の下部から循環ポンプ7を介して放熱器2に供給される水を加熱して貯湯槽6に循環させ、貯湯槽6に貯留した温水を給湯している。
この従来の構成では、夜間電力を使用して夜間にヒートポンプ給湯機を運転して加熱した温水を貯湯槽6に貯め、昼間は貯湯槽6に貯められた温水と低温の市水を混合して所定の温度の温水を供給している。
特開2000−346447号公報
FIG. 8 shows a typical configuration of a conventional heat pump water heater (see, for example, Patent Document 1). As shown in FIG. 8, this type of heat pump water heater includes a refrigerant circuit 5 including a compressor 1, a radiator 2, a decompression device 3, and an air heat exchanger 4, a hot water tank 6, a circulation pump 7, and a radiator 2. It is comprised from the water circuit 9 which connected. The air heat exchanger 4 of the refrigerant circuit 5 absorbs heat from the atmosphere and dissipates heat from the radiator 2, and heats water supplied from the lower part of the hot water storage tank 6 to the heat radiator 2 via the circulation pump 7 to the hot water storage tank 6. The hot water stored in the hot water storage tank 6 is circulated to supply hot water.
In this conventional configuration, hot water heated by operating a heat pump water heater at night using electric power in the night is stored in the hot water storage tank 6, and hot water stored in the hot water storage tank 6 and low-temperature city water are mixed in the daytime. Hot water at a predetermined temperature is supplied.
JP 2000-346447 A

しかし、昼間の温水の使用量(給湯負荷)が多い場合は貯湯槽6の温水が足りなくなる。したがって、給湯負荷への対応のためには貯湯容量の大きい貯湯槽6を使用しなければならない。しかし、貯湯容量の大きい貯湯槽6は機器の設置面積を広く取らなければならないという課題を有していた。   However, when the amount of hot water used during the day (hot water supply load) is large, the hot water in the hot water storage tank 6 is insufficient. Therefore, the hot water storage tank 6 having a large hot water storage capacity must be used to cope with the hot water supply load. However, the hot water storage tank 6 having a large hot water storage capacity has a problem that it requires a large installation area of the equipment.

本発明は、前記従来の課題を解決するもので、給湯負荷に充分対応した小型のヒートポンプ給湯機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a small heat pump water heater sufficiently corresponding to a hot water supply load.

請求項1記載の本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧装置および空気熱交換器を順次接続した冷媒回路と、貯湯槽、前記貯湯槽の下部に接続した循環ポンプ、前記放熱器、2方弁および前記貯湯槽の上部とを順次接続した水回路とを具備し、前記貯湯槽の下部は市水を供給する給水管に接続され、前記貯湯槽の上部は出湯管に接続され、前記放熱器と前記2方弁を接続する配管の分岐管および前記出湯管が第1の混合弁に接続され、前記第1の混合弁の出口配管および前記給水管から分岐された市水配管が第2の混合弁に接続され、前記第2の混合弁の出口配管は給湯端末および風呂浴槽の少なくとも一方に接続されたことを特徴とする。
請求項2記載の本発明は、請求項1に記載のヒートポンプ給湯機において、前記貯湯槽の下部から前記放熱器に供給される水の温度を検出する温度センサー、前記放熱器で加熱された温水の温度を検出する給湯温度センサー、前記貯湯槽の残湯量を検出する複数の残湯温度センサーおよび前記第2の混合弁の出湯温度を検出する出湯温度センサーを備え、出湯信号により前記冷媒回路を運転し、前記放熱器で加熱された温水と前記貯湯槽の温水を前記第1の混合弁で混合して前記第2の混合弁に供給し、前記第2の混合弁で前記第1の混合弁からの温水と市水とを混合して所定の温度に調整することを特徴とする。
請求項3記載の本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧装置および空気熱交換器を順次接続した冷媒回路と、貯湯槽、前記貯湯槽の下部に接続した循環ポンプ、前記放熱器、2方弁および前記貯湯槽の上部とを順次接続した水回路とを具備し、前記貯湯槽の下部は市水を供給する給水管に接続され、前記貯湯槽の上部は出湯管に接続され、前記放熱器と前記2方弁を接続する配管の分岐管および前記出湯管が第1の混合弁に接続され、前記第1の混合弁の出口配管および前記給水管から分岐された市水配管が第2の混合弁に接続され、前記第2の混合弁の出口配管は給湯端末に接続され、前記第1の混合弁と前記第2の混合弁を接続する配管の分岐管および前記市水配管の分岐管が第3の混合弁に接続され、前記第3の混合弁の出口配管は風呂浴槽に接続されたことを特徴とする。
請求項4記載の本発明は、請求項3に記載のヒートポンプ給湯機において、前記貯湯槽の下部から前記放熱器に供給される水の温度を検出する温度センサー、前記放熱器で加熱された温水の温度を検出する給湯温度センサー、前記貯湯槽の残湯量を検出する複数の残湯温度センサー、前記第2の混合弁の出湯温度を検出する出湯温度センサーおよび前記第3の混合弁の出湯温度を検出する風呂出湯温度センサーとを備え、出湯信号により前記冷媒回路を運転し、前記放熱器で加熱された温水と前記貯湯槽の温水を前記第1の混合弁で混合して前記第2の混合弁および前記第3の混合弁に供給し、前記第2の混合弁および前記第3の混合弁で前記第1の混合弁からの温水と市水とを混合して所定の温度に調整することを特徴とする。
請求項5記載の本発明は、請求項2または請求項4に記載のヒートポンプ給湯機において、前記給湯端末から給湯が開始されると、前記第1の混合弁に前記貯湯槽からのみ温水を供給し、前記貯湯槽の残湯量が所定値以下になった場合、前記冷媒回路を運転して前記貯湯槽に温水を貯めることを特徴とする。
請求項6記載の本発明は、請求項5に記載のヒートポンプ給湯機において、前記風呂浴槽への給湯信号により前記冷媒回路を運転して前記水回路の加熱温度を前記貯湯槽の湯温より低い温度とし、さらに、前記貯湯槽の温水を風呂浴槽に供給して温水の供給量を最大にすることを特徴とする。
請求項7記載の本発明は、請求項6に記載のヒートポンプ給湯機において、前記風呂浴槽への給湯時に、前記冷媒回路を運転して前記水回路の加熱温度を35℃〜45℃とすることを特徴とする。
請求項8記載の本発明は、請求項1から請求項7のいずれかに記載のヒートポンプ給湯機において、前記冷媒回路の加熱能力Qと前記貯湯槽の容量が所定の関係となるように制御することを特徴とする。
請求項9記載の本発明は、請求項1または請求項3に記載のヒートポンプ給湯機において、前記貯湯槽の下部から前記水回路に供給される水の温度を検出する温度センサー、室外気温を検出する外気温度センサーおよび前記貯湯槽の残湯量を検出する複数の残湯温度センサーを備え、前記温度センサーの出力値と前記室外温度センサーの出力値により前記冷媒回路の加熱能力Qを算出し、前記貯湯槽の残湯量が所定値より少なくなった場合は、前記貯湯槽の残湯量と前記冷媒回路の加熱能力Qから算出される値により、前記貯湯槽からの温水の供給量を減少させ、前記水回路からの温水の供給量を増加させ、前記貯湯槽の残湯量がさらに少なくなった場合は前記貯湯槽からの供給を停止して前記水回路からのみ温水を供給することを特徴とする。
The heat pump water heater of the present invention according to claim 1 is a refrigerant circuit in which a compressor, a radiator, a pressure reducing device, and an air heat exchanger are sequentially connected, a hot water tank, a circulation pump connected to a lower part of the hot water tank, and the heat radiation. A water circuit that sequentially connects a two-way valve and an upper part of the hot water tank, the lower part of the hot water tank is connected to a water supply pipe that supplies city water, and the upper part of the hot water tank is connected to a hot water pipe And a city water branched from the outlet pipe of the first mixing valve and the water supply pipe, wherein the branch pipe of the pipe connecting the radiator and the two-way valve and the outlet pipe are connected to the first mixing valve The piping is connected to a second mixing valve, and the outlet piping of the second mixing valve is connected to at least one of a hot water supply terminal and a bath tub.
According to a second aspect of the present invention, in the heat pump water heater according to the first aspect, a temperature sensor for detecting a temperature of water supplied from the lower part of the hot water storage tank to the radiator, and hot water heated by the radiator A hot water supply temperature sensor for detecting the temperature of the hot water storage tank, a plurality of remaining hot water temperature sensors for detecting the amount of hot water in the hot water storage tank, and a hot water temperature sensor for detecting the hot water temperature of the second mixing valve. The hot water heated by the radiator and the hot water in the hot water storage tank are mixed by the first mixing valve and supplied to the second mixing valve, and the first mixing is performed by the second mixing valve. The hot water from the valve and the city water are mixed and adjusted to a predetermined temperature.
The heat pump water heater of the present invention according to claim 3 is a refrigerant circuit in which a compressor, a radiator, a pressure reducing device, and an air heat exchanger are sequentially connected, a hot water tank, a circulation pump connected to a lower part of the hot water tank, and the heat radiation. A water circuit that sequentially connects a two-way valve and an upper part of the hot water tank, the lower part of the hot water tank is connected to a water supply pipe that supplies city water, and the upper part of the hot water tank is connected to a hot water pipe And a city water branched from the outlet pipe of the first mixing valve and the water supply pipe, wherein the branch pipe of the pipe connecting the radiator and the two-way valve and the outlet pipe are connected to the first mixing valve A pipe is connected to a second mixing valve, an outlet pipe of the second mixing valve is connected to a hot water supply terminal, a branch pipe of a pipe connecting the first mixing valve and the second mixing valve, and the city A branch pipe of the water pipe is connected to a third mixing valve, and the third mixing valve Outlet pipe is characterized in that it is connected to the bath tub.
According to a fourth aspect of the present invention, in the heat pump water heater according to the third aspect, a temperature sensor for detecting a temperature of water supplied to the radiator from a lower part of the hot water tank, hot water heated by the radiator Hot water temperature sensor for detecting the temperature of the hot water, a plurality of remaining hot water temperature sensors for detecting the amount of hot water in the hot water storage tank, a hot water temperature sensor for detecting the hot water temperature of the second mixing valve, and the hot water temperature of the third mixing valve A bath hot water temperature sensor for detecting the hot water, operating the refrigerant circuit in response to a hot water signal, mixing the hot water heated by the radiator and the hot water in the hot water storage tank with the first mixing valve. Supplying to the mixing valve and the third mixing valve, the hot water and the city water from the first mixing valve are mixed and adjusted to a predetermined temperature by the second mixing valve and the third mixing valve. It is characterized by that.
According to a fifth aspect of the present invention, in the heat pump water heater according to the second or fourth aspect, when hot water supply is started from the hot water supply terminal, hot water is supplied to the first mixing valve only from the hot water storage tank. And when the amount of remaining hot water of the said hot water storage tank becomes below a predetermined value, the said refrigerant circuit is operated and warm water is stored in the said hot water storage tank, It is characterized by the above-mentioned.
According to a sixth aspect of the present invention, in the heat pump water heater according to the fifth aspect, the refrigerant circuit is operated by a hot water supply signal to the bath tub so that the heating temperature of the water circuit is lower than the hot water temperature of the hot water tank. Further, the hot water in the hot water tank is supplied to the bath tub to maximize the supply amount of the hot water.
According to a seventh aspect of the present invention, in the heat pump water heater according to the sixth aspect, when the hot water is supplied to the bath tub, the refrigerant circuit is operated and the heating temperature of the water circuit is set to 35 ° C to 45 ° C. It is characterized by.
According to an eighth aspect of the present invention, in the heat pump water heater according to any one of the first to seventh aspects, the heating capacity Q of the refrigerant circuit and the capacity of the hot water tank are controlled to have a predetermined relationship. It is characterized by that.
According to a ninth aspect of the present invention, in the heat pump water heater according to the first or third aspect, a temperature sensor for detecting a temperature of water supplied to the water circuit from a lower part of the hot water tank, and an outdoor air temperature are detected. And a plurality of remaining hot water temperature sensors for detecting the amount of remaining hot water in the hot water storage tank, the heating capacity Q of the refrigerant circuit is calculated from the output value of the temperature sensor and the output value of the outdoor temperature sensor, When the amount of remaining hot water in the hot water storage tank is less than a predetermined value, the amount of hot water supplied from the hot water storage tank is decreased by a value calculated from the remaining hot water amount in the hot water storage tank and the heating capacity Q of the refrigerant circuit, When the amount of hot water supplied from the water circuit is increased and the remaining amount of hot water in the hot water storage tank is further reduced, the supply from the hot water tank is stopped and hot water is supplied only from the water circuit. .

