JP5224630B2 - Method for accelerating curing of adhesive - Google Patents

Method for accelerating curing of adhesive Download PDF

Info

Publication number
JP5224630B2
JP5224630B2 JP2002517702A JP2002517702A JP5224630B2 JP 5224630 B2 JP5224630 B2 JP 5224630B2 JP 2002517702 A JP2002517702 A JP 2002517702A JP 2002517702 A JP2002517702 A JP 2002517702A JP 5224630 B2 JP5224630 B2 JP 5224630B2
Authority
JP
Japan
Prior art keywords
adhesive
adhesive composition
magnetic field
heating
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002517702A
Other languages
Japanese (ja)
Other versions
JP2004506065A (en
JP2004506065A5 (en
Inventor
クリスティアン・エヌ・キルステン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of JP2004506065A publication Critical patent/JP2004506065A/en
Publication of JP2004506065A5 publication Critical patent/JP2004506065A5/ja
Application granted granted Critical
Publication of JP5224630B2 publication Critical patent/JP5224630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3612Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/484Moisture curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/485Multi-component adhesives, i.e. chemically curing as a result of the mixing of said multi-components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4855Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by their physical properties, e.g. being electrically-conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical
    • B29C65/4875Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical being spherical, e.g. particles or powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles

Description

(技術分野)
本発明は、交番磁界を用いて、粒子を充填した接着剤組成物を加熱する方法に関する。本発明は、交番磁界を用いて、粒子を充填した接着剤を加熱することによって、金属および非金属材料を結合する方法にも関する。
(Technical field)
The present invention relates to a method of heating an adhesive composition filled with particles using an alternating magnetic field . The invention also relates to a method for bonding metallic and non-metallic materials by heating an adhesive filled with particles using an alternating magnetic field .

(背景技術)
多くの産業分野において、特に金属加工産業、例えば自動車産業において、多用途車の製造および関連する供給産業において、または機械および家庭用電気器具の製造において、および建設産業において、同じかまたは異なる金属および非金属基材を接着剤またはシーラントによって接合させることが多くなっている。結合/封止は多くの技術的利益を与えるので、構成要素を接合させるこの方法は、リベット締め、ネジ締めまたは溶接のような従来の接合法にますます取って代わりつつある。これは特に、金属をプラスチックおよび/または複合材料に接合する場合、または異なる金属を接合する場合、例えば鋼部品をアルミニウムまたはマグネシウム部品に接合する場合のような、組成の異なる材料を接合する場合に言えることである。
(Background technology)
In many industrial fields, in particular in the metalworking industry, for example in the automotive industry, in the manufacture of versatile vehicles and in the related supply industry, or in the manufacture of machinery and household appliances, and in the construction industry, Increasingly non-metallic substrates are joined by adhesives or sealants. Since bonding / sealing offers many technical benefits, this method of joining components is increasingly replacing conventional joining methods such as riveting, screwing or welding. This is particularly the case when joining metals to plastics and / or composites, or when joining different metals, for example joining materials of different composition, such as joining steel parts to aluminum or magnesium parts. That is true.

産業分野、特に自動車製造において、現在の製造工程が満たすことを求められる1つの条件は、種々の接合された部品が、迅速に次の処理に供されることである。反応性接着剤系の基本的な短所は、接着剤の硬化、従って強度の増加に、比較的長い時間を必要とすることである。この基本的短所は、ホットメルト接着剤の場合はそれほど顕著でないが、非反応性(非後架橋性)ホットメルト接着剤は、特に高強度接着剤結合が関係する場合に、限定された範囲で高温に暴露しうるにすぎない。反応性接着剤を使用した場合、加熱によって硬化工程が一般に極めて高い程度に加速され、それによって強度が極めて迅速に増加する。この目的のために、既に接着剤を適用し接合させた加工物を一般に加熱する。これは、種々の方法、例えば、大きいオーブン、熱風ブロアー、加工物または結合させる加工物の領域の火炎への直接暴露、またはIRヒーターへの暴露によって、行うことができる。感熱性加工物はこのように処理することができず、従って、接着剤だけを加熱する方法を必要とする。接着剤のそのような選択的加熱は、原則として既知である。例えば、WO 99/09712は、特に自動車の直接的なガラス取付けにおいて、シーラントおよび接着剤の少なくとも一部をマイクロ波エネルギーに暴露することによって、シーラントおよび接着剤を少なくとも部分的に硬化する方法を開示している。  In the industrial field, particularly in automobile manufacturing, one condition that current manufacturing processes are required to meet is that the various bonded parts are quickly subjected to subsequent processing. The basic disadvantage of reactive adhesive systems is that it takes a relatively long time to cure the adhesive and thus increase its strength. This fundamental disadvantage is less pronounced for hot melt adhesives, but non-reactive (non-post-crosslinkable) hot melt adhesives are limited in scope, especially when high strength adhesive bonds are involved. It can only be exposed to high temperatures. When reactive adhesives are used, heating generally accelerates the curing process to a very high degree, thereby increasing the strength very quickly. For this purpose, workpieces which have already been bonded with an adhesive are generally heated. This can be done in various ways, for example by direct exposure to a flame in a large oven, hot air blower, workpiece or area of the workpiece to be bonded, or to an IR heater. Thermosensitive workpieces cannot be treated in this way and therefore require a method of heating only the adhesive. Such selective heating of the adhesive is known in principle. For example, WO 99/09712 discloses a method for at least partially curing sealants and adhesives by exposing at least a portion of the sealants and adhesives to microwave energy, particularly in direct automotive glass mounting. doing.

非導電性材料を加熱するマイクロ波エネルギーの使用自体は既知である。この方法の包括的説明は、R.V.DecahauおよびR.A.Peterson "Microwave Processing and Engineering", VCH Verlagsgesellschaft, 1986に記載されている。 The use of microwave energy to heat non-conductive materials is known per se. A comprehensive description of this method can be found in R.A. V. Decahau and R. A. It is described in "Microwave Processing and Engineering" by Peterson, VCH Verlagsgesellschaft, 1986.

接着剤組成物に存在するようなポリウレタン系を硬化するマイクロ波の使用も原則として既知である(米国特許4083901)。しかし、マイクロ波エネルギーを使用するこれらの既知の方法において、加熱される基材は、ほとんどの場合、大きいオーブンまたはベルトドライヤーのような大きい密閉室において、マイクロ波界に暴露される。残念なことに、そのような方法は、車の部品または車体全体のような大きくかつ困難な物品に結合および密封を形成する場合に適用できず、部品の全サイズに対して極小さい領域だけをマイクロ波エネルギーに暴露する。  The use of microwaves to cure polyurethane systems as present in adhesive compositions is also known in principle (US Pat. No. 4,083,901). However, in these known methods using microwave energy, the heated substrate is most often exposed to the microwave field in a large enclosed chamber such as a large oven or belt dryer. Unfortunately, such methods are not applicable when forming bonds and seals on large and difficult items such as car parts or the entire car body, and only a very small area for the entire size of the part. Exposure to microwave energy.

部分的または全体的硬化工程に供給されるマイクロ波エネルギーの量は、種々の要因、例えば、使用されるシーラントおよび接着剤の粘度ならびに硬化される層の厚みに依存し、供給される量が多いほど、シーラントおよび接着剤の粘度は高く、層の厚みは薄い。  The amount of microwave energy supplied to the partial or complete curing process depends on various factors, such as the viscosity of the sealant and adhesive used and the thickness of the layer being cured, and the amount supplied is high The higher the viscosity of the sealant and the adhesive, the thinner the layer.

これらの課題を解決するために、WO 88/09712は、特別に設計されたエミッターを使用してマイクロ波エネルギーをパルスで適用することを提案し、パルス振幅が減少する第一群のパルスが供給される。マイクロ波エネルギーのこのパルス状の適用は、初めに比較的大きいが短いエネルギー供給を与え、それによって、燃焼または分解の徴候なしに、シーラントおよび接着剤の一部をかなりの程度に加熱する。第一マイクロ波パルスの供給と、次の第二群のパルスの供給の間に、熱伝導によってシーラントおよび接着剤に温度均等化が起こり、それによって、次のパルスは、初めに比較的強く加熱されたシーラントおよび接着剤の部分の過熱を生じない。第一パルスの加熱作用ならびに結果として生じるシーラントおよび接着剤の温度上昇によって、シーラントおよび接着剤を減少する振幅のマイクロ波パルスに暴露しうるので、少量のエネルギーを供給する。しかし、実際には、この方法は、エネルギー量の調節が難しく、接合工程、従って硬化に、極めて短いサイクル時間を使用しうる場合に限定されることが示された。  In order to solve these problems, WO 88/09712 proposes to apply microwave energy in pulses using a specially designed emitter, providing a first group of pulses with reduced pulse amplitude. Is done. This pulsed application of microwave energy initially provides a relatively large but short energy supply, thereby heating a portion of the sealant and adhesive to a significant degree without signs of burning or degradation. Between the delivery of the first microwave pulse and the delivery of the next second group of pulses, thermal conduction causes temperature equalization in the sealant and adhesive, whereby the next pulse is initially heated relatively strongly. Does not cause overheating of the sealed sealant and adhesive parts. The heating action of the first pulse and the resulting temperature increase of the sealant and adhesive can expose the sealant and adhesive to microwave pulses of decreasing amplitude, thus providing a small amount of energy. In practice, however, this method has been shown to be difficult to control the amount of energy and is limited to cases where very short cycle times can be used for the joining process and hence curing.

EP-A 545033は、熱によって硬化しうる接着剤を使用して、特に点火コイルの鉄心に電気巻線を接合させる方法を開示している。この方法において、巻線および鉄心を、交番高周波界に暴露し、それによってそれらを加熱する。このようにして、巻線および鉄心によって形成されたユニットを急速かつ均質に加熱し、それによって接着剤を硬化させる。しかし、この方法は、特定の電気部品の構造的局面にのみ適用しうる。  EP-A 545033 discloses a method for bonding electrical windings, in particular to the iron core of an ignition coil, using an adhesive that can be cured by heat. In this method, the winding and iron core are exposed to an alternating high frequency field, thereby heating them. In this way, the unit formed by the windings and the iron core is heated rapidly and homogeneously, thereby curing the adhesive. However, this method can only be applied to the structural aspects of certain electrical components.

EP-A 237657は、カーペットを接合する方法を開示している。この目的のために、接着剤層が高周波誘導粉末を含有するか、または接着剤テープが導電性金属箔を含有することを記載している。粉末形態の鉄、コバルト、ニッケル、アルミニウム、炭素またはグラファイトを、導電性または誘導性材料として感熱性材料に導入することを提案している。誘導加熱によって加熱を促進するために、これらの粉末形態の粒子は、平たい層構造を有するのが好ましい。  EP-A 237657 discloses a method for joining carpets. For this purpose, it is described that the adhesive layer contains a high frequency induction powder or that the adhesive tape contains a conductive metal foil. It has been proposed to introduce iron, cobalt, nickel, aluminum, carbon or graphite in powder form as a conductive or inductive material into a heat sensitive material. In order to facilitate heating by induction heating, these powder form particles preferably have a flat layer structure.

