JP5225490B2 - Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module - Google Patents

Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module Download PDF

Info

Publication number
JP5225490B2
JP5225490B2 JP2012135927A JP2012135927A JP5225490B2 JP 5225490 B2 JP5225490 B2 JP 5225490B2 JP 2012135927 A JP2012135927 A JP 2012135927A JP 2012135927 A JP2012135927 A JP 2012135927A JP 5225490 B2 JP5225490 B2 JP 5225490B2
Authority
JP
Japan
Prior art keywords
optical
transmission board
optical transmission
substrate
path conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012135927A
Other languages
Japanese (ja)
Other versions
JP2012198566A (en
Inventor
恵子 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012135927A priority Critical patent/JP5225490B2/en
Publication of JP2012198566A publication Critical patent/JP2012198566A/en
Application granted granted Critical
Publication of JP5225490B2 publication Critical patent/JP5225490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光を反射させる光路変換面を有する光伝送基板とその製造方法、ならびに複合光伝送基板に関する。   The present invention relates to an optical transmission board having an optical path conversion surface for reflecting light, a method for manufacturing the same, and a composite optical transmission board.

近年、コンピュータの情報処理能力の向上化にともなって、マイクロプロセッサとして使用される半導体大規模集積回路素子(LSI,VLSI)等の集積回路(IC)では、トランジスタの集積度が高められており、ICの動作速度は、クロック周波数でGHzのレベルまで達している。それに伴い、電気素子間を電気的に接続する電気配線についても高密度化および微細化されたものが要求されていた。   In recent years, with the improvement of information processing capability of computers, in an integrated circuit (IC) such as a semiconductor large scale integrated circuit element (LSI, VLSI) used as a microprocessor, the degree of integration of transistors has been increased. The operating speed of the IC has reached the GHz level at the clock frequency. Along with this, there has been a demand for higher density and finer electrical wiring for electrically connecting electrical elements.

しかしながら、電気配線の高密度化および微細化は、電気信号のクロストークや伝搬損失が生じやすいことから、半導体素子に入出力される電気信号を光信号に変換し、さらに、その光信号を実装基板に形成した光導波路などの光配線によって伝送される光伝送技術が検討されている。   However, increasing the density and miniaturization of electrical wiring tends to cause crosstalk and propagation loss of electrical signals. Therefore, electrical signals input to and output from semiconductor devices are converted to optical signals, and the optical signals are mounted. An optical transmission technique in which an optical wiring such as an optical waveguide formed on a substrate is transmitted has been studied.

例えば、特許文献1には、光路変換面を含む光導波路を具備する光伝送基板が開示されている。詳細には、先端が平坦なダイシングブレードにより光導波路を削って溝を設けたうえで、その溝の内面を金属材料等によって偏向ミラー(光反射膜)を形成して得られた光路変換面を有する光伝送基板が開示されている。   For example, Patent Document 1 discloses an optical transmission substrate including an optical waveguide including an optical path conversion surface. Specifically, an optical path conversion surface obtained by forming a groove by cutting an optical waveguide with a dicing blade with a flat tip and forming a deflection mirror (light reflecting film) on the inner surface of the groove with a metal material or the like. An optical transmission board having the same is disclosed.

特開2006−235126号公報JP 2006-235126 A

しかしながら、特許文献1に記載の光伝送基板は、特許文献1の図1に示すように、水平方向と偏向ミラー上方との光路変換を行なう場合、光路変換面の下端周辺において迷光となる光が多く発生するため、余分な信号成分が伝達されることになり、高い純度を有する光信号の伝達をすることが困難であった。   However, as shown in FIG. 1 of Patent Document 1, when the optical transmission board described in Patent Document 1 performs optical path conversion between the horizontal direction and the upper side of the deflection mirror, light that becomes stray light around the lower end of the optical path conversion surface. Since many occur, an extra signal component is transmitted, and it is difficult to transmit an optical signal having high purity.

よって、本発明の目的は、より簡便な方法で作製でき、さらに、迷光の発生を抑制する光伝送基板とその製造方法、ならびに複合光伝送基板を提供することである。   Therefore, an object of the present invention is to provide an optical transmission board that can be manufactured by a simpler method and that suppresses the generation of stray light, a manufacturing method thereof, and a composite optical transmission board.

本発明の一実施形態の光伝送基板は、基板と、該基板上に設けられた、コア部および該コア部を光軸方向の途中で分断する溝部を有する、樹脂材料からなる光導波路とを備えた光伝送基板であって、前記光導波路の前記溝部内に、前記コア部が露出した端面と、該端面から離れた位置にあって前記光導波路の光軸方向に対して傾斜している光路変換面と、該光路変換面の下端に繋がっているとともに前記基板に対して前記光路変換面よりも大きく傾斜した傾斜面を持つ、下方向に凹んだ凹部とを有する。   An optical transmission substrate according to an embodiment of the present invention includes a substrate, and an optical waveguide made of a resin material having a core portion and a groove portion that divides the core portion in the middle of the optical axis direction. An optical transmission board provided with an end surface in which the core portion is exposed in the groove portion of the optical waveguide and a position away from the end surface and inclined with respect to the optical axis direction of the optical waveguide. An optical path conversion surface; and a concave portion recessed in a downward direction and having an inclined surface connected to a lower end of the optical path conversion surface and inclined more greatly than the optical path conversion surface with respect to the substrate.

また、本発明の実施形態に係る複合光伝送基板は、上記光伝送基板と、前記光路変換面を介して前記コア部と光学的に結合し、主面間を光が伝送する第2の光伝送基板と、前記光伝送基板に第2の光伝送基板を実装させる実装手段と、を具備する。   The composite optical transmission board according to the embodiment of the present invention is a second light that is optically coupled to the core part via the optical transmission board and the optical path conversion surface, and light is transmitted between the main surfaces. A transmission board; and mounting means for mounting a second optical transmission board on the optical transmission board.

また、本発明の実施形態に係る光モジュールは、上記複合光伝送基板と、前記光路変換面および前記第2の光伝送基板を介して前記コア部と光学的に結合し、前記第2の光伝送基板の主面のうち、前記実装手段が設けられた主面とは反対側の主面上に実装された光半導体素子と、を具備する。   An optical module according to an embodiment of the present invention is optically coupled to the core portion via the composite optical transmission board, the optical path conversion surface, and the second optical transmission board, and the second light. An optical semiconductor element mounted on a main surface opposite to the main surface on which the mounting means is provided, of the main surface of the transmission board.