本発明のヒートポンプ給湯機は、種々の給湯負荷に確実に対応し、湯切れを生じることなく小型のヒートポンプ給湯機を提供することができる。
また、少量の給湯時には冷媒回路を運転することをなくし、給湯量の多い場合および貯湯槽の残湯が少なくなった場合に冷媒回路を運転することにより、圧縮機の運転・停止回数を少なくして、機器の信頼性を高くしたヒートポンプ給湯機を提供することができる。
The heat pump water heater of the present invention can reliably cope with various hot water loads, and can provide a small heat pump water heater without causing hot water to run out.
Also, the refrigerant circuit is not operated when a small amount of hot water is supplied, and the compressor circuit is operated when the amount of hot water supply is large or when the remaining hot water in the hot water tank is low, thereby reducing the number of times the compressor is operated and stopped. Thus, it is possible to provide a heat pump water heater with high device reliability.

本発明の第1の実施の形態によるヒートポンプ給湯機は、冷媒回路の放熱器で加熱した温水を水回路の貯湯槽に貯湯し、放熱器で加熱した温水と貯湯槽から流出した温水を第1の混合弁で混合して、第2の混合弁で市水により温度調整して給湯端末、風呂浴槽に供給するものである。本実施の形態によれば、給湯端末や風呂浴槽に給湯する時に、冷媒回路を運転して給湯する直接給湯運転、冷媒回路を運転せずに貯湯槽から給湯する貯湯給湯運転、貯湯槽に温水を貯める貯湯運転など異なる運転モードを行なうことができる。
本発明の第2の実施の形態は、第1の実施の形態によるヒートポンプ給湯機において、貯湯槽の下部から放熱器に供給される水の温度を検出する温度センサー、放熱器で加熱された温水の温度を検出する給湯温度センサー、貯湯槽の残湯量を検出する複数の残湯温度センサー、第2の混合弁の出口配管には出湯温度を検出する出湯温度センサーを備えるものである。本実施の形態によれば、これらのセンサーの検出信号に基づいて、放熱器で加熱された温水と貯湯槽の温水を同時に供給し、第2の混合弁や第3の混合弁で市水と混合して所定の温度で出湯することで、貯湯槽容量を小さくでき、ヒートポンプ給湯機を小型にすることができる。
本発明の第3の実施の形態によるヒートポンプ給湯機は、冷媒回路の放熱器で加熱した温水を水回路の貯湯槽に貯湯し、放熱器で加熱した温水と貯湯槽から流出した温水を第1の混合弁で混合して、第2の混合弁で市水により温度調整して給湯端末に供給し、また、第3の混合弁で市水により温度調整して風呂浴槽に供給するものである。本実施の形態によれば、冷媒回路を運転して給湯する直接給湯運転、冷媒回路を運転せずに貯湯槽から給湯する貯湯給湯運転、貯湯槽に温水を貯める貯湯運転など異なる温度で異なる運転モードを行なうことができる。
本発明の第4の実施の形態は、第3の実施の形態によるヒートポンプ給湯機において、貯湯槽の下部から放熱器に供給される水の温度を検出する温度センサー、放熱器で加熱された温水の温度を検出する給湯温度センサー、貯湯槽の残湯量を検出する複数の残湯温度センサー、第2の混合弁の出口配管には出湯温度を検出する出湯温度センサーを備えるものである。本実施の形態によれば、これらのセンサーの検出信号に基づいて、放熱器で加熱された温水と貯湯槽の温水を同時に供給し、第2の混合弁や第3の混合弁で市水と混合して異なる所定の温度で出湯することがで、貯湯槽容量を小さくでき、ヒートポンプ給湯機を小型にすることができる。
本発明の第5の実施の形態は、第2または第4の実施の形態によるヒートポンプ給湯機において、給湯端末から給湯が開始されると、第1の混合弁に貯湯槽からのみ温水を供給し、貯湯槽の残湯量が所定値以下になった場合、冷媒回路を運転して貯湯槽に温水を貯めるようにしたものである。本実施の形態によれば、圧縮機の運転・停止回数を少なくして、機器の信頼性を高くすることができるとともに、貯湯槽の大きさを小さくできる。
本発明の第6の実施の形態は、第5の実施の形態によるヒートポンプ給湯機において、風呂浴槽への給湯信号により冷媒回路を運転して水回路の加熱温度を貯湯槽の湯温より低い温度とし、さらに、貯湯槽の温水を風呂浴槽に供給して温水の供給量を最大にするものである。本実施の形態によれば、風呂への給湯信号により、冷媒回路を運転して水回路の加熱温度を貯湯槽の湯温より低い温度としているので、冷媒回路を効率よく運転することができる。また、貯湯槽の温水も同時に給湯回路に供給するので、温水の供給量を最大にして湯切れを起こすことがなく、短時間で風呂への給湯を行なうことができる。
本発明の第7の実施の形態は、第6の実施の形態によるヒートポンプ給湯機において、風呂浴槽への給湯時の水回路の加熱温度を35℃〜45℃とするものである。本実施の形態によれば、冷媒回路をさらに効率良く運転することができる。
本発明の第8の実施の形態は、第1から第7のいずれかの実施の形態によるヒートポンプ給湯機において、冷媒回路の加熱能力Qと貯湯槽の容量が所定の関係となるように制御するものである。本実施の形態によれば、湯切れを起こすことがなく、給湯負荷に充分対応することができる。
本発明の第9の実施の形態は、第1または第3の実施の形態によるヒートポンプ給湯機において、貯湯槽の下部から水回路に供給される水の温度を検出する温度センサー、放熱器で加熱された温水の温度を検出する給湯温度センサー、室外気温を検出する外気温度センサー、貯湯槽の残湯量を検出する残湯温度センサーを備え、冷媒回路の最大加熱能力Qを温度センサーの出力値と、室外温度センサーの出力値により算出し、貯湯槽の残湯量が所定値より少なくなった場合は、貯湯槽の残湯量と冷媒回路の最大加熱能力Qから算出される割合になるように、貯湯槽からの温水の供給量を減少させ、水回路からの温水の供給量を増加させ、貯湯槽の残湯量がさらに少なくなった場合は貯湯槽からの供給を停止して水回路からのみ温水を供給するものである。本実施の形態によれば、貯湯槽の残湯量が所定値より少なくなった場合には、貯湯槽の残湯量と冷媒回路の最大加熱能力Qから算出される割合になるように、貯湯槽からの温水の供給量を減少させ、水回路からの温水の供給量を増加させ、貯湯槽の残湯量がさらに少なくなった場合には、貯湯槽からの供給を停止して水回路からのみ温水を供給することにより、湯切れを起こすことがなく、給湯負荷に充分対応することができる。
The heat pump water heater according to the first embodiment of the present invention stores the hot water heated by the radiator of the refrigerant circuit in the hot water storage tank of the water circuit, and the hot water heated by the radiator and the hot water flowing out of the hot water storage tank are the first. The mixing valve is used, and the temperature is adjusted with city water using the second mixing valve and supplied to the hot water supply terminal and bath tub. According to the present embodiment, when hot water is supplied to a hot water supply terminal or a bath tub, a direct hot water supply operation in which hot water is supplied by operating the refrigerant circuit, a hot water supply operation in which hot water is supplied from the hot water tank without operating the refrigerant circuit, and hot water is supplied to the hot water tank. Different operation modes such as hot water storage operation to store water can be performed.
In the heat pump water heater according to the first embodiment, the second embodiment of the present invention is a temperature sensor that detects the temperature of water supplied to the radiator from the lower part of the hot water tank, and hot water heated by the radiator. A hot water supply temperature sensor for detecting the temperature of the hot water, a plurality of remaining hot water temperature sensors for detecting the amount of hot water in the hot water storage tank, and a hot water temperature sensor for detecting the hot water temperature at the outlet pipe of the second mixing valve. According to the present embodiment, based on the detection signals of these sensors, the hot water heated by the radiator and the hot water in the hot water tank are simultaneously supplied, and the city water is supplied by the second mixing valve or the third mixing valve. By mixing and discharging hot water at a predetermined temperature, the capacity of the hot water storage tank can be reduced, and the heat pump water heater can be reduced in size.
A heat pump water heater according to the third embodiment of the present invention stores hot water heated by a radiator of a refrigerant circuit in a hot water storage tank of a water circuit, and the hot water heated by the radiator and the hot water flowing out of the hot water storage tank are first. The temperature is adjusted with city water with the second mixing valve and supplied to the hot water supply terminal with the second mixing valve, and the temperature is adjusted with city water with the third mixing valve and supplied to the bath tub. . According to the present embodiment, the operation is different at different temperatures, such as a direct hot water supply operation in which hot water is supplied by operating the refrigerant circuit, a hot water supply operation in which hot water is supplied from a hot water tank without operating the refrigerant circuit, and a hot water storage operation in which hot water is stored in the hot water tank. Mode can be performed.
