JP5229909B2 - Spinning method and apparatus - Google Patents

Spinning method and apparatus Download PDF

Info

Publication number
JP5229909B2
JP5229909B2 JP2009173900A JP2009173900A JP5229909B2 JP 5229909 B2 JP5229909 B2 JP 5229909B2 JP 2009173900 A JP2009173900 A JP 2009173900A JP 2009173900 A JP2009173900 A JP 2009173900A JP 5229909 B2 JP5229909 B2 JP 5229909B2
Authority
JP
Japan
Prior art keywords
workpiece
product
spinning
processing
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009173900A
Other languages
Japanese (ja)
Other versions
JP2011025283A (en
Inventor
裕彦 荒井
明生 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009173900A priority Critical patent/JP5229909B2/en
Publication of JP2011025283A publication Critical patent/JP2011025283A/en
Application granted granted Critical
Publication of JP5229909B2 publication Critical patent/JP5229909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、スピニング加工方法及びこれを実施するためのスピニング加工装置に関するものである。   The present invention relates to a spinning processing method and a spinning processing apparatus for carrying out the same.

スピニング加工方法のうち、加工ローラを成形型に沿って1パスの工具軌道で動かして加工を行うしごきスピニング加工では、ワーク被加工部の肉厚はsine則という法則にしたがって決まる。
たとえば、半角がαの円錐形状を、この加工法で成形する場合、被加工部の肉厚tは、素板の板厚tによってsine則に従い、周方向で均一にt=tsin(α)となる。複数の工具パスにより多段階で成形を行う絞りスピニング加工では、パスの設定により素板の板厚からの減肉・増肉が可能だが、やはり肉厚は周方向で均一な分布に限られる。
In the spinning processing method, in the ironing spinning processing in which the processing roller is moved along the tooling die along the tool path of one pass, the thickness of the workpiece workpiece is determined according to a law called sine rule.
For example, when a conical shape having a half-width α is formed by this processing method, the thickness t of the processed part is uniformly t = t 0 sin (in the circumferential direction according to the sine rule depending on the thickness t 0 of the base plate. α). In the drawing spinning process in which molding is performed in multiple stages using multiple tool passes, the thickness can be reduced or increased from the plate thickness by setting the pass, but the thickness is still limited to a uniform distribution in the circumferential direction.

ところで、スピニング加工に成形される製品には、設計上、例えば、他の部品と当接して大きな負荷がかかる箇所や、他の部材との結合部、溶接部等を形成するため、軸方向に沿う側面の一部について、肉厚を増やして強度を高めなければならない場合や、逆に、軽量化、低コスト化のため、肉厚を減じることが必要になる場合があるが、従来のスピニング加工方法では、製品の軸線に直交する断面において、周方向に均一の肉厚に加工せざるを得ず、このような要請に応えることができなかった。   By the way, in the product molded by spinning, for example, in order to form a portion where a large load is applied by contacting with other parts, a connecting portion with other members, a welding portion, etc. For some of the side surfaces, the thickness needs to be increased by increasing the thickness, or conversely, it may be necessary to reduce the thickness to reduce weight and cost. In the processing method, the cross section perpendicular to the axis of the product has to be processed to a uniform thickness in the circumferential direction, and it has not been possible to meet such a demand.

特許文献1では、回転しごき加工により成形型とローラの間で製品の一部分を強制的に減肉する方法が提案されているが、この方法では、肉厚は成形型とローラの隙間で決まるものの、この場合も周方向の肉厚は均一となる。   Patent Document 1 proposes a method of forcibly reducing a part of a product between a mold and a roller by rotating ironing. In this method, the thickness is determined by a gap between the mold and the roller. In this case as well, the circumferential thickness is uniform.

特許文献2では、周方向で不均一な肉厚分布の製品をスピニング加工で成形するための方法として、成形型に凹部を設け素材を流入させてその部分のみを厚くする方法を提案している。
しかしこの方法では素材を強制的に流動させるためローラの駆動推力が大きな加工装置が必要であり、製品全体にわたるような肉厚分布の制御や薄板への適用も難しい。
Patent Document 2 proposes a method for forming a product having a non-uniform thickness distribution in the circumferential direction by spinning, and forming a recess in the mold and injecting the material to thicken only that portion. .
However, this method requires a processing apparatus with a large roller driving thrust to force the material to flow, and it is difficult to control the thickness distribution over the entire product and to apply to a thin plate.

特許文献3では、溶接により予め周方向に不均一な肉厚を有するブランクを作成し、これをスピニング加工する方法を提案しているが、ブランクの作成に時間とコストがかかる。   Patent Document 3 proposes a method in which a blank having a non-uniform thickness in the circumferential direction is created in advance by welding and a spinning process is proposed. However, it takes time and cost to create the blank.

