JP5224019B2 - Vertical furnace cooling system - Google Patents

Vertical furnace cooling system Download PDF

Info

Publication number
JP5224019B2
JP5224019B2 JP2007153773A JP2007153773A JP5224019B2 JP 5224019 B2 JP5224019 B2 JP 5224019B2 JP 2007153773 A JP2007153773 A JP 2007153773A JP 2007153773 A JP2007153773 A JP 2007153773A JP 5224019 B2 JP5224019 B2 JP 5224019B2
Authority
JP
Japan
Prior art keywords
furnace body
cooling
furnace
peripheral wall
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007153773A
Other languages
Japanese (ja)
Other versions
JP2008303448A (en
Inventor
豊治 徳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007153773A priority Critical patent/JP5224019B2/en
Publication of JP2008303448A publication Critical patent/JP2008303448A/en
Application granted granted Critical
Publication of JP5224019B2 publication Critical patent/JP5224019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

本発明は、竪型炉の冷却システムに関する。   The present invention relates to a vertical furnace cooling system.

航空機エンジンのシャフト等に用いられる長尺で大型の棒状の金属材料(被熱処理材)については、その焼き入れや焼き戻し等の熱処理が竪型炉を用いて実施される。
具体的には、竪型炉は炉体を有し、炉体は周壁及び底壁を有する。炉体は上端に開口を有し、当該開口には炉蓋が配置される。被熱処理材は、炉蓋から吊設治具を介して吊り下げられた状態で竪型炉の炉体内に収容され、炉体の周壁に取り付けられた発熱体によって加熱される。
特開平7−278647号公報
A long and large rod-shaped metal material (material to be heat-treated) used for an aircraft engine shaft or the like is subjected to heat treatment such as quenching or tempering using a vertical furnace.
Specifically, the vertical furnace has a furnace body, and the furnace body has a peripheral wall and a bottom wall. The furnace body has an opening at the upper end, and a furnace lid is disposed in the opening. The material to be heat-treated is accommodated in the furnace body of the vertical furnace in a state of being suspended from the furnace lid via a hanging jig, and is heated by a heating element attached to the peripheral wall of the furnace body.
JP-A-7-278647

通常、竪型炉では、バッチ処理で材料を繰り返し熱処理する。この場合、例えば900℃以上の温度で1回目の熱処理を実行した後に、自然放熱により炉体内部の温度が十分に低下するのを待っていた。そして、例えば、炉体内部の底近傍の温度が約200℃以下になってから、2回目の材料を炉内に配置し、熱処理を実行していた。
これは自然放熱の場合、炉体の内部高さが例えば7mもあるため、炉体内部の底近傍の温度が約200℃以下になっていないと、炉体内部の温度のばらつきが上下間で非常に大きく、2回目の熱処理において材料の均一な加熱ができなくなるからである。
Usually, in a vertical furnace, the material is repeatedly heat-treated by batch processing. In this case, for example, after the first heat treatment was performed at a temperature of 900 ° C. or higher, it was awaited that the temperature inside the furnace body was sufficiently lowered by natural heat dissipation. For example, after the temperature in the vicinity of the bottom inside the furnace body becomes about 200 ° C. or lower, the second material is placed in the furnace and heat treatment is performed.
In the case of natural heat dissipation, the inner height of the furnace body is, for example, 7 m. Therefore, if the temperature in the vicinity of the bottom inside the furnace body is not less than about 200 ° C., the temperature variation inside the furnace body is between upper and lower. This is because the material cannot be heated uniformly in the second heat treatment.

しかしながら、自然放熱の場合、炉体内部の底近傍の温度が約200℃以下になるまでには2時間以上かかり、製品の生産効率の低下を招いていた。
本発明は、このような課題に鑑みてなされたもので、その目的とするところは、材料の熱処理後に竪型炉の炉体内部の温度を急速に低下させる竪型炉の冷却システムを提供することにある。
However, in the case of natural heat dissipation, it took 2 hours or more for the temperature near the bottom inside the furnace body to be about 200 ° C. or less, leading to a decrease in product production efficiency.
The present invention has been made in view of such problems, and an object of the present invention is to provide a vertical furnace cooling system that rapidly lowers the temperature inside the vertical furnace body after heat treatment of the material. There is.

本発明によれば、周壁及び底壁を有するとともに上端に開口を有し、熱処理される材料を吊り下げた状態で収容可能な炉体と、前記炉体の開口に配置される炉蓋とを具備する竪型炉に適用され、前記炉体の内部を冷却する竪型炉の冷却システムであって、前記底壁の近傍にて前記周壁をそれぞれ貫通する複数の冷却ダクトと、前記冷却ダクトに接続され、前記冷却ダクトを通じて前記炉体の内部に冷却ガスを供給する冷却ガス供給装置とを備え、前記冷却ダクトは、前記周壁の周方向に互いに離間して配置され、且つ、前記周壁の径方向に対し実質的に同一の傾斜角度にて傾斜した軸線をそれぞれ有することを特徴とする竪型炉の冷却システムが提供される(請求項1)。 According to the present invention, there is provided a furnace body having a peripheral wall and a bottom wall and having an opening at the upper end and capable of accommodating the material to be heat-treated in a suspended state, and a furnace lid disposed at the opening of the furnace body. A vertical furnace cooling system that is applied to a vertical furnace and that cools the interior of the furnace body, and includes a plurality of cooling ducts that respectively penetrate the peripheral wall in the vicinity of the bottom wall, and the cooling duct And a cooling gas supply device that supplies cooling gas to the inside of the furnace body through the cooling duct , the cooling ducts being spaced apart from each other in the circumferential direction of the peripheral wall, and the diameter of the peripheral wall There is provided a cooling system for a vertical furnace, each having an axis inclined at substantially the same inclination angle with respect to a direction (Claim 1).

本発明の請求項1の竪型炉の冷却システムによれば、冷却ガス供給装置が冷却ダクトを通じて炉体内部に冷却ガスを供給することにより、炉体内部が急速に冷却される。従って、材料の熱処理を短時間で実行することが可能となり、最終製品の生産効率が向上する。
また、冷却ガスを供給して炉体内部を冷却することにより、自然放熱の場合に比べて、炉体内部の温度のばらつきが抑制される。このため、炉体内部の温度を200℃よりも高い温度で、次の材料の熱処理を開始することができ、準連続的に材料を熱処理することが可能になる。
According to the vertical furnace cooling system of the first aspect of the present invention, the cooling gas supply device supplies the cooling gas to the inside of the furnace body through the cooling duct, whereby the inside of the furnace body is rapidly cooled. Accordingly, the heat treatment of the material can be performed in a short time, and the production efficiency of the final product is improved.
Further, by supplying the cooling gas to cool the inside of the furnace body, variation in the temperature inside the furnace body is suppressed as compared with the case of natural heat dissipation. For this reason, the heat treatment of the next material can be started at a temperature higher than 200 ° C., and the material can be heat treated semi-continuously.

また、複数の冷却ダクトを互いに周方向に離間して配置し、各冷却ダクトが炉体の径方向に対して実質的に同一の傾斜角度にて傾斜した軸線を有することより、炉体内部に供給された冷却ガスが、周壁の内周面に沿って螺旋状に上昇する。これにより、周壁の内周面が冷却ガスによって効率的に冷却される。この結果として、この冷却システムによれば、炉体内部がより急速に冷却され、最終製品の生産性が一層向上する。 Further , a plurality of cooling ducts are arranged apart from each other in the circumferential direction, and each cooling duct has an axis that is inclined at substantially the same inclination angle with respect to the radial direction of the furnace body. The supplied cooling gas rises spirally along the inner peripheral surface of the peripheral wall. Thereby, the inner peripheral surface of the peripheral wall is efficiently cooled by the cooling gas. As a result, according to this cooling system, the inside of the furnace body is cooled more rapidly, and the productivity of the final product is further improved.

図1は、本発明の第1実施形態の冷却システムを適用した竪型炉の断面図である。
竪型炉は炉体2を有し、炉体2は、円筒状の周壁2a及び底壁2bを有するとともに上端に開口を有する。具体的には、炉体2は有底円筒状の金属製の炉殻4と、炉殻4の内面全域を所定の厚さで覆うように配置された断熱材6とにより構成されている。断熱材6には、例えば、耐熱レンガやセラミックファイバーが用いられるが、好ましくは、熱伝導率が低いセラミックファイバーが用いられる。また、炉体2の周壁2aの内面には、加熱装置として電熱線8が配置されている。
FIG. 1 is a cross-sectional view of a vertical furnace to which a cooling system according to a first embodiment of the present invention is applied.
The vertical furnace has a furnace body 2. The furnace body 2 has a cylindrical peripheral wall 2a and a bottom wall 2b and an opening at the upper end. Specifically, the furnace body 2 includes a bottomed cylindrical metal furnace shell 4 and a heat insulating material 6 arranged so as to cover the entire inner surface of the furnace shell 4 with a predetermined thickness. For the heat insulating material 6, for example, heat-resistant bricks or ceramic fibers are used, but ceramic fibers having a low thermal conductivity are preferably used. Moreover, the heating wire 8 is arrange | positioned at the inner surface of the surrounding wall 2a of the furnace body 2 as a heating apparatus.

炉体2の内部の高さは例えば7m程度であり、炉体2は、床面に掘られたピット内に殆ど埋没した状態で配置される。炉体2の上端部は、床面よりも上方に突出し、炉体2の開口には炉蓋10が配置される。炉蓋10は、クレーンにより取り外し可能である。炉蓋10には、吊設治具12を介して熱処理される材料14が吊り下げられ、竪型炉では、炉体2内に材料14が吊り下げられた状態で収容され、熱処理される。   The height of the interior of the furnace body 2 is, for example, about 7 m, and the furnace body 2 is arranged in a state of being almost buried in a pit dug in the floor surface. The upper end portion of the furnace body 2 projects upward from the floor surface, and a furnace lid 10 is disposed in the opening of the furnace body 2. The furnace lid 10 can be removed by a crane. A material 14 to be heat-treated is suspended in the furnace lid 10 via a hanging jig 12, and in the vertical furnace, the material 14 is accommodated in the furnace body 2 in a suspended state and is heat-treated.

なお、材料14の吊り下げ方法は特に限定されず、炉蓋10に貫通孔を設け、当該貫通孔を通じてクレーンに吊り下げてもよい。
竪型炉の冷却システムは、冷却ダクト16を有し、例えば冷却ダクト16は、金属製の管により構成される。冷却ダクト16は床面からピットの底まで上下に延び、そして、炉殻4の周壁4aを底壁4b近傍にて径方向に貫通している。更に、冷却ダクト16は、底壁4bに沿って炉体2の径方向中央部まで延びてから上方に向かって曲がっており、断熱材6を貫通して炉体2の内側に開口している。
The method for suspending the material 14 is not particularly limited, and a through hole may be provided in the furnace lid 10 and the material 14 may be suspended from the crane through the through hole.
The vertical furnace cooling system includes a cooling duct 16, and the cooling duct 16 is constituted by a metal pipe, for example. The cooling duct 16 extends vertically from the floor surface to the bottom of the pit, and penetrates the peripheral wall 4a of the furnace shell 4 in the radial direction in the vicinity of the bottom wall 4b. Furthermore, the cooling duct 16 extends along the bottom wall 4b to the center portion in the radial direction of the furnace body 2 and then bends upward. The cooling duct 16 passes through the heat insulating material 6 and opens to the inside of the furnace body 2. .

冷却ダクト16の入口には、冷却ダクト16を通じて炉体2の内部に冷却ガスを供給する冷却ガス供給装置18が接続され、冷却ガス供給装置18は床面上に配置されている。冷却ガス供給装置18は、例えばブロワ等の送風機により構成され、冷却ガスとしては、空気や窒素等を用いることができる。
以下、上述した第1実施形態の冷却システムの使用方法の一例について説明する。
A cooling gas supply device 18 that supplies a cooling gas to the inside of the furnace body 2 through the cooling duct 16 is connected to the inlet of the cooling duct 16, and the cooling gas supply device 18 is disposed on the floor surface. The cooling gas supply device 18 is configured by a blower such as a blower, for example, and air, nitrogen, or the like can be used as the cooling gas.
Hereinafter, an example of the usage method of the cooling system of the first embodiment described above will be described.

通常、竪型炉では、バッチ処理で材料14を繰り返し熱処理する。バッチ処理の場合、クレーンを操作して1回目の材料14を炉体2の内部に配置してから、電熱線8に通電し、例えば900℃以上の所定の温度で材料14を所定時間加熱する。加熱後、炉蓋10をクレーンにより吊り上げ、これにより炉体2から材料14を取り出す。
それから、冷却ガス供給装置18を作動させ、冷却ダクト16を通じて冷却ガスを炉体2の内部に供給する。供給される冷却ガスの流量は、例えば35m/分である。冷却ガスにより、炉体2の内部は強制的に冷却され、炉体2の内部の底近傍の温度が例えば200℃以下になったときに、2回目の材料14を炉体2の内部に配置する。この後、上述した操作を繰り返す。
Usually, in a vertical furnace, the material 14 is repeatedly heat-treated by batch processing. In the case of batch processing, the crane is operated to place the first material 14 in the furnace body 2, and then the heating wire 8 is energized, and the material 14 is heated for a predetermined time at a predetermined temperature of, for example, 900 ° C. or higher. . After heating, the furnace lid 10 is lifted by a crane, and thereby the material 14 is taken out from the furnace body 2.
Then, the cooling gas supply device 18 is operated, and the cooling gas is supplied into the furnace body 2 through the cooling duct 16. The flow rate of the supplied cooling gas is, for example, 35 m 3 / min. The inside of the furnace body 2 is forcibly cooled by the cooling gas, and when the temperature in the vicinity of the bottom inside the furnace body 2 becomes, for example, 200 ° C. or less, the second material 14 is disposed inside the furnace body 2. To do. Thereafter, the above-described operation is repeated.

上述した第1実施形態の竪型炉の冷却システムによれば、冷却ガス供給装置18が冷却ダクト16を通じて炉体2の内部に冷却ガスを供給することにより、炉体2の内部が急速に冷却される。このため、材料14の交換に要する時間が短縮され、材料14の熱処理を短時間で実行することが可能となり、最終製品の生産効率が向上する。
また、冷却ガスを供給して炉体2の内部を冷却することにより、自然放熱の場合に比べて、炉体2の内部の温度のばらつきが抑制される。このため、炉体2の内部の温度が200℃よりも高い温度で次の材料14を炉体2の内部に配置し、熱処理を開始しても、材料14が不均一に加熱されることが防止される。このため、炉体2の内部の温度を従来のように低下させる必要がなく、準連続的に材料14を熱処理することが可能になる。
According to the vertical furnace cooling system of the first embodiment described above, the cooling gas supply device 18 supplies the cooling gas to the inside of the furnace body 2 through the cooling duct 16, thereby rapidly cooling the inside of the furnace body 2. Is done. For this reason, the time required for replacement of the material 14 is shortened, the heat treatment of the material 14 can be performed in a short time, and the production efficiency of the final product is improved.
Further, by supplying the cooling gas to cool the inside of the furnace body 2, variation in the temperature inside the furnace body 2 is suppressed as compared with the case of natural heat dissipation. For this reason, even if the next material 14 is disposed in the furnace body 2 at a temperature higher than 200 ° C. inside the furnace body 2 and the heat treatment is started, the material 14 may be heated unevenly. Is prevented. For this reason, it is not necessary to lower the temperature inside the furnace body 2 as in the prior art, and the material 14 can be heat-treated semi-continuously.

本発明は上記した第1実施形態に限定されることはなく、種々の変形が可能である。
例えば、冷却ダクト16により貫通される炉体2の部位は特に限定されず、炉体2の周壁2a及び底壁2bの何れかの部位を貫通していればよい。ただし、炉体2の内部の温度は、底近傍で最も低下し難いので、炉体2の内部の底近傍に冷却ガスを供給可能に冷却ダクト16を設けるのが好ましい。
The present invention is not limited to the first embodiment described above, and various modifications are possible.
For example, the site | part of the furnace body 2 penetrated by the cooling duct 16 is not specifically limited, What is necessary is just to penetrate any site | part of the surrounding wall 2a and the bottom wall 2b of the furnace body 2. FIG. However, since the temperature inside the furnace body 2 is most unlikely to decrease near the bottom, it is preferable to provide the cooling duct 16 near the bottom inside the furnace body 2 so that the cooling gas can be supplied.

また、第1実施形態では、冷却ガスの流量は35m/分であったけれども、冷却ガスの流量は、冷却速度と冷却ガス供給装置18の消費動力とを考慮して適宜設定することが可能である。
更に、第1実施形態では、1本の冷却ダクト16によって冷却ガスを供給したけれども、炉体2を貫通する複数の冷却ダクトを設け、これら複数の冷却ダクトを通じて冷却ガスを供給してもよい。この場合、以下に説明する第2実施形態のように配管することにより、1つの冷却ガス供給装置18により、複数の冷却ダクトを通じて冷却ガスを供給可能である。
In the first embodiment, the flow rate of the cooling gas is 35 m 3 / min. However, the flow rate of the cooling gas can be appropriately set in consideration of the cooling rate and the power consumption of the cooling gas supply device 18. It is.
Furthermore, in the first embodiment, the cooling gas is supplied by one cooling duct 16, but a plurality of cooling ducts that penetrate the furnace body 2 may be provided, and the cooling gas may be supplied through the plurality of cooling ducts. In this case, it is possible to supply the cooling gas through the plurality of cooling ducts by one cooling gas supply device 18 by piping as in the second embodiment described below.

図2は、第2実施形態の冷却システムを適用した竪型炉の断面図を示す。第2実施形態の冷却システムは、冷却ダクト20が、環状の部分(環状部20a)と、環状部20aから延びる4つの先端部20bとを有する。
これら先端部20bは、炉体2の周壁2aをそれぞれ貫通し、互いに炉体2の周方向に離間している。より詳しくは、図3に示したように、先端部20bは、炉体2の周方向に等間隔で配置され、本実施形態では、90度間隔で設けられている。また、各先端部20bの軸線は、炉体2の径方向に対して実質的に同一の所定の傾斜角度にて傾斜している。傾斜角度は、例えば約30度であり、実質的に同一とは、製造上の誤差を含む範囲内にあるという意味である。
FIG. 2 shows a cross-sectional view of a vertical furnace to which the cooling system of the second embodiment is applied. In the cooling system of the second embodiment, the cooling duct 20 has an annular portion (annular portion 20a) and four tip portions 20b extending from the annular portion 20a.
These tip portions 20 b penetrate the peripheral wall 2 a of the furnace body 2 and are separated from each other in the circumferential direction of the furnace body 2. More specifically, as shown in FIG. 3, the tip portions 20b are arranged at equal intervals in the circumferential direction of the furnace body 2, and are provided at intervals of 90 degrees in this embodiment. Further, the axis of each tip 20b is inclined at substantially the same predetermined inclination angle with respect to the radial direction of the furnace body 2. The tilt angle is, for example, about 30 degrees, and substantially the same means that the tilt angle is within a range including manufacturing errors.

第2実施形態の冷却システムでは、複数の先端部20bを互いに周方向に離間して配置し、各先端部20bが炉体2の径方向に対して実質的に同一の傾斜角度にて傾斜した軸線を有することより、炉体2の内部に供給された冷却ガスが、周壁2aの内周面に沿って炉体2の内部を螺旋状に上昇する。これにより、周壁2aの内周面が冷却ガスによって効率的に冷却される。この結果として、この冷却システムによれば、炉体2の内部がより急速に冷却され、最終製品の生産性が一層向上する。   In the cooling system according to the second embodiment, the plurality of tip portions 20b are arranged apart from each other in the circumferential direction, and each tip portion 20b is inclined at substantially the same inclination angle with respect to the radial direction of the furnace body 2. By having the axis, the cooling gas supplied to the inside of the furnace body 2 spirally rises inside the furnace body 2 along the inner peripheral surface of the peripheral wall 2a. Thereby, the inner peripheral surface of the peripheral wall 2a is efficiently cooled by the cooling gas. As a result, according to this cooling system, the inside of the furnace body 2 is cooled more rapidly, and the productivity of the final product is further improved.

第1実施形態の冷却システムを適用した竪型炉の概略的な断面図である。1 is a schematic cross-sectional view of a vertical furnace to which a cooling system according to a first embodiment is applied. 第2実施形態の冷却システムを適用した竪型炉の概略的な断面図である。It is a schematic sectional drawing of the vertical furnace to which the cooling system of a 2nd embodiment is applied. 図2のIII-III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG.

符号の説明Explanation of symbols

2 炉体
2a 周壁
2b 底壁
10 炉蓋
16 冷却ダクト
18 冷却ガス供給装置
2 furnace body 2a peripheral wall 2b bottom wall 10 furnace lid 16 cooling duct 18 cooling gas supply device

Claims (1)

周壁及び底壁を有するとともに上端に開口を有し、熱処理される材料を吊り下げた状態で収容可能な炉体と、前記炉体の開口に配置される炉蓋とを具備する竪型炉に適用され、前記炉体の内部を冷却する竪型炉の冷却システムであって、
前記底壁の近傍にて前記周壁をそれぞれ貫通する複数の冷却ダクトと、
前記冷却ダクトに接続され、前記冷却ダクトを通じて前記炉体の内部に冷却ガスを供給する冷却ガス供給装置と
を備え
前記冷却ダクトは、前記周壁の周方向に互いに離間して配置され、且つ、前記周壁の径方向に対し実質的に同一の傾斜角度にて傾斜した軸線をそれぞれ有することを特徴とする竪型炉の冷却システム。
A vertical furnace comprising a furnace body having a peripheral wall and a bottom wall and having an opening at an upper end and capable of accommodating the material to be heat-treated in a suspended state, and a furnace lid disposed at the opening of the furnace body A vertical furnace cooling system applied to cool the interior of the furnace body,
A plurality of cooling ducts each penetrating the peripheral wall in the vicinity of the bottom wall ;
A cooling gas supply device connected to the cooling duct and supplying a cooling gas to the inside of the furnace body through the cooling duct ;
The vertical duct is characterized in that the cooling ducts are spaced apart from each other in the circumferential direction of the peripheral wall and have axes that are inclined at substantially the same inclination angle with respect to the radial direction of the peripheral wall. Cooling system.
JP2007153773A 2007-06-11 2007-06-11 Vertical furnace cooling system Active JP5224019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153773A JP5224019B2 (en) 2007-06-11 2007-06-11 Vertical furnace cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153773A JP5224019B2 (en) 2007-06-11 2007-06-11 Vertical furnace cooling system

Publications (2)

Publication Number Publication Date
JP2008303448A JP2008303448A (en) 2008-12-18
JP5224019B2 true JP5224019B2 (en) 2013-07-03

Family

ID=40232428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153773A Active JP5224019B2 (en) 2007-06-11 2007-06-11 Vertical furnace cooling system

Country Status (1)

Country Link
JP (1) JP5224019B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506187B2 (en) * 2008-12-19 2014-05-28 三菱重工業株式会社 Vacuum heat treatment furnace and heat treatment object support device
JP5906815B2 (en) * 2012-03-01 2016-04-20 Jfeスチール株式会社 Batch annealing method and batch annealing furnace for steel sheet
CN104534873B (en) * 2014-12-03 2016-05-25 浙江宇辰工业炉有限公司 A kind of roasting technique production system of furnace charge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121429U (en) * 1987-01-30 1988-08-05
JPH07278647A (en) * 1994-04-11 1995-10-24 Daido Steel Co Ltd Rotary heat treatment furnace
JP2007051844A (en) * 2005-08-19 2007-03-01 Sanken Sangyo Co Ltd Device and method for cooling vertical furnace for steel

Also Published As

Publication number Publication date
JP2008303448A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US9099507B2 (en) Vertical heat treatment apparatus and method for cooling the apparatus
CN101315878B (en) Heat processing furnace and method of manufacturing the same
JP4331768B2 (en) Heat treatment furnace and vertical heat treatment equipment
KR101585287B1 (en) Heat treatment apparatus and control method thereof
JP2008263170A (en) Heat treatment furnace and vertical heat treatment equipment
JP2003282578A5 (en)
JP5394292B2 (en) Vertical heat treatment equipment and pressure sensing system / temperature sensor combination
JP5224019B2 (en) Vertical furnace cooling system
JP2013004904A (en) Heat treatment furnace and heat treatment apparatus
US20120251966A1 (en) Heat treatment control system and heat treatment control method
JPWO2007010607A1 (en) Carburizing method and carburizing furnace
JP2016211769A (en) Cooling mechanism for vertical type heat treatment furnace and cooling method
EP2644755A1 (en) Single crystal pulling device and low heat conductive member to be used in single crystal pulling device
JP2014037903A (en) Agitation fan for thermal treatment device and thermal treatment device including the same
JP7102270B2 (en) Manufacturing method of crushing roller and heating device
JP2013038128A (en) Heat treatment apparatus
JPWO2016006500A1 (en) Heat treatment equipment
JP5841286B1 (en) Bell-type annealing furnace and its modification method
JP5841285B1 (en) Bell-type annealing furnace and its modification method
JP2019077938A (en) Device and method for cooling control of vertical heat treatment furnace
JP2012089557A (en) Substrate processing equipment and method for manufacturing semiconductor device
JP5743788B2 (en) Heat treatment equipment
JP2003294369A (en) Heating furnace device
JP5691637B2 (en) Heat treatment equipment
JPH06204155A (en) Vertical semiconductor diffusion furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5224019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3