JP5229930B2 - Biomass gasification method and system - Google Patents

Biomass gasification method and system Download PDF

Info

Publication number
JP5229930B2
JP5229930B2 JP2005209841A JP2005209841A JP5229930B2 JP 5229930 B2 JP5229930 B2 JP 5229930B2 JP 2005209841 A JP2005209841 A JP 2005209841A JP 2005209841 A JP2005209841 A JP 2005209841A JP 5229930 B2 JP5229930 B2 JP 5229930B2
Authority
JP
Japan
Prior art keywords
biomass
methane fermentation
hot water
activated carbon
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005209841A
Other languages
Japanese (ja)
Other versions
JP2007023214A (en
Inventor
幸彦 松村
嘉久 清水
健 三浦
昭史 中村
英嗣 清永
智朗 美濃輪
洋二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hiroshima University NUC
National Institute of Advanced Industrial Science and Technology AIST
Toyo Koatsu Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hiroshima University NUC
National Institute of Advanced Industrial Science and Technology AIST
Toyo Koatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hiroshima University NUC, National Institute of Advanced Industrial Science and Technology AIST, Toyo Koatsu Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2005209841A priority Critical patent/JP5229930B2/en
Publication of JP2007023214A publication Critical patent/JP2007023214A/en
Application granted granted Critical
Publication of JP5229930B2 publication Critical patent/JP5229930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)

Description

本発明は、非金属系触媒を用いてあらかじめ熱水処理したバイオマスのスラリー体をメタン発酵することにより燃料ガスを生成するバイオマスガス化方法及びバイオマスガス化システムに関する。   The present invention relates to a biomass gasification method and a biomass gasification system that produce fuel gas by subjecting a slurry of biomass that has been hydrothermally treated in advance using a nonmetallic catalyst to methane fermentation.

近年、植物又はその廃材、家畜糞尿、生ゴミ、食品廃棄物、下水汚泥などのバイオマスを原料としたエネルギー変換技術の開発がなされている。バイオマスを原料としたエネルギー変換技術としては、例えば、微生物によりバイオマスをメタン発酵させて燃料ガスを生成する技術(特許文献1及び2参照)などが知られている。
特開2004−249247号公報 特開2004−329068号公報
In recent years, energy conversion technologies using biomass such as plants or waste materials thereof, livestock manure, garbage, food waste, and sewage sludge have been developed. As an energy conversion technique using biomass as a raw material, for example, a technique (see Patent Documents 1 and 2) that generates biomass by methane fermentation of biomass using microorganisms is known.
JP 2004-249247 A JP 2004-329068 A

しかしながら、これまで知られているバイオマスをメタン発酵させて燃料ガスを生成する技術は、燃料ガスの生成効率の面で必ずしも満足できるものではなく、バイオマスから燃料ガスをより効率的に生成することができる技術の開発が求められている。   However, the known technology for producing fuel gas by methane fermentation of biomass is not always satisfactory in terms of fuel gas production efficiency, and can produce fuel gas from biomass more efficiently. There is a need to develop technologies that can be used.

そこで、本発明は、バイオマスをメタン発酵することにより燃料ガスをより効率的に生成することができるバイオマスガス化方法及びバイオマスガス化システムを提供することを目的とする。   Then, an object of this invention is to provide the biomass gasification method and biomass gasification system which can produce | generate fuel gas more efficiently by carrying out methane fermentation of biomass.

本発明者らは、上記課題を解決すべく鋭意努力した結果、メタン発酵する前に活性炭を用いてバイオマスをあらかじめ熱水処理することにより、メタンガスの生成速度、すなわちバイオマスのガス化効率を高めることができることを見出し、本発明を完成するに至った。   As a result of diligent efforts to solve the above problems, the present inventors have increased the production rate of methane gas, that is, the gasification efficiency of biomass, by preliminarily treating the biomass with activated carbon before methane fermentation. As a result, the present invention has been completed.

すなわち、本発明に係る、バイオマスから燃料ガスを生成するバイオマスガス化方法は、非金属系触媒の存在下において、前記バイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理する熱水処理工程と、前記熱水処理工程により得られた、前記非金属系触媒を含む前記バイオマスのスラリー体をメタン発酵する発酵工程と、を含む。   That is, according to the present invention, a biomass gasification method for producing fuel gas from biomass, in the presence of a non-metallic catalyst, the biomass within a temperature range of 100 to 250 ° C., and a range of 0.1 to 4 MPa. A hydrothermal treatment step of hydrothermal treatment under the condition of the internal pressure, and a fermentation step of methane fermentation of the biomass slurry body containing the nonmetallic catalyst obtained by the hot water treatment step.