US−A 5833795は、複合材料から成る製品に補修パッチを結合させることにより、複合材料を補修する方法を開示している。磁気粒子を含有するエポキシ接着剤を使用し、それによって、接着剤またはエポキシ樹脂を、磁気粒子の電磁励起により硬化することを提案している。特にマイクロ硬化を提案している。この目的のために、珪化鉄のような磁気粒子は約15〜20容量%の量で存在すべきであり、磁気粒子は硬化に必要な温度範囲のキュリー温度を有すべきである。 US-A 5833795 discloses a method for repairing composite materials by bonding repair patches to products made of composite materials. It has been proposed to use an epoxy adhesive containing magnetic particles, whereby the adhesive or epoxy resin is cured by electromagnetic excitation of the magnetic particles. In particular, it has proposed a microwave curing. For this purpose, magnetic particles such as iron silicide should be present in an amount of about 15-20% by volume, and the magnetic particles should have a Curie temperature in the temperature range required for curing.

WO 98/05726は、ゴム部品を接着的に接合させる方法を開示している。この方法において、接合させるゴム部品の表面を、特定の装置のそばに配置する。この装置は、電磁波を吸収し、熱活性接着剤に接触する標的要素を有する。電磁波は、標的要素を加熱して、接着剤を活性化する。接合させる表面を合わせ、装置を電磁線に暴露し、それによって、接着剤を活性化し、ゴム部品と作用面との結合を定着させるのに充分な熱が生じる。極めて類似した装置はWO 98/05728に開示されている。この文献によれば、該装置は、電磁波に透過性の部品間に使用される場合に特に有効である。  WO 98/05726 discloses a method for adhesively joining rubber parts. In this method, the surfaces of the rubber parts to be joined are placed beside a specific device. The device has a target element that absorbs electromagnetic waves and contacts the thermally activated adhesive. The electromagnetic wave heats the target element and activates the adhesive. The surfaces to be joined are brought together and the device is exposed to electromagnetic radiation, thereby generating enough heat to activate the adhesive and to fix the bond between the rubber part and the working surface. A very similar device is disclosed in WO 98/05728. According to this document, the device is particularly effective when used between components that are transparent to electromagnetic waves.

WO 98/51476は、液体を輸送するシステムを形成する方法、特に、硬質熱可塑性容器を、電磁接合法を使用して形成される可撓性の熱可塑性または熱硬化性エラストマーラインに接合する方法を開示している。可撓性ラインは、圧縮力下に、硬質容器への正確な適合を確実にするように設計される。この目的のために、電磁力を適用する前に、部品間に電磁硬化接着剤を適用する。接着材料は、電磁エネルギーを吸収する均質分散粒子を少なくとも60重量%で含有する熱可塑性材料であることが記載されている。  WO 98/51476 describes a method of forming a system for transporting liquids, in particular a method of joining a rigid thermoplastic container to a flexible thermoplastic or thermosetting elastomer line formed using an electromagnetic joining method. Is disclosed. The flexible line is designed to ensure an accurate fit to the rigid container under compressive force. For this purpose, an electromagnetic curing adhesive is applied between the parts before applying the electromagnetic force. The adhesive material is described as a thermoplastic material containing at least 60% by weight of homogeneously dispersed particles that absorb electromagnetic energy.

従って、先行技術からは、2つの方法(第一は、接着剤層に近接した装置または基材を、電磁線によって加熱し、第二は、電磁線を吸収する粒子を、接着剤に添加し、接着剤マトリックに極めて高いパーセントで分散させる)によって、接着剤を電磁線に暴露しうることが、知られているが、電磁線を吸収するそのような高いパーセントの金属粉末または他の粒子は、特に高強度接着剤の場合に、そのようにして硬化した接着剤の強度に極めて不利な影響を与えることが多い。 Thus, from the prior art, two methods (first is to heat the device or substrate in close proximity to the adhesive layer by electromagnetic radiation, and second is to add particles that absorb electromagnetic radiation to the adhesive. , by dispersing) a very high percentage in the adhesive matrix, it may expose the adhesive electromagnetic radiation, but that is known, metal powder or other particles of such high percentages of absorbing electromagnetic radiation Especially in the case of high-strength adhesives, the strength of the adhesive thus cured is often very adversely affected.

(発明の開示)
この先行技術背景に対して、本発明が解決しようとする課題は、接着剤を加熱するのに必要とされる熱に、電磁線を効果的に変換し、接着剤の特性に不利な影響を与えない方法を提供することである。
(Disclosure of the Invention)
In contrast to this prior art background, the problem to be solved by the present invention is to effectively convert electromagnetic radiation into the heat required to heat the adhesive, adversely affecting the properties of the adhesive. It is to provide a way not to give.

本発明が提供するこの課題の解決法は、請求の範囲に規定され、交番磁界によって接着剤組成物を加熱する方法を提供することから基本的に成り、該接着剤組成物は、ナノスケール超常磁性粒子を含有し、それによって、放射線への暴露の際に、熱可塑性接着剤の場合は、熱可塑性結合剤の軟化点に到達するかそれを越える程度に、反応性接着剤の場合は、結合剤マトリックスが結合剤の反応性基によって架橋される温度に到達する程度に、該接着剤組成物を加熱する。 The solution to this problem that the present invention provides is defined in the claims consists essentially of providing a method of heating an adhesive composition by an alternating magnetic field, the adhesive composition, nanoscale Contains superparamagnetic particles, so that upon exposure to radiation, in the case of thermoplastic adhesives, to the extent that the softening point of the thermoplastic binder is reached or exceeded, in the case of reactive adhesives The adhesive composition is heated to such an extent that the temperature at which the binder matrix is cross-linked by the reactive groups of the binder is reached.

本発明は、非金属材料および/または複合材料を結合する方法にも関し、該方法は以下の主要な工程を含んで成る:
ノスケール超常磁性粒子を含有する接着剤組成物を、場合によっては清浄化および/または表面処理の後に、接合させる基材表面の少なくとも1つに適用し;
・ 接着剤組成物が接合させる基材間にあるように基材を合わせ;
交番磁界で加熱することによって接着剤組成物を硬化する。
The invention also relates to a method for bonding non-metallic materials and / or composite materials, which method comprises the following main steps:
· The nanoscale superparamagnetic particles adhesive composition containing, optionally after cleaning and / or surface treatment is applied to at least one substrate surface to be bonded;
Align the substrates so that the adhesive composition is between the substrates to be joined;
-The adhesive composition is cured by heating with an alternating magnetic field .

本発明は、金属材料および/または複合材料を接合する同様の方法にも関し、該方法は以下の主要な工程を含んで成る:
ノスケール超常磁性粒子を含有する接着剤組成物を、場合によっては清浄化および/または表面処理の後に、接合させる基材表面の少なくとも1つに適用し;
交番磁界によって接着剤組成物を加熱し;
・ 接着剤組成物が接合させる基材間にあるように基材を合わす。
The present invention also relates to a similar method of joining metal materials and / or composite materials, the method comprising the following main steps:
· The nanoscale superparamagnetic particles adhesive composition containing, optionally after cleaning and / or surface treatment is applied to at least one substrate surface to be bonded;
Heating the adhesive composition with an alternating magnetic field ;
• Match the substrates so that the adhesive composition is between the substrates to be joined.

材料を結合する方法を2段階で行ってもよい。第一段階において、熱予備硬化によるかまたは紫外線によって、接着剤マトリックスを部分的にのみ硬化し、次の段階において、電磁線によって充分に硬化する。一方、第一段階において、接着剤マトリックスを電磁線によって部分的にのみ硬化し、次の段階において、熱硬化、湿分硬化または紫外線によって充分に硬化する方法で、この2段階法を行ってもよい。  The method of bonding materials may be performed in two stages. In the first stage, the adhesive matrix is only partially cured by thermal precuring or by UV radiation, and in the next stage it is fully cured by electromagnetic radiation. On the other hand, in the first step, the adhesive matrix is only partially cured by electromagnetic radiation, and in the next step, the two-step method can be performed by heat curing, moisture curing or UV curing. Good.

本発明におけるナノスケール粒子は、500nm以下、より好ましくは200nm以下、最も好ましくは100nmそれ以下、1つの特に好ましい態様においては50nm以下の平均粒度(または平均粒子径)を有する粒子である。この規定における粒度は、一次粒度を意味する。本発明の特に好ましい態様に使用されるナノスケール粒子は、1〜100nm、より好ましくは3〜50nmの平均粒度を有する。超常磁性よる作用を特に効果的に利用するために、粒度を50nm以下にすべきである。粒度は、UPA(超微細粒子分析器)法、例えばレーザー光後方散乱によって測定するのが好ましい。ナノスケール粒子の凝集または会合を防止するかまたは避けるために、粒子を一般に表面改質するかまたは表面被覆する。非凝集ナノスケール粒子、例えば酸化鉄粒子を製造する対応方法は、DE−A 19614136の第8〜10欄に開示されている。凝集を避けるための、そのようなナノスケール粒子の表面被覆法は、DE−A 19726282に開示されている。  The nanoscale particles in the present invention are particles having an average particle size (or average particle size) of 500 nm or less, more preferably 200 nm or less, most preferably 100 nm or less, and in one particularly preferred embodiment, 50 nm or less. The particle size in this rule means the primary particle size. Nanoscale particles used in particularly preferred embodiments of the present invention have an average particle size of 1-100 nm, more preferably 3-50 nm. In order to use the action of superparamagnetism particularly effectively, the particle size should be 50 nm or less. The particle size is preferably measured by the UPA (ultrafine particle analyzer) method, for example, laser light backscattering. In order to prevent or avoid aggregation or association of nanoscale particles, the particles are generally surface modified or surface coated. Corresponding methods for producing non-aggregated nanoscale particles, for example iron oxide particles, are disclosed in DE-A 19614136, columns 8-10. Such a nanoscale particle surface coating method to avoid agglomeration is disclosed in DE-A 19726282.

交番電界または交番磁界は、エネルギーの導入に好適である。交番電界を適用する場合、好適な充填剤材料は、あらゆる圧電性化合物、例えば、石英、トルマリン、チタン酸バリウム、硫酸リチウム、酒石酸カリウム、酒石酸ナトリウム、酒石酸ナトリウムカリウム、酒石酸エチレンジアミン、ペロブスカイト構造の強誘電性材料、特に、チタン酸ジルコニウム鉛(lead zirconium titanate)である。交番磁界を使用する場合、あらゆる超常磁性材料、特に、金属アルミニウム、コバルト、鉄、ニッケルまたはそれらの合金、およびn−磁赤鉄鉱型(γ−Fe2O3)およびn−磁鉄鉱型(Fe3O4)の金属酸化物、一般式:MeFe2O4のフェライト[式中、Meは、マンガン、銅、亜鉛、コバルト、ニッケル、マグネシウム、カルシウムおよびカドミウムから成る群から選択される二価の金属を表す]が基本的に好適である。 An alternating electric field or alternating magnetic field is suitable for introducing energy. When applying an alternating electric field, suitable filler materials are any piezoelectric compound, such as quartz, tourmaline, barium titanate, lithium sulfate, potassium tartrate, sodium tartrate, sodium potassium tartrate, ethylenediamine tartrate, perovskite ferroelectrics Material, in particular lead zirconium titanate. When using an alternating magnetic field, Shin'yu Ru superparamagnetic material, in particular, metallic aluminum, cobalt, iron, nickel or their alloys, and n- maghemite type (γ-Fe 2 O 3) and n- magnetite type (Fe 3 O 4 ) metal oxide, general formula: MeFe 2 O 4 ferrite [wherein Me is selected from the group consisting of manganese, copper, zinc, cobalt, nickel, magnesium, calcium and cadmium; Represents a valent metal] is basically preferred.