In the heat pump water heater according to the third embodiment, the fourth embodiment of the present invention is a temperature sensor that detects the temperature of water supplied to the radiator from the lower part of the hot water tank, and hot water heated by the radiator. A hot water supply temperature sensor for detecting the temperature of the hot water, a plurality of remaining hot water temperature sensors for detecting the amount of hot water in the hot water storage tank, and a hot water temperature sensor for detecting the hot water temperature at the outlet pipe of the second mixing valve. According to the present embodiment, based on the detection signals of these sensors, the hot water heated by the radiator and the hot water in the hot water tank are simultaneously supplied, and the city water is supplied by the second mixing valve or the third mixing valve. By mixing and discharging hot water at different predetermined temperatures, the capacity of the hot water storage tank can be reduced, and the heat pump water heater can be reduced in size.
In the heat pump water heater according to the second or fourth embodiment, the fifth embodiment of the present invention supplies hot water only to the first mixing valve from the hot water tank when hot water supply is started from the hot water supply terminal. When the remaining amount of hot water in the hot water storage tank becomes a predetermined value or less, the refrigerant circuit is operated to store hot water in the hot water storage tank. According to the present embodiment, the number of operations / stops of the compressor can be reduced, the reliability of the equipment can be increased, and the size of the hot water tank can be reduced.
In the heat pump water heater according to the fifth embodiment, the sixth embodiment of the present invention operates the refrigerant circuit by a hot water supply signal to the bath tub and lowers the heating temperature of the water circuit below the hot water temperature of the hot water tank. In addition, the hot water in the hot water tank is supplied to the bath tub to maximize the supply amount of the hot water. According to the present embodiment, the refrigerant circuit is operated by the hot water supply signal to the bath so that the heating temperature of the water circuit is lower than the hot water temperature of the hot water tank, so that the refrigerant circuit can be operated efficiently. Further, since hot water in the hot water tank is also supplied to the hot water supply circuit at the same time, hot water supply to the bath can be performed in a short time without causing hot water to run out by maximizing the supply amount of hot water.
7th Embodiment of this invention makes the heating temperature of the water circuit at the time of the hot water supply to a bath tub into 35 to 45 degreeC in the heat pump water heater by 6th Embodiment. According to the present embodiment, the refrigerant circuit can be operated more efficiently.
In the eighth embodiment of the present invention, in the heat pump water heater according to any one of the first to seventh embodiments, the heating capacity Q of the refrigerant circuit and the capacity of the hot water storage tank are controlled to have a predetermined relationship. Is. According to the present embodiment, hot water does not run out, and can sufficiently cope with hot water supply load.
The ninth embodiment of the present invention is a heat pump water heater according to the first or third embodiment, which is heated by a temperature sensor and a radiator for detecting the temperature of water supplied to the water circuit from the lower part of the hot water tank. The hot water supply temperature sensor that detects the temperature of the heated hot water, the outdoor air temperature sensor that detects the outdoor air temperature, and the remaining hot water temperature sensor that detects the amount of hot water in the hot water tank, the maximum heating capacity Q of the refrigerant circuit and the output value of the temperature sensor When the amount of remaining hot water in the hot water storage tank is less than a predetermined value, it is calculated based on the output value of the outdoor temperature sensor, so that the ratio is calculated from the amount of hot water in the hot water storage tank and the maximum heating capacity Q of the refrigerant circuit. If the amount of hot water supplied from the tank is decreased, the amount of hot water supplied from the water circuit is increased, and the remaining amount of hot water in the hot water tank is further reduced, the supply from the hot water tank is stopped and hot water is supplied only from the water circuit. Supply Than it is. According to the present embodiment, when the remaining amount of hot water in the hot water storage tank becomes smaller than a predetermined value, the hot water tank has a ratio calculated from the remaining hot water amount of the hot water storage tank and the maximum heating capacity Q of the refrigerant circuit. When the amount of hot water supplied is reduced, the amount of hot water supplied from the water circuit is increased, and the remaining amount of hot water in the hot water tank is further reduced, the supply from the hot water tank is stopped and hot water is supplied only from the water circuit. By supplying, it is possible to sufficiently cope with a hot water supply load without causing hot water shortage.