特開平7−88583号公報JP-A-7-88583 特開2002−86233号公報JP 2002-86233 A 特開2002−153930号公報JP 2002-153930 A

本発明は、薄板を含む均一な板厚の素板から、加工ローラを1パスで動かすスピニング加工によって、比較的加工力の小さな加工装置を用いても、周方向の一部の領域の面に関して、強度が必要とされる箇所を肉厚にするなど、不均一な肉厚分布の製品を成形可能なスピニング加工方法を実現することを課題とする。   The present invention relates to the surface of a partial region in the circumferential direction even if a processing device having a relatively small processing force is used by spinning processing that moves a processing roller in one pass from a base plate having a uniform plate thickness including a thin plate. It is an object of the present invention to realize a spinning method capable of forming a product having a non-uniform thickness distribution, such as making a portion where strength is required thick.

そこで、本発明においては、上記課題を解決するために、板状の金属製ワークを主軸に取り付けて回転させ、加工ローラを押し付けて、前記主軸を中心軸とする製品への成形加工を行うスピニング加工方法において、前記主軸を駆動する回転角センサ付モータからの回転角信号に基づいて、前記ワークの回転角度に同期して、前記ワークと前記加工ローラの接触点が前記主軸の中心線に対して所定の傾斜角度で交わる平面内における製品形状に沿った閉軌道を描くように、前記加工ローラを前記主軸方向及び半径方向に前進または後退させることによって、周方向に不均一な肉厚分布の製品を成形するようにした。 Therefore, in the present invention, in order to solve the above-described problem, spinning is performed by attaching a plate-shaped metal workpiece to a main shaft and rotating it, pressing a processing roller, and forming a product having the main shaft as a central axis. in the processing method, based on the rotation angle signal from the motor with the rotational angle sensor to drive the spindle in synchronization with the rotation angle of the workpiece, the contact point of the processing rollers and the workpiece, the center line of the main spindle to draw a closed orbit along with your Keru product shape in a plane intersecting at a predetermined inclination angle against, by advancing or retracting the working roller in said main axis and radially, circumferentially uneven wall A product with a thickness distribution was formed.

また、上記のスピニング加工方法において、スピニング加工による最終製品の形状及び肉厚分布に基づいて、前記ワークと前記加工ローラの接触点の軌道を含む平面が、前記主軸の中心線に対して交わる傾斜角度を決定するようにした。   Further, in the above spinning method, an inclination in which a plane including the trajectory of the contact point between the workpiece and the processing roller intersects the center line of the main shaft based on the shape and thickness distribution of the final product by the spinning processing. The angle was decided.

その際、最終製品の形状が、円錐半角がαの円錐ないし円錐台であり、ワークの板厚がt0であって、製品の最も厚い部分または最も薄い部分の肉厚をtdにしたい場合に、前記ワークと前記加工ローラの接触点の軌道を含む平面の、前記主軸の中心線に対して交わる傾斜角度φを、
により求めるようにした。
At that time, when the shape of the final product is a cone or truncated cone with a cone half angle α, the workpiece thickness is t 0 and the thickness of the thickest part or the thinnest part of the product is to be td , An inclination angle φ of the plane including the trajectory of the contact point between the workpiece and the processing roller intersecting the center line of the main shaft,
I asked for it.

また、上記のスピニング加工方法を好適に実施するスピニング加工装置として、回転角センサ付モータと、前記モータにより駆動され板状の金属製ワークを装着して回転する主軸と、前記ワークに接触して、前記主軸を中心軸とする製品への成形加工を行う加工ローラと、前記加工ローラを前記主軸方向及び半径方向に駆動するアクチュエータと、製品の目標形状データの記憶装置とを備えたスピニング加工装置において、前記アクチュエータを制御する制御装置が、前記記憶装置に記憶された前記目標形状データ及び目標肉厚データに基づいて、前記ワークの回転角度に同期して、前記ワークと前記加工ローラの接触点が、前記主軸の中心線に対して所定の傾斜角度で交わる平面内における前記目標形状データに沿った閉軌道を描くよう、加工ローラを主軸方向及び半径方向に前進または後退させる制御手段を備えたものとした。 In addition, as a spinning processing apparatus that suitably performs the spinning processing method described above, a motor with a rotation angle sensor, a main shaft that is driven by the motor and rotates with a plate-shaped metal workpiece mounted thereon, and a contact with the workpiece A spinning processing device comprising: a processing roller for forming a product having the main shaft as a central axis; an actuator for driving the processing roller in the main shaft direction and the radial direction; and a storage device for target shape data of the product A control device for controlling the actuator based on the target shape data and target wall thickness data stored in the storage device, and in synchronization with the rotation angle of the workpiece, the contact point between the workpiece and the processing roller but to draw a closed orbit along your Keru the target shape data in a plane intersecting at a predetermined inclination angle with respect to the center line of the main spindle, It was that a control means for advancing or retracting the Engineering roller spindle and radially.