さらに、本発明の光伝送基板の製造方法は、基板上に、コア部およびクラッド部を有する、樹脂材料からなる光導波路を形成する工程(1)と、前記基板に対して傾斜した第1の内面と、該第1の内面と対向する第2の内面と、を有する溝を、前記光導波路の前記コア部を分断するように形成する工程(2)と、前記溝内部に光反射膜を設ける工程(3)と、前記工程(3)において形成された、前記第1の内面上の光反射膜の一部、前記第2の内面上の光反射膜および前記光導波路の一部をダイシングブレードで除去して、前記第1の内面よりも前記基板に対して傾斜した傾斜面を持つ、下方向に凹んだ凹部、および前記コア部が露出した端面を有する溝部を前記光導波路に形成する工程(4)とを含む。   Furthermore, the method for manufacturing an optical transmission board according to the present invention includes a step (1) of forming an optical waveguide made of a resin material having a core part and a clad part on the board, and a first tilted with respect to the board. A step (2) of forming a groove having an inner surface and a second inner surface facing the first inner surface so as to divide the core portion of the optical waveguide; and a light reflecting film inside the groove. A step (3) of providing and a part of the light reflecting film on the first inner surface, the light reflecting film on the second inner surface, and a part of the optical waveguide formed in the step (3). Removed with a blade to form a groove in the optical waveguide having a recessed surface that is inclined downward with respect to the substrate from the first inner surface, and a groove having an end surface from which the core portion is exposed. Step (4).

本発明の一実施態様の光伝送基板は、前記端面と前記光路変換面と間に凹部が介在していることにより、迷光を生じさせやすい光路変換面の下端部周辺を含まない構成であるため、迷光を最小限に抑えることができる。   Since the optical transmission board according to an embodiment of the present invention includes a recess between the end surface and the optical path conversion surface, the optical transmission substrate does not include the periphery of the lower end portion of the optical path conversion surface that easily generates stray light. , Can minimize stray light.

また、前記端面と前記光路変換面との間に凹部が介在している場合、前記光路変換面上の屑が傾斜した前記光路変換面から前記凹部に滑り落ち、前記凹部内に溜まる。そして、前記凹部内に溜まった屑は洗浄で除去されなかったとしても光路変換に対する影響が小さいため、屑による散乱などの悪影響を受けずに前記光伝送基板は高効率な光結合が得られる。   Moreover, when the recessed part exists between the said end surface and the said optical path conversion surface, the waste on the said optical path conversion surface slides down to the said recessed part from the inclined said optical path conversion surface, and accumulates in the said recessed part. Even if the dust accumulated in the concave portion is not removed by cleaning, the optical path conversion has little influence on the optical path conversion, so that the optical transmission substrate can obtain highly efficient optical coupling without being adversely affected by scattering due to the dust.

前記凹部は、前記光路変換面の下端と連続して繋がっており、前記基板に対して、前記光路変換面よりも大きく傾斜した傾斜面を含むことが好ましい。前記凹部が前記傾斜面を含むことにより、前記凹部の容量が大きくなることから、前記屑を前記凹部内により多く溜め込むことが可能となる。   The concave portion is continuously connected to the lower end of the optical path conversion surface, and preferably includes an inclined surface that is inclined more than the optical path conversion surface with respect to the substrate. Since the concave portion includes the inclined surface, the capacity of the concave portion is increased, so that a larger amount of the waste can be stored in the concave portion.

また、前記凹部は、前記傾斜面と前記端面との間に設けられ、前記傾斜面と連続して繋がる底面を有しているため、光伝送基板の上から光路変換面付近を見て、他の部材と位置合わせする場合、前記底面が目印を形成するため、容易に位置合わせをおこなうことができる。   In addition, since the concave portion is provided between the inclined surface and the end surface and has a bottom surface continuously connected to the inclined surface, the vicinity of the optical path changing surface is seen from above the optical transmission board. When aligning with the member, the bottom surface forms a mark, so that the alignment can be performed easily.

本発明の一実施態様の複合光伝送基板は、前記光伝送基板と、第2の光伝送基板と、実装手段とを具備する。第2の光伝送基板は、前記光路変換面を介して前記コア部と光学的に結合し、主面間を光が伝送する。また、前記実装手段は、前記光伝送基板に第2の光伝送基板を実装させる。このような構成を有する複合光伝送基板には、実装時に、前記実装手段から流出したフラックスにより汚染されやすいが、前記凹部の側縁が前記光路変換面と連続して繋がっていることにより、前記光路変換面上のフラックスが前記光路変換面の傾斜面から前記凹部に滑り落ち、前記凹部内に溜まる。そして、前記凹部内に溜まったフラックスは光路変換への影響が小さいため、前記光伝送基板は高効率な光結合が得られる。   A composite optical transmission board according to an embodiment of the present invention includes the optical transmission board, a second optical transmission board, and mounting means. The second optical transmission board is optically coupled to the core portion through the optical path conversion surface, and transmits light between the main surfaces. The mounting means mounts a second optical transmission board on the optical transmission board. The composite optical transmission board having such a configuration is easily contaminated by the flux that has flowed out of the mounting means during mounting, but the side edges of the recesses are continuously connected to the optical path conversion surface. The flux on the optical path conversion surface slides down from the inclined surface of the optical path conversion surface into the recess and accumulates in the recess. Since the flux accumulated in the recess has little influence on the optical path conversion, the optical transmission substrate can obtain highly efficient optical coupling.

本発明の一実施態様の光伝送基板の製造方法は、前記光導波路の前記コア部を分断するように形成された溝内部に光反射膜を設け、前記第2の内面上の光反射膜を除去することにより、リフトオフ、エッチングなどの煩雑な工程を経ることなく、光導波路端面を露出できる。さらに前記製造方法は、光導波路の透明性および密着性に影響が小さい。前記製造方法により、第2の内面を除去した箇所には、コア部が露出されるため、前記光伝送基
板は高効率な光結合が得られる。
The method of manufacturing an optical transmission board according to an embodiment of the present invention includes providing a light reflecting film inside a groove formed so as to divide the core portion of the optical waveguide, and providing the light reflecting film on the second inner surface. By removing, the end face of the optical waveguide can be exposed without going through complicated steps such as lift-off and etching. Furthermore, the manufacturing method has little influence on the transparency and adhesion of the optical waveguide. Since the core portion is exposed at the location where the second inner surface is removed by the manufacturing method, the optical transmission board can obtain highly efficient optical coupling.

さらに、前記製造方法は、光導波路に、前記光導波路のコア部を分断するように溝を形成したことにより、溝内面に露出したコア部を直接確認しながら光反射膜を設けることができる。そのため、光導波路や光路変換面を別途形成する場合と比較して、位置ずれを抑制でき、得られた光伝送基板は高効率な光結合が得られる。   Further, in the manufacturing method, since the groove is formed in the optical waveguide so as to divide the core portion of the optical waveguide, the light reflecting film can be provided while directly confirming the core portion exposed on the inner surface of the groove. Therefore, as compared with the case where an optical waveguide and an optical path conversion surface are separately formed, positional deviation can be suppressed, and the obtained optical transmission substrate can obtain highly efficient optical coupling.