また、本発明に係る、バイオマスから燃料ガスを生成するバイオマスガス化システムは、非金属系触媒の存在下において、前記バイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理する加圧熱水処理装置と、前記加圧熱水処理装置において熱水処理することにより得られた、前記非金属系触媒を含む前記バイオマスのスラリー体をメタン発酵するメタン発酵装置と、を含んで構成される。   Moreover, the biomass gasification system which produces | generates fuel gas from biomass based on this invention WHEREIN: The temperature in the range of 100-250 degreeC, and the range of 0.1-4 MPa in the presence of a nonmetallic catalyst. A pressurized hydrothermal treatment apparatus for hydrothermal treatment under the condition of the internal pressure, and a biomass slurry body containing the nonmetallic catalyst obtained by hydrothermal treatment in the pressurized hot water treatment apparatus. A methane fermentation apparatus that performs methane fermentation.

上述の熱水処理は、所定の圧力(0.1〜4MPaの範囲内)及び当該圧力における水の飽和温度の条件下で行うことが好ましい。上述の非金属系触媒としては、例えば、活性炭などを用いることができる。前記活性炭は、粉末状であって、その平均粒径が200μm以下であるものが好ましい。   The hot water treatment described above is preferably performed under conditions of a predetermined pressure (within a range of 0.1 to 4 MPa) and a saturation temperature of water at the pressure. As the above-mentioned nonmetallic catalyst, for example, activated carbon can be used. The activated carbon is preferably in a powder form and has an average particle size of 200 μm or less.

本発明によれば、バイオマスをメタン発酵することにより燃料ガスをより効率的に生成することができるバイオマスガス化方法及びバイオマスガス化システムを提供することができる。本発明により得られた燃料ガスは、発電等の燃料として用いることができるので、石炭、石油等の化石燃料の省資源化を図ることが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the biomass gasification method and biomass gasification system which can produce | generate a fuel gas more efficiently by carrying out methane fermentation of biomass can be provided. Since the fuel gas obtained by the present invention can be used as a fuel for power generation and the like, it is possible to save resources of fossil fuels such as coal and oil.

以下、好ましい実施の形態につき、添付図面を用いて詳細に説明する。   Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings.

==バイオマスガス化システムの構成==
図1は本発明の一実施例として説明するバイオマスガス化システムの構成図を示す。
図1に示すように、本発明に係るバイオマスガス化システム100は、破砕機10、加圧熱水処理装置20、メタン発酵装置30などを備えている。
== Configuration of biomass gasification system ==
FIG. 1 shows a configuration diagram of a biomass gasification system described as an embodiment of the present invention.
As shown in FIG. 1, a biomass gasification system 100 according to the present invention includes a crusher 10, a pressurized hot water treatment apparatus 20, a methane fermentation apparatus 30, and the like.

破砕機10はバイオマスを破砕する装置である。加圧熱水処理装置20は、破砕機10によって破砕されたバイオマスを、非金属系触媒を利用して、100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理し、バイオマスのスラリー体を形成させる装置である。   The crusher 10 is a device that crushes biomass. The pressurized hot water treatment apparatus 20 uses a non-metallic catalyst for the biomass crushed by the crusher 10 at a temperature in the range of 100 to 250 ° C. and a pressure in the range of 0.1 to 4 MPa. It is an apparatus for forming a biomass slurry by hydrothermal treatment under conditions.

メタン発酵装置30は、加圧熱水処理装置20において熱水処理することにより得られた、非金属系触媒を含むバイオマスのスラリー体を嫌気的条件下でメタン発酵し、燃料ガスを生成する装置である。メタン発酵装置30としては、例えば、単相式メタン発酵装置、酸生成槽とメタン生成槽とを備える二相式メタン発酵装置、上向流嫌気性汚泥床(UASB:Upflow Anaerobic Sludge Blanket Process)型メタン発酵装置、嫌気性固定床型メタン発酵装置、嫌気性流動床型メタン発酵装置、乾式メタン発酵装置などを用いることができる。   The methane fermentation apparatus 30 is an apparatus for producing a fuel gas by subjecting a biomass slurry containing a nonmetallic catalyst obtained by hydrothermal treatment in the pressurized hydrothermal treatment apparatus 20 to methane fermentation under anaerobic conditions. It is. Examples of the methane fermentation apparatus 30 include a single-phase methane fermentation apparatus, a two-phase methane fermentation apparatus including an acid generation tank and a methane generation tank, and an upflow anaerobic sludge blanket process (UASB) type. A methane fermentation apparatus, an anaerobic fixed bed type methane fermentation apparatus, an anaerobic fluidized bed type methane fermentation apparatus, a dry methane fermentation apparatus, or the like can be used.

以上のように、メタン発酵装置30を備えたバイオマスガス化システム100に加圧熱水処理装置20を設けることにより、バイオマスのメタン発酵が効率的に行われ、バイオマスからメタンを効率よく生成することができるようになる。   As described above, by providing the pressurized hot water treatment device 20 in the biomass gasification system 100 including the methane fermentation device 30, the methane fermentation of the biomass is efficiently performed, and methane is efficiently generated from the biomass. Will be able to.

==バイオマスガス化方法===
次に、本実施の一形態として、バイオマスから燃料ガスを生成する方法について説明する。
== Biomass gasification method ===
Next, as one embodiment of the present invention, a method for generating fuel gas from biomass will be described.

まず、破砕機10により破砕したバイオマスを加圧熱水処理装置20に供給する。加圧熱水処理装置20に供給されたバイオマスは、非金属系触媒の存在下で、所定の圧力及び所定の条件下で熱水処理される。なお、熱水処理は、バイオマスに含まれる水を利用して行ってもよいが、破砕機10において添加された、酸素を含まない水を利用して行ってもよいし、酸素を含まない水を別途供給して行ってもよい。また、熱水処理において使用される非金属系触媒は、破砕機10によって破砕されたバイオマスとともに加圧熱水処理装置20に供給されることとしてもよいが、バイオマスとは別に加圧熱水処理装置20に供給されることとしてもよい。   First, the biomass crushed by the crusher 10 is supplied to the pressurized hot water treatment apparatus 20. The biomass supplied to the pressurized hot water treatment apparatus 20 is hydrothermally treated under a predetermined pressure and a predetermined condition in the presence of a nonmetallic catalyst. The hot water treatment may be performed using water contained in the biomass, but may be performed using water that does not contain oxygen added in the crusher 10, or water that does not contain oxygen. May be supplied separately. Moreover, although the nonmetallic catalyst used in the hot water treatment may be supplied to the pressurized hot water treatment apparatus 20 together with the biomass crushed by the crusher 10, the pressurized hot water treatment is performed separately from the biomass. It may be supplied to the device 20.

上述の熱水処理の条件としては、100〜250℃の範囲内の温度であって、0.1〜4MPaの範囲内の圧力下であれば特に制限されるものではないが、後述の実施例によりバイオマスの高分子から低分子への分解が、バイオマスのメタン発酵によるガス化効率を向上させるものと考えられることから、バイオマスの分解を効率的に行うことができる条件、例えば、上述の範囲内の圧力及びその圧力下における水の飽和温度であることが好ましく、さらに省エネルギーの観点から、180℃(好ましくは179.8℃)の温度及び1.0MPaの圧力下であることが特に好ましい。なお、熱水処理を100℃〜250℃の範囲内の温度で行うこととしたのは、100℃未満ではバイオマスの分解反応率が低く、250℃を超えるとタールやチャーが発生して微生物に悪影響を与えるのではないかと考えられたからである。また、熱水処理を0.1〜4MPaの範囲内の圧力で行うこととしたのは、0.1MPa未満ではバイオマスの分解反応率が低く、4MPaを超えても分解反応に与える影響はそれ程変化しないのではないかと考えられたためである。   The conditions for the above-mentioned hot water treatment are not particularly limited as long as the temperature is in the range of 100 to 250 ° C. and the pressure is in the range of 0.1 to 4 MPa. Since it is considered that the decomposition of biomass from high molecular weight to low molecular weight improves the gasification efficiency of biomass by methane fermentation, the conditions under which biomass can be efficiently decomposed, for example, within the above-mentioned range And a saturation temperature of water under the pressure, and from the viewpoint of energy saving, a temperature of 180 ° C. (preferably 179.8 ° C.) and a pressure of 1.0 MPa are particularly preferable. The reason for performing the hydrothermal treatment at a temperature within the range of 100 ° C. to 250 ° C. is that the decomposition reaction rate of biomass is low at less than 100 ° C., and tar and char are generated when the temperature exceeds 250 ° C. It was because it was thought that it would have an adverse effect. In addition, the hydrothermal treatment is performed at a pressure within the range of 0.1 to 4 MPa because the biomass decomposition reaction rate is low at less than 0.1 MPa, and the influence on the decomposition reaction changes greatly even when the pressure exceeds 4 MPa. This is because it was thought that they would not.

なお、熱水処理に用いられる非金属系触媒としては、活性炭、又は活性炭に類似の性質を有するゼオライトなどを挙げることができる。また、前記非金属系触媒としては、平均粒径200μm以下の粉末を用いることが好ましく、多孔質であることがより好ましい。これにより、表面積を増やして熱水処理の反応効率を高めることができる。   In addition, as a nonmetallic catalyst used for a hot water process, the zeolite etc. which have the property similar to activated carbon or activated carbon can be mentioned. Moreover, as said nonmetallic catalyst, it is preferable to use the powder with an average particle diameter of 200 micrometers or less, and it is more preferable that it is porous. Thereby, the surface area can be increased and the reaction efficiency of the hot water treatment can be increased.

上述のようにして得られた、非金属系触媒を含むバイオマスのスラリー体は、加圧熱水処理装置20からメタン発酵装置30に供給され、メタン発酵装置30においてメタン発酵菌によりメタン発酵される。これにより、バイオマスのスラリー体から水素ガス、メタン等の燃料ガスを得ることができる。なお、前記メタン発酵は、酸生成菌により処理した後、メタン発酵菌(メタン生成菌)により行うこととしてもよいが、酸生成菌とメタン発酵菌とを含む混合菌により行うこととしてもよい。なお、酸生成菌及びメタン発酵菌としては、公知の菌を用いることができる。また、酸生成菌及びメタン発酵菌での処理は、それぞれの菌の生存に適した温度及びpHで行うことができる。   The biomass slurry containing the nonmetallic catalyst obtained as described above is supplied from the pressurized hot water treatment apparatus 20 to the methane fermentation apparatus 30 and is methane-fermented by the methane fermentation bacteria in the methane fermentation apparatus 30. . Thereby, fuel gas, such as hydrogen gas and methane, can be obtained from the slurry body of biomass. In addition, although the said methane fermentation is good also as performing by a methane fermentation microbe (methane production microbe) after processing by an acid production microbe, it is good also as performing by the mixed microbe containing an acid production microbe and a methane fermentation microbe. In addition, a well-known microbe can be used as an acid production microbe and a methane fermentation microbe. The treatment with acid-producing bacteria and methane-fermenting bacteria can be performed at a temperature and pH suitable for the survival of each bacteria.

以上のように、メタン発酵する前に非金属系触媒の存在下においてバイオマスをあらかじめ熱水処理することにより、バイオマスのメタン発酵が効率的に行われ、バイオマスからメタンを効率よく生成することができるようになる。   As described above, by performing hydrothermal treatment of biomass in advance in the presence of a nonmetallic catalyst before methane fermentation, methane fermentation of biomass can be efficiently performed, and methane can be efficiently generated from biomass. It becomes like this.

なお、上述のように生成された燃料ガスは、二酸化炭素等のガスとともにメタン発酵装置30から排出されるので、公知のガス分離技術を用いてガス成分を分離することとしてもよい。これにより、純度の高い各成分のガスを得ることができるようになる。   In addition, since the fuel gas produced | generated as mentioned above is discharged | emitted from the methane fermentation apparatus 30 with gas, such as a carbon dioxide, it is good also as separating a gas component using a well-known gas separation technique. Thereby, the gas of each component with high purity can be obtained.

以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

生ごみ及び食品廃棄物の湿潤バイオマスをミキサーで破砕し、得られた余剰汚泥1.65kgを表1に示す条件下でそれぞれ熱水処理した。なお、触媒としての活性炭、MnO、及びZrOは平均粒径が200μm以下であって粉末状のものを用いた。 The wet biomass of food waste and food waste was crushed with a mixer, and 1.65 kg of the obtained excess sludge was hydrothermally treated under the conditions shown in Table 1. In addition, activated carbon, MnO 2 , and ZrO 2 as a catalyst were used in a powder form having an average particle diameter of 200 μm or less.

[表1]

Figure 0005229930
[Table 1]
Figure 0005229930

200 mLのバイアルに酸生成菌及びメタン発酵菌を含む種汚泥(嫌気消化後の生汚泥;広島市西部浄化センターから供与)を加えた後、上述の熱水処理した各余剰汚泥サンプル、又は、未処理の余剰汚泥サンプル(未処理汚泥)を、最終濃度(体積)で3, 5, 10%となるようにバイアルにさらに加え、pHを7.0に調整して全量100 mLとした。また、熱水処理した各余剰汚泥サンプル及び未処理の余剰汚泥を添加しないもの(種汚泥のみ)も準備した。その後、各バイアルの容器内を窒素置換し、嫌気的条件下において52℃で培養を行い、ガス発生量及びガス中のメタン濃度を測定した。なお、ガス中のメタン濃度はガスクロマトグラフィーにより測定し、ガス発生量は種汚泥のみのガス発生量をブランクとして各バイアルから発生した総ガス発生量から差し引くことにより求めた。3, 5, 10%の余剰汚泥をメタン発酵させた際に発生したガス量及びガス中のメタン濃度を調べた結果をそれぞれ図2〜4にそれぞれ示す。   After adding seed sludge containing acidogenic bacteria and methane fermentation bacteria (raw sludge after anaerobic digestion; provided by Hiroshima City West Purification Center) to a 200 mL vial, each surplus sludge sample that has been treated with hot water as described above, or An untreated surplus sludge sample (untreated sludge) was further added to the vial so that the final concentration (volume) was 3, 5 and 10%, and the pH was adjusted to 7.0 to make a total volume of 100 mL. In addition, each surplus sludge sample treated with hot water and one not added with untreated surplus sludge (only seed sludge) were also prepared. Thereafter, the inside of each vial was purged with nitrogen, cultured at 52 ° C. under anaerobic conditions, and the amount of gas generated and the methane concentration in the gas were measured. The methane concentration in the gas was measured by gas chromatography, and the gas generation amount was obtained by subtracting the gas generation amount of only the seed sludge from the total gas generation amount generated from each vial using a blank. The results of examining the amount of gas generated when 3, 5, 10% surplus sludge was subjected to methane fermentation and the methane concentration in the gas are shown in FIGS.

図2〜4に示すように、No.4は未処理汚泥や他の条件下で熱水処理したサンプル(No.1〜3、No.5、及びNo.6)に比べてメタンガスの生成速度が最も高く、その差は余剰汚泥の濃度が高い時(10%)に顕著にみられた。このことから、余剰汚泥をメタン発酵する場合には、活性炭を用いて余剰汚泥をあらかじめ熱水処理することが有効であり、これによってメタンガスの生成速度、すなわちバイオマスのガス化効率を高めることができることがわかった。また、バイオマスのガス化効率の向上は、活性炭を触媒として用いた熱水処理によりバイオマスが高分子から低分子に分解され、メタン発酵菌によるメタン発酵が効率よく行われたことによるものであることが示唆された。   As shown in Figs. 2-4, No.4 is the production rate of methane gas compared to untreated sludge and samples hydrothermally treated under other conditions (No.1-3, No.5, and No.6). The difference was significant when the excess sludge concentration was high (10%). From this, when surplus sludge is methane-fermented, it is effective to pre-heat surplus sludge using activated carbon, which can increase the production rate of methane gas, that is, the gasification efficiency of biomass. I understood. In addition, the improvement of biomass gasification efficiency is due to the fact that biomass was decomposed from high molecular weight to low molecular weight by hot water treatment using activated carbon as a catalyst, and methane fermentation by methane fermentation bacteria was performed efficiently. Was suggested.

本発明の一実施形態として説明するバイオマスガス化システムの構成を示す図である。It is a figure which shows the structure of the biomass gasification system demonstrated as one Embodiment of this invention. 本発明の一実施例において、3%の余剰汚泥をメタン発酵させた際に得られたガスの発生量及びガス中のメタン濃度を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the generation amount of the gas obtained when carrying out methane fermentation of 3% of excess sludge, and the methane density | concentration in gas. 本発明の一実施例において、5%の余剰汚泥をメタン発酵させた際に得られたガスの発生量及びガス中のメタン濃度を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the generation amount of the gas obtained when 5% surplus sludge was methane-fermented, and the methane density | concentration in gas. 本発明の一実施例において、10%の余剰汚泥をメタン発酵させた際に得られたガスの発生量及びガス中のメタン濃度を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the generation amount of the gas obtained when carrying out methane fermentation of 10% of excess sludge, and the methane density | concentration in gas.

符号の説明Explanation of symbols

10 破砕機
20 加圧熱水処理装置
30 メタン発酵装置
100 バイオマスガス化システム
DESCRIPTION OF SYMBOLS 10 Crusher 20 Pressurized hot water processing apparatus 30 Methane fermentation apparatus 100 Biomass gasification system

Claims (6)

バイオマスから燃料ガスを生成するバイオマスガス化方法において、
活性炭の存在下において、前記バイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理する熱水処理工程と、
前記熱水処理工程により得られた、前記活性炭を含む前記バイオマスのスラリー体をメタン発酵する発酵工程と、
を含むことを特徴とするバイオマスガス化方法。
In a biomass gasification method for generating fuel gas from biomass,
A hydrothermal treatment step of hydrothermally treating the biomass in the presence of activated carbon under conditions of a temperature in the range of 100 to 250 ° C. and a pressure in the range of 0.1 to 4 MPa;
A fermentation process for methane fermentation of the biomass slurry containing the activated carbon obtained by the hot water treatment process;
A biomass gasification method comprising:
所定の圧力及び当該圧力における水の飽和温度の条件下で熱水処理することを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the hydrothermal treatment is performed under a condition of a predetermined pressure and a saturation temperature of water at the pressure. 前記活性炭が、平均粒径200μm以下の粉末であることを特徴とする請求項1又は2に記載の方法。 The method according to claim 1 or 2 wherein the activated carbon is characterized by an average particle size of 200μm or less of powder. バイオマスから燃料ガスを生成するバイオマスガス化システムにおいて、
活性炭の存在下において、前記バイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理する加圧熱水処理装置と、
前記加圧熱水処理装置において熱水処理することにより得られた、前記活性炭を含む前記バイオマスのスラリー体をメタン発酵するメタン発酵装置と、
を含むことを特徴とするバイオマスガス化システム。
In a biomass gasification system that generates fuel gas from biomass,
A pressurized hydrothermal treatment apparatus for hydrothermally treating the biomass in the presence of activated carbon under conditions of a temperature in the range of 100 to 250 ° C. and a pressure in the range of 0.1 to 4 MPa;
A methane fermentation apparatus for methane fermentation of the biomass slurry containing the activated carbon obtained by hydrothermal treatment in the pressurized hot water treatment apparatus;
A biomass gasification system comprising:
前記加圧熱水処理装置での熱水処理を、所定の圧力及び当該圧力における水の飽和温度の条件下で行うことを特徴とする請求項に記載のシステム。 The system according to claim 4 , wherein the hot water treatment in the pressurized hot water treatment apparatus is performed under conditions of a predetermined pressure and a saturation temperature of water at the pressure. 前記活性炭が、平均粒径200μm以下の粉末であることを特徴とする請求項4又は5に記載のシステム。 The system according to claim 4 or 5 , wherein the activated carbon is a powder having an average particle size of 200 µm or less.
JP2005209841A 2005-07-20 2005-07-20 Biomass gasification method and system Active JP5229930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209841A JP5229930B2 (en) 2005-07-20 2005-07-20 Biomass gasification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209841A JP5229930B2 (en) 2005-07-20 2005-07-20 Biomass gasification method and system

Publications (2)

Publication Number Publication Date
JP2007023214A JP2007023214A (en) 2007-02-01
JP5229930B2 true JP5229930B2 (en) 2013-07-03

Family

ID=37784411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209841A Active JP5229930B2 (en) 2005-07-20 2005-07-20 Biomass gasification method and system

Country Status (1)

Country Link
JP (1) JP5229930B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758932B2 (en) * 2007-03-30 2011-08-31 三井造船株式会社 Biogas system
JP5150199B2 (en) * 2007-10-23 2013-02-20 株式会社東芝 Sludge treatment system
JP5293099B2 (en) 2007-11-14 2013-09-18 株式会社Ihi CO2 recovery gasification method and apparatus
JP5540369B2 (en) * 2009-01-30 2014-07-02 国立大学法人広島大学 Fuel gas production method
JP2015217345A (en) * 2014-05-19 2015-12-07 東洋ゴム工業株式会社 Methane fermentation treatment method for organic waste
CN106904802A (en) * 2017-03-21 2017-06-30 中国石油大学(北京) A kind of processing method of oily sludge
KR102171486B1 (en) * 2018-11-13 2020-10-29 주식회사 티에스케이엔지니어링 Method of Manufacturing Solid Fuel using Food Waste
KR102357549B1 (en) * 2021-04-22 2022-02-09 (주)키나바 Method for producing solid fuel that reduces odor by using hydrothermal carbonization of organic or inorganic waste, and solid fuel produced by the method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533496B2 (en) * 2000-03-15 2010-09-01 三菱重工業株式会社 Fuel production method from biomass
JP2002066507A (en) * 2000-08-25 2002-03-05 Ishikawajima Harima Heavy Ind Co Ltd Treating method for organic solid and treating device for organic solid
JP2002102897A (en) * 2000-09-28 2002-04-09 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic food waste such as waste yeast or wheat stained less
JP2002126794A (en) * 2000-10-27 2002-05-08 Ishikawajima Harima Heavy Ind Co Ltd Processing method and processing device of pulp organic waste
JP2004123848A (en) * 2002-09-30 2004-04-22 Daiwa House Ind Co Ltd Method for producing methane gas by anaerobic fermentation
JP2004131560A (en) * 2002-10-09 2004-04-30 Tokyo Gas Co Ltd Method for recovering energy by supercritical water treatment of organic material and apparatus therefor
US7736510B2 (en) * 2002-10-22 2010-06-15 Osaka Industrial Promotion Organization Method for producing methane gas
JP4164658B2 (en) * 2003-03-31 2008-10-15 大阪瓦斯株式会社 Method for producing fuel gas
JP4250997B2 (en) * 2003-03-31 2009-04-08 弘之 吉田 Method for decomposing plant residues
JP2004298818A (en) * 2003-04-01 2004-10-28 Tokyo Gas Co Ltd Pretreatment method and apparatus therefor in supercritical water treatment of organic material
JP2006169329A (en) * 2004-12-14 2006-06-29 Hiroshima Univ Method for gasifying organic matter
JP2006274013A (en) * 2005-03-29 2006-10-12 Hiroshima Univ Biomass gasification system

Also Published As

Publication number Publication date
JP2007023214A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5229930B2 (en) Biomass gasification method and system
Ajay et al. Review of impact of nanoparticle additives on anaerobic digestion and methane generation
CN107971324B (en) Method and device for reducing and recycling kitchen waste anaerobic fermentation biogas residues
Cheng et al. Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge
CN107365593A (en) A kind of method that antibiotic bacterium dregs prepare charcoal
JP2006274013A (en) Biomass gasification system
Manikandan et al. Emerging nanotechnology in renewable biogas production from biowastes: Impact and optimization strategies–A review
Leong et al. Microalgae-based biochar production and applications: A comprehensive review
CN103333716A (en) Method for preparing hydrogen-rich gas with sludge as raw material and product
JP2006329072A (en) Fuel supplying method and fuel supply system
JP2006255538A (en) Method and apparatus for treatment of food waste
Sharma et al. Nanotechnology as a vital science in accelerating biofuel production, a boon or bane
Shafie et al. The performance study of Ultrasonic-assisted Membrane Anaerobic System (UMAS) for Chemical Oxygen Demand (COD) removal efficiency and methane gas production in Palm Oil Mill Effluent (POME) treatment
Elbeshbishy Enhancement of biohydrogen and biomethane production from wastes using ultrasonication
Zhang et al. Functional materials development from kitchen waste
KR101990885B1 (en) Method for preparation biomethane using organic material
CA2760882A1 (en) Method and apparatus for anaerobically digesting organic material
Sun et al. Enhancement of sewage sludge anaerobic digestibility by sulfate radical pretreatment
CN115161352A (en) Method for improving production of methane by butyrate degradation through nano composite material
CN110760353B (en) Method for producing clean energy by utilizing kitchen waste
WO2014079921A1 (en) Microbiological generation of biomethane with hydrogen from the thermal gasification of carbonaceous feedstocks
JP4600921B2 (en) Organic waste treatment method and apparatus
JP2006255537A (en) Method and apparatus for treating garbage and paper refuse
JP2005013045A (en) Method for continuously producing hydrogen from organic waste
CN105505996A (en) Biogas residue thermal cracking solid product and application method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250