本発明は、次のような効果を奏することができる。
(1)本発明は、製品の形状によらず、被加工部の肉厚を従来のスピニング加工法とは異なり周方向に不均一な肉厚分布に調整することができる、つまり、製品の肉厚を増加あるいは減少させたい部分があれば、本加工法を用いることで素板の板厚分布を変えなくても、その部分の肉厚を調整することができる。
(2)また本発明では素材を強制的に流動させるのではなく板の自然なずれ変形を利用して肉厚を変化させるので、薄板にも適用可能であり、ローラの駆動推力が比較的小さい装置でも実行できる。
(3)また本発明では、製品の形状が円錐ないし円錐台の場合は、円錐半角及び素板の板厚と、周方向で最も厚い部分または最も薄い部分の製品肉厚から、簡単な計算式で加工中の工具の軌道を得ることができる。
The present invention can produce the following effects.
(1) The present invention can adjust the thickness of the workpiece to a non-uniform thickness distribution in the circumferential direction, unlike the conventional spinning method, regardless of the shape of the product. If there is a part where the thickness is to be increased or decreased, the thickness of the part can be adjusted by using this processing method without changing the thickness distribution of the base plate.
(2) In the present invention, since the thickness is changed by using the natural displacement deformation of the plate instead of forcibly flowing the material, it can be applied to a thin plate, and the driving thrust of the roller is relatively small. It can also be executed on the device.
(3) In the present invention, when the shape of the product is a cone or a truncated cone, a simple calculation formula is obtained from the thickness of the cone half-angle and the base plate and the product thickness of the thickest part or the thinnest part in the circumferential direction. The tool trajectory during machining can be obtained.

本発明に係るスピニング加工装置の一例を示す概略平面図である。It is a schematic plan view which shows an example of the spinning processing apparatus which concerns on this invention. 本発明におけるワークと加工ローラの接触の様子を示した説明図である。It is explanatory drawing which showed the mode of the contact of the workpiece | work and processing roller in this invention. 本加工法と従来加工法における工具軌道の比較を示した説明図である。It is explanatory drawing which showed the comparison of the tool path in this processing method and the conventional processing method. 加工中における螺旋状の工具軌道の例を示した説明図である。It is explanatory drawing which showed the example of the helical tool path | route in process. 本加工法による製品の例を示した写真である。It is the photograph which showed the example of the product by this processing method. 成形状態の推移と、肉厚の推定と調整のための記号を示した説明図である。It is explanatory drawing which showed the transition for a molding state, and the symbol for thickness estimation and adjustment. 素板の傾きや円錐半角と、製品側面の角度の関係を表わす説明図である。It is explanatory drawing showing the relationship between the inclination of a base plate, a cone half angle, and the angle of a product side surface. 実際の成形結果において、肉厚比の理論値と実測値を示すグラフである。It is a graph which shows the theoretical value and measured value of thickness ratio in an actual shaping | molding result.

本発明は、ワークの取り付けられた主軸と工具の運動を同期させて加工をおこなう同期式スピニング加工において実施できる。
図1は、本発明のスピニング加工方法を実施する加工装置の構成例を示す概略平面図である。ここで、スピニング加工装置10は、ワーク1を初期形状である平板1aから最終的には、主軸3を中心軸とする円錐台形状1bに加工するものである。
The present invention can be implemented in a synchronous spinning process in which machining is performed by synchronizing the movement of a spindle to which a workpiece is attached and a tool.
FIG. 1 is a schematic plan view showing an example of the configuration of a processing apparatus that implements the spinning processing method of the present invention. Here, the spinning processing apparatus 10 finally processes the workpiece 1 from the flat plate 1a having an initial shape into a truncated cone shape 1b having the main shaft 3 as a central axis.

ワーク1は治具2と主軸3に挟まれて固定され、モータ4によって主軸3とともに回転する。モータ4は、回転角度θを検出するエンコーダなどの回転角センサを備えるものとする。
棒状の加工ローラ5は、先端に球面状の加工面を有し、ボールねじや油圧シリンダなどのアクチュエータで駆動される半径方向の直動テーブル6によって、平板1aの半径方向に前進あるいは後退する。また、半径方向の直動テーブル6は、主軸方向の直動テーブル7によって主軸3と平行に前進あるいは後退する。
これらの直動テーブル6、7は、それぞれ送り量を検出するエンコーダなどの変位センサを備えるものとする。直動テーブル6、7の駆動は、上記ボールねじや油圧シリンダなどのアクチュエータを制御する制御装置により制御される。
The workpiece 1 is sandwiched and fixed between a jig 2 and a main shaft 3 and is rotated together with the main shaft 3 by a motor 4. The motor 4 includes a rotation angle sensor such as an encoder that detects the rotation angle θ.
The rod-like processing roller 5 has a spherical processing surface at the tip, and is moved forward or backward in the radial direction of the flat plate 1a by a radial linear motion table 6 driven by an actuator such as a ball screw or a hydraulic cylinder. Further, the linear motion table 6 in the radial direction is advanced or retracted in parallel with the main shaft 3 by the linear motion table 7 in the main shaft direction.
These linear motion tables 6 and 7 are each provided with a displacement sensor such as an encoder for detecting a feed amount. The driving of the linear motion tables 6 and 7 is controlled by a control device that controls actuators such as the ball screw and the hydraulic cylinder.

すなわち、制御装置は、コンピュータが利用されるが、モータの回転角センサ及び直動テーブル6、7の変位センサ等のデータを受けて、予め搭載された制御ソフトに従って制御信号を生成し、これにより上記ボールねじや油圧シリンダなどのアクチュエータの駆動を制御する。
本発明に係るスピニング加工方法の特徴的な構成は、ワーク1を、主軸3を中心軸とする円錐台形状等の最終形状に加工することを前提としつつ、肉厚を調整したい箇所の加工において、ワーク1と加工ローラ5の接触点の軌跡を、主軸Sに対して垂直ではなく傾斜した平面内の閉軌道を描くようにする点にある。
That is, the control device uses a computer, receives data from the rotation angle sensor of the motor and the displacement sensors of the linear motion tables 6 and 7, and generates control signals according to control software installed in advance. Controls the driving of actuators such as the ball screw and hydraulic cylinder.
The characteristic configuration of the spinning processing method according to the present invention is based on the premise that the workpiece 1 is processed into a final shape such as a truncated cone shape having the main shaft 3 as a central axis, while processing the portion where the thickness is to be adjusted. The locus of the contact point between the workpiece 1 and the processing roller 5 is to draw a closed trajectory in a plane that is not perpendicular to the main axis S but inclined.

図2は、本発明に係るスピニング加工方法及び装置における、ワーク1と加工ローラ5の接触の様子を示したものである。ワーク1の回転角θと同期して、加工ローラ5の主軸方向の送り変位zならびに半径方向の送り変位xを制御する。ワーク1と加工ローラ5の接触点の軌跡が、主軸Sに対して斜めに交差した平面内の閉軌道を描くようにする。   FIG. 2 shows a state of contact between the workpiece 1 and the processing roller 5 in the spinning processing method and apparatus according to the present invention. In synchronization with the rotation angle θ of the workpiece 1, the feed displacement z in the main axis direction and the feed displacement x in the radial direction of the processing roller 5 are controlled. The trajectory of the contact point between the workpiece 1 and the processing roller 5 draws a closed trajectory in a plane that obliquely intersects the main axis S.

図3は、従来のスピニング加工法(右)と本発明による方法(左)について、ワークを固定して考えた場合に、加工ローラとワークの接触点の閉軌道がどのように変化するかを表わしたものである。
従来のスピニング加工法では接触点の閉軌道は常に主軸に直交する平面内にある。
一方、本発明では、肉厚を調整したい箇所において、閉軌道が存在する平面は主軸に対して傾斜しており、この傾斜角を変化させることによって、肉厚を変化させる。このときに素板のもとの位置の中心など閉軌道の代表点を定めて、その点の移動する軸の形状で平面の傾斜角の変化をあらわすことができる。
FIG. 3 shows how the closed trajectory of the contact point between the machining roller and the workpiece changes when the workpiece is fixed in the conventional spinning method (right) and the method according to the present invention (left). It is a representation.
In the conventional spinning method, the closed trajectory of the contact point is always in a plane perpendicular to the principal axis.
On the other hand, in the present invention, the plane where the closed orbit exists is inclined with respect to the main axis at the location where the thickness is to be adjusted, and the thickness is changed by changing the inclination angle. At this time, a representative point of the closed orbit such as the center of the original position of the base plate can be determined, and the change in the inclination angle of the plane can be represented by the shape of the axis along which the point moves.

実際の加工では工具の閉軌道上での移動と軸方向への送りが合成されて、工具軌道は図4のようにワークに対して螺旋状の軌道を描く。従来のスピニング加工法(右)では、工具軌道が直線的な螺旋を描き、ワークの未加工部分のおかれる平面は常に主軸と直交するので、被加工部の肉厚は一意的に決まっていた。本加工法(左)では、同じ製品形状であっても、製品に対して相対的に湾曲した工具軌道を設定可能である。この場合、ワークの未加工部分のおかれる平面は、元の位置に対して傾きを変えて投影されることになる。   In actual machining, the movement of the tool on the closed track and the feed in the axial direction are combined, and the tool track draws a spiral track with respect to the workpiece as shown in FIG. In the conventional spinning method (right), the tool path draws a straight spiral, and the plane where the unmachined part of the workpiece is placed is always perpendicular to the main axis, so the thickness of the workpiece is uniquely determined. . In this machining method (left), it is possible to set a tool path that is curved relative to the product even if the product shape is the same. In this case, the plane on which the unprocessed part of the work is placed is projected with the inclination changed with respect to the original position.

加工機に与えるべき工具の軌道は、主に閉軌道の代表点が移動する軸の形状と、製品の形状、工具の形状によって定められる。工具軌道を算出する方法の手順は、以下のとおりである。この方法は、円錐などの基本的な形状に限られることなく用いることができる。
1.開始(0)から終了(1)まで連続的に変化する加工進行度sをパラメータとして、軸の形状C(s)を定義する。
2.加工進行度sをパラメータとして、閉軌道上の回転角度についてのサブパラメータtを定める関数T(s)を定義する。
3.加工進行度を連続的に増加させながら、以下の手順で工具軌道を算出する。
(1)T(s)の計算から、サブパラメータtを求める。
(2)軸の形状C(s)や、sについての微分などから、投影平面の位置と傾きを計算によって求める。
(3)投影平面と製品形状が工具形状を介して接触する場合の、特にサブパラメータtによってあらわされる、工具と製品形状の接触点の位置を求める。
(4)接触点位置と製品形状、工具形状などから、接触点位置に工具形状の補正量を加えた工具位置を工具軌道上の点として出力する。先端が球状の工具を用いると、工具形状の補正が容易である。
The tool trajectory to be given to the processing machine is mainly determined by the shape of the axis on which the representative point of the closed trajectory moves, the shape of the product, and the shape of the tool. The procedure of the method for calculating the tool path is as follows. This method can be used without being limited to a basic shape such as a cone.
1. The shaft shape C (s) is defined using the machining progress s that continuously changes from the start (0) to the end (1) as a parameter.
2. A function T (s) that defines a subparameter t for the rotation angle on the closed track is defined using the machining progress s as a parameter.
3. The tool path is calculated by the following procedure while continuously increasing the machining progress.
(1) The subparameter t is obtained from the calculation of T (s).
(2) The position and inclination of the projection plane are obtained by calculation from the shape C (s) of the axis and the differentiation with respect to s.
(3) When the projection plane and the product shape come into contact with each other via the tool shape, the position of the contact point between the tool and the product shape, particularly represented by the subparameter t, is obtained.
(4) The tool position obtained by adding the correction amount of the tool shape to the contact point position from the contact point position, the product shape, the tool shape, and the like is output as a point on the tool path. When a tool having a spherical tip is used, the tool shape can be easily corrected.

これによって、工具軌道が計算できる。演算結果から各データ間の工具軌道の長さを計算することができるので、工具と製品形状の接触点の速さが一定になるように、工具の送り速度を演算し、その逆数の積分演算から加工所要時間を求めることができる。   Thereby, the tool path can be calculated. Since the length of the tool path between each data can be calculated from the calculation results, the tool feed speed is calculated so that the speed of the contact point between the tool and the product shape is constant, and the reciprocal integral calculation is performed. The time required for processing can be obtained from

本加工法による製品の例を図5に示す。成形型を用意せずに加工する場合には、写真のように素板に縁曲げを施すと素板の強度が上がり、ワークの未加工部分にしわが発生しにくくなるので、成形しやすい。金型を用いる場合には、内面の精度を向上させることができるが、製品形状に対して肉厚分のオフセットを加える必要があるので、後述する肉厚の調整方法に使われる肉厚モデル式からあらかじめオフセット量を求めて工具補正に加えると、成形しやすいと予想できる。   An example of a product by this processing method is shown in FIG. When processing without preparing a mold, if the base plate is bent as shown in the photograph, the strength of the base plate increases and wrinkles are unlikely to occur in the unprocessed part of the workpiece, so that it is easy to form. When using a mold, the accuracy of the inner surface can be improved, but it is necessary to add a thickness offset to the product shape, so the wall thickness model formula used in the wall thickness adjustment method described later If the offset amount is obtained in advance and added to the tool correction, it can be expected that molding is easy.

図6のように、板厚t0の素板から円錐半角がαの製品形状を加工する際、一部分が直線で元の素板の法線方向に対してφだけ傾いた軸形状を設定する。図7に示すように、加工中の素板(破線)に対する法線と製品の側面がなす角度は、最小でα−φ、最大でα+φとなる。sine則を拡張して考えれば、それぞれの位置に対応する製品の肉厚は、
である。図5の写真の製品について、実際に測定した素板板厚に対する比率と(1a)、(1b)式から計算した理論値をプロットしたグラフを図8に示す。これは公称板厚t0が1.5mmの素板から、半角が20°の部分円錐形状(頂部の直径が50mm、基部の直径が100mm)を部分的に増肉・減肉するように成形した製品である。肉厚比は、破線の理論値と白丸・黒丸の実測値がほぼ一致している。
As shown in FIG. 6, when a product shape having a cone half angle α is processed from a base plate having a thickness t 0 , an axial shape that is partially straight and inclined by φ with respect to the normal direction of the original base plate is set. . As shown in FIG. 7, the angle formed between the normal to the base plate (dashed line) being processed and the side surface of the product is α−φ at the minimum and α + φ at the maximum. If the sine rule is expanded, the thickness of the product corresponding to each position is
It is. FIG. 8 shows a graph in which the ratio of the actually measured base plate thickness and the theoretical value calculated from the equations (1a) and (1b) are plotted for the product shown in FIG. This was formed from a base plate with a nominal plate thickness t 0 of 1.5 mm so as to partially increase or decrease the partial conical shape with a half angle of 20 ° (top diameter 50 mm, base diameter 100 mm). It is a product. As for the wall thickness ratio, the theoretical value of the broken line and the measured value of the white circle and the black circle almost coincide.

(1)式の左側から逆算すると、一方の側面で製品部分の肉厚をtdにしたい場合には、
となるように傾きを決めればよい。ただし、φはαより絶対値で小さくなくてはならない。この場合、φ>0ではこの直線部分の肉厚が周方向で最も薄くなり、φ<0では最も厚くなる。また、このとき、製品上の軸をはさんで反対側の位置における肉厚は
に設定される。反対側は直線部分とは逆にφ>0では周方向で最も厚く、φ<0では最も薄くなる。
When calculating backward from the left side of equation (1), if you want the product part thickness to be td on one side,
The inclination may be determined so that However, φ must be smaller than α in absolute value. In this case, the thickness of the straight line portion is the smallest in the circumferential direction when φ> 0, and the thickest when φ <0. Also, at this time, the thickness at the opposite position across the shaft on the product is
Set to Contrary to the straight line portion, the opposite side is thickest in the circumferential direction when φ> 0, and thinnest when φ <0.

軸の形状が直線的でない部分の肉厚を所望の値に設定することは、直接的には難しい。しかし本発明では、製品の形状と軸の形状さえ与えられれば、すべての製品形状の被加工部全域について、肉厚モデル式からその肉厚を推定することができる。図6のように、ある加工進行度において、軸の接平面からその時の製品形状上の点までの距離をrとし、軸の長さをζ、法平面すなわち投影される平面の傾きをφ、それぞれの加工進行度sに関する微分をζ’、φ’、r’とするとき、その点における肉厚は以下の肉厚モデル式から予想できる。
It is difficult directly to set the thickness of the portion where the shape of the shaft is not linear to a desired value. However, in the present invention, as long as the shape of the product and the shape of the shaft are given, the thickness can be estimated from the thickness model formula for the entire processed part of all product shapes. As shown in FIG. 6, at a certain degree of processing progress, the distance from the tangential plane of the shaft to the point on the product shape at that time is r, the length of the shaft is ζ, the inclination of the normal plane, that is, the projected plane is φ, Assuming that ζ ′, φ ′, and r ′ are the derivatives relating to the respective processing progress s, the thickness at that point can be predicted from the following thickness model formula.

したがって、このモデル式に対して、例えば、ニューラルネットワークシステムなどによる繰り返し収束計算でφを求めれば、所望の肉厚に近い肉厚の製品を得ることが可能である。
以上本発明に係るスピニング加工方法を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲に記載した技術的事項の範囲内で種々の実施の態様があることはいうまでもない。
たとえば、製品は円錐形状に限らず楕円形、偏心、多角形など様々な断面形状を取ることができる。
Therefore, for this model formula, if φ is obtained by iterative convergence calculation using a neural network system or the like, it is possible to obtain a product having a thickness close to a desired thickness.
Although the spinning processing method according to the present invention has been described based on the embodiments, the present invention is not limited to such embodiments, and various implementations can be made within the scope of the technical matters described in the claims. Needless to say, there is a mode of.
For example, the product is not limited to a conical shape, and can have various cross-sectional shapes such as an ellipse, an eccentricity, and a polygon.

本発明に係るスピニング加工方法は、以上のような構成であるから、溶接により予め周方向に不均一な肉厚を有するブランクを作成することなく、また、スピニング加工装置として大幅なコストアップを招くこともなく、スピニング加工工程において、部品・製品の肉厚を部分的に増加あるいは減少することができ、製品の部分的強化や薄肉化による軽量化など、より多品種な製品の成形が可能となるため、広い用途に利用することができる。   Since the spinning method according to the present invention is configured as described above, it does not create a blank having a non-uniform thickness in the circumferential direction in advance by welding, and causes a significant cost increase as a spinning device. In the spinning process, the thickness of parts and products can be partially increased or decreased, making it possible to form a wider variety of products such as partial reinforcement of products and weight reduction by thinning. Therefore, it can be used for a wide range of purposes.

1 ワーク
1a 平板(素材)
1b 円錐台形状の製品形状
2 治具
3 主軸
4 モータ
5 加工ローラ
6 直動テーブル(半径方向)
7 直動テーブル(主軸方向)
10 スピニング加工装置
1 Workpiece 1a Flat plate (material)
1b Product shape of truncated cone shape 2 Jig 3 Spindle 4 Motor 5 Processing roller 6 Linear motion table (radial direction)
7 Linear motion table (spindle direction)
10 Spinning machine

Claims (4)

板状の金属製ワークを主軸に取り付けて回転させ、加工ローラを押し付けて、前記主軸を中心軸とする製品への成形加工を行うスピニング加工方法において、
前記主軸を駆動する回転角センサ付モータからの回転角信号に基づいて、前記ワークの回転角度に同期して、前記ワークと前記加工ローラの接触点が前記主軸の中心線に対して所定の傾斜角度で交わる平面内における製品形状に沿った閉軌道を描くように、前記加工ローラを前記主軸方向及び半径方向に前進または後退させることによって、周方向に不均一な肉厚分布の製品を成形することを特徴とするスピニング加工方法。
In a spinning process method in which a plate-shaped metal work is attached to a main shaft and rotated, and a processing roller is pressed to form a product having the main axis as a central axis.
Based on the rotational angle signal from the motor with the rotational angle sensor to drive the spindle in synchronization with the rotation angle of the workpiece, the contact point of the processing rollers and the workpiece, predetermined with respect to a center line of the main spindle to draw a closed orbit along with your Keru product shape in a plane intersecting at an oblique angle, the working roller by advancing or retracting the spindle and radially and circumferentially non-uniform thickness distribution of the product A spinning processing method characterized by molding the material.
スピニング加工による最終製品の形状及び肉厚分布に基づいて、前記ワークと前記加工ローラの接触点の軌道を含む平面が、前記主軸の中心線に対して交わる傾斜角度を決定することを特徴とする請求項1のスピニング加工方法。   Based on the shape and thickness distribution of the final product by spinning processing, the inclination angle at which the plane including the trajectory of the contact point between the workpiece and the processing roller intersects the center line of the main shaft is determined. The spinning method according to claim 1. 前記最終製品の形状が、円錐半角がαの円錐ないし円錐台であり、前記ワークの板厚がt0であって、前記製品の最も厚い部分または最も薄い部分の肉厚をtdにしたい場合に、前記ワークと前記加工ローラの接触点の軌道を含む平面の、前記主軸の中心線に対して交わる傾斜角度φを、
により求めることを特徴とする請求項2のスピニング加工方法。
When the shape of the final product is a cone or a truncated cone with a cone half angle α, the plate thickness of the workpiece is t0, and the thickness of the thickest part or the thinnest part of the product is td, An inclination angle φ intersecting the center line of the main axis of the plane including the trajectory of the contact point between the workpiece and the processing roller,
The spinning method according to claim 2, wherein the spinning method is obtained by:
回転角センサ付モータと、前記モータにより駆動され板状の金属製ワークを装着して回転する主軸と、前記ワークに接触して、前記主軸を中心軸とする製品への成形加工を行う加工ローラと、前記加工ローラを前記主軸方向及び半径方向に駆動するアクチュエータと、製品の目標形状データの記憶装置とを備えたスピニング加工装置において、
前記アクチュエータを制御する制御装置が、前記記憶装置に記憶された前記目標形状データ及び目標肉厚データに基づいて、前記ワークの回転角度に同期して、前記ワークと前記加工ローラの接触点が、前記主軸の中心線に対して所定の傾斜角度で交わる平面内における前記目標形状データに沿った閉軌道を描くよう、前記加工ローラを前記主軸方向及び半径方向に前進または後退させる制御手段を備えたことを特徴とするスピニング加工装置。
A motor with a rotation angle sensor, a main shaft that is driven by the motor and rotates by mounting a plate-shaped metal workpiece, and a processing roller that contacts the workpiece and performs a forming process on a product having the main axis as a central axis A spinning processing apparatus comprising: an actuator for driving the processing roller in the main axis direction and the radial direction; and a storage device for target shape data of a product.
Based on the target shape data and target wall thickness data stored in the storage device, the control device for controlling the actuator is synchronized with the rotation angle of the workpiece, and the contact point between the workpiece and the processing roller is to draw a closed orbit along your Keru the target shape data in a plane intersecting at a predetermined inclination angle with respect to a center line of the spindle, a control means for advancing or retracting the working roller in said main axis and radially A spinning device characterized by comprising.
JP2009173900A 2009-07-27 2009-07-27 Spinning method and apparatus Active JP5229909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173900A JP5229909B2 (en) 2009-07-27 2009-07-27 Spinning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173900A JP5229909B2 (en) 2009-07-27 2009-07-27 Spinning method and apparatus

Publications (2)

Publication Number Publication Date
JP2011025283A JP2011025283A (en) 2011-02-10
JP5229909B2 true JP5229909B2 (en) 2013-07-03

Family

ID=43634644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173900A Active JP5229909B2 (en) 2009-07-27 2009-07-27 Spinning method and apparatus

Country Status (1)

Country Link
JP (1) JP5229909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112317589B (en) * 2020-11-16 2023-11-10 西安航天动力机械有限公司 Technological method for controlling angle and straightness accuracy of spinning cone
CN117428098B (en) * 2023-12-20 2024-03-05 成都天科航空制造股份有限公司 Pipe fitting spinning processing device and processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769612B2 (en) * 2001-12-13 2006-04-26 独立行政法人産業技術総合研究所 Spinning method
US7584636B2 (en) * 2003-12-08 2009-09-08 National Institute Of Advanced Industrial Science And Technology Metal spinning method and apparatus
JP5143338B2 (en) * 2004-12-27 2013-02-13 株式会社三五 Method and apparatus for forming different diameter parts of workpiece
JP4986179B2 (en) * 2008-05-13 2012-07-25 独立行政法人産業技術総合研究所 Spinning method and apparatus

Also Published As

Publication number Publication date
JP2011025283A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5838214B2 (en) Spin molding process and apparatus for manufacturing articles by spin molding
JP4911739B2 (en) Method of machining cylindrical metal body in rotary machine
JP4576615B2 (en) Spinning method and apparatus
JP3769612B2 (en) Spinning method
JP4986179B2 (en) Spinning method and apparatus
Li et al. Ultra-precision machining of Fresnel lens mould by single-point diamond turning based on axis B rotation
JP2005211969A (en) Spinning processing apparatus
JP5229909B2 (en) Spinning method and apparatus
JP2002282949A (en) Method for forming pipe-shaped stepped part and apparatus therefor
JP5549527B2 (en) Grooving method
JP2005297041A (en) Method and apparatus for forming pipe
CN104741493A (en) Form rolling apparatus and form rolling method
JP2017185540A (en) Method for thread-cutting pipe body
JP7282156B2 (en) ROTOR FOR ECCENTRIC SCREW PUMP AND MANUFACTURING METHOD THEREOF
JP4635256B2 (en) Manufacturing method of deformed pipe
JP2017087250A (en) Manufacturing method of ring-shaped member
JP6714854B2 (en) Sequential molding method
US11951527B2 (en) Method for producing a ball raceway on a workpiece and a ball screw nut having a ball raceway thus produced
JP6474308B2 (en) Manufacturing apparatus and manufacturing method for automobile wheel rim
JP4933081B2 (en) Manufacturing method of meshing element of rotation / linear motion conversion mechanism
Xiao et al. Control of wall thickness distribution in synchronous multi-pass spinning
CN108656507B (en) Method and device for improving progressive forming distortion and wrinkling of high polymer sheet
US6850813B1 (en) Method of producing a wobble die
JP2004223558A (en) Method and apparatus for spinning processing
JP4419716B2 (en) Press working method and press working apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250