前記製造方法は、前記第2の内面の光反射膜の除去工程において、前記第1の内面の下端以下の領域と前記第2の内面を含む領域とを除去することにより、前記凹部を形成することができる。   The manufacturing method forms the recess by removing a region below the lower end of the first inner surface and a region including the second inner surface in the step of removing the light reflecting film on the second inner surface. be able to.

光伝送基板の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of an optical transmission board | substrate. 複合光伝送基板の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of a composite-light transmission board | substrate. (a)〜(d)は、光伝送基板(図1)の製造方法の実施態様の一例を模式的に示す工程ごとの要部断面図である。(A)-(d) is principal part sectional drawing for every process which shows an example of the embodiment of the manufacturing method of an optical transmission board | substrate (FIG. 1) typically.

図面にもとづいて、本発明の実施態様の光伝送基板について説明するが、これらの図面は本発明の実施態様の一例に過ぎず、本発明はそれらに限定されない。   The optical transmission board according to the embodiments of the present invention will be described with reference to the drawings. However, these drawings are only examples of the embodiments of the present invention, and the present invention is not limited thereto.

図1は、光伝送基板の実施の形態の一例を模式的に示す断面図である。図1において、1は基板、2は光導波路、3は光路変換面、4は凹部、Aは光導波路2の光軸、およびBは光路変換面3に入出力する光の光軸を示す。   FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of an optical transmission board. In FIG. 1, 1 is a substrate, 2 is an optical waveguide, 3 is an optical path conversion surface, 4 is a recess, A is an optical axis of the optical waveguide 2, and B is an optical axis of light input to and output from the optical path conversion surface 3.

なお、図1において光導波路2は、上部クラッド部2aとコア部2bと下部クラッド部2cとから構成され、コア部2bが露出した光導波路2の端面2dを有する。   In FIG. 1, the optical waveguide 2 includes an upper clad portion 2a, a core portion 2b, and a lower clad portion 2c, and has an end face 2d of the optical waveguide 2 with the core portion 2b exposed.

図1の光伝送基板は、外部からの光Bを光路変換面3にて反射させて光導波路2のコア部2bに導入する、あるいは光導波路2のコア部2bから伝搬してきた光Aを光路変換面3にて反射させて外部へ射出する。つまり、光路変換面3は、それ自体を介して外部と前記光導波路との間で光を授受する。   The optical transmission board of FIG. 1 reflects light B from the outside by the optical path conversion surface 3 and introduces it into the core part 2b of the optical waveguide 2, or transmits the light A propagated from the core part 2b of the optical waveguide 2 to the optical path. Reflected by the conversion surface 3 and emitted to the outside. That is, the optical path conversion surface 3 transmits and receives light between the outside and the optical waveguide through itself.

図1の光伝送基板は、基板1と光導波路2と光路変換面3とを具備し、さらに凹部4を具備する。   The optical transmission substrate of FIG. 1 includes a substrate 1, an optical waveguide 2, and an optical path conversion surface 3, and further includes a recess 4.

凹部4は、基板1上に設けられ、光導波路2の端面2dと光路変換面3との間に介在し、基板1の方向に凹む構造を有する。たとえば、図1において凹部4は、底面4b、傾斜面4cおよび端面2dに囲まれた領域をいう。   The recess 4 is provided on the substrate 1, is interposed between the end surface 2 d of the optical waveguide 2 and the optical path conversion surface 3, and has a structure that is recessed in the direction of the substrate 1. For example, in FIG. 1, the concave portion 4 refers to a region surrounded by the bottom surface 4b, the inclined surface 4c, and the end surface 2d.

凹部4が端面2dと光路変換面3との間に介在することで、通常、端面2dの下端まで設けられる光路変換面3の面積を縮小することができる。そのため、光路変換時において生じる迷光を最小限に抑えることができる。   Since the recess 4 is interposed between the end surface 2d and the optical path conversion surface 3, the area of the optical path conversion surface 3 that is normally provided up to the lower end of the end surface 2d can be reduced. Therefore, stray light generated at the time of optical path conversion can be minimized.

凹部4は、その側縁4aが光路変換面3の下端と連続して繋がっている。このように凹部4と傾斜面4cとが連続して繋がっているため、例えば、その製造上において、屑(例えば、ダイシングソーによる光導波路の切削屑など)が光路変換面3上に存在する場合、または、別の基板との実装工程において、半田などの実装手段から発生したフラックスが光路変換面3上に存在する場合、傾斜した光路変換面3上の屑またはフラックスを凹部4まで落とし、凹部3内に屑またはフラックスを溜めることができる。そして、凹部3内の
屑またはフラックスは光路変換への影響が小さいため、光伝送基板は高効率な光結合が得られる。
The side edge 4 a of the recess 4 is continuously connected to the lower end of the optical path conversion surface 3. Thus, since the recessed part 4 and the inclined surface 4c are connected continuously, for example, in the manufacture, when waste (for example, cutting waste of an optical waveguide by a dicing saw) exists on the optical path conversion surface 3 Alternatively, when a flux generated from mounting means such as solder is present on the optical path conversion surface 3 in a mounting process with another substrate, the scrap or flux on the inclined optical path conversion surface 3 is dropped to the concave portion 4 and the concave portion Waste or flux can be stored in 3. And since the waste or flux in the recessed part 3 has little influence on optical path conversion, a highly efficient optical coupling is obtained in the optical transmission board.

光路変換面3は、光導波路2の光軸方向Aに対して傾斜している。この傾斜角は、光路変換させたい角度によってそれぞれ異なり、例えば、光路を90度変換させたい場合、光導波路2の光軸方向Aに対して光路変換面3の傾斜角を45度に設定することが好ましい。   The optical path conversion surface 3 is inclined with respect to the optical axis direction A of the optical waveguide 2. This inclination angle differs depending on the angle at which the optical path is to be changed. For example, when the optical path is to be converted by 90 degrees, the inclination angle of the optical path conversion surface 3 with respect to the optical axis direction A of the optical waveguide 2 is set to 45 degrees. Is preferred.

凹部4は、基板1に対して光路変換面3よりも大きく傾斜した傾斜面4cを有することが好ましい。傾斜面4cは、光路変換面3の下端と連続して繋がっている。凹部4が傾斜面4cを有することにより、傾斜面4の傾斜角が光路変換面3の傾斜角よりも大きく、凹部4の容量が大きくなることから、屑またはフラックスを凹部4内により多く溜め込むことが可能となる。なお、図1において、基板1に対する傾斜面4cが傾斜角は略直角である。   The recess 4 preferably has an inclined surface 4 c that is inclined more than the optical path conversion surface 3 with respect to the substrate 1. The inclined surface 4 c is continuously connected to the lower end of the optical path conversion surface 3. Since the concave portion 4 has the inclined surface 4 c, the inclination angle of the inclined surface 4 is larger than the inclination angle of the optical path conversion surface 3, and the capacity of the concave portion 4 increases, so that more waste or flux is stored in the concave portion 4. Is possible. In FIG. 1, the inclined surface 4c with respect to the substrate 1 has a substantially right angle.

光路変換面3と傾斜面4cとの面が形成する角度が180度未満であることが好ましい。なお、図1における135度であることが最も好ましい。180度未満であることにより、屑等を光路変換面3から凹部4内へ落ちやすくなる。   The angle formed by the surfaces of the optical path conversion surface 3 and the inclined surface 4c is preferably less than 180 degrees. It is most preferable that the angle is 135 degrees in FIG. By being less than 180 degrees, waste or the like easily falls from the optical path conversion surface 3 into the recess 4.

また、凹部4は、さらに底面4bを有することが好ましい。ここで、底面4bとは、傾斜面4cと端面2dとの間に設けられ、傾斜面4cと連続して繋がる部位をいう。底面4bを有しているため、光伝送基板の上から光路変換面付近を見て、位置合わせする場合、底面が光路変換面よりも小さな目印となるため、厳密な位置合わせをおこなうことができる。前述のように底面は光伝送基板の上から見て目印として確認できればよく、平面でも曲面でもかまわない。   Moreover, it is preferable that the recessed part 4 has the bottom face 4b further. Here, the bottom surface 4b refers to a portion that is provided between the inclined surface 4c and the end surface 2d and is continuously connected to the inclined surface 4c. Since the bottom surface 4b is provided, when the positioning is performed by looking at the vicinity of the optical path conversion surface from above the optical transmission board, the bottom surface becomes a mark smaller than the optical path conversion surface, so that it is possible to perform exact alignment. . As described above, the bottom surface only needs to be confirmed as a mark when viewed from above the optical transmission substrate, and may be flat or curved.

以下に、基板1、光導波路2、光路変換面3の材料等について具体的に示す。   Below, the material of the board | substrate 1, the optical waveguide 2, the optical path conversion surface 3, etc. are shown concretely.

(基板1)
基板1としては、例えば、一般的に使用されているエポキシ樹脂やセラミックなどからなるプリント配線基板が用いられる。なかでも、機械的強度が大きく、熱による基板の反りに対して効果的な防止が可能となるため、両面に同じ厚さの樹脂絶縁層を形成した対称層構造を有するプリント配線基板が好ましく、両面の樹脂絶縁層の厚さが同じであることがより好ましい。基板1の厚みとしては、0.5〜1.6mmとすることができる。
(Substrate 1)
As the substrate 1, for example, a printed wiring board made of generally used epoxy resin or ceramic is used. Among them, a printed wiring board having a symmetrical layer structure in which a resin insulating layer having the same thickness is formed on both sides is preferable because the mechanical strength is large and it is possible to effectively prevent the warpage of the board due to heat. It is more preferable that the resin insulating layers on both sides have the same thickness. The thickness of the substrate 1 can be set to 0.5 to 1.6 mm.

また、基板1として、多層配線基板を用いても良い。ここで、多層配線基板とは、電気配線層と絶縁層とが交互に複数積層されたものであればよく、例えば、コア基板と、配線基板表面側に形成されたビルドアップ層とからなる基板も含まれる。   Further, a multilayer wiring board may be used as the substrate 1. Here, the multilayer wiring substrate may be any substrate in which a plurality of electrical wiring layers and insulating layers are alternately laminated, for example, a substrate composed of a core substrate and a buildup layer formed on the wiring substrate surface side. Is also included.

(光導波路2)
光導波路2は、基板1のソルダーレジストや電気配線層を除去した基板1表面に形成される。基板1の表面に直接形成する方法は、フォトリソグラフィによりソルダーレジスト開口部から確認できる電気配線層のマーカの位置を確認しながらコア2bの位置を決定することができる。
(Optical waveguide 2)
The optical waveguide 2 is formed on the surface of the substrate 1 from which the solder resist and the electric wiring layer of the substrate 1 are removed. The method of forming directly on the surface of the substrate 1 can determine the position of the core 2b while confirming the position of the marker on the electrical wiring layer that can be confirmed from the opening of the solder resist by photolithography.

光導波路2の作製法としては、一般的に使用されている方法でよく、直接露光法、屈折率変化法(フォトブリーチング法)、反応性イオンエッチング法等がある。光導波路2の材料としては、感光性を有するエポキシ樹脂、アクリル樹脂、ポリイミド樹脂などが挙げられる。   As a method for producing the optical waveguide 2, a generally used method may be used, and there are a direct exposure method, a refractive index change method (photo bleaching method), a reactive ion etching method, and the like. Examples of the material of the optical waveguide 2 include photosensitive epoxy resin, acrylic resin, and polyimide resin.

(光路変換面3)
光路変換面3の形成方法としては、一般的には先端が45度又は90度に加工されたダイヤモンドブレードを用いてダイシングソーで溝入れ加工することにより、光導波路2の一部を斜めに切り取って形成される。それ以外にも、光導波路2のパターニング時にグレイマスクや斜め露光等により斜面を形成する方法や、プリント基板切り分け時に使用するケガキ機などを用いる方法もある。
(Optical path conversion surface 3)
As a method of forming the optical path conversion surface 3, generally, a part of the optical waveguide 2 is cut obliquely by grooving with a dicing saw using a diamond blade whose tip is processed at 45 degrees or 90 degrees. Formed. In addition, there are a method of forming a slope by patterning the optical waveguide 2 using a gray mask, oblique exposure, or the like, or a method of using a marking machine used when cutting a printed circuit board.

光路変換面3の表面は、金(Au),銀(Ag),白金(Pt),アルミニウム(Al),銅(Cu)等のように光導波路2を伝送する光に対して反射率の高い膜を反射膜としてその表面に形成されている。光の波長が600から1500nmの場合、金(Au)、銀(Ag)、アルミニウム(Al)等の金属膜が好ましい。   The surface of the optical path conversion surface 3 has a high reflectance with respect to light transmitted through the optical waveguide 2 such as gold (Au), silver (Ag), platinum (Pt), aluminum (Al), copper (Cu), and the like. A film is formed on the surface as a reflective film. When the wavelength of light is 600 to 1500 nm, a metal film such as gold (Au), silver (Ag), and aluminum (Al) is preferable.

光路変換面3の形成方法としては、一般的に使用されている方法(蒸着法、スパッタリング法、めっき法など)が挙げられる。   Examples of a method for forming the optical path conversion surface 3 include commonly used methods (evaporation method, sputtering method, plating method, etc.).

光路変換面3としては反射率を高めるために平坦で空隙の少ない膜が求められることから、蒸着による成膜が最も好適である。基板1上には光路変換面3をつけられない素子や基板実装部分(不図示)があることから、成膜時には不要部分を隠して必要な箇所のみを開けるマスクが必要となる。大きさや位置の精度からもメタルマスクを用いた蒸着が作製上最も簡便な方法である。   Since the optical path conversion surface 3 is required to be a flat film with few voids in order to increase the reflectivity, film formation by vapor deposition is most suitable. Since there are elements and substrate mounting portions (not shown) on which the optical path conversion surface 3 cannot be provided on the substrate 1, a mask is required to open only necessary portions while hiding unnecessary portions during film formation. From the viewpoint of size and position accuracy, vapor deposition using a metal mask is the simplest method for production.

<複合光伝送基板>
本発明の一実施態様の複合光伝送基板は、前記光伝送基板と、第2の光伝送基板5と、光伝送基板に第2の光伝送基板5を実装させる実装手段6と、を具備する。
<Composite optical transmission board>
A composite optical transmission board according to an embodiment of the present invention includes the optical transmission board, a second optical transmission board 5, and mounting means 6 for mounting the second optical transmission board 5 on the optical transmission board. .

(第2の光伝送基板)
図2は複合光伝送基板の実施の形態の一例を模式的に示す断面図である。
(Second optical transmission board)
FIG. 2 is a sectional view schematically showing an example of the embodiment of the composite optical transmission board.

図2において第2の光伝送基板内には、主面間を光が伝送する光伝送部7が設けられている。また、光伝送部7は、光路変換面3を介してコア部2bと光学的に結合している。なお、図2において光伝送部7は、第2の光伝送基板5の両主面間の貫通孔中に充填された透明樹脂を示している。   In FIG. 2, an optical transmission unit 7 for transmitting light between main surfaces is provided in the second optical transmission substrate. Further, the optical transmission unit 7 is optically coupled to the core unit 2 b through the optical path conversion surface 3. In FIG. 2, the optical transmission unit 7 indicates a transparent resin filled in a through hole between both main surfaces of the second optical transmission substrate 5.

光伝送部7は、中心部に屈折率の高いコア部7aと、コア部7aの周囲に設けられ、コア部7aよりも屈折率の低いクラッド部7bと、を有する。なお、コア7aは、透明樹脂のうち、貫通孔の中心軸に沿って設けられ、径方向における屈折率が周囲よりも高い領域をいう。また、クラッド部7bは、コア部7aの周囲に位置し、コア部7aの屈折率よりも高い屈折率を有する領域をいう。このような構造をとることにより、第2の光伝送基板5において基板間の光信号の伝送を高効率に行なうことが可能となる。   The optical transmission part 7 has a core part 7a having a high refractive index at the center part and a clad part 7b provided around the core part 7a and having a refractive index lower than that of the core part 7a. The core 7a is a region of the transparent resin that is provided along the central axis of the through hole and has a higher refractive index in the radial direction than the surroundings. The clad portion 7b is a region located around the core portion 7a and having a refractive index higher than that of the core portion 7a. By adopting such a structure, the second optical transmission board 5 can transmit an optical signal between the boards with high efficiency.

光伝送部7としては、光を照射すると屈折率が低下するフォトブリーチング現象を生じるポリシラン、あるいは光を照射した部分が現像により除去できる感光性のアクリル系樹脂やエポキシ樹脂等を用いて形成することができる。例えば、フォトブリーチング現象を利用する場合は、第2の光伝送基板5に設けられた貫通孔にポリシランを充填し、加熱硬化させた後、フォトマスク(貫通孔より小さい径の円形パターンの遮光部を具備する)を介して紫外光を照射して紫外光照射部の屈折率を低下させ、最後にポストベークを行うことにより貫通孔内の透明樹脂に屈折率の分布を形成する。   The light transmission unit 7 is formed using polysilane which causes a photobleaching phenomenon in which the refractive index decreases when irradiated with light, or a photosensitive acrylic resin or epoxy resin that can be removed by developing the irradiated portion. be able to. For example, when the photo bleaching phenomenon is used, polysilane is filled in a through hole provided in the second optical transmission substrate 5 and cured by heating, and then a photomask (a light shielding of a circular pattern having a diameter smaller than that of the through hole). The refractive index distribution is formed in the transparent resin in the through hole by irradiating the ultraviolet light through a lower portion to reduce the refractive index of the ultraviolet light irradiated portion and finally performing the post baking.

また、紫外線硬化型のアクリル系樹脂やエポキシ系樹脂を用いる場合は、第2の光伝送基板5の貫通孔にこれらの感光性ポリマー材料を充填し、加熱硬化させた後、ドリルなど
により穿孔した部分(光伝送孔中心部)に、最初に充填した材料より屈折率の高い材料を充填し、フォトマスクを使用しないで紫外光を照射して硬化後、最後にポストベークを行うことにより、貫通孔内の光伝送部7に屈折率分布を形成する。
When using an ultraviolet curable acrylic resin or epoxy resin, the photosensitive polymer material is filled in the through hole of the second optical transmission substrate 5 and cured by heating, and then drilled with a drill or the like. By filling the part (light transmission hole center) with a material having a higher refractive index than the material initially filled, irradiating with UV light without using a photomask, and finally post-baking to penetrate. A refractive index distribution is formed in the optical transmission part 7 in the hole.

なお、前述の貫通孔の形成には、通常のプリント基板の穿孔工程に使用されるドリルやレーザーが好適に使用される。そして、一方の主面から他方の主面まで第2の光伝送基板5を貫通させることにより貫通孔は形成される。貫通孔は断面を円形とすることが望ましく、直径は35〜200μmとすることが望ましい。   In addition, the drill and laser which are used for the punching process of the normal printed circuit board are used suitably for formation of the above-mentioned through-hole. And a through-hole is formed by letting the 2nd optical transmission board | substrate 5 penetrate from one main surface to the other main surface. The through hole preferably has a circular cross section and a diameter of 35 to 200 μm.

第2の光伝送基板5は、一方の主面から他方の主面まで電気的に接続させる電気配線層11を有する。例えば、図2では、第2の光伝送基板5は、実装手段6を介して前記光伝送基板と電気的に接続している。   The second optical transmission board 5 has an electric wiring layer 11 that is electrically connected from one main surface to the other main surface. For example, in FIG. 2, the second optical transmission board 5 is electrically connected to the optical transmission board via the mounting means 6.

(実装手段)
実装手段6として、光伝送基板に対して格子状に配置した球状の導電性部材(例えば、ボールグリッドアレイ(登録商標)、以下BGAとする)を用いることにより、リフロー時のセルフアライメントによって、光伝送基板と第2の光伝送基板5との位置合わせが行なわれる。
(Mounting means)
By using a spherical conductive member (for example, a ball grid array (registered trademark), hereinafter referred to as BGA) arranged in a grid pattern with respect to the optical transmission board as the mounting means 6, Position alignment between the transmission board and the second optical transmission board 5 is performed.

実装手段6としては、他にピングリッドアレイ(登録商標)などがあげられるが、とくに、機械的に位置合わせをおこなう必要がないことから、BGAが好ましい。   Other examples of the mounting means 6 include a pin grid array (registered trademark), but BGA is particularly preferable because it is not necessary to perform mechanical alignment.

(光半導体素子)
図2の複合光伝送基板は、第2の光伝送基板5に対して、光半導体素子8を実装して用いられる。具体的には、第2の光伝送基板5の主面のうち、実装手段6が設けられた主面とは反対側の主面上の電気配線層11上に光半導体素子8は実装される。光半導体素子8は、光路変換面3および第2の光伝送基板5の光伝送部7を介してコア部2と光学的に結合する。
(Optical semiconductor device)
The composite optical transmission board in FIG. 2 is used by mounting the optical semiconductor element 8 on the second optical transmission board 5. Specifically, the optical semiconductor element 8 is mounted on the electric wiring layer 11 on the main surface opposite to the main surface on which the mounting means 6 is provided, among the main surfaces of the second optical transmission board 5. . The optical semiconductor element 8 is optically coupled to the core unit 2 via the optical path conversion surface 3 and the optical transmission unit 7 of the second optical transmission substrate 5.

光半導体素子8としては、面発光レーザ(VCSEL)などの発光素子や、面受光型の半導体受光素子(PD:Photo Diode)等が挙げられる。   Examples of the optical semiconductor element 8 include a light emitting element such as a surface emitting laser (VCSEL), a surface light receiving type semiconductor light receiving element (PD: Photo Diode), and the like.

なお、本発明の一実施態様の光伝送基板は、光半導体素子8が直接実装されてもよいが、光導波路2に貫通電極、または光導波路2上に電気配線を設ける必要がなく、光導波路へのクラックや形状不良などの悪影響および段差を有する電気配線の断線の可能性が低いことから、図2のように、本発明の一実施態様の光伝送基板と光半導体素子8との間に第2の光伝送基板5を介在させて使用されることが好ましい。   In the optical transmission board of one embodiment of the present invention, the optical semiconductor element 8 may be directly mounted. However, it is not necessary to provide a through electrode on the optical waveguide 2 or an electrical wiring on the optical waveguide 2, and the optical waveguide As shown in FIG. 2, between the optical transmission substrate and the optical semiconductor element 8 according to one embodiment of the present invention, the electrical wiring having a bad influence such as cracks and shape defects and disconnection of the electric wiring having a step is low. It is preferable that the second optical transmission board 5 be used.

光半導体素子8は、第2の光伝送基板5の主面のうち、実装手段が設けられた主面とは反対側の主面上に実装される。   The optical semiconductor element 8 is mounted on the main surface of the second optical transmission board 5 opposite to the main surface on which the mounting means is provided.

図2において、複合光伝送基板における光の伝送は、以下のようにおこなわれる。   In FIG. 2, light is transmitted on the composite optical transmission board as follows.

光半導体素子8が面発光レーザ(VCSEL)などの発光素子の場合、その発光点から出射した光信号は光伝送部7のコア部7a中に伝搬する。そして、光路変換面3にて略直角に光路変換して、光導波路2のコア部2bに到達する。   When the optical semiconductor element 8 is a light emitting element such as a surface emitting laser (VCSEL), an optical signal emitted from the light emitting point propagates into the core part 7 a of the optical transmission part 7. Then, the optical path is changed at a substantially right angle on the optical path conversion surface 3 and reaches the core portion 2 b of the optical waveguide 2.

図3(a)〜(d)は、光伝送基板(図1)の製造方法の実施態様の一例を模式的に示す工程ごとの要部断面図である。図3をもとにして実施例にて、本発明の実施態様である
光伝送基板の具体的な作製プロセスを説明する。なお、本実施態様である光伝送基板の製造方法は以下の態様に限定されない。
FIGS. 3A to 3D are cross-sectional views of relevant parts for each process schematically showing an example of an embodiment of a method for manufacturing an optical transmission board (FIG. 1). A specific manufacturing process of the optical transmission board according to the embodiment of the present invention will be described with reference to FIGS. In addition, the manufacturing method of the optical transmission board | substrate which is this embodiment is not limited to the following aspects.

(a)光導波路2の形成
基板1として、0.8mmの厚みを有する多層プリント配線板を用いた。なお、基板1の最表面には、ソルダーレジスト層、および光導波路2を形成するためにソルダーレジスト層と電気配線層とが除去された部位が設けられている(不図示)。
(A) Formation of optical waveguide 2 As the substrate 1, a multilayer printed wiring board having a thickness of 0.8 mm was used. The outermost surface of the substrate 1 is provided with a portion where the solder resist layer and the electrical wiring layer are removed in order to form the solder resist layer and the optical waveguide 2 (not shown).

基板1の最表面に対して、感光性エポキシ樹脂を塗布、露光および現像をおこなうことにより、下部クラッド部2c、コア部2b、上部クラッド2aの順に積層した光導波路2を作製した。なお、下部クラッド部2c、コア部2b、上部クラッド部2aの厚みは、それぞれ25μm、50μm、25μmであった。また、基板1の電気配線層11の厚み約15μmであった。   By applying a photosensitive epoxy resin to the outermost surface of the substrate 1, performing exposure and development, an optical waveguide 2 in which the lower clad part 2c, the core part 2b, and the upper clad 2a were laminated in this order was produced. In addition, the thickness of the lower clad part 2c, the core part 2b, and the upper clad part 2a was 25 micrometers, 50 micrometers, and 25 micrometers, respectively. The thickness of the electric wiring layer 11 of the substrate 1 was about 15 μm.

(b)溝9の形成
光導波路2に、先端角が45度のダイシングブレードを有するダイシングソーを用いて、上部クラッド2aから、基板の電気配線層を削らないように下部クラッド2cの一部まで溝入れを行い、深さが85μm、基板1に対して垂直な面(第2の内面9b)と45度傾斜した面(第1の内面9a)とを有する溝9を形成した。その際、ソルダーレジスト開口のアライメントマーカと光導波路2のコア部2bとを観察してダイシングソーの位置合わせを行なった。
(B) Formation of Groove 9 Using a dicing saw having a dicing blade with a tip angle of 45 degrees for the optical waveguide 2, from the upper clad 2a to a part of the lower clad 2c so as not to scrape the electric wiring layer of the substrate Grooving was performed to form a groove 9 having a depth of 85 μm and a surface perpendicular to the substrate 1 (second inner surface 9b) and a surface inclined by 45 degrees (first inner surface 9a). At that time, the alignment marker of the opening of the solder resist and the core portion 2b of the optical waveguide 2 were observed to align the dicing saw.

作製された溝9によりコア部2bは分断されていた。また、溝9はコア部2bの光軸方向とは略垂直に設けられていた。   The core portion 2b was divided by the manufactured groove 9. Further, the groove 9 was provided substantially perpendicular to the optical axis direction of the core portion 2b.

(c)光反射膜10の形成
溝9上から金(Au)を蒸着することにより溝9の内部に光反射膜10(厚さ約1000Å)を形成した。なお、蒸着は、開口をもつメタルマスクを基板1と位置合わせして固定し、溝9のみが露出した状態で行った。
(C) Formation of Light Reflecting Film 10 A light reflecting film 10 (thickness of about 1000 mm) was formed inside the groove 9 by depositing gold (Au) from the groove 9. The vapor deposition was performed in a state where a metal mask having an opening was aligned and fixed with the substrate 1 and only the groove 9 was exposed.

(d)第2の内面9b上の光反射膜10の除去工程
厚み20μmのダイシングブレードを有するダイシングソーを用いて、溝9の第2の内面9b上に蒸着した金を除去するように、第2の内面9bと、下部クラッド部2cは、コア部2bと基板1との間に介在する光導波路2の領域と、に溝入れを行い、コア部2bが露出した光導波路2の端面2dを露出させた(幅20μm)。
(D) Step of removing the light reflecting film 10 on the second inner surface 9b First, the gold deposited on the second inner surface 9b of the groove 9 is removed using a dicing saw having a dicing blade having a thickness of 20 μm. 2 and the lower clad portion 2c are grooved into the region of the optical waveguide 2 interposed between the core portion 2b and the substrate 1, and the end surface 2d of the optical waveguide 2 where the core portion 2b is exposed is formed. Exposed (width 20 μm).

具体的には、前記ダイシングソーを用いることにより、第2の内面9bおよび下部クラッド部2cを含む光導波路2の領域を除去して第2の内面9b上の光反射膜を除去し、さらに第1の内面9aの下端を含む領域を除去して、図1に示す凹部4を形成した。   Specifically, by using the dicing saw, the region of the optical waveguide 2 including the second inner surface 9b and the lower clad portion 2c is removed to remove the light reflecting film on the second inner surface 9b, and The region including the lower end of the inner surface 9a of 1 was removed to form the recess 4 shown in FIG.

なお、工程(d)において、下部クラッド部2cおよび第2の内面9bにそれぞれ10μm切り込みを入れるよう位置合わせすることで、最終的に光導波路2の端面2dから光路変換面3までの最短距離が20μmとなるよう設定した。これにより光導波路2の端面2dから光路変換面3の間隔が広がることを極力抑えることができた。また、溝入れ深さは85μmとすることで電気配線への影響も避けることができた。   In the step (d), by aligning the lower cladding portion 2c and the second inner surface 9b with a 10 μm cut, the shortest distance from the end surface 2d of the optical waveguide 2 to the optical path conversion surface 3 is finally obtained. The thickness was set to 20 μm. Thereby, it was possible to suppress as much as possible the increase in the distance between the end surface 2d of the optical waveguide 2 and the optical path conversion surface 3. Further, the influence on the electric wiring could be avoided by setting the grooving depth to 85 μm.

以上により、本発明の一実施態様の光伝送基板が得られた。   Thus, an optical transmission board according to an embodiment of the present invention was obtained.

1 基板
2 光導波路
2a 上部クラッド部
2b コア部
2c 下部クラッド部
2d 端面
3 光路変換面
4 凹部
4a 凹部の側縁
4b 底面
4c 傾斜面
5 第2の光伝送基板
6 実装手段
7 光伝送部
7a コア部
7b クラッド部
9 溝
9a 第1の内面
9b 第2の内面
10 光反射膜
11 電気配線層
A 光導波路2の光軸
B 光路変換面に入出力する光の光軸
DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical waveguide 2a Upper clad part 2b Core part 2c Lower clad part 2d End face 3 Optical path conversion surface 4 Recess 4a Recess side edge 4b Bottom face 4c Inclined surface 5 Second optical transmission board 6 Mounting means 7 Optical transmission part 7a Core Portion 7b Cladding portion 9 Groove 9a First inner surface 9b Second inner surface 10 Light reflecting film 11 Electrical wiring layer A Optical axis B of optical waveguide 2 Optical axis of light input to and output from optical path conversion surface

Claims (6)

基板と、
該基板上に設けられた、コア部および該コア部を光軸方向の途中で分断する溝部を有する、樹脂材料からなる光導波路とを備えた光伝送基板であって、
前記光導波路の前記溝部内に、前記コア部が露出した端面と、該端面から離れた位置にあって前記光導波路の光軸方向に対して傾斜している光路変換面と、該光路変換面の下端に繋がっているとともに前記基板に対して前記光路変換面よりも大きく傾斜した傾斜面を持つ、下方向に凹んだ凹部とを有する光伝送基板。
A substrate,
An optical transmission board provided on the substrate, including a core portion and a groove portion that divides the core portion in the middle of the optical axis direction, and an optical waveguide made of a resin material,
In the groove portion of the optical waveguide, an end surface where the core portion is exposed, an optical path conversion surface which is located away from the end surface and is inclined with respect to the optical axis direction of the optical waveguide, and the optical path conversion surface An optical transmission board having a recessed part recessed downward, having an inclined surface connected to the lower end of the substrate and having an inclined surface that is larger than the optical path conversion surface with respect to the substrate.
前記光路変換面の表面には、金属材料からなる金属膜が形成されているとともに、前記傾斜面は樹脂材料が露出している請求項1に記載の光伝送基板。   The optical transmission board according to claim 1, wherein a metal film made of a metal material is formed on a surface of the optical path conversion surface, and a resin material is exposed on the inclined surface. 前記傾斜面は、前記光路変換面となす角度が180度未満である請求項1または2に記載の光伝送基板。   3. The optical transmission board according to claim 1, wherein an angle formed between the inclined surface and the optical path conversion surface is less than 180 degrees. 請求項1〜3のいずれかに記載の光伝送基板と、
前記光路変換面を介して前記コア部と光学的に結合し、主面間を光が伝送する第2の光伝送基板と、
前記光伝送基板に第2の光伝送基板を実装させる実装手段と、
を具備する複合光伝送基板。
The optical transmission board according to any one of claims 1 to 3,
A second optical transmission board optically coupled to the core portion via the optical path conversion surface and transmitting light between the main surfaces;
Mounting means for mounting a second optical transmission board on the optical transmission board;
A composite optical transmission board comprising:
請求項4に記載の複合光伝送基板と、
前記光路変換面および前記第2の光伝送基板を介して前記コア部と光学的に結合し、前記第2の光伝送基板の主面のうち、前記実装手段が設けられた主面とは反対側の主面上に実装された光半導体素子と、を具備する光モジュール。
A composite optical transmission board according to claim 4,
Optically coupled to the core portion via the optical path conversion surface and the second optical transmission board, and the main surface of the second optical transmission board is opposite to the main surface provided with the mounting means An optical module comprising: an optical semiconductor element mounted on the main surface on the side.
基板上に、コア部およびクラッド部を有する、樹脂材料からなる光導波路を形成する工程(1)と、
前記基板に対して傾斜した第1の内面と、該第1の内面と対向する第2の内面と、を有する溝を、前記光導波路の前記コア部を分断するように形成する工程(2)と、
前記溝内部に光反射膜を設ける工程(3)と、
前記工程(3)において形成された、前記第1の内面上の光反射膜の一部、前記第2の内面上の光反射膜および前記光導波路の一部をダイシングブレードで除去して、前記第1の内面よりも前記基板に対して傾斜した傾斜面を持つ、下方向に凹んだ凹部、および前記コア部が露出した端面を有する溝部を前記光導波路に形成する工程(4)と
を含む光伝送基板の製造方法。
A step (1) of forming an optical waveguide made of a resin material having a core portion and a cladding portion on a substrate;
Forming a groove having a first inner surface inclined with respect to the substrate and a second inner surface facing the first inner surface so as to divide the core portion of the optical waveguide (2); When,
Providing a light reflecting film inside the groove (3);
A part of the light reflecting film on the first inner surface, the light reflecting film on the second inner surface and a part of the optical waveguide formed in the step (3) are removed with a dicing blade, A step (4) of forming, in the optical waveguide, a groove having an inclined surface inclined relative to the substrate relative to the first inner surface and having a recessed portion recessed downward and an end surface from which the core portion is exposed. Manufacturing method of optical transmission board.
JP2012135927A 2012-06-15 2012-06-15 Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module Active JP5225490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135927A JP5225490B2 (en) 2012-06-15 2012-06-15 Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135927A JP5225490B2 (en) 2012-06-15 2012-06-15 Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008018666A Division JP5058006B2 (en) 2008-01-30 2008-01-30 Manufacturing method of optical transmission board

Publications (2)

Publication Number Publication Date
JP2012198566A JP2012198566A (en) 2012-10-18
JP5225490B2 true JP5225490B2 (en) 2013-07-03

Family

ID=47180766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135927A Active JP5225490B2 (en) 2012-06-15 2012-06-15 Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module

Country Status (1)

Country Link
JP (1) JP5225490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10503071B2 (en) * 2017-10-26 2019-12-10 Waymo Llc Method for manufacturing light guide elements
JP7060798B2 (en) 2018-05-30 2022-04-27 日亜化学工業株式会社 Light source device
CN117148516A (en) * 2022-05-23 2023-12-01 深南电路股份有限公司 Photoelectric composite circuit board and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234585A (en) * 1987-03-23 1988-09-29 Mitsubishi Electric Corp Semiconductor laser array device
JPH0653552A (en) * 1992-07-30 1994-02-25 Mitsubishi Electric Corp Formation of optical characteristics measuring groove
JPH0846292A (en) * 1994-07-29 1996-02-16 Furukawa Electric Co Ltd:The Semiconductor laser element and manufacture thereof
JP2003140062A (en) * 2001-11-07 2003-05-14 Seiko Epson Corp Optical transmission device, optical module and method for manufacturing them
JP3834024B2 (en) * 2003-08-22 2006-10-18 日本電信電話株式会社 Optical waveguide component and manufacturing method thereof
JP4725314B2 (en) * 2005-12-16 2011-07-13 オムロン株式会社 Optical cable module and manufacturing method thereof
JP2007264164A (en) * 2006-03-28 2007-10-11 Sharp Corp Method of forming metallic pattern and method of manufacturing optical connecting structure
JP5245030B2 (en) * 2008-01-11 2013-07-24 フューチャー ライト リミテッド ライアビリティ カンパニー Nitride-based semiconductor laser device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012198566A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
EP1359441B1 (en) Method of manufacturing an optical-electrical wiring board
US7747111B2 (en) Optical waveguide mounted substrate and method of producing the same
JP5058006B2 (en) Manufacturing method of optical transmission board
JP5014855B2 (en) Opto-electric integrated wiring board, manufacturing method thereof, and opto-electric integrated wiring system
JP2009175418A (en) Opto-electronic printed wiring board and manufacturing method of same
JP2007148087A (en) Optoelectrical integrated wiring board and optoelectrical integrated wiring system
JP2006292852A (en) Optical-electrical wiring board
JP2012128153A (en) Optical waveguide, method for manufacturing the same and optical waveguide device
JP5479310B2 (en) Optical waveguide, manufacturing method thereof, and optical waveguide device
JP5225490B2 (en) Optical transmission board and manufacturing method thereof, composite optical transmission board and optical module
JP4677651B2 (en) Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
JP5328095B2 (en) Optical transmission board, opto-electronic hybrid board, optical module, and optoelectric circuit system
JP5078442B2 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, OPTICAL ELECTRONIC HYBRID SUBSTRATE, AND OPTICAL MODULE
JP5383348B2 (en) Electrical wiring board and optical module
JP2011128438A (en) Method for manufacturing optical waveguide, optical waveguide, and optical transmitter-receiver
JP2008158388A (en) Opto-electrical circuit board, optical module, and opto-electrical circuit system
JP6637368B2 (en) Optical waveguide device and method of manufacturing the same
JP2008134492A (en) Optical transmission system and optical module equipped with same
JP5409441B2 (en) Optical transmission board and optical module
JP2011095385A (en) Method for manufacturing photoelectric wire wiring board and photoelectric wire wiring board
JP7321907B2 (en) Optical waveguide, optical waveguide device, and method for manufacturing optical waveguide
JP5976769B2 (en) Optical waveguide and optical waveguide device
JP6140567B2 (en) Optical transmission board manufacturing method and optical transmission board
US11125954B2 (en) Optical waveguide and optical waveguide device
JP4698728B2 (en) Opto-electric integrated wiring board and opto-electric integrated wiring system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5225490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3