以下本発明の実施例におけるヒートポンプ給湯機について、図面を参照しながら説明する。
図1は、本発明の第1の実施例におけるヒートポンプ給湯機の構成図を示すものである。図8と同じ構成部材には同一符号を用いて説明を一部省略する。
図1において、冷媒回路5は圧縮機1、放熱器2、減圧装置3および空気熱交換器4から構成されている。水回路9は、貯湯槽6、循環ポンプ7、放熱器2、および貯湯槽6と放熱器2間に接続された2方弁8から構成されている。貯湯槽6の下部には市水を供給するための給水弁18から分岐された給水管10が、貯湯槽6の上部には出湯管11が接続されている。出湯管11は水回路9の放熱器2と2方弁8を接続する配管と第1の混合弁12で接続されている。第1の混合弁12の出口配管は給水弁18から分岐された市水配管13に第2の混合弁14を介して接続され、第2の混合弁14の出口配管は給湯端末15と風呂浴槽16に接続されて給湯回路17を構成している。
21は貯湯槽6の下部から導出される水の温度を検出する温度センサー、22は放熱器2で加熱された温水の温度を検出する給湯温度センサー、23は貯湯槽6の残湯量を検出する複数の残湯温度センサー、24はヒートポンプ給湯機の出湯温度を検出する出湯温度センサーである。
Hereinafter, a heat pump water heater in an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration diagram of a heat pump water heater in a first embodiment of the present invention. The same constituent members as those in FIG.
In FIG. 1, the refrigerant circuit 5 includes a compressor 1, a radiator 2, a decompressor 3, and an air heat exchanger 4. The water circuit 9 includes a hot water tank 6, a circulation pump 7, a radiator 2, and a two-way valve 8 connected between the hot water tank 6 and the radiator 2. A water supply pipe 10 branched from a water supply valve 18 for supplying city water is connected to the lower part of the hot water tank 6, and a hot water discharge pipe 11 is connected to the upper part of the hot water tank 6. The outlet pipe 11 is connected by a first mixing valve 12 and a pipe connecting the radiator 2 of the water circuit 9 and the two-way valve 8. The outlet pipe of the first mixing valve 12 is connected to a city water pipe 13 branched from the water supply valve 18 via the second mixing valve 14, and the outlet pipe of the second mixing valve 14 is a hot water supply terminal 15 and a bath tub. 16 is connected to the hot water supply circuit 17.
Reference numeral 21 denotes a temperature sensor that detects the temperature of water derived from the lower part of the hot water tank 6, 22 denotes a hot water temperature sensor that detects the temperature of hot water heated by the radiator 2, and 23 detects the amount of hot water remaining in the hot water tank 6. A plurality of remaining hot water temperature sensors 24 are hot water temperature sensors for detecting the hot water temperature of the heat pump water heater.

以上のように構成されたヒートポンプ給湯機について、以下その動作、作用を説明する。
まず、貯湯運転信号により冷媒回路5が運転されると、冷媒は圧縮機1で圧縮されて高温高圧となり、放熱器2で水を加熱することにより放熱し、減圧装置3により低温低圧となり、空気熱交換器4により大気から吸熱して蒸発し、圧縮機1に戻る。水回路9では、2方弁8が開かれ、給水管10から貯湯槽6に給水された市水が貯湯槽6の下部から循環ポンプ7により放熱器2に供給され、放熱器2で加熱される。放熱器2で加熱されて高温となった湯は2方弁8を通り、貯湯槽6の上部に流入し、上部から次第に貯湯されていく。そして、温度センサー21により放熱器2の入口の水の温度が設定値に達したことを検知すると貯湯槽6に貯水された温水の温度が所定の温度に達したことになるので圧縮機1の運転を停止して冷媒回路5の運転を停止する。通常、給湯端末15から供給される湯温は45℃以下であるが、本発明においては、貯湯運転において、水回路9の加熱温度を60℃以上として貯湯槽6への蓄熱量を増加させる。このように、水回路9の加熱温度を60℃以上にして貯湯槽6に貯湯する温水の温度を給湯端末15から供給される温水の温度より高い温度に設定することにより、貯湯槽6の容量を少なくして貯湯槽6を小型にすることができる。
給湯端末15に給湯する場合は、給湯回路17において、給水弁18を開いた状態にして、貯湯槽6下部の給水管10から貯湯槽6に流入する市水の圧力により貯湯槽6の温水を出湯管11に流出させる。貯湯槽6から流出した湯は第1の混合弁12を通り、第2の混合弁14で市水配管13から流入する低温の市水と混合される。第2の混合弁14は出湯温度センサー24の出力値により、貯湯槽6からの温水と市水の混合割合を調整し、所定の温度として給湯端末15に給湯する。
なお、給湯端末15から45℃で給湯する場合、市水温度は季節により変動するため、市水温度と外気温度によりヒートポンプ給湯機の加熱必要能力は変化する。特に冬期は市水温度が低下し、さらに室外気温が低下するため、ヒートポンプ給湯機の加熱能力が低下する。従って、水回路9の加熱温度を高くして、貯湯槽6への蓄熱量を増加させる必要がある。そこで、室外気温や市水温度に応じて水回路9の加熱温度を60℃から90℃の範囲で変化させて、貯湯槽6への蓄熱量を変化させる。
About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
First, when the refrigerant circuit 5 is operated by the hot water storage operation signal, the refrigerant is compressed by the compressor 1 to become high temperature and high pressure, dissipates heat by heating the water by the radiator 2, and becomes low temperature and low pressure by the decompression device 3. The heat exchanger 4 absorbs heat from the atmosphere and evaporates, and returns to the compressor 1. In the water circuit 9, the two-way valve 8 is opened, and city water supplied from the water supply pipe 10 to the hot water storage tank 6 is supplied from the lower part of the hot water storage tank 6 to the radiator 2 by the circulation pump 7 and heated by the radiator 2. The Hot water heated by the radiator 2 and heated to high temperature passes through the two-way valve 8 and flows into the upper part of the hot water storage tank 6 and is gradually stored from the upper part. When the temperature sensor 21 detects that the temperature of the water at the inlet of the radiator 2 has reached the set value, the temperature of the hot water stored in the hot water storage tank 6 has reached a predetermined temperature. The operation is stopped and the operation of the refrigerant circuit 5 is stopped. Normally, the hot water temperature supplied from the hot water supply terminal 15 is 45 ° C. or lower, but in the present invention, the heat storage amount in the hot water storage tank 6 is increased by setting the heating temperature of the water circuit 9 to 60 ° C. or higher in the hot water storage operation. Thus, by setting the heating temperature of the water circuit 9 to 60 ° C. or higher and setting the temperature of the hot water stored in the hot water storage tank 6 to be higher than the temperature of the hot water supplied from the hot water supply terminal 15, the capacity of the hot water storage tank 6 is increased. The hot water tank 6 can be reduced in size.
When supplying hot water to the hot water supply terminal 15, the hot water supply circuit 17 is opened in the hot water supply circuit 17, and the hot water in the hot water storage tank 6 is supplied by the pressure of city water flowing into the hot water storage tank 6 from the water supply pipe 10 below the hot water storage tank 6. It is made to flow out into the tapping pipe 11. Hot water flowing out of the hot water storage tank 6 passes through the first mixing valve 12 and is mixed with the low-temperature city water flowing from the city water pipe 13 by the second mixing valve 14. The second mixing valve 14 adjusts the mixing ratio of hot water and city water from the hot water storage tank 6 according to the output value of the hot water temperature sensor 24 and supplies hot water to the hot water supply terminal 15 as a predetermined temperature.
When hot water is supplied from the hot water supply terminal 15 at 45 ° C., the city water temperature varies depending on the season, and thus the heat pump hot water heater needs to be heated depending on the city water temperature and the outside air temperature. Especially in winter, the city water temperature is lowered and the outdoor temperature is lowered, so that the heating capacity of the heat pump water heater is lowered. Therefore, it is necessary to increase the amount of heat stored in the hot water tank 6 by increasing the heating temperature of the water circuit 9. Accordingly, the amount of heat stored in the hot water tank 6 is changed by changing the heating temperature of the water circuit 9 in the range of 60 ° C. to 90 ° C. in accordance with the outdoor air temperature and the city water temperature.

つぎに、風呂浴槽への給湯運転動作について説明する。風呂浴槽給湯信号により風呂浴槽16への給湯が開始されると、冷媒回路5の運転を開始し、水回路9の設定加熱温度を35℃〜45℃とする。これにより冷媒回路5の圧縮比を小さくし、圧縮機1の消費電力を低減することができるため、効率の良い運転を行なうことができる。また、冷媒回路5の運転による給湯と同時に、貯湯槽6の温水も第1の混合弁12を介し給湯回路17に供給することにより、第2の混合弁14で市水と混合され、所定温度(例えば35℃〜45℃)の温水の風呂浴槽16への供給量を最大にすることができる。その結果、短時間で風呂浴槽16への給湯を行なうことができる。   Next, a hot water supply operation to the bath tub will be described. When hot water supply to the bath tub 16 is started by the bath tub hot water supply signal, the operation of the refrigerant circuit 5 is started, and the set heating temperature of the water circuit 9 is set to 35 ° C to 45 ° C. Thereby, since the compression ratio of the refrigerant circuit 5 can be reduced and the power consumption of the compressor 1 can be reduced, an efficient operation can be performed. Simultaneously with the hot water supply by the operation of the refrigerant circuit 5, the hot water in the hot water storage tank 6 is also supplied to the hot water supply circuit 17 through the first mixing valve 12, so that it is mixed with city water by the second mixing valve 14, and the predetermined temperature is reached. The amount of hot water (for example, 35 ° C. to 45 ° C.) supplied to the bath tub 16 can be maximized. As a result, hot water can be supplied to the bath tub 16 in a short time.

つぎに、貯湯槽6内の残湯量が少なくなった場合の給湯運転動作について説明する。給湯を繰り返して貯湯槽6内の残湯量が少なくなり、残湯温度センサー23の出力が所定値以下になった場合、貯湯運転信号が発信され冷媒回路5が運転され、給湯温度センサー22の出力値に従い、循環ポンプ7の流量を制御して、設定加熱温度で給湯を行ない、貯湯槽6に貯湯される。
冷媒回路5が運転されている貯湯運転中に給湯端末15が開かれた場合、2方弁8が閉じられ、放熱器2で加熱された温水が第1の混合弁12を経て、第2の混合弁14で市水配管13から流入する低温の市水と混合される。第2の混合弁14では出湯温度センサー24の出力値により、温水と市水の混合割合を調整し、所定の温度として給湯端末15から給湯する。その場合、温水の使用が多く冷媒回路5だけでは加熱能力が不足する場合は、貯湯槽6からも温水を供給し、第1の混合弁12で混合して給湯量を増加させる。そして、給湯端末15が閉じられると、2方弁8を開き第1の混合弁12を閉じて貯湯運転を継続する。
Next, a hot water supply operation when the amount of remaining hot water in the hot water tank 6 is reduced will be described. When the amount of remaining hot water in the hot water storage tank 6 is reduced by repeating the hot water supply and the output of the remaining hot water temperature sensor 23 falls below a predetermined value, a hot water storage operation signal is transmitted, the refrigerant circuit 5 is operated, and the output of the hot water temperature sensor 22 is output. The flow rate of the circulation pump 7 is controlled according to the value, hot water is supplied at the set heating temperature, and the hot water is stored in the hot water tank 6.
When the hot water supply terminal 15 is opened during the hot water storage operation in which the refrigerant circuit 5 is operated, the two-way valve 8 is closed, and the hot water heated by the radiator 2 passes through the first mixing valve 12 and passes through the second mixing valve 12. The mixed valve 14 is mixed with low-temperature city water flowing from the city water pipe 13. The second mixing valve 14 adjusts the mixing ratio of hot water and city water according to the output value of the hot water temperature sensor 24 and supplies hot water from the hot water supply terminal 15 as a predetermined temperature. In that case, when the use of hot water is large and the heating capacity is insufficient with only the refrigerant circuit 5, hot water is also supplied from the hot water storage tank 6 and mixed by the first mixing valve 12 to increase the amount of hot water supply. When the hot water supply terminal 15 is closed, the two-way valve 8 is opened and the first mixing valve 12 is closed to continue the hot water storage operation.

図2は、給湯負荷パターンの一例で、1日当りの給湯熱量は49320kJ(11780kcal)、年間18GJ(4.3Gcal)と想定している(IBEC Lモード相当)。
図3は、図2の給湯負荷パターンに対して、冬期の市水温度を5℃、貯湯槽6の容量を100リットル、45℃の加熱能力Qを10kW、65℃の加熱能力Qを8.9kWとして上記のような運転を行なった場合の貯湯槽6の残湯量変化を試算したグラフである。
図4は、45℃の加熱能力Qを5kW、10kW、20kWとして上記のような運転を行なった場合の貯湯槽6の容量を試算したグラフである。IBEC Lモード相当では、加熱能力10kWで90リットル、20kWで50リットルの貯湯槽6の容量が必要である。1日当りの給湯熱量は73970kJ(17670kcal)、年間27GJ(6.45Gcal)と想定した場合(IBEC Lモードの1.5倍相当)、加熱能力10kWで160リットル、20kWで110リットルの貯湯槽6の容量が必要である。貯湯温度を85℃としたLモードでは、加熱能力10kWで貯湯槽6の容量は70リットル、20kWで32リットルに減少させることができる。
この様に想定給湯負荷とヒートポンプ給湯機の加熱能力により、貯湯槽6の容量を予測できるため、貯湯槽6の大きさをその容量以上にすれば、湯切れを起こすことはなくなる。
FIG. 2 shows an example of a hot water supply load pattern, assuming that the amount of hot water supply per day is 49320 kJ (11780 kcal) and 18 GJ (4.3 Gcal) per year (equivalent to the IBEC L mode).
FIG. 3 shows that the city water temperature in winter is 5 ° C., the capacity of the hot water storage tank 6 is 100 liters, the heating capacity Q at 45 ° C. is 10 kW, and the heating capacity Q at 65 ° C. is 8. It is the graph which calculated the remaining hot water amount change of the hot water storage tank 6 at the time of performing the above operation as 9 kW.
FIG. 4 is a graph showing a trial calculation of the capacity of the hot water tank 6 when the above operation is performed with a heating capacity Q at 45 ° C. of 5 kW, 10 kW, and 20 kW. In the IBEC L mode, the capacity of the hot water storage tank 6 is required to be 90 liters when the heating capacity is 10 kW and 50 liters when the capacity is 20 kW. Assuming that the amount of hot water supply per day is 73970 kJ (17670 kcal) and 27 GJ (6.45 Gcal) per year (equivalent to 1.5 times the IBEC L mode), the heating capacity of the hot water storage tank 6 is 160 liters at a heating capacity of 10 kW and 110 liters at 20 kW. Capacity is needed. In the L mode in which the hot water storage temperature is 85 ° C., the capacity of the hot water storage tank 6 can be reduced to 70 liters at a heating capacity of 10 kW and 32 liters at 20 kW.
Thus, since the capacity | capacitance of the hot water storage tank 6 can be estimated with the assumed hot water supply load and the heating capacity of the heat pump water heater, if the size of the hot water storage tank 6 is made larger than that capacity, the hot water will not run out.

本実施例によれば、これらの運転により、給湯端末15からの少量の給湯時に、冷媒回路5を運転することをなくし、給湯量の多い風呂浴槽16へ給湯する場合と貯湯槽6の残湯が少なくなった場合に冷媒回路5を運転するため、圧縮機1の運転・停止回数を少なくして、機器の信頼性を高くすることができるとともに、貯湯槽6のサイズを小さくでき、短時間で風呂浴槽16への給湯を完了することができる。
また、図5の様に2方弁8を3方弁19に置き換え、給湯温度センサー22の出力により3方弁19を切り替えることにより、冷媒回路5の起動時など放熱器2出口の水の温度が低い場合は、放熱器2で加熱された水を貯湯槽6の下部に戻し、放熱器2で加熱された水の温度が設定された貯湯温度に近くなった場合に3方弁19を切り替え、貯湯槽6の上部に温水を戻すようにすると、貯湯槽6内の水の温度を高く保つことができる。
According to the present embodiment, these operations eliminate the operation of the refrigerant circuit 5 when a small amount of hot water is supplied from the hot water supply terminal 15, and supply hot water to the bath tub 16 having a large amount of hot water supply and the remaining hot water in the hot water tank 6. Since the refrigerant circuit 5 is operated when the amount of water decreases, the number of operations / stops of the compressor 1 can be reduced, the reliability of the equipment can be increased, the size of the hot water tank 6 can be reduced, and the time can be reduced. Thus, the hot water supply to the bath tub 16 can be completed.
Further, as shown in FIG. 5, the two-way valve 8 is replaced with a three-way valve 19, and the three-way valve 19 is switched by the output of the hot water supply temperature sensor 22, so that the temperature of the water at the outlet of the radiator 2 can be increased. When the temperature is low, the water heated by the radiator 2 is returned to the lower part of the hot water tank 6 and the three-way valve 19 is switched when the temperature of the water heated by the radiator 2 approaches the set hot water temperature. If the hot water is returned to the upper part of the hot water tank 6, the temperature of the water in the hot water tank 6 can be kept high.

図6は、本発明の第2の実施例のヒートポンプ給湯機の構成図である。図1と同じ構成部材には同一符号を用い説明を省略する。
図6において、第2の混合弁14の出口配管は給湯端末15と接続され、第1の混合弁12と第2の混合弁14を接続する配管の分岐管と市水配管13の分岐管を第3の混合弁20を介して接続し、第3の混合弁20の出口配管は風呂浴槽16に接続されて給湯回路17を構成している。25は風呂出湯温度センサー、26は室外気温を検出する外気温度センサーである。
FIG. 6 is a configuration diagram of a heat pump water heater according to the second embodiment of the present invention. The same components as those in FIG.
In FIG. 6, the outlet pipe of the second mixing valve 14 is connected to the hot water supply terminal 15, and the branch pipe of the pipe connecting the first mixing valve 12 and the second mixing valve 14 and the branch pipe of the city water pipe 13 are connected. The outlet pipe of the third mixing valve 20 is connected to the bath tub 16 to constitute the hot water supply circuit 17. Reference numeral 25 is a bath hot water temperature sensor, and 26 is an outdoor air temperature sensor for detecting the outdoor air temperature.

以上のように構成されたヒートポンプ給湯機において、通常の運転時、給湯端末15は第2の混合弁14を介し、風呂浴槽16は第3の混合弁19を介して、それぞれ水回路9と市水配管13に接続されているため、給湯端末15と風呂浴槽16に同時に給湯する場合、異なる温度で給湯できる。その他の給湯運転動作および作用は図1で説明した実施例1と同じであり、説明を省略する。   In the heat pump water heater configured as described above, during normal operation, the hot water supply terminal 15 is connected to the water circuit 9 via the second mixing valve 14, and the bath tub 16 is connected to the water circuit 9 via the third mixing valve 19, respectively. Since it is connected to the water pipe 13, when hot water is supplied to the hot water supply terminal 15 and the bath tub 16 at the same time, hot water can be supplied at different temperatures. Other hot water supply operation operations and actions are the same as those of the first embodiment described with reference to FIG.

つぎに、貯湯槽6の残湯量が少なくなった場合の給湯運転について説明する。冷媒回路5の最大加熱能力Qは、室外気温や貯湯槽6から冷媒回路5に供給される水の温度により変化する。水の温度は外気温の変化とともに変化するため、最大加熱能力Qは、室外気温により変化すると考えられる。図7に45℃で給湯する場合の外気温に対する最大加熱能力Qの関係を示す。
風呂浴槽16への給湯時などの大量に給湯する場合等、貯湯槽6の残湯量が所定値より少なくなった時、温度センサー21の出力値と、室外温度センサー26の出力値により冷媒回路5の最大加熱能力Qを算出し、貯湯槽6の残湯量と冷媒回路5の最大加熱能力Qから算出される値により、貯湯槽6からの温水の供給量を減少させ、冷媒回路5での加熱能力を最大として水回路9からの温水の供給量を増加させる。さらに貯湯槽6の残湯量が少なくなった場合は貯湯槽6からの供給を停止し、水回路9からのみ温水を供給する。
例えば、貯湯槽6に80℃で貯湯され、残湯量は90リットル、室外気温が2℃、市水温度が5℃、風呂浴槽16へ43℃で180リットルの給湯を18分で行なう場合について説明する。この時、ヒートポンプ給湯機の加熱温度45℃における最大加熱能力は、図7より8kWである。したがって、45℃の湯を毎分2.87リットル供給できる。
しかし、風呂浴槽16へ45℃で180リットルの給湯を18分で行なう場合、毎分10リットルの給湯が必要となる。この時の必要給湯能力は27.9kWであり、冷媒回路5だけの加熱能力では給湯能力が19.9kW不足する。そこで、貯湯槽6から80℃の温水を同時に供給し、第2の混合弁14で5℃の市水と混合して給湯する。この時の貯湯槽6からの給湯量は毎分3.8リットルで、20分間で76リットルとなる。その結果、貯湯槽6の残湯量は24リットルとなる。
この時、残湯温度センサー23により、貯湯槽6の残湯量を検出して、残湯量が40リットルとなった時に、貯湯槽6からの給湯量を毎分2リットルに減少させ、風呂浴槽16への給湯量を毎分6.6リットルとする。さらに、貯湯槽6の残湯量が30リットルとなった場合、貯湯槽6からの給湯を停止し、冷媒回路5からのみ給湯を行なう。その場合、給湯量は毎分2.87リットルとなるため、風呂浴槽16へ45℃で180リットル給湯するのに要する時間は23.9分となってしまう。しかし、残湯量が30リットルあるため、風呂浴槽16への給湯中に台所で給湯が行なわれたり(給湯量42℃、15.9リットルで、貯湯槽6から80℃、7.9リットル給湯)、風呂浴槽16への給湯直後にシャワーを使用されても(給湯量42℃、40リットルで、貯湯槽6から80℃、19.5リットル給湯)、充分な給湯量を確保することができる。
以上の様な運転を行なうことにより、風呂浴槽16への給湯など大量に給湯した後でも、貯湯槽6の残湯量を一定量確保し、風呂浴槽16への給湯直後に台所への給湯やシャワーの給湯が必要になった場合でも、湯切れを防止するだけでなく、充分な給湯流量を確保することができ、給湯負荷に充分対応した小型のヒートポンプ給湯機を提供できる。
Next, a hot water supply operation when the amount of remaining hot water in the hot water storage tank 6 is reduced will be described. The maximum heating capacity Q of the refrigerant circuit 5 varies depending on the outdoor temperature and the temperature of water supplied from the hot water tank 6 to the refrigerant circuit 5. Since the temperature of water changes with changes in the outside air temperature, the maximum heating capacity Q is considered to change with the outside air temperature. FIG. 7 shows the relationship of the maximum heating capacity Q to the outside air temperature when hot water is supplied at 45 ° C.
When the remaining amount of hot water in the hot water storage tank 6 is less than a predetermined value, such as when a large amount of hot water is supplied to the bath tub 16, the refrigerant circuit 5 depends on the output value of the temperature sensor 21 and the output value of the outdoor temperature sensor 26. Is calculated from the amount of hot water remaining in the hot water storage tank 6 and the maximum heating capacity Q of the refrigerant circuit 5, and the amount of hot water supplied from the hot water storage tank 6 is reduced to increase the heating in the refrigerant circuit 5. The supply capacity of the hot water from the water circuit 9 is increased by maximizing the capacity. Further, when the amount of remaining hot water in the hot water tank 6 decreases, the supply from the hot water tank 6 is stopped and hot water is supplied only from the water circuit 9.
For example, a case where hot water is stored in the hot water tank 6 at 80 ° C., the remaining hot water amount is 90 liters, the outdoor air temperature is 2 ° C., the city water temperature is 5 ° C., and the hot water of 180 liters is supplied to the bath tub 16 at 43 ° C. in 18 minutes. To do. At this time, the maximum heating capacity of the heat pump water heater at a heating temperature of 45 ° C. is 8 kW from FIG. Therefore, 2.87 liters of hot water at 45 ° C. can be supplied per minute.
However, when 180 liters of hot water is supplied to the bath tub 16 at 45 ° C. in 18 minutes, 10 liters of hot water is required per minute. The required hot water supply capacity at this time is 27.9 kW, and the heating capacity of only the refrigerant circuit 5 is insufficient for the hot water supply capacity of 19.9 kW. Accordingly, hot water of 80 ° C. is simultaneously supplied from the hot water storage tank 6 and mixed with city water of 5 ° C. by the second mixing valve 14 to supply hot water. The amount of hot water supplied from the hot water storage tank 6 at this time is 3.8 liters per minute, and 76 liters in 20 minutes. As a result, the remaining hot water amount in the hot water tank 6 is 24 liters.
At this time, the remaining hot water temperature sensor 23 detects the amount of remaining hot water in the hot water storage tank 6, and when the remaining hot water volume reaches 40 liters, the hot water supply amount from the hot water storage tank 6 is reduced to 2 liters per minute. The amount of hot water supplied to 6.6 liters per minute. Further, when the amount of remaining hot water in the hot water storage tank 6 becomes 30 liters, hot water supply from the hot water storage tank 6 is stopped and hot water supply is performed only from the refrigerant circuit 5. In that case, since the amount of hot water supply is 2.87 liters per minute, the time required to supply 180 liters of hot water to the bath tub 16 at 45 ° C. is 23.9 minutes. However, since the remaining hot water amount is 30 liters, hot water is supplied in the kitchen while hot water is supplied to the bath tub 16 (hot water supply amount 42 ° C, 15.9 liters, hot water tank 6 to 80 ° C, 7.9 liters hot water) Even if a shower is used immediately after the hot water supply to the bath tub 16 (the hot water supply amount is 42 ° C., 40 liters, the hot water storage tank 6 is 80 ° C., 19.5 liter hot water supply), a sufficient hot water supply amount can be secured.
By performing the above operation, even after a large amount of hot water is supplied to the bath tub 16, a certain amount of remaining hot water in the hot water tank 6 is secured, and immediately after the hot water is supplied to the bath tub 16, Even when hot water supply is required, not only can hot water run out, but also a sufficient hot water supply flow rate can be secured, and a small heat pump water heater that can sufficiently cope with hot water supply load can be provided.

以上のように、本実施例においては、冷媒回路の最大加熱能力Qを、温度センサー21の出力値と室外温度センサー26の出力値により算出することにより、貯湯槽6の残湯量が所定値より少なくなった場合に、貯湯槽6の残湯量と冷媒回路5の最大加熱能力Qから算出される割合になるように、貯湯槽6からの温水の供給量を減少させ、水回路9からの温水の供給量を増加させ、貯湯槽6の残湯量がさらに少なくなった場合は貯湯槽6からの供給を停止して水回路9からのみ温水を供給することにより、湯切れを起こすことがなく、給湯負荷に充分対応することができる。   As described above, in this embodiment, the maximum heating capacity Q of the refrigerant circuit is calculated from the output value of the temperature sensor 21 and the output value of the outdoor temperature sensor 26, whereby the remaining hot water amount in the hot water storage tank 6 is more than a predetermined value. When the amount decreases, the amount of hot water supplied from the hot water tank 6 is decreased so that the ratio is calculated from the amount of hot water in the hot water tank 6 and the maximum heating capacity Q of the refrigerant circuit 5, and the hot water from the water circuit 9 is reduced. When the amount of remaining hot water in the hot water storage tank 6 is further reduced, the supply from the hot water storage tank 6 is stopped and hot water is supplied only from the water circuit 9, so that the hot water does not run out. It can cope with hot water supply load enough.

以上のように、本発明にかかるヒートポンプ給湯機は、小型で給湯負荷に充分対応可能となるので、狭い場所への設置ができ、家庭用だけでなく産業用のヒートポンプ給湯機等の用途に適用できる。   As described above, since the heat pump water heater according to the present invention is small and can sufficiently cope with a hot water supply load, it can be installed in a narrow place, and is applicable not only to household use but also to industrial heat pump water heaters. it can.

本発明の実施例1におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in Example 1 of this invention 本発明の実施例1におけるヒートポンプ給湯機の給湯負荷パターンHot water supply load pattern of the heat pump water heater in Example 1 of the present invention 本発明の実施例1におけるヒートポンプ給湯機の残湯量変化のグラフThe graph of the amount of remaining hot water of the heat pump water heater in Example 1 of this invention 本発明の実施例1におけるヒートポンプ給湯機の加熱能力と貯湯槽容量のグラフGraph of heating capacity and hot water storage tank capacity of heat pump water heater in Example 1 of the present invention 本発明の実施例1における他のヒートポンプ給湯機の構成図The block diagram of the other heat pump water heater in Example 1 of this invention 本発明の実施例2におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in Example 2 of this invention 本発明の実施例2におけるヒートポンプ給湯機の室外気温と市水温度に対する最大加熱能力の性能グラフPerformance graph of maximum heating capacity against outdoor temperature and city water temperature of heat pump water heater in Example 2 of the present invention 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 減圧装置
4 空気熱交換器
5 冷媒回路
6 貯湯槽
7 循環ポンプ
8 2方弁
9 水回路
10 給水管
11 出湯管
12 第1の混合弁
13 市水配管
14 第2の混合弁
15 給湯端末
16 風呂浴槽
17 給湯回路
18 給水弁
19 3方弁
20 第3の混合弁
21 温度センサー
22 給湯温度センサー
23 残湯温度センサー
24 出湯温度センサー
25 風呂出湯温度センサー
26 外気温度センサー
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducing device 4 Air heat exchanger 5 Refrigerant circuit 6 Hot water tank 7 Circulation pump 8 Two-way valve 9 Water circuit 10 Water supply pipe 11 Hot water pipe 12 First mixing valve 13 City water pipe 14 Second Mixing valve 15 Hot water supply terminal 16 Bathtub 17 Hot water supply circuit 18 Water supply valve 19 Three-way valve 20 Third mixing valve 21 Temperature sensor 22 Hot water temperature sensor 23 Remaining hot water temperature sensor 24 Hot water temperature sensor 25 Bath hot water temperature sensor 26 Outside air temperature sensor 26

Claims (9)

圧縮機、放熱器、減圧装置および空気熱交換器とを順次接続した冷媒回路と、貯湯槽、前記貯湯槽の下部に接続した循環ポンプ、前記放熱器、2方弁および前記貯湯槽の上部を順次接続した水回路とを具備し、前記貯湯槽の下部は市水を供給する給水管に接続され、前記貯湯槽の上部は出湯管に接続され、前記放熱器と前記2方弁を接続する配管の分岐管および前記出湯管が第1の混合弁に接続され、前記第1の混合弁の出口配管および前記給水管から分岐された市水配管が第2の混合弁に接続され、前記第2の混合弁の出口配管は給湯端末および風呂浴槽の少なくとも一方に接続されたことを特徴とするヒートポンプ給湯機。   A refrigerant circuit in which a compressor, a radiator, a pressure reducing device, and an air heat exchanger are sequentially connected, a hot water storage tank, a circulation pump connected to a lower part of the hot water tank, the radiator, a two-way valve, and an upper part of the hot water tank. A water circuit sequentially connected, a lower part of the hot water tank is connected to a water supply pipe supplying city water, an upper part of the hot water tank is connected to a hot water outlet pipe, and the radiator and the two-way valve are connected to each other. A branch pipe of the pipe and the outlet pipe are connected to a first mixing valve, an outlet pipe of the first mixing valve and a city water pipe branched from the water supply pipe are connected to a second mixing valve, and the first 2. A heat pump water heater, wherein the outlet pipe of the mixing valve 2 is connected to at least one of a hot water supply terminal and a bath tub. 前記貯湯槽の下部から前記放熱器に供給される水の温度を検出する温度センサー、前記放熱器で加熱された温水の温度を検出する給湯温度センサー、前記貯湯槽の残湯量を検出する複数の残湯温度センサーおよび前記第2の混合弁の出湯温度を検出する出湯温度センサーを備え、出湯信号により前記冷媒回路を運転し、前記放熱器で加熱された温水と前記貯湯槽の温水を前記第1の混合弁で混合して前記第2の混合弁に供給し、前記第2の混合弁で前記第1の混合弁からの温水と市水とを混合して所定の温度に調整することを特徴とする請求項1に記載のヒートポンプ給湯機。   A temperature sensor that detects a temperature of water supplied to the radiator from a lower part of the hot water tank, a hot water temperature sensor that detects a temperature of hot water heated by the radiator, and a plurality of hot water amounts detected in the hot water tank. A hot water temperature sensor for detecting a hot water temperature sensor and a hot water temperature sensor for detecting a hot water temperature of the second mixing valve; operating the refrigerant circuit by a hot water signal; and supplying hot water heated by the radiator and hot water in the hot water storage tank Mixing with one mixing valve and supplying to the second mixing valve, and mixing the hot water from the first mixing valve and city water with the second mixing valve to adjust to a predetermined temperature; The heat pump water heater according to claim 1, wherein 圧縮機、放熱器、減圧装置および空気熱交換器とを順次接続した冷媒回路と、貯湯槽、前記貯湯槽の下部に接続した循環ポンプ、前記放熱器、2方弁および前記貯湯槽の上部を順次接続した水回路とを具備し、前記貯湯槽の下部は市水を供給する給水管に接続され、前記貯湯槽の上部は出湯管に接続され、前記放熱器と前記2方弁を接続する配管の分岐管および前記出湯管が第1の混合弁に接続され、前記第1の混合弁の出口配管および前記給水管から分岐された市水配管が第2の混合弁に接続され、前記第2の混合弁の出口配管は給湯端末に接続され、前記第1の混合弁と前記第2の混合弁を接続する配管の分岐管および前記市水配管の分岐管が第3の混合弁に接続され、前記第3の混合弁の出口配管は風呂浴槽に接続されたことを特徴とするヒートポンプ給湯機。   A refrigerant circuit in which a compressor, a radiator, a pressure reducing device, and an air heat exchanger are sequentially connected; a hot water storage tank; a circulation pump connected to a lower part of the hot water tank; the radiator; a two-way valve; and an upper part of the hot water tank. A water circuit connected in sequence, a lower part of the hot water tank is connected to a water supply pipe for supplying city water, an upper part of the hot water tank is connected to a hot water outlet pipe, and the radiator and the two-way valve are connected to each other. A branch pipe of the pipe and the outlet pipe are connected to a first mixing valve, an outlet pipe of the first mixing valve and a city water pipe branched from the water supply pipe are connected to a second mixing valve, and the first The outlet pipe of the second mixing valve is connected to a hot water supply terminal, and the branch pipe of the pipe connecting the first mixing valve and the second mixing valve and the branch pipe of the city water pipe are connected to the third mixing valve. And the outlet pipe of the third mixing valve is connected to a bath tub. Heat pump water heater that. 前記貯湯槽の下部から前記放熱器に供給される水の温度を検出する温度センサー、前記放熱器で加熱された温水の温度を検出する給湯温度センサー、前記貯湯槽の残湯量を検出する複数の残湯温度センサー、前記第2の混合弁の出湯温度を検出する出湯温度センサーおよび前記第3の混合弁の出湯温度を検出する風呂出湯温度センサーとを備え、出湯信号により前記冷媒回路を運転し、前記放熱器で加熱された温水と前記貯湯槽の温水を前記第1の混合弁で混合して前記第2の混合弁および前記第3の混合弁に供給し、前記第2の混合弁および前記第3の混合弁で前記第1の混合弁からの温水と市水とを混合して所定の温度に調整することを特徴とする請求項3に記載のヒートポンプ給湯機。   A temperature sensor that detects a temperature of water supplied to the radiator from a lower part of the hot water tank, a hot water temperature sensor that detects a temperature of hot water heated by the radiator, and a plurality of hot water amounts detected in the hot water tank. A residual hot water temperature sensor, a hot water temperature sensor for detecting the hot water temperature of the second mixing valve, and a bath hot water temperature sensor for detecting the hot water temperature of the third mixing valve, and operating the refrigerant circuit by a hot water signal. The hot water heated by the radiator and the hot water in the hot water tank are mixed by the first mixing valve and supplied to the second mixing valve and the third mixing valve, and the second mixing valve and 4. The heat pump water heater according to claim 3, wherein the third mixing valve mixes hot water and city water from the first mixing valve to adjust to a predetermined temperature. 5. 前記給湯端末から給湯が開始されると、前記第1の混合弁に前記貯湯槽からのみ温水を供給し、前記貯湯槽の残湯量が所定値以下になった場合、前記冷媒回路を運転して前記貯湯槽に温水を貯めることを特徴とする請求項2または請求項4に記載のヒートポンプ給湯機。   When hot water supply is started from the hot water supply terminal, hot water is supplied only to the first mixing valve from the hot water storage tank, and when the remaining hot water amount in the hot water storage tank becomes a predetermined value or less, the refrigerant circuit is operated. The heat pump water heater according to claim 2 or 4, wherein hot water is stored in the hot water tank. 前記風呂浴槽への給湯信号により前記冷媒回路を運転して前記水回路の加熱温度を前記貯湯槽の湯温より低い温度とし、さらに、前記貯湯槽の温水を風呂浴槽に供給して温水の供給量を最大にすることを特徴とする請求項5に記載のヒートポンプ給湯機。   The refrigerant circuit is operated by a hot water supply signal to the bath tub so that the heating temperature of the water circuit is lower than the hot water temperature of the hot water tank, and the hot water of the hot water tank is supplied to the hot tub to supply hot water. 6. The heat pump water heater according to claim 5, wherein the amount is maximized. 前記風呂浴槽への給湯時に、前記冷媒回路を運転して前記水回路の加熱温度を35℃〜45℃とすることを特徴とする請求項6に記載のヒートポンプ給湯機。   The heat pump water heater according to claim 6, wherein when the hot water is supplied to the bath tub, the refrigerant circuit is operated to set the heating temperature of the water circuit to 35 ° C. to 45 ° C. 前記冷媒回路の加熱能力Qと前記貯湯槽の容量が所定の関係となるように制御することを特徴とする請求項1から請求項7のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 1 to 7, wherein the heating capacity Q of the refrigerant circuit and the capacity of the hot water storage tank are controlled to have a predetermined relationship. 前記貯湯槽の下部から前記水回路に供給される水の温度を検出する温度センサー、室外気温を検出する外気温度センサーおよび前記貯湯槽の残湯量を検出する複数の残湯温度センサーを備え、前記温度センサーの出力値と前記室外温度センサーの出力値により前記冷媒回路の加熱能力Qを算出し、前記貯湯槽の残湯量が所定値より少なくなった場合は、前記貯湯槽の残湯量と前記冷媒回路の加熱能力Qから算出される値により、前記貯湯槽からの温水の供給量を減少させ、前記水回路からの温水の供給量を増加させ、前記貯湯槽の残湯量がさらに少なくなった場合は前記貯湯槽からの供給を停止して前記水回路からのみ温水を供給することを特徴とした請求項1または請求項3に記載のヒートポンプ給湯機。
A temperature sensor for detecting the temperature of water supplied from the lower part of the hot water tank to the water circuit, an outdoor air temperature sensor for detecting outdoor air temperature, and a plurality of remaining hot water temperature sensors for detecting the amount of hot water in the hot water tank, When the heating capacity Q of the refrigerant circuit is calculated from the output value of the temperature sensor and the output value of the outdoor temperature sensor, and the remaining hot water amount of the hot water storage tank becomes smaller than a predetermined value, the remaining hot water amount of the hot water storage tank and the refrigerant When the supply amount of hot water from the hot water storage tank is decreased by the value calculated from the heating capacity Q of the circuit, the supply amount of hot water from the water circuit is increased, and the remaining hot water amount of the hot water storage tank is further reduced The heat pump water heater according to claim 1 or 3, wherein supply from the hot water tank is stopped and hot water is supplied only from the water circuit.
JP2004000587A 2004-01-05 2004-01-05 Heat pump water heater Pending JP2005195211A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004000587A JP2005195211A (en) 2004-01-05 2004-01-05 Heat pump water heater
CNB2005100040315A CN100445664C (en) 2004-01-05 2005-01-05 Thermal pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000587A JP2005195211A (en) 2004-01-05 2004-01-05 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2005195211A true JP2005195211A (en) 2005-07-21

Family

ID=34816347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000587A Pending JP2005195211A (en) 2004-01-05 2004-01-05 Heat pump water heater

Country Status (2)

Country Link
JP (1) JP2005195211A (en)
CN (1) CN100445664C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057206A (en) * 2005-08-26 2007-03-08 Denso Corp Heat pump type water heater and control device for heat pump type water heater
JP2008002776A (en) * 2006-06-26 2008-01-10 Hitachi Appliances Inc Heat pump hot water supply system
JP2009002599A (en) * 2007-06-22 2009-01-08 Sanyo Electric Co Ltd Heat pump type water heater
CN101158506B (en) * 2007-11-30 2012-01-25 武汉朗肯节能技术有限公司 Heat pump high-temperature hot-water machine group
JP2012078023A (en) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp Heat pump water heater
CN102679548A (en) * 2012-05-02 2012-09-19 林智勇 Anti-scaling air energy water heater
CN102705986A (en) * 2012-06-12 2012-10-03 林智勇 Multifunctional air energy water heater
CN103697590A (en) * 2013-12-02 2014-04-02 罗伟强 Instant heating type double-energy heat pump water heater and implementing method thereof
CN113465188A (en) * 2021-08-02 2021-10-01 深圳市卓益节能环保设备有限公司 Water heater backwater control system, water heater and backwater control method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155275A (en) * 2005-12-08 2007-06-21 Sharp Corp Heat pump hot water feeder
JP5138414B2 (en) * 2008-02-22 2013-02-06 サンデン株式会社 Hot water storage water heater
CN102235746B (en) * 2010-04-30 2014-05-21 浙江康泉电器有限公司 Quick water heating device for heat pump
CN101900408A (en) * 2010-06-21 2010-12-01 海盐海利环保纤维有限公司 Hot water circulating and exchanging device using afterheat
EP2413048B1 (en) * 2010-07-30 2013-06-05 Grundfos Management A/S Domestic water heating unit
JP2014196849A (en) * 2013-03-29 2014-10-16 パナソニック株式会社 Heat pump water heater
CN110848786A (en) * 2019-12-12 2020-02-28 宁夏塞上阳光太阳能有限公司 Integrated hybrid cycle system heat pump cooling and heating machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042521A (en) * 1983-08-17 1985-03-06 Matsushita Electric Ind Co Ltd Heat pump type water heater
JPH09126547A (en) * 1995-11-02 1997-05-16 Matsushita Electric Ind Co Ltd Heat pump type hot water supply apparatus
US6601773B2 (en) * 2001-02-21 2003-08-05 Sanyo Electric Co., Ltd. Heat pump type hot water supply apparatus
CN2502177Y (en) * 2001-07-14 2002-07-24 中国科学技术大学 Energy-storage type heat pump water supply device for hot water boiler
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057206A (en) * 2005-08-26 2007-03-08 Denso Corp Heat pump type water heater and control device for heat pump type water heater
JP4501815B2 (en) * 2005-08-26 2010-07-14 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP2008002776A (en) * 2006-06-26 2008-01-10 Hitachi Appliances Inc Heat pump hot water supply system
JP2009002599A (en) * 2007-06-22 2009-01-08 Sanyo Electric Co Ltd Heat pump type water heater
CN101158506B (en) * 2007-11-30 2012-01-25 武汉朗肯节能技术有限公司 Heat pump high-temperature hot-water machine group
JP2012078023A (en) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp Heat pump water heater
CN102679548A (en) * 2012-05-02 2012-09-19 林智勇 Anti-scaling air energy water heater
CN102679548B (en) * 2012-05-02 2014-07-16 林智勇 Anti-scaling air energy water heater
CN102705986A (en) * 2012-06-12 2012-10-03 林智勇 Multifunctional air energy water heater
CN103697590A (en) * 2013-12-02 2014-04-02 罗伟强 Instant heating type double-energy heat pump water heater and implementing method thereof
CN113465188A (en) * 2021-08-02 2021-10-01 深圳市卓益节能环保设备有限公司 Water heater backwater control system, water heater and backwater control method thereof
CN113465188B (en) * 2021-08-02 2022-10-18 深圳市卓益节能环保设备有限公司 Water heater backwater control system, water heater and backwater control method thereof

Also Published As

Publication number Publication date
CN1637359A (en) 2005-07-13
CN100445664C (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP2005195211A (en) Heat pump water heater
US8365686B2 (en) Malfunction detection device for hot water supplier
JP2007198708A (en) Hybrid hot water supply system
JP4956731B2 (en) Hot water system
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP4375095B2 (en) Heat pump water heater
JP4368846B2 (en) Hot water storage water heater
JP4486001B2 (en) Heat pump water heater
KR100659648B1 (en) Heat pump hot water supply device
JP2008057857A (en) Heat pump water heater
JP2006250367A (en) Heat pump water heater
JP2005233596A (en) Heat pump hot-water supply device
JP2012063101A (en) Liquid heating supply device
JP2006132889A (en) Hot water storage type heat pump hot water supply apparatus
JP2010054145A (en) Heat pump water heater
JP2016050717A (en) Hybrid hot water supply system
JP5330988B2 (en) Heat pump water heater
JP2006226593A (en) Water heater
JP2006343008A (en) Hot water heater
JP2005147557A (en) Hot water supply apparatus
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JP3890322B2 (en) Heat pump water heater
JP2009162415A (en) Hot water storage type water heater
JP5021385B2 (en) Heat pump water heater and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226