交番磁界を使用する場合、ナノスケール超常磁性粒子、いわゆる単一ドメイン粒子が特に好適である。先行技術から既知の常磁性粒子と比較して、ナノスケール充填剤はヒステリシスを有さないことを特徴とする。その結果、磁気ヒステリシス損失によってエネルギーの散逸が生じず、その代わりに、熱の発生は、交番電磁界の作用の間に誘発される周囲のマトリックスにおける粒子の振動または回転、最終的に機械摩擦損失に起因する。これは、粒子およびそれらを囲むマトリックスの極めて有効な加熱速度を生じる。  When using an alternating magnetic field, nanoscale superparamagnetic particles, so-called single domain particles, are particularly suitable. Compared to paramagnetic particles known from the prior art, nanoscale fillers are characterized by having no hysteresis. As a result, there is no energy dissipation due to magnetic hysteresis loss; instead, heat generation is caused by particle vibration or rotation in the surrounding matrix, which is induced during the action of an alternating electromagnetic field, and ultimately mechanical friction loss. caused by. This results in a very effective heating rate of the particles and the matrix surrounding them.

本発明の方法は、局所限定された熱の発生によって、結合される基材材料が熱応力を受けないことによって特に、従来の加熱方法と区別される。本発明の方法は、基材への熱の拡散を含まないので、極めて迅速かつ有効である。時には生じる顕著な熱損失さえ、この方法によって防止され、それによって本発明の方法は極めて経済的である。 The method of the present invention is particularly distinguished from conventional heating methods by the fact that the substrate material to be bonded is not subjected to thermal stress due to localized heat generation. The method of the present invention is extremely quick and effective because it does not involve the diffusion of heat to the substrate. Outstanding thermal losses occurring when even, is prevented by this method, thereby the method of the present invention is very economical.

接着剤を硬化させる前記の作用を極めて低コストで実施しなければならない場合、磁気テープまたはディスクのような電磁記録媒体用に本来開発された強磁性鉄酸化物および混合酸化物を使用するのが有効であることが示された。なぜなら、それらは低コストで大規模に製造することができ、それに相応する有用性を有するからである。これらの金属酸化物は一般に200nm〜1,000nmの粒子径を有し、本発明にも使用しうる。  If the action of curing the adhesive must be carried out at a very low cost, it is possible to use ferromagnetic iron oxides and mixed oxides originally developed for electromagnetic recording media such as magnetic tapes or disks. It was shown to be effective. This is because they can be produced on a large scale at low cost and have corresponding utility. These metal oxides generally have a particle size of 200 nm to 1,000 nm and can be used in the present invention.

本発明に使用される接着剤に好適なマトリックスは、原則として、接着剤に好適なあらゆるポリマーである。熱可塑的に軟化性の接着剤の例は、エチレン/酢酸ビニルコポリマー、ポリブテン、スチレン/イソプレン/スチレンおよびスチレン/ブタジエン/スチレンコポリマー、熱可塑性エラストマー、非晶質ポリオレフィン、線状熱可塑性ポリウレタン、コポリエステル、ポリアミド樹脂、ポリアミド/EVAコポリマー、ダイマー脂肪酸に基づくポリアミノアミド、ポリエステルアミドまたはポリエーテルアミドに基づくホットメルト接着剤である。他の好適な接着剤は、原則として、一または二成分ポリウレタン、一または二成分ポリエポキシド、シリコーンポリマー(一または二成分)、G. Habenicht,"Kleben: Grundlagen,Technologie,Anwendungen",第3版、1997、第2.3.4.4章に記載されているようなシラン改質ポリマーに基づく、既知の二液型接着剤である。ペルオキシ硬化剤、嫌気性硬化メカニズム、好気性硬化メカニズムまたは紫外線硬化メカニズムに基づく(メタ)アクリレート官能性二液型接着剤も、接着剤マトリックスとして好適である。  Suitable matrices for the adhesive used in the present invention are in principle any polymer suitable for the adhesive. Examples of thermoplastic softening adhesives are ethylene / vinyl acetate copolymers, polybutenes, styrene / isoprene / styrene and styrene / butadiene / styrene copolymers, thermoplastic elastomers, amorphous polyolefins, linear thermoplastic polyurethanes, copolymers. Hot melt adhesives based on polyesters, polyamide resins, polyamide / EVA copolymers, polyaminoamides based on dimer fatty acids, polyesteramides or polyetheramides. Other suitable adhesives are in principle one or two component polyurethanes, one or two component polyepoxides, silicone polymers (one or two components), G. Habenicht, "Kleben: Grundlagen, Technologie, Anwendungen", 3rd edition, 1997, a known two-part adhesive based on a silane-modified polymer as described in section 2.3.4.4. Also suitable as an adhesive matrix are (meth) acrylate functional two-part adhesives based on peroxy curing agents, anaerobic curing mechanisms, aerobic curing mechanisms or UV curing mechanisms.

例えばEP−A−356715、DE−A−19502381、DE−A−19518673またはDE−A−19730425に開示されている一または二成分反応性ゴムに基づく結合剤も好適である。この方法は、PVCホモポリマーまたはコポリマー、(メタ)アクリレートホモ−またはコポリマーまたはスチレンコポリマーおよび可塑剤に基づく、接着剤/シーラントまたは封止コンパウンドの硬化にも使用しうる。接着剤を、極めて低い温度で有効かつ迅速に硬化させる場合、固体表面失活ポリイソシアネートを分散させた反応性相手液または易溶融性ポリオールまたはアミノ末端プレポリマーを含有する一成分ポリウレタン系を特に使用しうる。そのような表面失活ポリイソシアネート系は、例えば、EP−A−922720、US−A−5710215、EP−A−598873、EP−A−671423、EP−A−417540、EP−A−510476、EP−A−212511またはEP−A−131903に開示されている。  Also suitable are binders based on one- or two-component reactive rubbers as disclosed, for example, in EP-A-356715, DE-A-19502381, DE-A-19518673 or DE-A-19730425. This method can also be used to cure adhesive / sealants or sealing compounds based on PVC homopolymers or copolymers, (meth) acrylate homo- or copolymers or styrene copolymers and plasticizers. For effective and rapid curing of adhesives at very low temperatures, especially use one-component polyurethane systems containing reactive counterparts or readily fusible polyols or amino-terminated prepolymers with dispersed solid surface deactivated polyisocyanates Yes. Such surface-inactivated polyisocyanate systems are, for example, EP-A-922720, US-A-5710215, EP-A-598873, EP-A-671423, EP-A-417540, EP-A-510476, EP -A-212511 or EP-A-131903.

前記結合剤の中で、トルエンジイソシアネート(TDI)の固体誘導体、例えば、TDIウレトジオンまたはTDIウレア粉末またはイソホロンジイソシアネート(IP、−DI)トリマーに基づく分散系が、特に好適である。そのような表面失活ポリイソシアネートは粉末であり、95〜145℃の融点、約1μm〜約30μmの粒度を有し、粒度分布の50%平均値は8μm〜2μmである。これらの超微粉砕固体ジイソシアネートの利点は、該ジイソシアネートが低温において炭化水素、多くのポリオールおよび可塑剤に実質的に不溶性であり、それによって、それらに分散させることができ、好適なアミンで表面失活しうることである。  Among the binders, dispersions based on solid derivatives of toluene diisocyanate (TDI) such as TDI uretdione or TDI urea powder or isophorone diisocyanate (IP, -DI) trimer are particularly suitable. Such surface-inactivated polyisocyanates are powders, have a melting point of 95-145 ° C., a particle size of about 1 μm to about 30 μm, and a 50% average value of the particle size distribution is 8 μm to 2 μm. The advantage of these micronized solid diisocyanates is that the diisocyanates are substantially insoluble in hydrocarbons, many polyols and plasticizers at low temperatures, so that they can be dispersed in them and surface loss with suitable amines. It can be used.

好ましい分散剤は、室温で、液体、ガラス状および非晶質または結晶質であり、1分子につき2または3個のヒドロキシル基を有し、400〜20,000、好ましくは1,000〜6,000の分子量を有するポリヒドロキシ化合物であるポリオールである。その例は、二官能性および/または三官能性ポリプロピレングリコールであるが、エチレンオキシドおよびプロピレンオキシドのランダムおよび/またはブロックコポリマーも使用しうる。好ましいポリエーテルの他の群は、例えば、テトラヒドロフランの酸重合によって製造されるポリテトラメチレングリコール(ポリ(オキシテトラメチレン)グリコール、ポリ−THF)であり、ポリテトラメチレングリコールの分子量は、600〜6,000、好ましくは800〜5,000である。  Preferred dispersants are liquid, glassy and amorphous or crystalline at room temperature, have 2 or 3 hydroxyl groups per molecule, and have a molecular weight of 400 to 20,000, preferably 1,000 to 6,000. It is a polyol which is a hydroxy compound. Examples are difunctional and / or trifunctional polypropylene glycols, but random and / or block copolymers of ethylene oxide and propylene oxide may also be used. Another group of preferred polyethers is, for example, polytetramethylene glycol (poly (oxytetramethylene) glycol, poly-THF) prepared by acid polymerization of tetrahydrofuran, the molecular weight of polytetramethylene glycol being 600-6,000. Preferably, it is 800-5,000.

他の好適なポリオールは、液体、ガラス状、非晶質または結晶質ポリエステルであり、それらは、ジカルボン酸またはトリカルボン酸、例えば、アジピン酸、セバシン酸、グルタル酸、アゼライン酸、スベリン酸、ウンデカン二酸、ドデカン二酸、3,3−ジメチルグルタル酸、テレフタル酸、イソフタル酸、ヘキサヒドロフタル酸、ダイマー脂肪酸またはそれらの混合物と、低分子量ジオールまたはトリオール、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ブタン−1,4−ジオール、ヘキサン−1,6−ジオール、デカン−1,10−ジオール、ドデカン−1,12−ジオール、ダイマー脂肪アルコール、グリセロール、トリメチロールプロパンまたはそれらの混合物との縮合によって得られる。本発明に好適なポリオールの他の群は、「ポリカプロラクトン」としても既知のε−カプロラクトンに基づくポリエステルである。しかし、油脂化学物質由来のポリエステルポリオールも使用しうる。油脂化学ポリエステルポリオールは、例えば、少なくとも部分的にオレフィン性不飽和の脂肪酸を含有する脂肪混合物のエポキシ化トリグリセリドを、1〜12個の炭素原子を有する1つまたはそれ以上のアルコールで完全に開環し、次に、トリグリセリド誘導体を部分エステル交換して、アルキル基に1〜12個の炭素原子を有するアルキルエステルポリオールを形成することによって得られる。他の好適なポリオールは、ポリカーボネートポリオールおよびダイマージオール(Henkel KGaA)ならびにヒマシ油およびその誘導体である。例えば「Poly-bd」の商品名で知られているヒドロキシ官能性ポリブタジエンも、本発明の組成物用のポリオールとして使用しうる。  Other suitable polyols are liquid, glassy, amorphous or crystalline polyesters, which are dicarboxylic or tricarboxylic acids such as adipic acid, sebacic acid, glutaric acid, azelaic acid, suberic acid, undecane diester. Acids, dodecanedioic acid, 3,3-dimethylglutaric acid, terephthalic acid, isophthalic acid, hexahydrophthalic acid, dimer fatty acids or mixtures thereof and low molecular weight diols or triols such as ethylene glycol, propylene glycol, diethylene glycol, Ethylene glycol, dipropylene glycol, butane-1,4-diol, hexane-1,6-diol, decane-1,10-diol, dodecane-1,12-diol, dimer fatty alcohol, glycerol, trimethylolpropane or the like Mixing Obtained by condensation of. Another group of polyols suitable for the present invention are polyesters based on ε-caprolactone, also known as “polycaprolactone”. However, polyester polyols derived from oleochemicals can also be used. An oleochemical polyester polyol is, for example, a ring-opening of an epoxidized triglyceride of a fat mixture containing at least partially olefinically unsaturated fatty acids with one or more alcohols having 1 to 12 carbon atoms. And then by partial transesterification of the triglyceride derivative to form an alkyl ester polyol having 1 to 12 carbon atoms in the alkyl group. Other suitable polyols are polycarbonate polyols and dimer diols (Henkel KGaA) and castor oil and its derivatives. For example, hydroxy functional polybutadienes known under the trade name “Poly-bd” may also be used as polyols for the compositions of the present invention.

他の好適なポリオールは、アクリレートまたはメタクリレートと、ヒドロキシ官能性アクリル酸および/またはメタクリル酸化合物、例えばヒドロキシエチル(メタ)アクリレートまたはヒドロキシプロピル(メタ)アクリレートとのラジカル共重合によって製造しうる線状および/または軽度分岐アクリレートコポリマーポリオールである。この製造方法の故に、これらのポリオールのヒドロキシル基は一般に統計的に分布しており、ポリオールは平均OH価を有する線状または軽度分岐ポリオールである。二官能性化合物がポリオールに好ましいが、少なくとも少量で、より高い官能価のポリオールも使用しうる。固体ポリオールは、70℃未満、好ましくは50℃未満の融点範囲を有すべきであり、溶融状態において低粘度を有すべきであるが、室温で液体のポリオールが特に好ましい。  Other suitable polyols are linear and can be prepared by radical copolymerization of acrylates or methacrylates with hydroxy functional acrylic and / or methacrylic acid compounds such as hydroxyethyl (meth) acrylate or hydroxypropyl (meth) acrylate. / Or a lightly branched acrylate copolymer polyol. Because of this production method, the hydroxyl groups of these polyols are generally statistically distributed, and the polyols are linear or lightly branched polyols having an average OH number. Bifunctional compounds are preferred for polyols, but higher functionality polyols may be used in at least small amounts. The solid polyol should have a melting point range of less than 70 ° C., preferably less than 50 ° C. and should have a low viscosity in the molten state, although polyols that are liquid at room temperature are particularly preferred.

多くのトリアミンまたはポリアミンを、前記ポリオールの代わりに、またはそれと一緒に使用しうるが、アミノ末端ポリアルキレングリコール、特に三官能性アミノ末端ポリプロピレングリコール、ポリエチレングリコール、またはプロピレングリコールとエチレングリコールのコポリマーが好ましい。これらは、"Jeffamine" の名称(Huntsman社の商品名)でも既知である。三官能性アミノ末端ポリオキシテトラメチレングリコール(ポリ−THFとしても既知)も特に好適であり、アミノ末端ポリブタジエン、およびポリプロピレングリコール、ポリエチレングリコールまたはポリ−THFのアミノ安息香酸エステル(Air Productsの"Versalink Oligomeric Diamines"の商品名によって既知)も好適である。アミノ末端ポリアルキレングリコールまたはポリブタジエンは、400〜6,000の分子量を有する。  Many triamines or polyamines can be used in place of or in conjunction with the polyol, but amino-terminated polyalkylene glycols, particularly trifunctional amino-terminated polypropylene glycols, polyethylene glycols, or copolymers of propylene glycol and ethylene glycol are preferred. . These are also known under the name “Jeffamine” (trade name of Huntsman). Trifunctional amino-terminated polyoxytetramethylene glycol (also known as poly-THF) is also particularly suitable, amino-terminated polybutadiene, and aminobenzoates of polypropylene glycol, polyethylene glycol or poly-THF ("Versalink Oligomeric from Air Products"). Also known is the trade name “Diamines”. The amino-terminated polyalkylene glycol or polybutadiene has a molecular weight of 400 to 6,000.

原則として、あらゆる相対的高周波の交番磁界を、ナノスケール粒子を含有する接着剤の加熱用のエネルギー源として使用しうる。例えば、いわゆるISM(工業、化学および医学用途)範囲の電磁線を使用しうる(詳細については、特に、Kirk-Othmer、"Encyclopedia of Chemical Technology" 第3版、第15巻、"Microwave technology" の章を参照)。 In principle, the exchange Ban磁 boundaries of any relative frequency may be used as an energy source for heating of the adhesive containing nanoscale particles. For example, electromagnetic radiation in the range of the so-called ISM (industrial, chemical and medical applications) can be used (for details, in particular Kirk-Othmer, "Encyclopedia of Chemical Technology" 3rd edition, volume 15, "Microwave technology" See chapter).

本発明のナノスケール粒子を使用する場合、電磁線を特定の作用に使用しうることを前記に示した。これは、約50kHzまたは100kHz〜100MHzの低周波範囲においてさえ、実質的にあらゆる周波数を使用して、接着剤マトリックス中の接着結合剤マトリックスを分離するのに必要とされる熱の量を生じうるという事実において、明らかに示されている。周波数の選択は、使用される装置によって決まり、干渉界が放射されないように当然注意すべきである。  It has been shown above that when using the nanoscale particles of the present invention, electromagnetic radiation can be used for specific actions. This can result in the amount of heat needed to separate the adhesive binder matrix in the adhesive matrix using virtually any frequency, even in the low frequency range of about 50 kHz or 100 kHz to 100 MHz. This is clearly shown in the fact. The choice of frequency depends on the equipment used and should be taken care of so that no interference fields are radiated.

少しの基本的試験によって本発明を以下に例示する。実施例の選択は、いかなる方法においても本発明の範囲を限定するものではなく、実施例は、本発明の接着剤組成物の操作方法を例示するモデルにすぎない。  The invention is illustrated below with a few basic tests. The choice of examples does not limit the scope of the invention in any way, and the examples are only models illustrating how to operate the adhesive composition of the invention.

(実施例)
熱接着剤に対するナノスケール粒子の作用を調べる試験は、Henkel KGaAから入手できる3種類の熱可塑性ホットメルト接着剤を用いて行った。該ホットメルト接着剤は、標準的なエチレン/酢酸ビニルに基づく接着剤(Technomelt Q 3118;EVA1)、ならびに中耐熱性(Macromelt 6208;PA1)および高耐熱性(改質ポリアミド;PA2)の2種類のポリアミドに基づく接着剤であった。非改質接着剤の特徴的接着性または材料特性の選択を、表1に示す。
(Example)
Tests examining the effect of nanoscale particles on thermal adhesives were performed using three thermoplastic hot melt adhesives available from Henkel KGaA. The hot melt adhesives are standard ethylene / vinyl acetate based adhesives (Technomelt Q 3118; EVA1) and medium heat resistant (Macromelt 6208; PA1) and high heat resistant (modified polyamide; PA2) This was an adhesive based on polyamide. The selection of characteristic adhesion or material properties of the unmodified adhesive is shown in Table 1.

Figure 0005224630
Figure 0005224630

結合の耐熱性(HR)を測定するために、100×25×4mmのブナ材およびPVCの穴をあけた2つの試料を、20×25mmの領域に接着剤を使用して結合し、次に、室温で約24時間保存した。次に、結合した試料を、循環空気乾燥室(Heraeus UT 5050 EK)内に吊り下げ、1365gの重りを取り付けた。次に、下記の温度プログラムを適用した:
1.25℃で開始;、
2.10分間で25℃〜50℃に加熱;
3.5時間で50℃〜200℃に加熱;
4.200℃で20分間維持;
5.20分間で25℃に冷却。
To measure the heat resistance (HR) of the bond, two samples with 100 x 25 x 4 mm beech and PVC holes were bonded to a 20 x 25 mm area using an adhesive and then And stored at room temperature for about 24 hours. The bound sample was then suspended in a circulating air drying chamber (Heraeus UT 5050 EK) and a 1365 g weight was attached. The following temperature program was then applied:
1. Start at 25 ° C;
2. Heat to 25-50 ° C in 10 minutes;
3. Heat to 50-200 ° C in 5 hours;
4. Maintain at 200 ° C for 20 minutes;
5. Cool to 25 ° C in 20 minutes.

接着破壊に要した時間(秒)は、マイクロプログラマー(DEP 1131)によって表示された。耐熱性(HR)は、下記の式に基づいて算出した:

Figure 0005224630
The time (seconds) required to break the bond was displayed by a microprogrammer (DEP 1131). Heat resistance (HR) was calculated based on the following formula:
Figure 0005224630

引張勇断強度(SS)は、DIN 53283によって測定した。100×25×4mmのブナ材およびPVCの試料を、20x25mmの領域に接着剤を使用して結合し、約24時間後に、引張試験に付した(Zwick 144501 Universal Tester)。  The tensile breaking strength (SS) was measured according to DIN 53283. Samples of 100 × 25 × 4 mm beech and PVC were bonded to a 20 × 25 mm area using an adhesive and subjected to tensile testing after approximately 24 hours (Zwick 144501 Universal Tester).

前記の接着剤を、種々の量のナノスケール磁鉄鉱で改質した。使用した磁鉄鉱は、ポリマー接着剤マトリックスへより良好に適合させるために、部分的に表面改質した。表2に示す粒子径は、UPA(超微細粒子分析器)測定によって求めた。磁鉄鉱の結晶サイズは、X線構造分析によって決定して、8nmであった。  The adhesive was modified with various amounts of nanoscale magnetite. The magnetite used was partially surface modified in order to better fit the polymer adhesive matrix. The particle sizes shown in Table 2 were determined by UPA (ultrafine particle analyzer) measurement. The crystal size of magnetite was 8 nm as determined by X-ray structural analysis.

Figure 0005224630
Figure 0005224630

表2の磁鉄鉱を、表1の接着剤に種々の充填レベルで分散させた。いくつかの選択した20重量%改質配合物の特性を、表3に示す。  The magnetite of Table 2 was dispersed in the adhesive of Table 1 at various filling levels. The properties of some selected 20 wt% modified formulations are shown in Table 3.

Figure 0005224630
Figure 0005224630

実施例4〜8から、接着剤にナノスケール磁鉄鉱を高度に充填した場合でも、耐熱性および剪断強度は、不利な影響を一般に受けないことが明らかである。高耐熱性ポリアミドに基づく接着剤(PA2)の場合は、極めて高い引張剪断強度を得ようとする場合に、磁鉄鉱粒子の量および表面改質剤を、相互に、および結合される基材に、適合させるべきである。  From Examples 4-8, it is clear that heat resistance and shear strength are generally not adversely affected even when the adhesive is highly filled with nanoscale magnetite. In the case of adhesives based on high heat resistant polyamides (PA2), when trying to obtain very high tensile shear strength, the amount of magnetite particles and the surface modifier are mutually, and on the substrate to be bonded, Should be adapted.

実施例9
改質接着剤の誘導加熱性に対する「信号受容体」粒子径の影響
基本的に、ナノスケールの「信号受容体」だけでなく、より大きい粒子径の信号受容体も、ポリマーマトリックスの誘導加熱に好適である。しかし、ここでは詳しく説明しない他の加熱メカニズムの結果として、ナノスケール粒子を使用した場合に導入しうるエネルギーの量は、大きい粒子を使用した場合よりかなり多い。これは、例えば改質ポリエステル系(Dynacoll 7360, Huels)を使用して行われる対応する試験によって示しうる。必要とされる交番磁界は、Huettinger TIG5/300発生器によって発生させた。加えた電圧は180Vであった。使用したコイルは、直径3.5cmおよび10巻きを有していた。それは、振動を発生する発振器回路の一部であった。上記電圧および寸法において、約250KHzの周波数を得た。実施例10および比較例から、本発明によってナノスケール充填剤を接着剤マトリックス中の「信号受容体」として使用する場合、「粗い」磁鉄鉱粒子を使用する場合よりかなり短い時間で、かなり高い温度に、改質ポリエステルを加熱することが明らかである。試験の結果を表4に示す。
Example 9 :
Effect of “Signal Receptor” Particle Size on Induced Heatability of Modified Adhesive Basically, not only nanoscale “signal receptors” but also larger particle size signal receptors are responsible for induction heating of polymer matrices. Is preferred. However, as a result of other heating mechanisms not described in detail here, the amount of energy that can be introduced when using nanoscale particles is much higher than when using large particles. This can be shown, for example, by corresponding tests performed using a modified polyester system (Dynacoll 7360, Huels). The required alternating magnetic field was generated by a Huetttinger TIG5 / 300 generator. The applied voltage was 180V. The coil used had a diameter of 3.5 cm and 10 turns. It was part of an oscillator circuit that generates vibration. A frequency of about 250 KHz was obtained at the above voltage and dimensions. From Example 10 and the comparative example, when using nanoscale fillers as a “signal receptor” in an adhesive matrix according to the present invention, a much shorter time and at a much higher temperature than using “coarse” magnetite particles. It is clear that the modified polyester is heated. Table 4 shows the test results.

Figure 0005224630
Figure 0005224630

実施例10
改質接着剤の誘導加熱性に対する「信号受容体」充填レベルの影響
交番磁界における改質接着剤の加熱挙動は、使用される信号受容体の充填レベルにかなり依存する。例として磁鉄鉱改質EVA1を使用して、対応する試験を行った。必要とされた交番磁界は、Huettinger TIG5/300発生器を使用して発生させた。適用した電圧は180Vであった。使用したコイルは、直径3.5cmおよび10巻きを有していた。
試験の結果を表5に示す。
Example 10 :
Effect of “Signal Receptor” Fill Level on Induced Heatability of Modified Adhesive The heating behavior of the modified adhesive in an alternating magnetic field is highly dependent on the fill level of the signal receptor used. Corresponding tests were performed using magnetite modified EVA1 as an example. The required alternating magnetic field was generated using a Huetttinger TIG5 / 300 generator. The applied voltage was 180V. The coil used had a diameter of 3.5 cm and 10 turns.
The test results are shown in Table 5.

Figure 0005224630
Figure 0005224630

実施例11〜14から、ナノスケール磁鉄鉱充填レベルが増加するとともに、それ以外は同じ条件において、必要な加熱時間が顕著に減少することが明らかである。  From Examples 11-14, it is clear that the nanoscale magnetite filling level increases and the required heating time is significantly reduced under the same conditions otherwise.

実施例15
改質接着剤の誘導加熱性に対する交番磁界の強度の影響
磁鉄鉱改質接着剤の誘電加熱における重大な因子は、適用される磁界の強度である。コイルに生じる磁界の強度は、適用される電圧または流れる電流に特に依存する。種々の電圧の作用を測定する試験を、Huettinger TIG5/300発生器を使用して行った。適用した最大電圧は180Vであった。使用したコイルは、直径3.5cmおよび10巻きを有していた。実施例8の組成物を接着剤として使用した。結果を表6に示す。
Example 15 :
Effect of alternating magnetic field strength on induction heating properties of modified adhesives A critical factor in the dielectric heating of magnetite modified adhesives is the strength of the applied magnetic field. The strength of the magnetic field generated in the coil depends in particular on the applied voltage or flowing current. Tests measuring the effect of various voltages were performed using a Huetttinger TIG5 / 300 generator. The maximum voltage applied was 180V. The coil used had a diameter of 3.5 cm and 10 turns. The composition of Example 8 was used as an adhesive. The results are shown in Table 6.

Figure 0005224630
Figure 0005224630

表6のデータから、接着剤マトリックスの加熱速度は磁界強度の増加(即ち、適用される電圧の増加)とともに顕著に増加し、それによって、接着剤マトリックスを融解させ、従って2つの基材を合わして結合させるのに充分な温度に極めて短時間で到達することが明らかである。  From the data in Table 6, the heating rate of the adhesive matrix increases significantly with increasing magnetic field strength (ie, increasing applied voltage), thereby melting the adhesive matrix and thus bringing the two substrates together. It is clear that a temperature sufficient for bonding is reached in a very short time.

実施例16
改質接着剤の誘導加熱性に対するコイル形状の影響
交番磁界の磁界強度は、適用される電圧だけでなく、使用されるコイルの長さおよび巻き数にも依存する。定電圧において、種々の周波数または強度の磁界が、コイルの長さおよび巻き数に応じて得られる。180Vの最大定電圧において対応する試験を行った。20重量%の磁鉄鉱で改質したPA2を接着剤ベースとして使用した。使用したコイルは、3.5cmの定直径を有し、巻き数が異なっていた。これらの試験の結果を表7に示す。
Example 16 :
Effect of coil shape on induction heating properties of modified adhesive The magnetic field strength of an alternating magnetic field depends not only on the applied voltage but also on the length and number of turns of the coil used. At constant voltage, magnetic fields of various frequencies or strengths are obtained depending on the coil length and the number of turns. Corresponding tests were performed at a maximum constant voltage of 180V. PA2 modified with 20 wt% magnetite was used as the adhesive base. The coil used had a constant diameter of 3.5 cm and the number of turns was different. The results of these tests are shown in Table 7.

Figure 0005224630
Figure 0005224630

表7に示した結果は、より短いコイル長さまたはより少ない巻き数、およびそれによって生じるより大きい磁界強度を使用した場合、同じ接着剤組成物について、加熱速度が顕著に増加することを示す。  The results shown in Table 7 show that the heating rate is significantly increased for the same adhesive composition when using shorter coil lengths or fewer turns and the resulting higher magnetic field strength.

誘導加熱が接着剤の特性をどの程度変化させるかを求めるために、20重量%の磁鉄鉱で改質したPA2を数回、誘電加熱する試験を行った。Huettinger TIG5/300発生器を試験に使用した。適用した電圧は180Vであった。使用したコイルは、直径3.5cmおよび10巻きを有していた。得られた結果は、交番磁界で繰り返し加熱した後でも、改質接着剤の加熱挙動は実質的に影響を受けなかったことを示す。  In order to determine how much the induction heating changes the properties of the adhesive, a test was conducted in which PA2 modified with 20 wt% magnetite was dielectrically heated several times. A Huettinger TIG5 / 300 generator was used for testing. The applied voltage was 180V. The coil used had a diameter of 3.5 cm and 10 turns. The results obtained show that the heating behavior of the modified adhesive was not substantially affected even after repeated heating with an alternating magnetic field.

従って、熱可塑性接着剤を使用して、加熱、従って基材の結合を、可逆性にすることができ、それによって、結合した部品を繰り返し分離することができ、必要であれば再び結合させることができる。  Thus, a thermoplastic adhesive can be used to make the heating and hence the bonding of the substrates reversible, so that the bonded parts can be repeatedly separated and rebonded if necessary. Can do.

一成分反応性接着剤を硬化するために、一成分熱硬化ポリウレタン接着剤(Terolan 1500、 Henkel Teroson GmbHの製品)を使用した。この接着剤は、ポリオール、Jeffamine、触媒およびそれに分散させた表面失活TDIダイマーに基づくポリウレタン接着剤である。下記の実施例において、非改質接着剤は「TcPU」と称する。この接着剤を種々の量のナノスケールn−磁鉄鉱で改質した。対応して改質した接着剤の木材/木材接着剤結合を、交番磁界に暴露した。硬化速度が、使用した磁界の周波数および磁界強度、並びに接着剤層の厚みに、相当程度に依存することを見出した。Huettinger TIG 5/300磁界発生器を使用した。適用した電圧は、使用した発生器で可能な最大値の100%であった(180V)。「弱い」磁界用に10巻きのコイルを使用し、「強い」磁界用に4巻きのコイルを使用した。結果の選択を表8〜10に示す。接着剤の厚みは全て500μmであった。  A one-component thermoset polyurethane adhesive (Terolan 1500, product of Henkel Teroson GmbH) was used to cure the one-component reactive adhesive. This adhesive is a polyurethane adhesive based on polyol, Jeffamine, catalyst and surface deactivated TDI dimer dispersed therein. In the examples below, the unmodified adhesive is referred to as “TcPU”. The adhesive was modified with various amounts of nanoscale n-magnetite. Correspondingly modified adhesive wood / wood adhesive bonds were exposed to an alternating magnetic field. It has been found that the cure rate depends to a large extent on the frequency and strength of the magnetic field used and the thickness of the adhesive layer. A Huettinger TIG 5/300 magnetic field generator was used. The applied voltage was 100% of the maximum possible with the generator used (180V). A 10-turn coil was used for the “weak” magnetic field, and a 4-turn coil was used for the “strong” magnetic field. Results selection is shown in Tables 8-10. The adhesive thickness was all 500 μm.

Figure 0005224630
Figure 0005224630
Figure 0005224630
Figure 0005224630
Figure 0005224630
Figure 0005224630

実施例15〜20から、極めて少量の磁鉄鉱を使用した場合でも、問題とするタイプの熱硬化反応性接着剤は、極めて短時間で硬化して、同じ接着剤組成物の従来のオーブン硬化によって得られる引張剪断強度をはるかに超える極めて高い引張剪断強度を付与しうることが明らかである。これらの試験から、特に、本発明に係る電磁波による硬化において、接着剤の硬化時間が顕著に減少することが可能なことが明らかである。従って、結合される基材の熱応力も減少する。  From Examples 15-20, even when very small amounts of magnetite are used, the type of thermosetting reactive adhesives of interest cures in a very short time and is obtained by conventional oven curing of the same adhesive composition. It is clear that very high tensile shear strength can be provided, far exceeding the tensile shear strength that is achieved. From these tests, it is clear that the curing time of the adhesive can be remarkably reduced, particularly in the curing by electromagnetic waves according to the present invention. Accordingly, the thermal stress of the bonded substrates is also reduced.

Claims (13)

交番磁界によって接着剤組成物を加熱する方法であって、1〜100nmの平均粒子径を有するナノスケール超常磁性粒子を含有する接着剤組成物を加熱し、
・ 熱可塑性接着剤の場合は、熱可塑性結合剤の軟化点より高い温度に加熱し、
・ 反応性接着剤の場合は、結合剤マトリックスが結合剤の反応性基によって架橋される温度に加熱する、
ことを特徴とする方法。
A method of heating an adhesive composition by an alternating magnetic field, heating an adhesive composition containing nanoscale superparamagnetic particles having an average particle diameter of 1 to 100 nm,
In the case of thermoplastic adhesives, heat to a temperature above the softening point of the thermoplastic binder,
In the case of reactive adhesives, heating to a temperature at which the binder matrix is crosslinked by the reactive groups of the binder,
A method characterized by that.
ナノスケール粒子が、3〜50nmの平均粒子径を有することを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the nanoscale particles have an average particle diameter of 3 to 50 nm.
ナノスケール超常磁性粒子が、アルミニウム、コバルト、鉄、ニッケルまたはそれらの合金、n−磁赤鉄鉱型(γ−Fe2O3)およびn−磁鉄鉱型(Fe3O4)の金属酸化物または一般式:MeFe2O4のフェライト[式中、Meは、マンガン、銅、亜鉛、コバルト、ニッケル、マグネシウム、カルシウムまたはカドミウムから選択される二価の金属を表す]から選択されることを特徴とする請求項1または2に記載の方法。
Nanoscale superparamagnetic particles are aluminum, cobalt, iron, nickel or alloys thereof, metal oxides of n-maghemite type (γ-Fe 2 O 3 ) and n-magnetite type (Fe 3 O 4 ) or general Formula: MeFe 2 O 4 ferrite, wherein Me represents a divalent metal selected from manganese, copper, zinc, cobalt, nickel, magnesium, calcium or cadmium The method according to claim 1 or 2.
ナノスケール粒子が、全組成物に基づいて1〜30重量%の量で存在する請求項1〜3のいずれかに記載の方法。
The method according to any of claims 1 to 3, wherein the nanoscale particles are present in an amount of 1 to 30% by weight, based on the total composition.
接着剤組成物を暴露させる交番磁界が、50kHz〜300GHzの周波数を有することを特徴とする請求項1〜4のいずれかに記載の方法。
The method according to any one of claims 1 to 4, wherein the alternating magnetic field to which the adhesive composition is exposed has a frequency of 50 kHz to 300 GHz.
周波数が50kHz〜300MHzであることを特徴とする請求項5に記載の方法。
6. The method according to claim 5, wherein the frequency is 50 kHz to 300 MHz.
周波数が300MHz〜300GHzであることを特徴とする請求項5に記載の方法。
6. The method according to claim 5, wherein the frequency is 300 MHz to 300 GHz.
熱可塑性接着剤組成物が、エチレン/酢酸ビニルコポリマー、ポリブテン、スチレン/イソプレン/スチレンまたはスチレン/ブタジエン/スチレンコポリマー、熱可塑性エラストマー、非晶質ポリオレフィン、線状熱可塑性ポリウレタン、コポリエステル、ポリアミド樹脂、ポリアミド/EVAコポリマー、ダイマー脂肪酸に基づくポリアミノアミド、ポリエステルアミド、ポリエーテルアミド、またはPVCホモポリマーおよび/またはコポリマーに基づくプラスチゾル、(メタ)アクリレートホモ−および/またはコポリマーまたはスチレンコポリマーおよび可塑剤に基づくことを特徴とする請求項1に記載の方法。
The thermoplastic adhesive composition comprises ethylene / vinyl acetate copolymer, polybutene, styrene / isoprene / styrene or styrene / butadiene / styrene copolymer, thermoplastic elastomer, amorphous polyolefin, linear thermoplastic polyurethane, copolyester, polyamide resin, Polyamide / EVA copolymers, polyaminoamides based on dimer fatty acids, polyesteramides, polyetheramides, or plastisols based on PVC homopolymers and / or copolymers, (meth) acrylate homo- and / or copolymers or styrene copolymers and plasticizers The method of claim 1, wherein:
反応性接着剤組成物が、一または二成分ポリウレタン、一または二成分ポリエポキシド、シリコーンポリマー、シラン改質ポリマー、一または二成分反応性ゴムまたは一成分ポリウレタンおよび表面失活固体ポリイソシアネートに基づくことを特徴とする請求項1に記載の方法。
The reactive adhesive composition is based on a one or two component polyurethane, a one or two component polyepoxide, a silicone polymer, a silane modified polymer, a one or two component reactive rubber or one component polyurethane and a surface deactivated solid polyisocyanate; The method according to claim 1, characterized in that
非金属材料および/または複合材料を結合する方法であって、
1〜100nmの平均粒子径を有するナノスケール超常磁性粒子を含有する接着剤組成物を、接合させる基材表面の少なくとも1つに適用し;
・ 接着剤組成物が接合させる基材間にあるように基材を合わせ;
・ 交番磁界により加熱することによって接着剤組成物を硬化する
工程を含んで成る方法。
A method for bonding non-metallic materials and / or composite materials comprising:
Applying an adhesive composition containing nanoscale superparamagnetic particles having an average particle size of 1 to 100 nm to at least one of the substrate surfaces to be joined;
Align the substrates so that the adhesive composition is between the substrates to be joined;
A method comprising curing the adhesive composition by heating with an alternating magnetic field.
金属材料および/または複合材料を接合する方法であって、
1〜100nmの平均粒子径を有するナノスケール超常磁性粒子を含有する接着剤組成物を、接合させる基材表面の少なくとも1つに適用し;
・ 交番磁界により接着剤組成物を加熱し;
・ 接着剤組成物が接合させる基材間にあるように基材を合わせる
工程を含んで成る方法。
A method for joining metal materials and / or composite materials comprising:
Applying an adhesive composition containing nanoscale superparamagnetic particles having an average particle size of 1 to 100 nm to at least one of the substrate surfaces to be joined;
Heating the adhesive composition with an alternating magnetic field;
• A method comprising the steps of aligning the substrates such that the adhesive composition is between the substrates to be joined.
硬化を2段階で行い、第一段階において、熱予備硬化によるかまたは紫外線照射によって、接着剤マトリックスを部分的にのみ硬化し、次の段階において、交番磁界によって充分に硬化することを特徴とする請求項10または11に記載の方法。
Curing is carried out in two stages, characterized in that in the first stage the adhesive matrix is only partially cured by thermal precuring or by UV irradiation and in the next stage it is sufficiently cured by an alternating magnetic field. The method according to claim 10 or 11.
硬化を2段階で行い、第一段階において、交番磁界によって接着剤マトリックスを部分的にのみ硬化し、次の段階において、熱硬化、湿分硬化または紫外線照射によって充分に硬化することを特徴とする請求項10または11に記載の方法。   Curing is performed in two stages. In the first stage, the adhesive matrix is only partially cured by an alternating magnetic field, and in the next stage, it is sufficiently cured by heat curing, moisture curing or ultraviolet irradiation. The method according to claim 10 or 11.
JP2002517702A 2000-08-03 2001-07-25 Method for accelerating curing of adhesive Expired - Fee Related JP5224630B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10037884A DE10037884A1 (en) 2000-08-03 2000-08-03 Accelerated curing process
DE10037884.6 2000-08-03
PCT/EP2001/008600 WO2002012409A1 (en) 2000-08-03 2001-07-25 Method for accelerating the curing of adhesives

Publications (3)

Publication Number Publication Date
JP2004506065A JP2004506065A (en) 2004-02-26
JP2004506065A5 JP2004506065A5 (en) 2008-09-11
JP5224630B2 true JP5224630B2 (en) 2013-07-03

Family

ID=7651218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002517702A Expired - Fee Related JP5224630B2 (en) 2000-08-03 2001-07-25 Method for accelerating curing of adhesive

Country Status (9)

Country Link
US (1) US7147742B2 (en)
EP (1) EP1305376B1 (en)
JP (1) JP5224630B2 (en)
AR (1) AR030114A1 (en)
AT (1) ATE277138T1 (en)
AU (1) AU2001279785A1 (en)
DE (2) DE10037884A1 (en)
ES (1) ES2227248T3 (en)
WO (1) WO2002012409A1 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924138A1 (en) 1999-05-26 2000-11-30 Henkel Kgaa Detachable adhesive connections
DE19951599A1 (en) * 1999-10-27 2001-05-23 Henkel Kgaa Process for adhesive separation of adhesive bonds
DE10037884A1 (en) 2000-08-03 2002-02-21 Henkel Kgaa Accelerated curing process
DE10037883A1 (en) * 2000-08-03 2002-02-14 Henkel Kgaa Ferromagnetic resonance excitation and its use for heating particle-filled substrates
US7569624B2 (en) * 2001-11-13 2009-08-04 Degussa Ag Curable bonded assemblies capable of being dissociated
DE10201190A1 (en) * 2002-01-14 2003-07-31 Henkel Kgaa Thermal activation of foils
DE10255893B4 (en) * 2002-11-28 2006-06-29 Institut für Physikalische Hochtechnologie e.V. Method and apparatus for heating a material containing a plurality of magnetic particles
AU2003900335A0 (en) * 2003-01-22 2003-02-13 Sirtex Medical Limited Microparticles for selectively targeted hyperthermia
JP2004265728A (en) * 2003-02-28 2004-09-24 Jst Mfg Co Ltd Dielectric sheet
DE10310722A1 (en) 2003-03-10 2004-09-23 Tesa Ag Electrically heatable adhesive composition, useful for adhesive tape in automotive applications such as electrically heated mirrors, comprises an adhesive component and an electrically conductive filler
US8070994B2 (en) 2004-06-18 2011-12-06 Zephyros, Inc. Panel structure
DE102005017912A1 (en) * 2005-04-18 2006-10-19 Henkel Kgaa Low temperature hardening of 1-component polyurethane adhesives or sealants for bonding plastics especially in headlamp manufacture involves exposure to microwave irradiation
US20060275564A1 (en) * 2005-06-01 2006-12-07 Michael Grah Method of activating the shrink characteristic of a film
DE102006007563A1 (en) * 2006-02-16 2007-08-30 Röhm Gmbh Process for bonding materials with nanoscale superparamagnetic poly (meth) acrylate polymers
DE102006007564A1 (en) * 2006-02-16 2007-08-30 Röhm Gmbh Nanoscale superparamagnetic poly (meth) acrylate polymers
DE102006056660A1 (en) * 2006-11-29 2008-06-05 Henkel Kgaa Shaped product for gluing onto metal or plastic substrates as a fixing device consists entirely of a polyamide-, polyolefin-, polyester-, polyacrylate- or polystyrene-based hot-melt adhesive
DE102007009124B4 (en) * 2007-02-24 2011-11-03 Evonik Degussa Gmbh Induction-based manufacturing processes
KR100882735B1 (en) * 2007-03-19 2009-02-06 도레이새한 주식회사 Anisotropic Conductive Film and Adhesion Method Thereof
DE102007015261A1 (en) * 2007-03-27 2008-10-02 Aacure Aadhesives Gmbh Reactive mass for substrate application, preferably for the generation of a glop-top, comprises a thermally initiable matrix forming material and an energy absorbing initiator, where the initiator is soluble in the reactive mass
DE102007028581A1 (en) * 2007-06-19 2008-12-24 Bayerische Motoren Werke Aktiengesellschaft Device and method for joining components by means of gluing
US7984738B2 (en) * 2007-06-26 2011-07-26 Emabond Solutions Llc Temperature controlled polymer composition for inductive control heating using electrical conductive and magnetic particles
JP5551351B2 (en) * 2007-10-26 2014-07-16 東レ・ダウコーニング株式会社 Method for bonding silicone rubber members
CN101981148A (en) * 2008-03-27 2011-02-23 琳得科株式会社 Reattachable adhesive sheet
CA2731280A1 (en) * 2008-03-27 2009-10-01 Lintec Corporation Adhesive composition, adhesive sheet and adhesive formed product
GB0806434D0 (en) 2008-04-09 2008-05-14 Zephyros Inc Improvements in or relating to structural adhesives
DE102009022584B4 (en) * 2008-05-21 2014-02-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for materially joining parts with an adhesive
EP2291473B1 (en) * 2008-06-26 2016-08-17 Dow Corning Corporation Method of forming a curable adhesive tape and an insulating layer on a conductive substrate
DE102009001356A1 (en) 2008-10-31 2010-05-12 Gkss-Forschungszentrum Geesthacht Gmbh Article having at least one thermo-programmable switching section for applications in contact with materials having high heat transfer coefficients
DE102009049027A1 (en) * 2009-05-29 2011-04-21 Glabete Ag Fastening means and method for fixing an object to a base
BRPI0924559A2 (en) * 2009-06-11 2019-09-24 Saab Ab aircraft structure, aircraft and manufacturing method of said aircraft structure
DE102009028942A1 (en) * 2009-08-27 2011-03-03 Evonik Degussa Gmbh Inductively curable adhesive composition
JP5606029B2 (en) * 2009-09-14 2014-10-15 リンテック株式会社 Adhesive composition for slide rail, adhesive sheet, and slide rail fixing method
GB0916205D0 (en) 2009-09-15 2009-10-28 Zephyros Inc Improvements in or relating to cavity filling
DE102009046256A1 (en) * 2009-10-30 2011-05-12 Tesa Se Process for bonding heat-activated, bondable surface elements
DE102009046263A1 (en) * 2009-10-30 2011-05-12 Tesa Se Method for bonding heat-activated, bondable thin surface elements
BR112012022319B1 (en) 2010-03-04 2020-01-28 Zephyros Inc composite structural laminate
WO2011160181A1 (en) * 2010-06-23 2011-12-29 Oem Nutech Pty Ltd A coated laminate material and a method of fabricating therefor
TWI493009B (en) * 2011-09-27 2015-07-21 Hon Hai Prec Ind Co Ltd Ultraviolet light curing adhesive and dispensing method of same
CN103031082B (en) * 2011-09-30 2016-08-10 鸿富锦精密工业(深圳)有限公司 Ultraviolet cured adhesive and dispensing method thereof
DE102011057003A1 (en) * 2011-12-23 2013-06-27 Rehau Ag + Co. Method for joining motor vehicle components
US9561621B2 (en) * 2012-05-21 2017-02-07 GM Global Technology Operations LLC Method and apparatus to mitigate the bond-line read-out defect in adhesive-bonded composite panels
DE102012209513A1 (en) * 2012-06-06 2013-12-12 Osram Opto Semiconductors Gmbh Connector, method for connecting two bodies and electronic assembly
US10100170B2 (en) * 2012-09-28 2018-10-16 Dow Global Technologies Llc Composition, connector, process for improving bonding between two or more means for conveying fluids, and system for conveying fluids
DE102013100925A1 (en) * 2013-01-30 2014-07-31 Borgwarner Beru Systems Gmbh Coil and corona ignition device with such a coil
DE102013003612A1 (en) * 2013-03-01 2014-09-04 Gerhard Fauner Curing, releasing or destroying adhesive layers between surface coatings on e.g. disk of brakes of automobile, by initiating, accelerating and controlling chemical or physical hardening of adhesive layer, and releasing solidified layer
US20140272188A1 (en) 2013-03-15 2014-09-18 Mahle International Gmbh Anti-friction coating to piston assembly
US20140363637A1 (en) 2013-06-06 2014-12-11 The Boeing Company Heating Layer for Film Removal
US10577523B2 (en) 2013-07-26 2020-03-03 Zephyros, Inc. Relating to thermosetting adhesive films
EP2975097B1 (en) 2014-07-17 2022-03-09 3M Innovative Properties Company Pressure sensitive adhesive assembly comprising thermoplastic filler material
EP2975096B1 (en) 2014-07-17 2021-11-17 3M Innovative Properties Company Pressure sensitive adhesive assembly suitable for bonding to uneven substrates
GB201417985D0 (en) 2014-10-10 2014-11-26 Zephyros Inc Improvements in or relating to structural adhesives
WO2016124202A1 (en) 2015-02-02 2016-08-11 Coloplast A/S Ostomy device
BR112017017013A2 (en) * 2015-02-09 2018-04-10 Mitsubishi Heavy Industries, Ltd. adhesive and structure, and bonding method
DE102015202415B4 (en) * 2015-02-11 2021-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adhesive, component, method for contactless temperature measurement of the adhesive, method for the improved connection of two components with the adhesive and use of the adhesive
KR102261689B1 (en) * 2015-03-24 2021-06-07 주식회사 엘지화학 Adhesive composition, adhesive film comprising the same, organic electronic device comprising the same and method for preparing the organic electronic device
DK3280368T3 (en) 2015-04-10 2019-09-23 Coloplast As STOMA DEVICE
CN107735257B (en) * 2015-07-06 2021-07-06 泽菲罗斯有限公司 Thermal bonding of low energy surface substrates
EP3159386B1 (en) 2015-10-23 2021-08-25 3M Innovative Properties Company Thermally post-curable pressure sensitive adhesive
EP3170876A1 (en) * 2015-11-17 2017-05-24 3M Innovative Properties Company Post-curable precursor of an acrylic-based pressure-sensitive adhesive
WO2017134282A1 (en) * 2016-02-05 2017-08-10 Technische Universität München Joining of components by means of energetically activated reactive particles
JP6729873B2 (en) * 2016-07-04 2020-07-29 トヨタ紡織株式会社 Reinforcement cloth material for urethane foam molding and method for producing urethane foam molded article using the same
KR102202909B1 (en) 2016-11-21 2021-01-14 주식회사 엘지화학 Composition for 3 dimensional printing
JP7051483B2 (en) * 2017-03-29 2022-04-11 三洋化成工業株式会社 Microwave heating and welding resin composition
US20190264066A1 (en) * 2018-02-23 2019-08-29 Ardex, L.P. Reactivatable Tile Bonding Mat
IT201800006015A1 (en) * 2018-06-04 2019-12-04 AUTOMATED SYSTEM FOR GLUING OR SEPARATION OF MODIFIED ADHESIVES AND WELDING OR SEPARATION OF PLASTIC MATERIALS WITH NANOPARTICLES SENSITIVE TO ELECTROMAGNETIC FIELDS, ON AN INDUSTRIAL SCALE
US11879073B2 (en) 2020-04-20 2024-01-23 Uchicago Argonne, Llc RF cured nanocomposite adhesives for multi-material joining applications
CN113061407B (en) * 2021-04-01 2022-11-01 杭州索日智能装备有限公司 EVA composite hot melt adhesive, and preparation method and use method thereof

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE158973C (en)
US168640A (en) * 1875-10-11 Improvement in plunger-pumps
US3391846A (en) 1963-08-08 1968-07-09 Du Pont Heating with antiferromagnetic particles in a high frequency magnetic field
US3564515A (en) * 1964-01-30 1971-02-16 Gen Dynamics Corp Information handling apparatus
GB1135803A (en) * 1964-12-11 1968-12-04 E M A Corp Electromagnetic adhesive and method of joining materials thereby
US4083901A (en) 1975-08-29 1978-04-11 The Firestone Tire & Rubber Company Method for curing polyurethanes
JPS5348740A (en) * 1976-10-15 1978-05-02 Ricoh Co Ltd Pressure sensitive adhesive electrostatic photographic toner
US4176054A (en) * 1977-05-16 1979-11-27 Kelley Joseph A Waste paper recycling
JPS54161645A (en) * 1978-06-12 1979-12-21 Sekisui Chem Co Ltd High-frequency heating adhesive
JPS5655474A (en) * 1979-10-12 1981-05-16 Sekisui Chem Co Ltd Radiofrequency heating curable adhesive
DE3325734A1 (en) 1983-07-16 1985-01-24 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING N- (3,5-DICHLORPHENYL) -OXAZOLIDIN-2,4-DIONES
US4548862A (en) * 1984-09-04 1985-10-22 Minnesota Mining And Manufacturing Company Flexible tape having bridges of electrically conductive particles extending across its pressure-sensitive adhesive layer
EP0237657A1 (en) 1986-03-13 1987-09-23 Tsugo Nakano A method of seaming for bonding carpet strip and tape therefor
DE3501490A1 (en) * 1985-01-18 1986-07-24 Daimler-Benz Ag, 7000 Stuttgart GLASS DISC GLUED IN THE FRAME OF A CAR BODY BY MEANS OF AN ELASTOMER NETWORKED ADHESIVE
DE3529530A1 (en) 1985-08-17 1987-02-26 Basf Ag USE OF STABLE DISPERSIONS OF SOLID, FINE-PARTICULATE POLYISOCYANATES IN PIGMENT PRINTING PASTE AND FIBER FLOATING
EP0236362A1 (en) 1985-09-18 1987-09-16 The Commonwealth Of Australia Desealing compositions
DE3709852A1 (en) 1987-03-24 1988-10-06 Silica Gel Gmbh Adsorptions Te Stable magnetic fluid compositions and processes for their preparation and their use
JPH01503546A (en) 1987-06-12 1989-11-30 ヘンケル・テロゾン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and apparatus for sealing and at least partially curing adhesives
US4882399A (en) * 1987-08-21 1989-11-21 Polytechnic University Epoxy resins having reversible crosslinks
JP2546316B2 (en) * 1988-02-12 1996-10-23 東亞合成株式会社 Adhesive composition
FR2635110B1 (en) 1988-08-05 1990-11-09 Saim Adhesifs Insonorisants Mo PREGELIFIABLE ADHESIVE
DE3930138A1 (en) 1989-09-09 1991-03-21 Bayer Ag POLYURETHANE REACTIVE ADHESIVES WITH FINE DISPERSED POLYMERS
US5189078A (en) * 1989-10-18 1993-02-23 Minnesota Mining And Manufacturing Company Microwave radiation absorbing adhesive
US5338611A (en) 1990-02-20 1994-08-16 Aluminum Company Of America Method of welding thermoplastic substrates with microwave frequencies
US5820664A (en) * 1990-07-06 1998-10-13 Advanced Technology Materials, Inc. Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
US5240626A (en) * 1990-09-21 1993-08-31 Minnesota Mining And Manufacturing Company Aqueous ferrofluid
US5272216A (en) 1990-12-28 1993-12-21 Westinghouse Electric Corp. System and method for remotely heating a polymeric material to a selected temperature
DE4113416A1 (en) 1991-04-25 1992-10-29 Bayer Ag POLYISOCYANATE SUSPENSIONS IN RESPONDING COMPOUNDS TO ISOCYANATE GROUPS AND THEIR USE
ATE141222T1 (en) 1991-07-03 1996-08-15 Gurit Essex Ag RESOLVABLE ADHESIVE CONNECTIONS, METHOD FOR THE PRODUCTION THEREOF AND USE OF DEVICES FOR RELEASING SUCH ADHESIVE CONNECTIONS
DE4139541A1 (en) 1991-11-30 1993-06-03 Bosch Gmbh Robert METHOD FOR CONNECTING AN ELECTRICAL WINDING TO AN IRON CORE
WO1993025599A1 (en) 1992-06-15 1993-12-23 Abend Thomas P Process and mixture of substances for producing reactive melts
US5710215A (en) 1992-06-15 1998-01-20 Ebnother Ag Method and material mixture for manufacture of reactive hotmelts
US5620794A (en) * 1992-07-01 1997-04-15 Gurit-Essex Ag Releasable adhesive joint, a method for establishing a releasable adhesive joint and an apparatus for releasing such adhesive joints
DE4230116C2 (en) 1992-09-09 1995-10-05 Vacuumschmelze Gmbh Aqueous, alkaline, soluble adhesive and its use
DE4239442C2 (en) * 1992-11-24 2001-09-13 Sebo Gmbh Use of an adsorbent material modified with polynuclear metal oxide hydroxides for the selective elimination of inorganic phosphate from protein-containing liquids
DE9216278U1 (en) 1992-11-25 1993-02-18 Tenax Gmbh Produkte Und Systeme Fuer Materialschutz, 2102 Hamburg, De
JPH07157740A (en) * 1993-12-07 1995-06-20 Nissan Motor Co Ltd Adhesive resin composition
DE4407490A1 (en) 1994-03-07 1995-09-14 Bayer Ag Process for the preparation of thermosetting one-component polyurethane reactive compositions
DE19502381A1 (en) 1995-01-26 1996-08-01 Teroson Gmbh Structural raw rubber-based adhesives
DE19511288C2 (en) 1995-03-28 1997-04-03 Beiersdorf Ag Use of a double-sided adhesive film section for fixing or hanging an object
KR19980703184A (en) 1995-03-29 1998-10-15 더글라스브루스리틀 Electromagnetic absorption composite
DE19512427A1 (en) * 1995-04-03 1996-10-10 Inst Neue Mat Gemein Gmbh Composite adhesive for optical and optoelectronic applications
DE19518673A1 (en) 1995-05-20 1996-11-21 Henkel Teroson Gmbh Heat-curing foamed rubber compounds with high structural strength
DE19526351B4 (en) 1995-07-19 2005-06-30 Scheidel Gmbh & Co. Kg Dissolving gel for paints, paints and adhesives
JP3689159B2 (en) 1995-12-01 2005-08-31 ナミックス株式会社 Conductive adhesive and circuit using the same
US5695901A (en) * 1995-12-21 1997-12-09 Colorado School Of Mines Nano-size magnetic particles for reprographic processes and method of manufacturing the same
US5985435A (en) * 1996-01-23 1999-11-16 L & L Products, Inc. Magnetized hot melt adhesive articles
DE19614136A1 (en) 1996-04-10 1997-10-16 Inst Neue Mat Gemein Gmbh Process for the production of agglomerate-free nanoscale iron oxide particles with a hydrolysis-resistant coating
US5770296A (en) 1996-08-05 1998-06-23 Senco Products, Inc. Adhesive device
WO1998005726A1 (en) 1996-08-05 1998-02-12 Senco Products, Inc. Method of adhesively adhering rubber components
US5833795A (en) 1996-09-19 1998-11-10 Mcdonnell Douglas Corporation Magnetic particle integrated adhesive and associated method of repairing a composite material product
GB9708265D0 (en) * 1997-04-24 1997-06-18 Nycomed Imaging As Contrast agents
US5786030A (en) * 1996-11-12 1998-07-28 Henkel Corporation Spotting resistant gloss enhancement of autodeposition coating
US5800866A (en) * 1996-12-06 1998-09-01 Kimberly-Clark Worldwide, Inc. Method of preparing small particle dispersions
US5968304A (en) 1997-05-14 1999-10-19 Ashland, Inc. Process for forming fluid flow conduit systems and products thereof
DE19726282A1 (en) 1997-06-20 1998-12-24 Inst Neue Mat Gemein Gmbh Nanoscale particles with an iron oxide-containing core surrounded by at least two shells
WO1999003306A1 (en) * 1997-07-11 1999-01-21 Minnesota Mining And Manufacturing Company Method for locally heating a work piece using platens containing rf susceptors
DE19730425A1 (en) 1997-07-16 1999-01-21 Henkel Teroson Gmbh Heat-curing laundry-resistant shell sealant
DE19733643A1 (en) 1997-08-04 1999-02-11 Henkel Kgaa Removable adhesives
US6011307A (en) * 1997-08-12 2000-01-04 Micron Technology, Inc. Anisotropic conductive interconnect material for electronic devices, method of use and resulting product
PT922720E (en) 1997-12-11 2002-01-30 Bayer Ag PROCESS FOR THE PREPARATION AND UTILIZATION OF LATENT LAYERS OR POSSIBLE REACTIVES STAYING THE STORAGE OF SURFACE-OFF SOLID POLYISOCYANATES AND DISPERSION POLYMERS WITH FUNCTIONAL GROUPS
HUP0101625A3 (en) * 1998-04-28 2002-12-28 Elbion Ag New hydroxyindoles, their use as phosphodiesterase 4 inhibitors and method for producing same
DE19832629A1 (en) 1998-07-21 2000-02-03 Daimler Chrysler Ag Adhesive system for the formation of reversible adhesive bonds
US6591125B1 (en) * 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
DE19954960A1 (en) 1998-12-09 2000-06-15 Henkel Kgaa Adhesive comprising a polymer and paramagnetic and/or ferromagnetic nanoparticles having a particle size of 1-1000 nm is useful for bonding paper, cardboard, carpet, cork, textiles, plastic and metal.
DE19904835A1 (en) 1999-02-08 2000-08-10 Henkel Kgaa Removable adhesives
DE19924138A1 (en) 1999-05-26 2000-11-30 Henkel Kgaa Detachable adhesive connections
EP1230249B1 (en) * 1999-11-15 2004-06-02 Therasense, Inc. Transition metal complexes with bidentate ligand having an imidazole ring
DE10003581A1 (en) * 2000-01-28 2001-08-02 Bayer Ag Organometallic compounds with fused indenyl ligands
US6602989B1 (en) * 2000-05-17 2003-08-05 The Research Foundation Of State University Of New York Synthesis, characterization, and application of pyridylazo bioconjugates as diagnostic and therapeutic agents
DE10037884A1 (en) 2000-08-03 2002-02-21 Henkel Kgaa Accelerated curing process
US6686490B1 (en) * 2000-11-06 2004-02-03 Ramot University Authority For Applied Research & Industrial Development Ltd. Active non-metallocene pre-catalyst and method for tactic catalytic polymerization of alpha-olefin monomers

Also Published As

Publication number Publication date
JP2004506065A (en) 2004-02-26
EP1305376A1 (en) 2003-05-02
AR030114A1 (en) 2003-08-13
US20030168640A1 (en) 2003-09-11
DE10037884A1 (en) 2002-02-21
EP1305376B1 (en) 2004-09-22
ATE277138T1 (en) 2004-10-15
DE50103784D1 (en) 2004-10-28
ES2227248T3 (en) 2005-04-01
US7147742B2 (en) 2006-12-12
AU2001279785A1 (en) 2002-02-18
WO2002012409A1 (en) 2002-02-14

Similar Documents

Publication Publication Date Title
JP5224630B2 (en) Method for accelerating curing of adhesive
US6855760B1 (en) Detachable adhesive compounds
JP2004506065A5 (en)
JP4841096B2 (en) Bonding method
US4626642A (en) Microwave method of curing a thermoset polymer
US20050252607A1 (en) Microwave bonding
US4560579A (en) Process for coating of substrates with heat curable coating
JPS58125773A (en) Thermally sensitive adhesive or sealant composition
JP2004506293A (en) Ferromagnetic resonance excitation and its use for heating particle-filled substrates
KR20180004855A (en) Heat-activated, glueable surface elements
JP2546316B2 (en) Adhesive composition
CA1125155A (en) Method of fusion bonding non-elastomeric thermoplastic elements with a block structure elastomeric bonding element interposed at the bonding interface
EP1191079B1 (en) Adhesive resin compositions and method for separating adherends bonded together by the compositions
US3879238A (en) Metal-polymer composites and methods for their preparation
JP5395585B2 (en) Post-curing tape and joining member joining method
JP2002097445A (en) Bonding resin composition
JPS59207917A (en) Reactive plastisol dispersion composition, manufacture and use
JPS63118391A (en) Bonding process
JPS6018562A (en) Adhesive composition for structure
JPH11263943A (en) Hot welding material and adhesive member and jointing of resin product and jointed structure
KR102625694B1 (en) Potentially reactive polyurethane-based adhesive film
JP2004107588A (en) Resin composition for high-frequency thermal bonding
US6706136B2 (en) Resin composition for high-frequency bonding
JPS61158427A (en) Adhesion method of non-conductive material
JPH06256728A (en) Method for breaking microcapsule

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees