JP6714854B2 - Sequential molding method - Google Patents
Sequential molding method Download PDFInfo
- Publication number
- JP6714854B2 JP6714854B2 JP2016150030A JP2016150030A JP6714854B2 JP 6714854 B2 JP6714854 B2 JP 6714854B2 JP 2016150030 A JP2016150030 A JP 2016150030A JP 2016150030 A JP2016150030 A JP 2016150030A JP 6714854 B2 JP6714854 B2 JP 6714854B2
- Authority
- JP
- Japan
- Prior art keywords
- forming tool
- sequential
- tool
- forming
- successive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
本発明は、周囲を保持した金属板に工具を押し付けて移動させることにより、金属板を三次元形状に逐次成形するのに用いられる逐次成形用工具、及びこの逐次成形用工具を用いた逐次成形方法に関するものである。 The present invention relates to a sequential forming tool used for sequentially forming a metal plate into a three-dimensional shape by pressing and moving the tool against a metal plate holding the periphery, and a sequential forming using the sequential forming tool. It is about the method.
従来、逐次成形用工具及び逐次成形方法としては、特許文献1に記載されているものがある。特許文献1に記載の逐次成形方法は、成形品の形状を有する下型と、下型の上面側に金属板を保持する外周枠と、直交する3軸方向に移動可能な成形工具とを用いる。そして、逐次成形方法は、下型の上面側で、外周枠により平坦な金属板の周囲を保持し、この金属板に逐次成形用工具を押し付けて移動させると共に、外周枠に沿って金属板の周囲を降下させる。これにより、下型に添うように金属板を次第に変形させて、最終的に三次元形状の成形品を成形する。
BACKGROUND ART Conventionally, as a sequential forming tool and a sequential forming method, there is one described in
また、特許文献1に記載の逐次成形用工具は、先端部に着脱可能な樹脂押圧部を有している。樹脂押圧部は、一定の曲率半径を有する球面状の先端面を備えている。そして、逐次成形用工具は、樹脂押圧部を金属板に面接触させることにより、金属板における工具の走査線の転写を防止するものとしている。
In addition, the successive forming tool described in
上記したような逐次成形工具は、その径や曲率半径が、成形品の最小曲率半径により決まる。ところが、径が小さい工具は、金属板との接触面積が小さいので、直線領域等のように曲率半径が大きい部分においてフレーキングが生じ易くなり、しかも、移動経路の変位幅であるピッチを小さくせざるを得ないので、その分加工時間がかかり、加工効率が低くなる。 The diameter and the radius of curvature of the above-described successive forming tool are determined by the minimum radius of curvature of the formed product. However, since a tool with a small diameter has a small contact area with the metal plate, flaking is likely to occur in a portion having a large radius of curvature such as a linear region, and the pitch, which is the displacement width of the movement path, should be reduced. Since it is unavoidable, the processing time is correspondingly increased and the processing efficiency is reduced.
これに対して、従来の逐次成形用工具は、樹脂押圧部により、フレーキングの発生をある程度抑制することが可能である。しかし、従来の逐次成形用工具は、樹脂押圧部の摩耗が激しく、樹脂押圧部を頻繁に交換する必要があると共に、一定の曲率半径を有するので、ピッチを大きくすることができないという課題が未解決のままであった。なお、従来の逐次成形用工具は、ピッチを変えるには工具の交換が必要である。 On the other hand, in the conventional successive forming tool, the resin pressing portion can suppress the occurrence of flaking to some extent. However, in the conventional successive forming tool, the resin pressing portion is heavily worn, it is necessary to frequently replace the resin pressing portion, and since the resin pressing portion has a constant radius of curvature, there is no problem that the pitch cannot be increased. It remained a solution. In addition, the conventional successive forming tool requires replacement of the tool in order to change the pitch.
本発明は、上記従来の状況に鑑みて成されたもので、単一の工具でありながら、成形品の部位に応じた成形を行うことが可能であり、移動経路の変位幅であるピッチを大きくして加工効率の向上を実現することができる逐次成形用工具及びこれを用いた逐次成形方法を提供することを目的としている。 The present invention has been made in view of the above-mentioned conventional situation, and it is possible to perform molding according to a part of a molded product with a single tool, and to set a pitch that is a displacement width of a moving path. An object of the present invention is to provide a sequential forming tool that can be increased in size to improve the processing efficiency and a sequential forming method using the same.
本発明に係わる逐次成形用工具は、周囲を保持した金属板を三次元形状に逐次成形するのに用いる棒状の工具である。この逐次成形用工具は、先端から軸線方向への所定範囲の外周面を加工面とし、前記加工面が、軸線方向に直交する断面において、曲率半径が部分的に異なる輪郭線で形成してあることを特徴としている。 The successive forming tool according to the present invention is a rod-shaped tool used for sequentially forming a three-dimensional shape of a metal plate whose periphery is held. In this successive forming tool, an outer peripheral surface in a predetermined range from the tip end to the axial direction is used as a processing surface, and the processing surface is formed with contour lines having partially different radii of curvature in a cross section orthogonal to the axial direction. It is characterized by
本発明に係わる逐次成形方法は、棒状の工具であって、先端から軸線方向への所定範囲の外周面を加工面とし、前記加工面が、軸線方向に直交する断面において、曲率半径が部分的に異なる輪郭線で形成してある逐次成形用工具を用い、周囲を保持した金属板に、上記の逐次成形用工具を押し付けて所定の移動経路を移動させ、逐次成形用工具の押し込み量及び移動経路を段階的に変位させることにより、金属板を三次元形状の成形品に逐次成形する方法である。そして、逐次成形方法は、成形品の部位に応じて逐次成形用工具の軸線回りの回転角度を選択して成形を行うことを特徴としている。 A sequential forming method according to the present invention is a rod-shaped tool, wherein an outer peripheral surface in a predetermined range from a tip end to an axial direction is a processing surface, and the processing surface has a partial radius of curvature in a cross section orthogonal to the axial direction. Using the sequential forming tool formed with different contour lines, press the above sequential forming tool against the metal plate holding the periphery to move the predetermined movement path, and push in and move the sequential forming tool. This is a method of sequentially forming a metal plate into a three-dimensionally formed product by displacing the path stepwise. The sequential forming method is characterized in that the rotation angle around the axis of the sequential forming tool is selected according to the part of the formed product to perform the forming.
本発明に係わる逐次成形用工具は、上記構成を採用したことにより、加工面全体が滑らかに連続している。この逐次成形用工具は、金属板に対して軸線回りの回転角度を選択することで、その回転角度に応じて金属板に当接する加工面の曲率半径が異なり、金属板との接触面積も異なるものとなる。これにより、逐次成形用工具は、単一の工具でありながら、成形品の部位に応じた成形を行うことが可能であり、移動経路の変位幅であるピッチを大きくして加工効率の向上を実現することができる。 The successive forming tool according to the present invention adopts the above-mentioned configuration, so that the entire machined surface is smoothly continuous. In this sequential forming tool, by selecting a rotation angle around the axis with respect to the metal plate, the radius of curvature of the machined surface abutting on the metal plate differs depending on the rotation angle, and the contact area with the metal plate also differs. Will be things. As a result, the sequential forming tool can perform forming according to the part of the formed product, even though it is a single tool, and the pitch, which is the displacement width of the movement path, is increased to improve the processing efficiency. Can be realized.
本発明に係わる逐次成形方法は、成形品の部位に応じて逐次成形用工具の軸線回りの回転角度を選択して成形を行うことから、その回転角度に応じて金属板に当接する加工面の曲率半径が異なり、金属板との接触面積も異なるものとなる。これにより、逐次成形方法は、単一の逐次成形用工具を用いたうえで、成形品の部位に応じた成形を行うことが可能であり、移動経路の変位幅であるピッチを大きくして加工効率の向上を実現することができる。 In the sequential forming method according to the present invention, since the rotation angle around the axis of the sequential forming tool is selected according to the part of the formed product to perform the forming, the processing surface contacted with the metal plate according to the rotation angle is selected. The radius of curvature is different, and the contact area with the metal plate is also different. As a result, the sequential forming method can perform forming according to the part of the molded product using a single sequential forming tool, and increase the pitch, which is the displacement width of the moving path, to perform processing. It is possible to improve efficiency.
〈第1実施形態〉
図1に示す逐次成形用工具Tは、平坦な金属板Wを三次元形状に逐次成形するのに用いる棒状の工具である。この逐次成形用工具Tは、一定の直径を有する本体部Mと、本体部Mの先端に連続する加工ヘッドHとを有している。そして、逐次成形用工具Tは、加工ヘッドHの外周面、すなわち先端から軸線方向への所定範囲の外周面を加工面Aとし、加工面Aが、軸線方向に直交する断面において、曲率半径が部分的に異なる輪郭線で形成してある。この逐次成形用工具Tの具体的な形状については後述する。
<First Embodiment>
The sequential forming tool T shown in FIG. 1 is a rod-shaped tool used for sequentially forming a flat metal plate W into a three-dimensional shape. The successive forming tool T has a main body M having a constant diameter and a machining head H continuous with the tip of the main body M. In the successive forming tool T, the outer peripheral surface of the processing head H, that is, the outer peripheral surface in a predetermined range from the tip end to the axial direction is set as the processing surface A, and the processing surface A has a curvature radius in a cross section orthogonal to the axial direction. It is formed with partially different contour lines. The specific shape of this successive forming tool T will be described later.
上記の逐次成形用工具Tを用いた逐次成形方法は、図1の上段に示すように、平坦な金属板Wの周囲を固定装置1で保持する。図示の固定装置1は、下側の固定具1Aと、上側の可動具1Bとを備えており、固定具1A及び可動具1Bで金属板Wの周囲を挟んだ状態にして同金属板Wを強固に保持する。
In the sequential forming method using the above-described sequential forming tool T, as shown in the upper part of FIG. 1, the periphery of the flat metal plate W is held by the
逐次成形用工具Tは、図示しない駆動装置により、先端を下向きにして保持され、直交する3軸方向に移動可能であると共に、軸線回りに回転可能である。駆動装置には、多軸制御型ロボットやNC工作機などを用いることができる。ただし、本発明の逐次成形用工具Tは、軸線を傾斜させて用いる場合には、多軸制御型ロボットがより好ましく、そのロボットのハンド部に本体部Mを装着する。 The successive forming tool T is held by a drive device (not shown) with its tip facing downward, is movable in three orthogonal axis directions, and is rotatable about its axis. A multi-axis control type robot, an NC machine tool, or the like can be used as the drive device. However, the successive forming tool T of the present invention is more preferably a multi-axis control type robot when the axis line is inclined, and the main body part M is attached to the hand part of the robot.
次に、逐次成形方法は、周囲を保持した金属板Wの所定箇所に逐次成形用工具Tを一定圧力で押し付け、所定の移動経路に沿って移動させる。図示例では、金属板Wを矩形の凹状の成形品Fに成形するので、逐次成形用工具Tの移動経路は周回経路になる。そして、逐次成形方法は、周回毎に、逐次成形用工具Tの金属板Wへの押し込み量(前進量・下降量)及び移動経路を段階的に変位させる。この際、移動経路は、金属板Wの中心側へ段階的に変位させる。この移動経路の変位幅がピッチである。 Next, in the sequential forming method, the sequential forming tool T is pressed against a predetermined portion of the metal plate W holding the periphery thereof with a constant pressure and moved along a predetermined movement path. In the illustrated example, since the metal plate W is formed into the rectangular concave formed product F, the moving path of the successive forming tool T is a circular path. Then, in the successive forming method, the amount of pushing (the amount of forward movement/the amount of descending) of the successive forming tool T into the metal plate W and the movement path are displaced stepwise for each revolution. At this time, the movement path is gradually displaced toward the center side of the metal plate W. The displacement width of this moving path is the pitch.
これにより、逐次成形方法は、図1の下段に示すように、金属板Wを板厚方向に次第に変形させて、底部Bを押し下げるようにして傾斜した側部Sを形成し、金属板Wを三次元形状の成形品Fに成形する。 As a result, in the sequential forming method, as shown in the lower part of FIG. 1, the metal plate W is gradually deformed in the plate thickness direction to form the inclined side part S so as to push down the bottom part B, and the metal plate W is formed. Molded into a three-dimensional molded product F.
逐次成形用工具Tは、先述の如く、加工面Aが、軸線方向に直交する断面において、曲率半径が部分的に異なる輪郭線で形成してある。また、逐次成形用工具Tは、より好ましい実施形態として、前記加工面Aを形成する輪郭線が、その一部に放物線、楕円曲線及び円弧の少なくとも1つを含む形状とすることができる。 As described above, in the successive forming tool T, the machining surface A is formed by the contour lines having partially different radii of curvature in the cross section orthogonal to the axial direction. Further, as a more preferable embodiment, the successive forming tool T may have a shape in which a contour line forming the processing surface A includes at least one of a parabola, an elliptic curve and an arc in a part thereof.
そして、この実施形態の逐次成形用工具Tは、図2に示すように、加工ヘッドHの断面形状、すなわち加工面Aの輪郭線が楕円形状である。また、逐次成形用工具Tは、加工面Aが、先端面と側面との角に縦R部Rtを有する形状であると共に、加工面Aの表面粗さが、Ra0.2μm以下であるものとしている。この表面粗さの根拠は後述する。 In the successive forming tool T of this embodiment, as shown in FIG. 2, the cross-sectional shape of the processing head H, that is, the contour line of the processing surface A is elliptical. Further, in the successive forming tool T, it is assumed that the machined surface A has a shape having a vertical R portion Rt at the corner between the tip surface and the side surface, and the surface roughness of the machined surface A is Ra 0.2 μm or less. There is. The basis of this surface roughness will be described later.
上記の逐次成形用工具Tを用いた逐次成形方法は、基本的には図1に示す工程と同様であり、周囲を保持した金属板Wに逐次成形用工具Tを押し付けて所定の移動経路を移動させ、逐次成形用工具Tの金属板Wへの押し込み量及び移動経路を段階的に変位させる。なお、図1の上段に示す成形開始時には、逐次成形用工具Tの軸線を傾斜させ、加工面Aの最小曲率半径の部位又は縦R部Rtを金属板Wに当接させることにより、未成形の金属板Wに対して荷重を集中させることも有効である。 The above-described successive forming method using the successive forming tool T is basically the same as the step shown in FIG. 1, and the successive forming tool T is pressed against the metal plate W holding the periphery to make a predetermined movement path. By moving, the pushing amount of the forming tool T into the metal plate W and the moving path are gradually displaced. At the start of forming shown in the upper part of FIG. 1, by successively inclining the axis of the forming tool T and bringing the portion of the minimum radius of curvature of the processing surface A or the vertical R portion Rt into contact with the metal plate W, unforming is performed. It is also effective to concentrate the load on the metal plate W.
そして、逐次成形方法は、成形品の部位に応じて逐次成形用工具Tの軸線回りの回転角度を選択して成形を行うものとしている。この実施形態の成形品Fは、先述の如く矩形の凹状を成しているので、図3に示すように、側部Sには、長辺及び短辺の直線領域Dと4個のコーナー領域Cとがある。そこで、逐次成形方法は、成形品Rにおける曲率半径の大小に応じて逐次成形用工具Tの回転角度を選択し、成形品Fの曲率半径の小さい部位は、加工面Aの曲率半径の小さい部位で成形する。また、成形品Fの曲率半径の大きい部位は、加工面Aの曲率半径の大きい部位で成形する。 Then, in the sequential forming method, the rotation angle around the axis of the sequential forming tool T is selected according to the part of the formed product to perform the forming. Since the molded product F of this embodiment has a rectangular concave shape as described above, as shown in FIG. 3, the side portion S has long and short straight line regions D and four corner regions. There is C. Therefore, in the sequential forming method, the rotation angle of the sequential forming tool T is selected according to the size of the radius of curvature of the molded product R, and the region of the molded product F having a small radius of curvature is the region of the processed surface A having a small radius of curvature. Mold with. Further, the portion of the molded product F having a large radius of curvature is formed at the portion of the processing surface A having a large radius of curvature.
具体的には、逐次成形方法では、成形品Fの曲率半径の小さい部位であるコーナー領域Cは、加工面Aの曲率半径の小さい部位である長径側の面で成形し、成形品Fの曲率半径の大きい部位である直線領域Dは、加工面Aの曲率半径の大きい部位である短径側の面で成形する。 Specifically, in the sequential molding method, the corner area C of the molded product F having a small radius of curvature is molded with the major axis side surface of the machined surface A having a small radius of curvature, and the curvature of the molded product F is reduced. The straight line region D having a large radius is formed by the surface on the minor axis side having a large radius of curvature of the processing surface A.
すなわち、逐次成形方法は、図3に逐次成形用工具Tの移動軌跡を示すように、加工面Aの曲率半径の大きい部位(短径側の面)を直線領域Dに当接させて一定の送り速度Vfで移動させる。次に、逐次成形方法は、コーナー領域Cに接近するにつれて逐次成形用工具Tを軸線回りに回転させ、加工面Aの曲率半径の小さい部位(長径側の面)でコーナー領域Cを成形する。そして、逐次成形方法は、コーナー領域Cを離脱するにつれて逐次成形用工具Tをさらに軸線回りに回転させ、加工面Aの曲率半径の大きい部位(短径側の面)で次の直線領域Dを成形する。 That is, in the sequential forming method, as shown in the movement trajectory of the sequential forming tool T in FIG. 3, a portion of the machining surface A having a large radius of curvature (a surface on the minor axis side) is brought into contact with the linear region D to be constant. It is moved at the feed speed Vf. Next, in the sequential forming method, as the corner region C is approached, the sequential forming tool T is rotated about the axis, and the corner region C is formed at a portion of the processing surface A having a small radius of curvature (a surface on the major axis side). Then, the successive forming method further rotates the successive forming tool T around the axis as the corner area C is separated, and the next straight line area D is formed at a portion of the machining surface A having a large radius of curvature (a surface on the minor axis side). Mold.
つまり、逐次成形用工具T及びこれを用いた逐次成形方法では、図3中に点線矢印で示すように、逐次成形用工具Tを移動経路に沿って周回させると共に、コーナー領域Cを通過する間に、逐次成形用工具Tを軸線回りの一方向に回転(Vt)させることにより、成形品Fの部位に応じた成形を行う。 That is, in the successive forming tool T and the successive forming method using the same, as shown by a dotted arrow in FIG. 3, the successive forming tool T is circulated along the movement path and while passing through the corner region C. Then, by sequentially rotating (Vt) the tool T for molding in one direction around the axis, molding according to the part of the molded product F is performed.
ここで、逐次成形用工具Tは、加工面Aの輪郭線が楕円形状であるから、図4に示すように、曲率半径の大きい部位である短径側の面の接触面積S1(幅を示す)が、曲率半径の小さい部位である短径側の面の接触面積S2よりも大きくなる。この接触面積は、楕円形状において、短径側の面から長径側の面に至る間で連続的に変化する。 Here, since the contour line of the machined surface A of the successive forming tool T is elliptical, as shown in FIG. 4, the contact area S1 of the surface on the short diameter side, which is a portion having a large radius of curvature (width is shown). ) Is larger than the contact area S2 of the surface on the minor axis side, which is a portion having a small radius of curvature. In the elliptical shape, this contact area continuously changes from the surface on the short diameter side to the surface on the long diameter side.
つまり、逐次成形用工具Tは、少なくとも短径と同等の直径を有する小径工具と、長径と同等の直径を有する大径工具との両方を兼ね備えたものとなり、厳密には、小径工具から大径工具に至る間の領域で曲率半径が連続的に変化する加工面Aを備えている。これにより、逐次成形用工具Tは、とくに、加工面Aの曲率半径の大きい部位(短径側の面)による成形の際には、移動経路の変位幅であるピッチを大きくすることが可能である。換言すれば、逐次成形用工具Tは、大きいピッチでも良好な成形が可能である。 That is, the successive forming tool T has both a small-diameter tool having a diameter at least equivalent to the short diameter and a large-diameter tool having a diameter equivalent to the long diameter. Strictly speaking, from the small-diameter tool to the large-diameter tool. It has a machined surface A whose radius of curvature continuously changes in a region up to the tool. As a result, the successive forming tool T can increase the pitch, which is the displacement width of the movement path, particularly when forming by the portion of the processing surface A having a large radius of curvature (the surface on the short diameter side). is there. In other words, the successive forming tool T can perform excellent forming even at a large pitch.
また、上記の逐次成形方法では、図4及び図5に示すように、逐次成形工具Tを軸線回りに回転させる際、逐次成形用工具Tの移動方向(矢印Vf)に対して、金属板Wに対する摺動方向が逆向きになる方向(矢印Vt)に回転させる。これにより、金属板Wとの間の摩擦抵抗及び金属板Wに生じる剪断抵抗が低減され、フレーキングの発生を防止する。なお、逐次成形用工具Tは、一定の送り速度Vfで移動しているので、図示例とは逆の方向(Vtの逆方向)に回転させると、金属板Wとの間の摩擦抵抗及び金属板Wに生じる剪断抵抗が増加し、フレーキングの発生防止を図るうえで好ましくない。 Further, in the above-described successive forming method, as shown in FIGS. 4 and 5, when the successive forming tool T is rotated around the axis, the metal plate W is moved in the moving direction (arrow Vf) of the successive forming tool T. It is rotated in a direction (arrow Vt) in which the sliding direction with respect to is opposite. As a result, the frictional resistance with the metal plate W and the shearing resistance generated in the metal plate W are reduced, and flaking is prevented from occurring. Since the successive forming tool T is moving at a constant feed speed Vf, when it is rotated in a direction opposite to the illustrated example (reverse direction of Vt), frictional resistance between the metal plate W and the metal is increased. The shear resistance generated on the plate W increases, which is not preferable for preventing flaking.
さらに、上記の逐次成形方法では、より好ましい実施形態を図4に示すように、逐次成形用工具Tの移動方向の送り速度をVfとし、逐次成形用工具の軸線回りの回転速度をVtとして、送り速度Vfよりも回転速度Vtを大きく(Vt>Vf)する。これにより、金属板Wとの間の摩擦抵抗及び金属板Wに生じる剪断抵抗がさらに低減され、フレーキングの発生をより確実に防止する。 Further, in the above-described successive forming method, as shown in FIG. 4 in a more preferable embodiment, the feed speed in the moving direction of the successive forming tool T is Vf, and the rotation speed around the axis of the successive forming tool is Vt. The rotation speed Vt is made higher than the feed speed Vf (Vt>Vf). As a result, the frictional resistance with the metal plate W and the shearing resistance generated on the metal plate W are further reduced, and the occurrence of flaking is more reliably prevented.
なお、図5に示すように、送り速度Vfよりも回転速度Vtを小さく(Vt<Vf)しても、フレーキングの発生を防止し得るのであるが、この場合には、逐次成形用工具Tの移動前方に金属板Wの肉の盛上がりEが生じ易くなる。この肉の盛上がりEは、逐次成形用工具Tの通過により解消されるものの、金属板Wとの間に生じる摩擦抵抗を増加させる原因になる。これに対して、上述のように、送り速度Vfよりも回転速度Vtを大きく(Vt>Vf)すれば、肉の盛上がりEの発生を抑制しつつ成形を進行させることができ、摩擦抵抗や剪断抵抗も小さくなる。 As shown in FIG. 5, even if the rotation speed Vt is lower than the feed speed Vf (Vt<Vf), flaking can be prevented. In this case, however, the successive forming tool T The rise E of the meat of the metal plate W is likely to occur in front of the movement. Although the bulge E of the meat is eliminated by the successive passage of the forming tool T, it causes an increase in frictional resistance generated between the meat and the metal plate W. On the other hand, as described above, if the rotation speed Vt is set higher than the feed speed Vf (Vt>Vf), the formation of the meat bulge E can be suppressed and the molding can proceed, resulting in friction resistance and shearing. The resistance also becomes smaller.
さらに、逐次成形用工具Tは、先述した如く、加工面Aの表面粗さをRa0.2μm以下としている。図7は、異なる加工条件(工具の移動速度)A〜Cにおいて、工具の表面粗さと被加工面(成形品Fの表面)の表面粗さとの関係を示すグラフである。同図から明らかなように、いずれの加工条件A〜Cでも、工具の表面粗さがRa0.2μmを超えると、被加工面の表面粗さが大きくなり、とくに、移動速度が相対的に遅い加工条件Aでは被加工面の表面粗さの増大が顕著になる。これに対して、いずれの加工条件A〜Cでも、工具の表面粗さがRa0.2μm以下であれば、被加工面の表面粗さを小さく維持し得ることが判る。 Further, in the successive forming tool T, as described above, the surface roughness of the processed surface A is Ra 0.2 μm or less. FIG. 7 is a graph showing the relationship between the surface roughness of the tool and the surface roughness of the surface to be processed (surface of the molded product F) under different processing conditions (tool moving speeds) A to C. As is clear from the figure, under any of the processing conditions A to C, when the surface roughness of the tool exceeds Ra 0.2 μm, the surface roughness of the surface to be processed becomes large, and especially the moving speed is relatively slow. Under the processing condition A, the surface roughness of the surface to be processed is significantly increased. On the other hand, under any of the processing conditions A to C, it can be seen that if the surface roughness of the tool is Ra 0.2 μm or less, the surface roughness of the processed surface can be kept small.
このように、逐次成形用工具Tは、加工面Aが、軸線方向に直交する断面において、曲率半径が部分的に異なる輪郭線で形成してあり、前記加工面Aの輪郭線が、その一部に放物線、楕円曲線及び円弧の少なくとも1つを含む形状である。この逐次成形用工具Tは、図4に示すように、金属板Wに対して軸線回りの回転角度を選択することで、その回転角度に応じて金属板Wに当接する加工面Aの曲率半径が異なり、金属板Wとの接触面積も異なるものとなる。 As described above, in the successive forming tool T, the machining surface A is formed by the contour lines having partially different radii of curvature in the cross section orthogonal to the axial direction, and the contour line of the machining surface A is one of the contour lines. The shape has a shape including at least one of a parabola, an elliptic curve, and an arc. As shown in FIG. 4, this successive forming tool T selects a rotation angle around the axis with respect to the metal plate W, so that the radius of curvature of the processing surface A that abuts the metal plate W according to the rotation angle. And the contact area with the metal plate W is also different.
これにより、逐次成形用工具Tは、単一の工具でありながら、成形品Fの部位に応じた成形を行うことが可能であり、移動経路の変位幅であるピッチを大きくして、加工時間を短縮し、加工効率の向上を実現することができる。また、逐次成形用工具Tは、工具交換も不要であるから、これによっても加工時間の短縮を実現する。 As a result, the sequential forming tool T can perform forming according to the part of the formed product F, even if it is a single tool, and the pitch, which is the displacement width of the movement path, is increased to increase the processing time. Can be shortened and the processing efficiency can be improved. Further, since the successive forming tool T does not require tool replacement, this also realizes a reduction in processing time.
さらに、逐次成形方法は、図3に示すように、成形品Fの部位に応じて逐次成形用工具Tの軸線回りの回転角度を選択して成形を行うことから、その回転角度に応じて金属板Wに当接する加工面Aの曲率半径が異なり、金属板Wとの接触面積も異なるものとなる。これにより、逐次成形方法は、単一の逐次成形用工具Tを用いたうえで、成形品Fの部位に応じた成形を行うことが可能であり、移動経路の変位幅であるピッチを大きくして、加工時間を短縮し、加工効率の向上を実現することができる。 Further, in the sequential forming method, as shown in FIG. 3, since the rotation angle around the axis of the sequential forming tool T is selected according to the part of the formed product F to perform the forming, the metal is formed according to the rotation angle. The radius of curvature of the machined surface A that abuts the plate W is different, and the contact area with the metal plate W is also different. As a result, in the sequential forming method, it is possible to perform forming according to the part of the formed product F by using the single sequential forming tool T, and increase the pitch which is the displacement width of the moving path. As a result, the processing time can be shortened and the processing efficiency can be improved.
さらに、逐次成形用工具Tは、加工面Aが、先端面と側面との角に縦R部Rtを有する形状であるものとすることで、金属板Wに対して必ず曲面で接触することとなり、フレーキングの発生を確実に防止することができる。 Further, in the successive forming tool T, the processing surface A has a shape having a vertical R portion Rt at the corner between the front end surface and the side surface, so that the metal plate W always comes into contact with the curved surface. The occurrence of flaking can be surely prevented.
さらに、逐次成形用工具Tは、加工面Aの表面粗さをRa0.2μm以下とすることで、図7に示すように、金属板Wへの攻撃性が低下し、フレーキング等の成形不良が無い高品質の成形品Fを逐次成形することができる。 Further, in the successive forming tool T, by setting the surface roughness of the processed surface A to be Ra 0.2 μm or less, as shown in FIG. 7, the aggressiveness to the metal plate W is reduced, and forming defects such as flaking are caused. It is possible to successively form a high-quality molded product F having no defect.
さらに、上記の逐次成形用工具Tを用いた逐次成形方法は、逐次成形工具Tを軸線回りに回転させる際、逐次成形用工具Tの移動方向に対して、金属板に対する摺動方向が逆向きになる方向に回転させる。これにより、逐次成形方法は、金属板Wとの間の摩擦抵抗及び金属板Wに生じる剪断抵抗を低減し、フレーキングの発生を防止する。 Further, in the successive forming method using the above-described successive forming tool T, when the successive forming tool T is rotated about the axis, the sliding direction with respect to the metal plate is opposite to the moving direction of the successive forming tool T. Rotate in the direction. Thereby, the sequential forming method reduces the frictional resistance with the metal plate W and the shearing resistance generated in the metal plate W, and prevents flaking.
さらに、逐次成形方法は、逐次成形用工具Tの移動方向の送り速度をVfよりも、逐次成形用工具Tの軸線回りの回転速度をVt大きく(Vt>Vf)することにより、金属板Wとの間の摩擦抵抗及び金属板Wに生じる剪断抵抗をより一層低減し、フレーキングの発生をより確実に防止する。これにより、高品質の成形品Fを得ることができる。 Further, in the successive forming method, the metal plate W is formed by increasing the rotational speed around the axis of the successive forming tool T by Vt (Vt>Vf) rather than the feed speed in the moving direction of the successive forming tool T. The frictional resistance between them and the shearing resistance generated in the metal plate W are further reduced, and flaking is more reliably prevented. As a result, a high quality molded product F can be obtained.
図8及び図9は、本発明に係わる逐次成形用工具の第2及び第3の実施形態を説明する図である。これらの実施形態の逐次成形用工具Tは、本体部Mの先端に加工ヘッドHを有している。各逐次成形用工具Tは、加工ヘッドHの外周面である加工面Aを形成する輪郭線が、軸線方向に直交する断面において、曲率半径が部分的に異なる輪郭線で形成してある。そして、各逐次成形用工具Tは、輪郭線が多角形を基礎形状とし、各辺に対応する曲線部と各角に対応する横R部とを有している。 8 and 9 are views for explaining the second and third embodiments of the successive forming tool according to the present invention. The successive forming tool T of these embodiments has a processing head H at the tip of the main body M. In each successive forming tool T, the contour line forming the machining surface A, which is the outer peripheral surface of the machining head H, is formed by a contour line having a partially different radius of curvature in a cross section orthogonal to the axial direction. Each successive forming tool T has a polygonal basic shape as a basic shape, and has a curved portion corresponding to each side and a lateral R portion corresponding to each corner.
すなわち、図8に示す逐次成形用工具Tは、加工面Aを形成する輪郭線が、三角形を基礎形状としたもので、3辺に対応する曲線部Qと3つの角に対応する横R部Ryとを有する形状である。また、逐次成形用工具Tは、第1実施形態と同様に、加工面Aが、先端面と側面との角に縦R部Rtを有する形状である。 That is, in the successive forming tool T shown in FIG. 8, the contour line forming the machining surface A has a triangular basic shape, and the curved portion Q corresponding to three sides and the lateral R portion corresponding to three corners. Ry and the shape. Further, the successive forming tool T has a shape in which the processing surface A has a vertical R portion Rt at the corner between the front end surface and the side surface, as in the first embodiment.
また、図9に示す逐次成形用工具Tは、加工面Aを形成する輪郭線が、四角形を基礎形状としたもので、4辺に対応する曲線部Qと4つの角に対応する横R部Ryとを有する形状である。この逐次成形用工具Tにあっても、加工面Aが、先端面と側面との角に縦R部Rtを有する形状である。 Further, in the successive forming tool T shown in FIG. 9, the contour line forming the machining surface A has a quadrangular basic shape, and the curved portions Q corresponding to the four sides and the lateral R portions corresponding to the four corners. Ry and the shape. Even in this sequential forming tool T, the processing surface A has a shape having a vertical R portion Rt at the corner between the tip surface and the side surface.
上記の各逐次成形用工具Tは、いずれも金属板Wに対して軸線回りの回転角度を選択することで、その回転角度に応じて金属板Wに当接する加工面Aの曲率半径が異なり、金属板Wとの接触面積も異なるものとなる。これにより、逐次成形用工具Tは、単一の工具でありながら、成形品Fの部位に応じた成形を行うことが可能であり、移動経路の変位幅であるピッチを大きくして加工効率の向上を実現することができる。また、逐次成形用工具Tは、上記ピッチを大きくできるうえに、工具交換も不要であるから、加工時間の短縮を実現する。 In each of the above-described successive forming tools T, by selecting the rotation angle around the axis with respect to the metal plate W, the radius of curvature of the processing surface A abutting on the metal plate W differs depending on the rotation angle, The contact area with the metal plate W is also different. As a result, the successive forming tool T can perform forming according to the part of the formed product F even though it is a single tool, and the pitch, which is the displacement width of the movement path, is increased to improve the processing efficiency. Improvement can be realized. In addition, the successive forming tool T can shorten the machining time because the pitch can be increased and the tool need not be replaced.
上記各実施形態の逐次成形用工具Tは、各曲線部Qの曲率半径が同じであり、各横R部Ryの曲率半径同じであるものを例示したが、夫々の曲率半径を互いに異ならせることも可能である。なお、図3に示すような矩形の凹状の成形品Fを形成する場合には、周回上に直線領域Dとコーナー領域Cとが交互に存在し、コーナー領域Cを通過する際に逐次成形用工具Tを回転させるので、各曲線部Qや横R部Ryの曲率半径を夫々同等にするのが良い。 In the successive forming tool T of each of the above-described embodiments, the curved portions Q have the same radius of curvature and the lateral R portions Ry have the same radius of curvature, but the respective radiuses of curvature should be different from each other. Is also possible. When forming a rectangular concave shaped product F as shown in FIG. 3, linear regions D and corner regions C are alternately present on the circumference, and when the corner region C is passed through, successive molding is performed. Since the tool T is rotated, it is preferable that the curved portions Q and the lateral R portions Ry have the same radius of curvature.
また、各実施形態の逐次成形用工具Tは、先述の如く多軸制御型ロボットやNC工作機等の駆動装置に装着される。このため、駆動装置においては、成形品Fや加工面Aのデータを予め入力すると共に、逐次成形用工具Tの回転角度を検出可能にすれば、成形品Fの各部位を加工面Aの適切な部位で成形するように、逐次成形用工具Tの回転制御を行うことができる。 Further, the sequential forming tool T of each embodiment is mounted on a driving device such as a multi-axis control type robot or an NC machine tool as described above. Therefore, in the driving device, if the data of the molded product F and the processed surface A are input in advance and the rotation angle of the molding tool T can be detected successively, each part of the molded product F is appropriately processed. The rotation of the forming tool T can be sequentially controlled so as to perform the forming at various portions.
本発明に係わる逐次成形用工具及び逐次成形方法は、上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することが可能である。さらに、上記各実施形態では、金属板の上側に配置した工具で逐次成形を行う場合を例示したが、金属板を立てた状態にし、横方向から工具を押し付けて逐次成形することも可能であるし、周囲を保持した金属板を可動させることも可能である。 The sequential forming tool and the sequential forming method according to the present invention are not limited to the above-described embodiments, and the details of the configuration can be appropriately changed without departing from the scope of the present invention. Furthermore, in each of the above-described embodiments, the case where the tool arranged on the upper side of the metal plate is used for the successive forming is illustrated, but it is also possible to make the metal plate stand up and press the tool from the lateral direction to perform the successive forming. However, it is also possible to move the metal plate holding the periphery.
A 加工面
C コーナー領域(成形品の曲率半径の小さい部位)
D 直線領域(成形品の曲率半径の大きい部位)
F 成形品
Q 曲線部
Ry 横R部
Rt 縦R部
T 逐次成形用工具
Vf 送り速度
Vt 回転速度
W 金属板
A Processed surface C Corner area (a part with a small radius of curvature of the molded product)
D Straight line area (a part with a large radius of curvature of the molded product)
F Molded product Q Curved part Ry Horizontal R part Rt Vertical R part T Sequential forming tool Vf Feed rate Vt Rotational speed W Metal plate
Claims (8)
周囲を保持した金属板に、前記逐次成形用工具を押し付けて所定の移動経路を移動させ、前記逐次成形用工具の押し込み量及び移動経路を段階的に変位させることにより、前記金属板を三次元形状の成形品に逐次成形するに際し、
前記成形品の部位に応じて前記逐次成形用工具の軸線回りの回転角度を選択して成形を行うことを特徴とする逐次成形方法。 A rod-shaped tool, wherein an outer peripheral surface in a predetermined range from the tip end to the axial direction is used as a processing surface, and the processing surface is formed with contour lines having partially different radii of curvature in a cross section orthogonal to the axial direction. Using a sequential forming tool,
A metal plate holding a periphery, said moving the incremental forming tool to be pressed against a predetermined path of movement, by the displacing sequentially the push amount and the movement path of the molding tool stepwise, the metal plate three-dimensional When sequentially forming shaped articles,
Incremental forming method and performing molding by selecting the rotation angle around the axis of the incremental forming tool according to the site of the molded article.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150030A JP6714854B2 (en) | 2016-07-29 | 2016-07-29 | Sequential molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150030A JP6714854B2 (en) | 2016-07-29 | 2016-07-29 | Sequential molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018015806A JP2018015806A (en) | 2018-02-01 |
JP6714854B2 true JP6714854B2 (en) | 2020-07-01 |
Family
ID=61078924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016150030A Active JP6714854B2 (en) | 2016-07-29 | 2016-07-29 | Sequential molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6714854B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111771172B (en) | 2018-02-28 | 2021-09-28 | 大金工业株式会社 | Method for manufacturing machined product, tool path calculation method, machined product, and impeller |
WO2024013950A1 (en) * | 2022-07-14 | 2024-01-18 | 日産自動車株式会社 | Sequential shaping method and sequential shaping device |
-
2016
- 2016-07-29 JP JP2016150030A patent/JP6714854B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018015806A (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20170012299A (en) | Method for machining a workpiece, tool arrangement and tooth cutting machine | |
JP6309968B2 (en) | Gear cutting tool with ability to adjust the radial direction of a rectangular or rectangular stick blade | |
JP6714854B2 (en) | Sequential molding method | |
WO2017199911A1 (en) | Dimple forming method using rotary cutting tool | |
JP5549527B2 (en) | Grooving method | |
US20200282478A1 (en) | Dimple Processing Method Using Rotary Cutting Tool, and Rotary Cutting Tool for Dimple Processing | |
JP6701570B2 (en) | Sequential molding method and sequential molding apparatus | |
JP6847398B2 (en) | Sequential molding method | |
JP2009297787A (en) | Spinning method and apparatus | |
JP6528701B2 (en) | Production method | |
JP6725917B2 (en) | Fine processing method, mold manufacturing method, and fine processing apparatus | |
JP2010162564A (en) | Spinning method and spinning device | |
US10759015B2 (en) | Method and system for machining | |
WO2015199126A1 (en) | Cutting device and cutting method | |
JP6685509B2 (en) | Sequential forming tool and sequential forming method using the same | |
JP2017217720A5 (en) | ||
KR20190134762A (en) | Flow Mounted Multi-Purpose Rolling Tools and Rolling Machines | |
JP2017087250A (en) | Manufacturing method of ring-shaped member | |
Buff et al. | Robot-based incremental sheet metal forming–increasing the geometrical complexity and accuracy | |
JP6868534B2 (en) | Sequential molding method | |
JP6852555B2 (en) | Sequential molding method | |
JP2004001180A (en) | Method of machining workpiece equipped with straight surface recess, grooved part having cross section other than circular shape | |
JP5229909B2 (en) | Spinning method and apparatus | |
JP2016002589A (en) | Forging die and forging method | |
KR101781348B1 (en) | Apparatus and method for surface texturing of object, and grinding member used therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200520 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6714854 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |