JP5223525B2 - Boiler water supply system - Google Patents

Boiler water supply system Download PDF

Info

Publication number
JP5223525B2
JP5223525B2 JP2008198530A JP2008198530A JP5223525B2 JP 5223525 B2 JP5223525 B2 JP 5223525B2 JP 2008198530 A JP2008198530 A JP 2008198530A JP 2008198530 A JP2008198530 A JP 2008198530A JP 5223525 B2 JP5223525 B2 JP 5223525B2
Authority
JP
Japan
Prior art keywords
water
tank
heat exchanger
valve
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008198530A
Other languages
Japanese (ja)
Other versions
JP2010038383A (en
Inventor
康夫 越智
靖国 田中
裕介 岡本
和之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2008198530A priority Critical patent/JP5223525B2/en
Publication of JP2010038383A publication Critical patent/JP2010038383A/en
Application granted granted Critical
Publication of JP5223525B2 publication Critical patent/JP5223525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、ボイラへの給水システムに関するものである。特に、蒸気利用機器からのドレンを給水タンクへ回収してボイラへの給水の昇温を図りつつも、ボイラへの給水を利用して圧縮機の圧縮熱を回収して、ボイラへの給水の昇温ならびに圧縮機の油の冷却を有効に図ることのできるボイラ給水システムに関するものである。   The present invention relates to a water supply system for a boiler. In particular, drainage from steam-utilizing equipment is collected in the water supply tank to increase the temperature of the water supply to the boiler, while the water supplied to the boiler is used to recover the compression heat of the compressor and supply water to the boiler. The present invention relates to a boiler water supply system that can effectively increase the temperature and cool the compressor oil.

下記特許文献1には、蒸気を用いて動力を起こすスクリュ型膨張機(1)と、このスクリュ型膨張機(1)により駆動される空気圧縮機(2)とを備える蒸気システムが開示されている。
特開昭63−45403号公報
Patent Document 1 below discloses a steam system including a screw expander (1) that generates power using steam and an air compressor (2) driven by the screw expander (1). Yes.
JP-A-63-45403

圧縮機は、動作中、圧縮熱を生じる。油潤滑式の圧縮機の場合、潤滑油の温度が高すぎると、潤滑油の粘度が下がることで膜切れを起こしたり、空気が膨張して圧縮するのに不都合を来したりする。一方、潤滑油の温度が低すぎると、潤滑油の粘度が上がることで、圧縮機の駆動に動力を要することになる。そのため、潤滑油の温度を所望に維持する必要が生じる。   The compressor generates heat of compression during operation. In the case of an oil-lubricated compressor, if the temperature of the lubricating oil is too high, the viscosity of the lubricating oil decreases, causing film breakage or inconvenience for air to expand and compress. On the other hand, if the temperature of the lubricating oil is too low, the viscosity of the lubricating oil increases, and power is required to drive the compressor. Therefore, it is necessary to maintain the temperature of the lubricating oil as desired.

前記特許出願1に開示される発明のように、スクリュ型膨張機と空気圧縮機とを備えた蒸気システムの場合、スクリュ型膨張機への蒸気供給のために、さらにボイラを備えることが想定される。その場合、圧縮機の冷却を図るために、ボイラへの給水を利用することも考えられる。しかしながら、ボイラへの給水は断続的になされるので、単にボイラへの給水を用いるだけでは、圧縮機の冷却を有効に図ることができないおそれがある。   In the case of a steam system including a screw type expander and an air compressor as in the invention disclosed in the patent application 1, it is assumed that a boiler is further provided for supplying steam to the screw type expander. The In that case, in order to cool the compressor, it may be considered to use water supply to the boiler. However, since the water supply to the boiler is intermittently performed, there is a possibility that the compressor cannot be effectively cooled only by using the water supply to the boiler.

仮に、給水タンクの貯留水と圧縮機の潤滑油とを、それぞれ熱交換器へ循環させて間接熱交換するとしても、それだけでは潤滑油の温度を所望に維持することはできない。しかも、スクリュ型膨張機などの蒸気利用機器からのドレンを給水タンクへ回収して省エネルギーを図ろうとする場合、給水タンク内の水は昇温するため、圧縮機の冷却水には適さない温度となるおそれもある。   Even if the water stored in the water supply tank and the lubricating oil of the compressor are circulated to the heat exchanger and indirectly heat exchanged, the temperature of the lubricating oil cannot be maintained as desired. In addition, when drainage from steam-utilizing equipment such as a screw expander is collected in the water supply tank to save energy, the temperature of the water in the water supply tank rises, so that the temperature is not suitable for compressor cooling water. There is also a risk.

この発明が解決しようとする課題は、蒸気利用機器からのドレンを給水タンクへ回収してボイラへの給水の昇温を図りつつも、給水タンクへの給水を用いて圧縮機の圧縮熱を回収して、ボイラへの給水の昇温ならびに圧縮機の油の冷却を有効に図ることができるボイラ給水システムを提供することにある。   The problem to be solved by the present invention is to recover the compression heat of the compressor using the water supplied to the water supply tank while recovering the drainage from the steam utilization equipment to the water supply tank to increase the temperature of the water supply to the boiler. Then, it is providing the boiler water supply system which can aim at effectively the temperature rise of the feed water to a boiler, and cooling of the oil of a compressor.

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、ボイラへの給水を貯留すると共に、ボイラからの蒸気のドレンが回収される給水タンクと、この給水タンクへの給水を貯留すると共に、前記給水タンク内の水位に基づき前記給水タンクへ給水可能に設けられるが、前記給水タンクからは給水されない補給水タンクと、この補給水タンクとの間で水が循環されると共に、この循環水で冷却しようとする被冷却液が通される熱交換器と、前記補給水タンクから前記熱交換器への給水路に設けられる熱交給水ポンプと、前記熱交換器に通される被冷却液の液温に基づき、前記熱交給水ポンプから前記熱交換器へ供給する水量を調整する熱交給水量調整手段とを備えることを特徴とするボイラ給水システムである。
This invention was made in order to solve the said subject, and invention of Claim 1 stores the water supply to a boiler, and is a water supply tank with which the steam drain from a boiler is collect | recovered, and this water supply The water supply to the tank is provided so that water can be supplied to the water supply tank based on the water level in the water supply tank, but water is supplied between the supply water tank that is not supplied from the water supply tank and the supply water tank A heat exchanger that is circulated and through which the liquid to be cooled with the circulating water is passed, a heat exchange water pump provided in a water supply path from the makeup water tank to the heat exchanger, and the heat exchange A boiler water supply system comprising: a heat supply water amount adjusting means for adjusting the amount of water supplied from the heat supply water supply pump to the heat exchanger based on a liquid temperature of the liquid to be cooled that is passed through the vessel. .

請求項1に記載の発明によれば、蒸気利用機器からのドレンを給水タンクへ回収することで、省エネルギーを図ることができる。また、給水タンクとは別に補給水タンクを設け、この補給水タンクの水で被冷却液の冷却を図ることができる。給水タンクとは別に補給水タンクを設けることで、給水タンクにドレンを回収しても、それによって補給水タンクの水を昇温させることはない。これにより、回収されたドレンによって給水タンクの水が昇温しても、補給水タンクの水で被冷却液の冷却を図ることができる。しかも、被冷却液の液温に基づき、熱交給水ポンプから熱交換器へ供給する水量を調整することで、被冷却液を所望温度にすることができる。さらに、給水タンクへは補給水タンクの水が補給されるので、被冷却液から得た熱を有効利用できる。   According to the first aspect of the present invention, it is possible to save energy by collecting the drain from the steam utilization device to the water supply tank. Further, a makeup water tank is provided separately from the water supply tank, and the liquid to be cooled can be cooled with the water in the makeup water tank. By providing a make-up water tank separately from the water supply tank, even if drain is collected in the water supply tank, the temperature of the water in the make-up water tank is not thereby raised. Thereby, even if the water in the water supply tank rises in temperature due to the collected drain, the liquid to be cooled can be cooled with the water in the makeup water tank. Moreover, the liquid to be cooled can be brought to a desired temperature by adjusting the amount of water supplied from the heat exchange water pump to the heat exchanger based on the liquid temperature of the liquid to be cooled. Furthermore, since the water in the make-up water tank is supplied to the water supply tank, the heat obtained from the liquid to be cooled can be used effectively.

請求項2に記載の発明は、前記補給水タンクから前記給水タンクへの補給水路に設けられ、前記給水タンク内の水位に基づき開閉される補給水弁と、前記補給水タンクから前記補給水弁への補給水路から分岐して前記補給水タンクへ向かう分岐路に設けられ、前記補給水弁が閉じられることで開かれる戻し弁とをさらに備え、前記補給水弁は、電磁弁から構成され、前記戻し弁は、前記補給水弁が閉じられることで開弁圧に達して開放され、前記補給水タンクからの水を再び前記補給水タンクへ戻すことを可能とする逆止弁とされたことを特徴とする請求項1に記載のボイラ給水システムである。   According to a second aspect of the present invention, there is provided a replenishment water valve provided in a replenishment water passage from the replenishment water tank to the water supply tank, and opened and closed based on a water level in the water supply tank, and A branch valve that branches from the makeup water path to the makeup water tank, and further includes a return valve that is opened when the makeup water valve is closed, and the makeup water valve is composed of an electromagnetic valve, The return valve is a check valve that opens when the replenishing water valve is closed to reach a valve opening pressure, and allows water from the replenishing water tank to be returned to the replenishing water tank again. It is a boiler water supply system of Claim 1 characterized by these.

請求項2に記載の発明によれば、補給水タンク内の水は、電磁弁を介して給水タンクへ供給されるか、逆止弁を介して補給水タンクへ戻される。そして、このような択一的制御を、電磁弁の開閉を制御するだけで簡易に行うことができる。   According to the second aspect of the present invention, the water in the makeup water tank is supplied to the water supply tank via the electromagnetic valve or returned to the makeup water tank via the check valve. Such alternative control can be easily performed simply by controlling the opening and closing of the solenoid valve.

請求項3に記載の発明は、前記熱交給水量調整手段は、前記熱交換器に通される被冷却液の液温に基づき、前記熱交給水ポンプの回転数を制御するインバータとされ、前記熱交換器は、前記補給水タンクとの間で水が循環可能とされると共に、油潤滑式の圧縮機との間で前記被冷却液としての潤滑油が循環可能とされ、前記圧縮機から前記熱交換器へ供給される潤滑油を設定温度に維持するように、前記インバータにより前記熱交給水ポンプを制御して、前記補給水タンクから前記熱交換器へ供給する水量を調整することを特徴とする請求項1または請求項2に記載のボイラ給水システムである。   According to a third aspect of the present invention, the heat supply water amount adjusting means is an inverter that controls the number of rotations of the heat supply water pump based on the liquid temperature of the liquid to be cooled that is passed through the heat exchanger. The heat exchanger is configured such that water can be circulated to and from the makeup water tank, and lubricating oil as the liquid to be cooled can be circulated to and from an oil lubricated compressor, and the compressor The heat supply water pump is controlled by the inverter to adjust the amount of water supplied from the makeup water tank to the heat exchanger so as to maintain the lubricating oil supplied to the heat exchanger from a set temperature. It is a boiler water supply system of Claim 1 or Claim 2 characterized by these.

請求項3に記載の発明によれば、熱交給水ポンプをインバータ制御することで、簡易に油潤滑式圧縮機の潤滑油を所望温度に維持することができる。   According to the third aspect of the present invention, the lubricating oil of the oil-lubricated compressor can be easily maintained at a desired temperature by inverter-controlling the heat exchange water pump.

請求項4に記載の発明は、前記熱交給水量調整手段は、前記熱交換器に通される被冷却液の液温に基づき、前記熱交給水ポンプからの水を、前記熱交換器を介して前記補給水タンクへ戻すか、前記熱交換器を介さずに前記補給水タンクへ戻すかの分配割合を調整する温調三方弁とされ、前記熱交換器は、前記補給水タンクとの間で水が循環可能とされると共に、油潤滑式の圧縮機との間で前記被冷却液としての潤滑油が循環可能とされ、前記圧縮機から前記熱交換器へ供給される潤滑油を設定温度に維持するように、前記温調三方弁を制御して、前記補給水タンクから前記熱交換器へ供給する水量を調整することを特徴とする請求項1または請求項2に記載のボイラ給水システムである。   According to a fourth aspect of the present invention, the heat supply water amount adjusting means is configured to supply water from the heat supply water pump to the heat exchanger based on a liquid temperature of a liquid to be cooled that is passed through the heat exchanger. A temperature control three-way valve that adjusts a distribution ratio of returning to the makeup water tank via the heat exchanger or returning to the makeup water tank without going through the heat exchanger, and the heat exchanger is connected to the makeup water tank. The lubricating oil as the liquid to be cooled can be circulated between the oil lubricated compressor and the lubricating oil supplied from the compressor to the heat exchanger. The boiler according to claim 1 or 2, wherein the amount of water supplied from the makeup water tank to the heat exchanger is adjusted by controlling the temperature control three-way valve so as to maintain a set temperature. It is a water supply system.

請求項4に記載の発明によれば、温調三方弁を制御することで、簡易に油潤滑式圧縮機の潤滑油を所望温度に維持することができる。   According to invention of Claim 4, the lubricating oil of an oil lubrication type compressor can be easily maintained at desired temperature by controlling a temperature control three-way valve.

請求項5に記載の発明は、前記補給水タンクは、給水弁を介して給水可能とされる一方、排水弁を介して排水可能とされ、前記給水弁は、前記補給水タンク内の水が下限水位を下回ると開放される一方、上限水位を上回ると閉鎖され、前記排水弁は、前記熱交換器に供給される水が上限温度を上回ると開放される一方、下限温度を下回ると閉鎖されることを特徴とする請求項1〜4のいずれか1項に記載のボイラ給水システムである。   According to a fifth aspect of the present invention, the makeup water tank can be supplied with water via a water supply valve, and can be drained with a drain valve, and the water supply valve can receive water in the makeup water tank. When the water level is below the lower limit water level, the drain valve is closed when the upper limit water level is exceeded, and when the water supplied to the heat exchanger exceeds the upper temperature limit, the drain valve is closed. It is a boiler water supply system of any one of Claims 1-4 characterized by the above-mentioned.

請求項5に記載の発明によれば、補給水タンク内の水温が上がり過ぎて、被冷却液の冷却に適さない温度となった場合には、補給水タンクの水について、少なくとも一部の入れ替えを図ることができる。   According to the fifth aspect of the present invention, when the water temperature in the makeup water tank rises too much and becomes a temperature unsuitable for cooling the liquid to be cooled, at least a part of the water in the makeup water tank is replaced. Can be achieved.

さらに、請求項6に記載の発明は、前記補給水タンク内は、隔壁を介して上下に区画されつつも、その隔壁よりも上部領域と下部領域とは一部において互いに連通されており、前記給水弁を介した前記補給水タンクへの給水は、前記隔壁よりも下部領域へなされる一方、前記補給水タンクから前記排水弁を介した排水は、前記隔壁よりも上部領域からなされ、前記補給水タンクから前記熱交換器への給水は、前記隔壁よりも下部領域からなされる一方、前記熱交換器から前記補給水タンクへの排水は、前記隔壁よりも上部領域へなされ、前記補給水タンクから前記給水タンクへの給水は、前記隔壁よりも上部領域からなされることを特徴とする請求項5に記載のボイラ給水システムである。   Furthermore, in the invention according to claim 6, the inside of the makeup water tank is divided up and down via a partition wall, but the upper region and the lower region are partly communicated with each other in part from the partition wall, Water supply to the make-up water tank through the water supply valve is made to a lower region than the partition wall, while water drained from the make-up water tank through the drain valve is made from an upper region than the partition wall, Water supply from the water tank to the heat exchanger is made in a lower region than the partition wall, while drainage from the heat exchanger to the make-up water tank is made in an upper region than the partition wall, and the make-up water tank The boiler water supply system according to claim 5, wherein water supply to the water supply tank is performed from an upper region than the partition wall.

請求項6に記載の発明によれば、補給水タンク内に隔壁を設けて、補給水タンク内の水に、高温領域と低温領域とを作り出すことができる。これにより、補給水タンクへの給水は低温領域へ行い、補給水タンクからの排水は高温領域から行い、被冷却液を冷却するための熱交換器への給水は低温領域から行い、熱交換器にて温められた水の戻しは高温領域へ行い、給水タンクへの給水は高温領域から行うことで、熱交換能力の維持とシステム効率の向上とを図ることができる。   According to the sixth aspect of the present invention, the partition wall is provided in the make-up water tank, and a high temperature region and a low temperature region can be created in the water in the make-up water tank. Thus, water supply to the makeup water tank is performed in the low temperature region, drainage from the makeup water tank is performed from the high temperature region, and water supply to the heat exchanger for cooling the liquid to be cooled is performed from the low temperature region. By returning the water warmed in (1) to the high temperature region and supplying water to the water supply tank from the high temperature region, it is possible to maintain the heat exchange capacity and improve the system efficiency.

この発明のボイラ給水システムによれば、蒸気利用機器からのドレンを給水タンクへ回収してボイラへの給水の昇温を図りつつも、給水タンクへの給水を用いて圧縮機の圧縮熱を回収して、ボイラへの給水の昇温ならびに圧縮機の油の冷却を有効に図ることができる。   According to the boiler water supply system of the present invention, the heat from the compressor is recovered by using the water supplied to the water supply tank while recovering the drainage from the steam-utilizing equipment to the water supply tank and increasing the temperature of the water supply to the boiler. Thus, it is possible to effectively increase the temperature of the feed water to the boiler and cool the oil of the compressor.

以下、本発明のボイラ給水システムについて、実施例に基づきさらに詳細に説明する。   Hereinafter, the boiler water supply system of this invention is demonstrated in detail based on an Example.

図1は、本発明のボイラ給水システム1の実施例1を備える蒸気システム2の一例を示す概略図である。この蒸気システム2において、ボイラ3への給水系統に本発明が適用されている。そのため、まず、図示例の蒸気システム2の概略について説明し、その後、そのボイラ3への給水系統である本実施例のボイラ給水システム1について説明する。   FIG. 1 is a schematic diagram illustrating an example of a steam system 2 including the first embodiment of the boiler water supply system 1 of the present invention. In the steam system 2, the present invention is applied to a water supply system to the boiler 3. Therefore, first, the outline of the steam system 2 in the illustrated example will be described, and then the boiler water supply system 1 of the present embodiment which is a water supply system to the boiler 3 will be described.

図1に示される蒸気システム2は、ボイラ3と、このボイラ3からの蒸気を用いて動力を起こす蒸気エンジン4と、この蒸気エンジン4により駆動される圧縮機5とを備える。蒸気エンジン4と圧縮機5とは、図1において二点鎖線で示されるように、一つのユニット6として構成されてもよい。   A steam system 2 shown in FIG. 1 includes a boiler 3, a steam engine 4 that generates power using steam from the boiler 3, and a compressor 5 that is driven by the steam engine 4. The steam engine 4 and the compressor 5 may be configured as one unit 6 as indicated by a two-dot chain line in FIG.

ボイラ3は、蒸気ボイラであれば、その構成を特に問わない。ボイラ3へは、給水タンク7から水が、給水ポンプ8と逆止弁9とを介して供給される。ボイラ3への給水系統には軟水装置10と脱酸素装置11とが備えられるので、脱気された軟水がボイラ3へ供給される。ボイラ3へ供給された水は、ボイラ3で蒸気化される。ボイラ3からの蒸気は、第一蒸気ヘッダ12へ供給され、この第一蒸気ヘッダ12の蒸気が、一または複数の各種の蒸気利用機器13,13,…へ供給される。   If the boiler 3 is a steam boiler, the structure in particular will not be ask | required. Water is supplied to the boiler 3 from a water supply tank 7 through a water supply pump 8 and a check valve 9. Since the water supply system to the boiler 3 includes the soft water device 10 and the deoxygenation device 11, the degassed soft water is supplied to the boiler 3. The water supplied to the boiler 3 is vaporized by the boiler 3. The steam from the boiler 3 is supplied to the first steam header 12, and the steam of the first steam header 12 is supplied to one or a plurality of various steam utilizing devices 13, 13,.

この種の蒸気利用機器の一つとして、蒸気エンジン4がある。蒸気エンジン4へは、第一蒸気ヘッダ12から蒸気が、給蒸路14を介して供給される。第一蒸気ヘッダ12から蒸気エンジン4への給蒸路14には、電磁弁または電動弁から構成される給蒸弁15が設けられる。この給蒸弁15の開閉または開度を制御することで、蒸気エンジン4の作動の有無または出力を調整できる。   One type of steam utilization device is a steam engine 4. Steam is supplied from the first steam header 12 to the steam engine 4 via the steam supply path 14. The steam supply path 14 from the first steam header 12 to the steam engine 4 is provided with a steam supply valve 15 composed of an electromagnetic valve or an electric valve. By controlling the opening / closing or opening of the steam supply valve 15, it is possible to adjust the presence / absence or output of the steam engine 4.

蒸気エンジン4は、供給される蒸気により回転駆動力を得る装置であるが、蒸気エンジン4において蒸気は膨張して減圧される。従って、蒸気エンジン4は、圧縮機5の駆動源としてだけでなく、減圧弁としても機能する。これにより、蒸気エンジン4にて使用後の蒸気は、減圧弁通過後の蒸気として、各種の蒸気利用機器(図示省略)において、そのまま利用することもできる。そのために、蒸気エンジン4にて使用後の蒸気は、排蒸路16を介して第二蒸気ヘッダ17へ供給され、この第二蒸気ヘッダ17の蒸気が、一または複数の各種の蒸気利用機器へ供給される。   The steam engine 4 is a device that obtains rotational driving force by the supplied steam. In the steam engine 4, the steam is expanded and decompressed. Therefore, the steam engine 4 functions not only as a drive source for the compressor 5 but also as a pressure reducing valve. Thereby, the steam after use in the steam engine 4 can also be used as it is in various steam utilization devices (not shown) as the steam after passing through the pressure reducing valve. For this purpose, the steam after use in the steam engine 4 is supplied to the second steam header 17 via the exhaust steam passage 16, and the steam in the second steam header 17 is sent to one or a plurality of various steam utilizing devices. Supplied.

第一蒸気ヘッダ12と第二蒸気ヘッダ17とは、バイパス路18を介しても接続される。具体的には、第一蒸気ヘッダ12から給蒸弁15への給蒸路14と、蒸気エンジン4から第二蒸気ヘッダ17への排蒸路16とが、バイパス路18で接続される。このバイパス路18には、バイパス弁19が設けられる。バイパス弁19は、好適には自力式の減圧弁とされ、第二蒸気ヘッダ17内の蒸気圧を所定に維持するように、機械的に自力で開度調整される。   The first steam header 12 and the second steam header 17 are also connected via the bypass path 18. Specifically, the steam supply path 14 from the first steam header 12 to the steam supply valve 15 and the exhaust steam path 16 from the steam engine 4 to the second steam header 17 are connected by a bypass path 18. A bypass valve 19 is provided in the bypass path 18. The bypass valve 19 is preferably a self-powered pressure reducing valve, and its opening degree is mechanically adjusted by itself so as to maintain the steam pressure in the second steam header 17 at a predetermined level.

蒸気エンジン4は、好適にはスクリュ式蒸気エンジンである。スクリュ式蒸気エンジンは、互いにかみ合うスクリュロータ間に蒸気が導入され、その蒸気によりスクリュロータを回転させつつ蒸気を膨張して減圧し、その際のスクリュロータの回転により動力を得る装置である。   The steam engine 4 is preferably a screw-type steam engine. A screw-type steam engine is an apparatus in which steam is introduced between screw rotors that mesh with each other, and the steam is expanded and decompressed while rotating the screw rotor by the steam, and power is obtained by rotation of the screw rotor at that time.

圧縮機5は、油潤滑式であれば、その構成を特に問わないが、ここではスクリュ式の空気圧縮機である。スクリュ式圧縮機は、互いにかみ合って回転するスクリュロータ間に気体を吸入して、スクリュロータの回転により圧縮して吐出する装置である。   The compressor 5 is not particularly limited as long as it is oil-lubricated, but is a screw-type air compressor here. A screw compressor is a device that sucks gas between screw rotors that mesh with each other and rotate, and compresses and discharges the gas by rotation of the screw rotor.

圧縮機5は、蒸気エンジン4により駆動される。具体的には、スクリュ式蒸気エンジン4のスクリュロータの回転駆動力を用いて、スクリュ式圧縮機5のスクリュロータが回転される。このように、圧縮機5は、基本的には蒸気エンジン4で駆動されるが、電動機(図示省略)でも補助駆動可能とされてもよい。   The compressor 5 is driven by the steam engine 4. Specifically, the screw rotor of the screw compressor 5 is rotated using the rotational driving force of the screw rotor of the screw steam engine 4. As described above, the compressor 5 is basically driven by the steam engine 4, but may be auxiliary driven by an electric motor (not shown).

次に、ボイラ給水システム1について説明する。本実施例のボイラ給水システム1は、ボイラ3への給水を貯留する給水タンク7と、この給水タンク7への給水を貯留する補給水タンク20と、この補給水タンク20の水を循環させて圧縮機5の冷却を図る熱交換器21とを主要部として備える。   Next, the boiler water supply system 1 will be described. The boiler water supply system 1 of the present embodiment circulates the water supply tank 7 that stores water supplied to the boiler 3, the replenishment water tank 20 that stores water supplied to the water supply tank 7, and the water in the replenishment water tank 20. A heat exchanger 21 for cooling the compressor 5 is provided as a main part.

給水タンク7は、ボイラ3への給水を貯留すると共に、蒸気利用機器13などからドレンが回収される。図1では、第一蒸気ヘッダ12の蒸気の利用機器13(蒸気エンジン4を含む)と、第二蒸気ヘッダ17の蒸気の利用機器(図示省略)からのドレンが、それぞれドレン回収路22,22,…を介して給水タンク7へ回収される。そして、給水タンク7の水は、給水ポンプ8および逆止弁9を介して、ボイラ3へ供給可能とされる。   The water supply tank 7 stores water supplied to the boiler 3 and collects drain from the steam utilization device 13 or the like. In FIG. 1, drains from the steam utilization device 13 (including the steam engine 4) of the first steam header 12 and the steam utilization device (not shown) of the second steam header 17 are drain recovery paths 22 and 22, respectively. ,... Are collected into the water supply tank 7. The water in the water supply tank 7 can be supplied to the boiler 3 through the water supply pump 8 and the check valve 9.

補給水タンク20は、給水タンク7への給水を貯留すると共に、軟水装置10および脱酸素装置11を介して水が供給可能とされる。軟水装置10は、イオン交換樹脂などを用いて、原水中に含まれるカルシウムやマグネシウムなどの硬度分を除去する装置である。脱酸素装置11は、中空糸膜などを用いて、水中の酸素を除去する装置である。   The make-up water tank 20 stores water supplied to the water supply tank 7 and can supply water via the soft water device 10 and the deoxygenation device 11. The soft water device 10 is a device that removes hardness components such as calcium and magnesium contained in raw water using an ion exchange resin or the like. The deoxygenation device 11 is a device that removes oxygen in water using a hollow fiber membrane or the like.

原水は、軟水装置10と脱酸素装置11とを介することで、脱気された軟水として、補給水タンク20へ供給される。この補給水タンク20への給水路23には、給水弁24が設けられる。この給水弁24の開閉を制御することで、補給水タンク20への給水の有無が切り替えられる。なお、脱気された軟水が空気と接触することで、再び酸素が溶け込むのを防止するために、給水タンク7および補給水タンク20の水面には、ビーズ25,25,…が一面に浮かべられる。   The raw water is supplied to the makeup water tank 20 as degassed soft water through the soft water device 10 and the deoxygenation device 11. A water supply valve 24 is provided in the water supply path 23 to the makeup water tank 20. By controlling the opening and closing of the water supply valve 24, the presence or absence of water supply to the makeup water tank 20 is switched. In order to prevent oxygen from being dissolved again when the degassed soft water comes into contact with air, beads 25, 25,... Are floated over the water surfaces of the water supply tank 7 and the makeup water tank 20. .

補給水タンク20には、水位検出器26が設けられる。この水位検出器26による検出信号に基づき給水弁24を制御することで、補給水タンク20内は所望水位に維持される。水位検出器26は、アナログ式のレベル水位検出器でもよいが、本実施例では、水位に比例した出力を得ることができる静電容量式の水位検出器が用いられる。そして、給水弁24は、補給水タンク20内の水が下限水位を下回ると開放される一方、上限水位を上回ると閉鎖される。   A water level detector 26 is provided in the makeup water tank 20. By controlling the water supply valve 24 based on the detection signal from the water level detector 26, the inside of the makeup water tank 20 is maintained at a desired water level. The water level detector 26 may be an analog level water level detector, but in this embodiment, a capacitive water level detector capable of obtaining an output proportional to the water level is used. The water supply valve 24 is opened when the water in the makeup water tank 20 falls below the lower limit water level, and is closed when the water exceeds the upper limit water level.

補給水タンク20の水は、補給水路27を介して、給水タンク7へ供給可能とされる。補給水路27には、補給水タンク20の側から順に、補給水ポンプ28と補給水弁29とが設けられる。補給水路27には、補給水ポンプ28と補給水弁29との間から補給水タンク20への分岐路30が設けられる。この分岐路30には、補給水ポンプ28を作動させた状態で補給水弁29が閉じられた場合に開かれる戻し弁31が設けられる。この戻し弁31は、通常は分岐路30を正逆両方向へ閉鎖しているが、補給水ポンプ28を作動させた状態で補給水弁29が閉じられた場合にのみ、開弁圧に達して開放され、補給水ポンプ28からの水を補給水タンク20へ戻す逆止弁とされる。   The water in the makeup water tank 20 can be supplied to the water supply tank 7 through the makeup water channel 27. A makeup water pump 28 and a makeup water valve 29 are provided in the makeup water channel 27 in order from the makeup water tank 20 side. The replenishment water passage 27 is provided with a branch passage 30 from between the replenishment water pump 28 and the replenishment water valve 29 to the replenishment water tank 20. The branch path 30 is provided with a return valve 31 that is opened when the makeup water valve 29 is closed with the makeup water pump 28 operated. The return valve 31 normally closes the branch path 30 in both forward and reverse directions, but reaches the valve opening pressure only when the makeup water valve 29 is closed while the makeup water pump 28 is operated. The check valve is opened to return the water from the makeup water pump 28 to the makeup water tank 20.

給水タンク7には、補給水タンク20と同様に、水位検出器32が設けられる。この水位検出器32による検出信号に基づき補給水弁29を制御することで、給水タンク7内は所望水位に維持される。本実施例では、水位に比例した出力を得ることができる静電容量式の水位検出器32が用いられ、補給水弁29は、給水タンク7内の水が下限水位を下回ると開放される一方、上限水位を上回ると閉鎖される。補給水弁29が閉じられた場合、戻し弁31が開放されることで、補給水ポンプ28からの水は、分岐路30を介して補給水タンク20へ戻される。   Similar to the makeup water tank 20, the water supply tank 7 is provided with a water level detector 32. By controlling the replenishment water valve 29 based on the detection signal from the water level detector 32, the inside of the water supply tank 7 is maintained at a desired water level. In this embodiment, a capacitance type water level detector 32 capable of obtaining an output proportional to the water level is used, and the makeup water valve 29 is opened when the water in the water supply tank 7 falls below the lower limit water level. It will be closed when the upper water level is exceeded. When the makeup water valve 29 is closed, the return valve 31 is opened so that the water from the makeup water pump 28 is returned to the makeup water tank 20 through the branch path 30.

前述したように、圧縮機5は、油潤滑式、より具体的にはスクリュ式の空気圧縮機とされる。この場合、ケーシング内で互いにかみ合って回転するスクリュロータの潤滑と、圧縮空気を作り出す空間の形成のために、ケーシング内に潤滑油が存在する。この潤滑油は、所望温度に水冷されることで、圧縮機5に発生する圧縮熱の冷却の役目も担うものである。潤滑油が水冷されて所望温度に維持されることで、圧縮しようとする空気が膨張する不都合も回避される。   As described above, the compressor 5 is an oil lubricated type, more specifically, a screw type air compressor. In this case, lubricating oil is present in the casing in order to lubricate the screw rotors that rotate in mesh with each other in the casing and to form a space for generating compressed air. This lubricating oil also serves to cool the compression heat generated in the compressor 5 by being water-cooled to a desired temperature. Since the lubricating oil is cooled with water and maintained at a desired temperature, the disadvantage that the air to be compressed expands is also avoided.

このような潤滑油の水冷のために、圧縮機5の潤滑油は、補給水タンク20の水と、熱交換器21にて間接熱交換可能とされる。具体的には、熱交換器21は、圧縮機5から供給路33を介して潤滑油が供給され、その潤滑油は排出路34を介して圧縮機5へ戻される。圧縮機5から熱交換器21への供給路33には、第一温度センサ35が設けられる。一方、熱交換器21から圧縮機5への排出路34には、循環ポンプ36が設けられる。この循環ポンプ36を作動させることで、圧縮機5と熱交換器21との間で潤滑油が循環される。   Due to such water cooling of the lubricating oil, the lubricating oil of the compressor 5 can be indirectly heat exchanged with the water in the makeup water tank 20 by the heat exchanger 21. Specifically, the heat exchanger 21 is supplied with lubricating oil from the compressor 5 via the supply path 33, and the lubricating oil is returned to the compressor 5 via the discharge path 34. A first temperature sensor 35 is provided in the supply path 33 from the compressor 5 to the heat exchanger 21. On the other hand, a circulation pump 36 is provided in the discharge path 34 from the heat exchanger 21 to the compressor 5. By operating the circulation pump 36, the lubricating oil is circulated between the compressor 5 and the heat exchanger 21.

また、熱交換器21は、補給水タンク20から給水路37を介して水が供給され、その水は排水路38を介して補給水タンク20へ戻される。補給水タンク20から熱交換器21への給水路37には、第二温度センサ39および熱交給水ポンプ40が設けられる。この熱交給水ポンプ40は、インバータ41により回転数を制御可能とされる。これにより、熱交給水ポンプ40から熱交換器21への給水量が調整可能とされる。一方、熱交換器21から補給水タンク20への排水路38には、逆止弁42が設けられる。   The heat exchanger 21 is supplied with water from the make-up water tank 20 through the water supply passage 37, and the water is returned to the make-up water tank 20 through the drainage passage 38. A second temperature sensor 39 and a heat exchange water pump 40 are provided in the water supply path 37 from the makeup water tank 20 to the heat exchanger 21. The heat supply water pump 40 can control the rotation speed by an inverter 41. Thereby, the amount of water supply from the heat exchange water supply pump 40 to the heat exchanger 21 can be adjusted. On the other hand, a check valve 42 is provided in the drainage path 38 from the heat exchanger 21 to the makeup water tank 20.

熱交給水ポンプ40は、熱交換器21に通される潤滑油の液温に基づき、インバータ41により回転数を制御される。具体的には、圧縮機5から熱交換器21へ供給される潤滑油を設定温度に維持するように、第一温度センサ35による検出温度に基づき、インバータ41により熱交給水ポンプ40が制御されて、補給水タンク20から熱交換器21へ供給される水量が調整される。   The rotation speed of the heat supply water pump 40 is controlled by the inverter 41 based on the liquid temperature of the lubricating oil passed through the heat exchanger 21. Specifically, the heat supply water pump 40 is controlled by the inverter 41 based on the temperature detected by the first temperature sensor 35 so that the lubricating oil supplied from the compressor 5 to the heat exchanger 21 is maintained at a set temperature. Thus, the amount of water supplied from the makeup water tank 20 to the heat exchanger 21 is adjusted.

ところで、給水タンク7および補給水タンク20には、それぞれ、所定以上の水を外部へあふれさせるためのオーバフロー路43,44が設けられている。また、補給水タンク20の水は、排水路45を介して排水可能とされる。排水路45には排水弁46が設けられている。この排水弁46の開閉を制御することで、補給水タンク20からの排水の有無が切り替えられる。排水弁46は、補給水タンク20内の水温に基づき、開閉を制御される。具体的には、排水弁46は、第二温度センサ39による検出温度に基づき制御され、その温度が上限温度を上回ると開放される一方、下限温度を下回ると閉鎖される。   By the way, the water supply tank 7 and the makeup water tank 20 are provided with overflow paths 43 and 44, respectively, for allowing more than a predetermined amount of water to overflow to the outside. Further, the water in the makeup water tank 20 can be drained through the drainage channel 45. A drain valve 46 is provided in the drain channel 45. By controlling the opening and closing of the drain valve 46, the presence or absence of drainage from the makeup water tank 20 is switched. The drain valve 46 is controlled to open and close based on the water temperature in the makeup water tank 20. Specifically, the drain valve 46 is controlled based on the temperature detected by the second temperature sensor 39, and is opened when the temperature exceeds the upper limit temperature, and is closed when the temperature falls below the lower limit temperature.

次に、本実施例のボイラ給水システム1の動作について説明する。
まず熱交換器21における潤滑油の冷却について説明する。これには、圧縮機5から熱交換器21へ供給される潤滑油の温度に基づき、補給水タンク20から熱交換器21への給水量が制御される。具体的には、圧縮機5から熱交換器21へ供給される潤滑油を設定温度に維持するように、第一温度センサ35による検出温度に基づきインバータ41により熱交給水ポンプ40が制御されて、補給水タンク20から熱交換器21への給水量が調整される。つまり、潤滑油の温度が上がると、熱交給水ポンプ40の回転数を上げて冷却水量を増やす一方、潤滑油の温度が下がると、熱交給水ポンプ40の回転数を下げて冷却水量を減らすことで、潤滑油を設定温度に維持することが図られる。
Next, operation | movement of the boiler water supply system 1 of a present Example is demonstrated.
First, cooling of the lubricating oil in the heat exchanger 21 will be described. For this purpose, the amount of water supplied from the makeup water tank 20 to the heat exchanger 21 is controlled based on the temperature of the lubricating oil supplied from the compressor 5 to the heat exchanger 21. Specifically, the heat supply water pump 40 is controlled by the inverter 41 based on the temperature detected by the first temperature sensor 35 so that the lubricating oil supplied from the compressor 5 to the heat exchanger 21 is maintained at the set temperature. The amount of water supplied from the makeup water tank 20 to the heat exchanger 21 is adjusted. That is, when the temperature of the lubricating oil rises, the rotational speed of the heat exchange water pump 40 is increased to increase the amount of cooling water, while when the temperature of the lubricating oil decreases, the rotational speed of the heat exchange water pump 40 is decreased to reduce the amount of cooling water. Thus, it is possible to maintain the lubricating oil at the set temperature.

次に、補給水タンク20から給水タンク7への補給水の供給について説明する。ボイラ給水システム1の稼働中、補給水ポンプ28は常時作動されている。また、給水タンク7内の水位は、水位検出器32により監視される。そして、給水タンク7内の水が下限水位を下回ると、補給水弁29が開放される。これにより、補給水タンク20の水が、補給水路27を介して、給水タンク7へ供給される。一方、給水タンク7内の水が上限水位を上回ると、補給水弁29が閉鎖される。これにより、それまで閉じていた戻し弁31が開弁圧に達して開放され、分岐路30を介して補給水タンク20への戻り路が確保される。よって、補給水タンク20の水が、補給水路27の中途から分岐路30を通り、補給水タンク20へ戻される。このように、補給水弁29と戻し弁31とは択一的にいずれかのみが開放されることで、補給水タンク20から給水タンク7への給水の有無が切り替えられる。   Next, supply of makeup water from the makeup water tank 20 to the water supply tank 7 will be described. During operation of the boiler water supply system 1, the makeup water pump 28 is always operated. In addition, the water level in the water supply tank 7 is monitored by a water level detector 32. When the water in the water supply tank 7 falls below the lower limit water level, the makeup water valve 29 is opened. As a result, the water in the makeup water tank 20 is supplied to the water supply tank 7 via the makeup water channel 27. On the other hand, when the water in the water supply tank 7 exceeds the upper limit water level, the makeup water valve 29 is closed. As a result, the return valve 31 that has been closed until then reaches the valve opening pressure and is opened, and a return path to the makeup water tank 20 through the branch path 30 is secured. Therefore, the water in the makeup water tank 20 is returned to the makeup water tank 20 through the branch path 30 from the middle of the makeup water path 27. In this way, by selectively opening only one of the replenishing water valve 29 and the return valve 31, the presence or absence of water supply from the replenishing water tank 20 to the water supply tank 7 is switched.

このような構成の場合、補給水タンク20への戻り量が増え過ぎると、補給水タンク20内の水温が上がることになる。そして、補給水タンク20内の水温が上がり過ぎると、補給水タンク20内の水は、熱交換器21における潤滑油の冷却に適さなくなるおそれがある。そこで、補給水タンク20から熱交換器21への給水路37に設けた第二温度センサ39により、熱交換器21に供給される水の温度を監視し、その水温が上限温度を上回ると、排水弁46が開放される。これにより、補給水タンク20内の水は、排水路45を介して排出を図られるが、補給水タンク20内の水が下限水位まで下がれば、給水弁24が開放されて補給水タンク20への給水が開始される。このような給排水により、補給水タンク20内の水の入れ替えが図られ、補給水タンク20内の水が下限温度を下回ると、排水弁46が閉鎖される。その後、補給水タンク20内の水位は上昇し、上限水位になると給水弁24が閉じられる。なお、第二温度センサ39の設置位置から明らかなとおり、補給水タンク20内の水温は、補給水タンク20内自体にて監視してもよいし、図示例のように、補給水タンク20から熱交換器21への給水路37にて監視してもよい。   In such a configuration, if the amount of return to the makeup water tank 20 increases too much, the water temperature in the makeup water tank 20 rises. If the water temperature in the makeup water tank 20 rises too much, the water in the makeup water tank 20 may not be suitable for cooling the lubricating oil in the heat exchanger 21. Therefore, the temperature of the water supplied to the heat exchanger 21 is monitored by the second temperature sensor 39 provided in the water supply path 37 from the makeup water tank 20 to the heat exchanger 21, and when the water temperature exceeds the upper limit temperature, The drain valve 46 is opened. As a result, the water in the makeup water tank 20 is discharged through the drainage channel 45, but when the water in the makeup water tank 20 falls to the lower limit water level, the water supply valve 24 is opened to the makeup water tank 20. Water supply will begin. By such water supply / drainage, the water in the makeup water tank 20 is replaced, and when the water in the makeup water tank 20 falls below the lower limit temperature, the drain valve 46 is closed. Thereafter, the water level in the makeup water tank 20 rises, and when the upper limit water level is reached, the water supply valve 24 is closed. As is clear from the installation position of the second temperature sensor 39, the water temperature in the makeup water tank 20 may be monitored in the makeup water tank 20 itself, or from the makeup water tank 20 as in the illustrated example. You may monitor in the water supply path 37 to the heat exchanger 21. FIG.

本実施例のボイラ給水システム1によれば、蒸気利用機器13からのドレンを給水タンク7へ回収することで、省エネルギーを図ることができる。また、給水タンク7とは別に補給水タンク20を設け、この補給水タンク20の水で圧縮機5の潤滑油の冷却を図ることができる。給水タンク7とは別に補給水タンク20を設けることで、給水タンク7にドレンを回収しても、それによって補給水タンク20の水を昇温させることはない。これにより、回収されたドレンによって給水タンク7の水が昇温しても、補給水タンク20の水で潤滑油の冷却を図ることができる。しかも、潤滑油の液温に基づき、熱交給水ポンプ40から熱交換器21へ供給する水量を調整することで、潤滑油を所望温度に維持することができる。この際、熱交給水ポンプ40をインバータ制御することで、熱交換器21へ供給される潤滑油の条件(温度,流量)や、熱交換器21へ供給される冷却水の水温が変化しても、潤滑油を所望温度に維持することができる。さらに、給水タンク7へは補給水タンク20の水が補給されるので、潤滑油から得た熱を有効利用できる。   According to the boiler water supply system 1 of the present embodiment, energy can be saved by collecting the drain from the steam utilization device 13 to the water supply tank 7. Further, a makeup water tank 20 is provided separately from the water supply tank 7, and the lubricating oil of the compressor 5 can be cooled with water from the makeup water tank 20. By providing the makeup water tank 20 separately from the water supply tank 7, even if drain is collected in the water supply tank 7, the temperature of the water in the makeup water tank 20 is not thereby raised. Thereby, even if the water in the water supply tank 7 is heated by the collected drain, the lubricating oil can be cooled with the water in the makeup water tank 20. Moreover, the lubricating oil can be maintained at a desired temperature by adjusting the amount of water supplied from the heat exchanger water pump 40 to the heat exchanger 21 based on the liquid temperature of the lubricating oil. At this time, the condition (temperature, flow rate) of the lubricating oil supplied to the heat exchanger 21 and the water temperature of the cooling water supplied to the heat exchanger 21 are changed by inverter control of the heat exchange water pump 40. Also, the lubricating oil can be maintained at a desired temperature. Furthermore, since the water in the make-up water tank 20 is supplied to the water supply tank 7, the heat obtained from the lubricating oil can be used effectively.

図2は、本発明のボイラ給水システム1の実施例2を備える蒸気システム2の一例を示す概略図である。本実施例2のボイラ給水システム1と、これを備える蒸気システム2とは、基本的に前記実施例1と同様である。そこで、以下では、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 2 is a schematic diagram illustrating an example of a steam system 2 including the second embodiment of the boiler water supply system 1 of the present invention. The boiler water supply system 1 according to the second embodiment and the steam system 2 including the same are basically the same as the first embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例2は、補給水タンク20の構成において、前記実施例1と異なる。本実施例2では、補給水タンク20内は、上下方向中途部において、水平板状の隔壁47により、一部を残して上下に区画される。これにより、補給水タンク20内は、隔壁47を介して上下に区画されつつも、その隔壁47よりも上部領域と下部領域とは一部において互いに連通される。   The second embodiment is different from the first embodiment in the configuration of the makeup water tank 20. In the second embodiment, the inside of the makeup water tank 20 is divided vertically by a horizontal plate-like partition wall 47 in the middle in the vertical direction. As a result, the interior of the makeup water tank 20 is vertically divided via the partition wall 47, but the upper region and the lower region of the partition wall 47 are partially communicated with each other.

この場合、脱酸素装置11からの給水路23は、隔壁47よりも下部領域に接続される一方、排水路45は、隔壁47よりも上部領域に接続される。すなわち、給水弁24を介した補給水タンク20への給水は、隔壁47よりも下部領域へなされる一方、補給水タンク20から排水弁46を介した排水は、隔壁47よりも上部領域からなされる。   In this case, the water supply path 23 from the deoxygenation device 11 is connected to a lower region than the partition wall 47, while the drainage channel 45 is connected to an upper region than the partition wall 47. That is, the water supply to the make-up water tank 20 through the water supply valve 24 is performed in a lower region than the partition wall 47, while the water discharged from the make-up water tank 20 through the drain valve 46 is performed from an upper region than the partition wall 47. The

また、熱交換器21への給水路37は、隔壁47よりも下部領域に接続される一方、熱交換器21からの排水路38は、隔壁47よりも上部領域に接続される。すなわち、補給水タンク20から熱交換器21への給水は、隔壁47よりも下部領域からなされる一方、熱交換器21から補給水タンク20への排水は、隔壁47よりも上部領域へなされる。   Further, the water supply path 37 to the heat exchanger 21 is connected to the lower region than the partition wall 47, while the drainage channel 38 from the heat exchanger 21 is connected to the upper region than the partition wall 47. In other words, the water supply from the makeup water tank 20 to the heat exchanger 21 is performed from the lower region than the partition wall 47, while the drainage from the heat exchanger 21 to the makeup water tank 20 is performed to the upper region from the partition wall 47. .

さらに、給水タンク7への補給水路27は、隔壁47よりも上部領域に接続される一方、補給水路27からの分岐路30は、隔壁47よりも上部領域に接続される。すなわち、補給水タンク20から給水タンク7への給水は、隔壁47よりも上部領域からなされ、分岐路30から補給水タンク20への排水は、隔壁47よりも上部領域へなされる。   Further, the replenishment water channel 27 to the water supply tank 7 is connected to the upper region than the partition wall 47, while the branch channel 30 from the replenishment water channel 27 is connected to the upper region than the partition wall 47. That is, the water supply from the makeup water tank 20 to the water supply tank 7 is performed from the upper region than the partition wall 47, and the drainage from the branch passage 30 to the makeup water tank 20 is performed from the partition wall 47 to the upper region.

このような構成の場合、補給水タンク20内の水に、隔壁47を介して、高温領域と低温領域とを作り出すことができる。すなわち、隔壁47よりも上部領域は、下部領域よりも高温領域とされ、隔壁47よりも下部領域は、上部領域よりも低温領域とされる。そして、脱酸素装置11からの比較的低温の給水は低温領域へ行われる一方、排水路45への排水は高温領域から行われる。また、潤滑油を冷却するための熱交換器21への給水は低温領域から行われる一方、熱交換器21にて温められた水の戻しは高温領域へ行われる。さらに、給水タンク7への給水は高温領域から行われる一方、分岐路30からの水の戻しは高温領域へ行われる。このようにして、熱交換能力の維持とシステム効率の向上とを図ることができる。その他の構成は、前記実施例1と同様であるため、説明は省略する。   In the case of such a configuration, a high temperature region and a low temperature region can be created in the water in the makeup water tank 20 via the partition wall 47. That is, the region above the partition wall 47 is a higher temperature region than the lower region, and the region below the partition wall 47 is a lower temperature region than the upper region. And the comparatively low temperature water supply from the deoxygenation apparatus 11 is performed to a low temperature area | region, while the waste_water | drain to the drainage channel 45 is performed from a high temperature area | region. In addition, water supply to the heat exchanger 21 for cooling the lubricating oil is performed from the low temperature region, while the water warmed by the heat exchanger 21 is returned to the high temperature region. Further, water supply to the water supply tank 7 is performed from the high temperature region, while water return from the branch path 30 is performed to the high temperature region. In this way, it is possible to maintain heat exchange capability and improve system efficiency. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

図3は、本発明のボイラ給水システム1の実施例3を備える蒸気システム2の一例を示す概略図である。本実施例3のボイラ給水システム1と、これを備える蒸気システム2とは、基本的に前記実施例1と同様である。そこで、以下では、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 3 is a schematic diagram illustrating an example of a steam system 2 including the boiler feed water system 1 according to the third embodiment of the present invention. The boiler water supply system 1 according to the third embodiment and the steam system 2 including the same are basically the same as the first embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例3は、潤滑油の液温に基づく熱交換器21への冷却水量の調整方法において、前記実施例1と異なる。すなわち、前記実施例1では、第一温度センサ35の検出温度に基づき、熱交給水ポンプ40をインバータ制御したが、本実施例3では、以下に述べるように構成され制御される。   The third embodiment is different from the first embodiment in the method for adjusting the amount of cooling water to the heat exchanger 21 based on the liquid temperature of the lubricating oil. That is, in the first embodiment, the heat supply water pump 40 is inverter-controlled based on the temperature detected by the first temperature sensor 35. However, in the third embodiment, the heat pump is configured and controlled as described below.

本実施例3では、熱交給水ポンプ40をインバータ制御する代わりに、温調三方弁48が用いられる。具体的には、熱交給水ポンプ40から熱交換器21への給水路37の中途と、熱交換器21から補給水タンク20への排水路38の中途とは、バイパス路49で接続されている。そして、その給水路37とバイパス路49との分岐部には、温調三方弁48が設けられる。この温調三方弁48は、第一温度センサ35の検出温度に基づき、熱交給水ポンプ40からの水を熱交換器21へ供給するか、熱交換器21を介さずにバイパス路49を介して補給水タンク20へ戻すかの分配割合を調整する電動三方弁である。   In the third embodiment, a temperature control three-way valve 48 is used instead of inverter control of the heat exchange water pump 40. Specifically, the middle of the water supply path 37 from the heat exchanger water pump 40 to the heat exchanger 21 and the middle of the drainage path 38 from the heat exchanger 21 to the makeup water tank 20 are connected by a bypass path 49. Yes. A temperature adjusting three-way valve 48 is provided at a branch portion between the water supply passage 37 and the bypass passage 49. The temperature control three-way valve 48 supplies water from the heat exchange water pump 40 to the heat exchanger 21 based on the temperature detected by the first temperature sensor 35, or via the bypass 49 without passing through the heat exchanger 21. This is an electric three-way valve that adjusts the distribution ratio of returning to the makeup water tank 20.

本実施例3では、温調三方弁48を制御することで、熱交換器21へ供給する冷却水量を調整して、圧縮機5の潤滑油を所望温度に維持することができる。その他の構成は、前記実施例1と同様であるため、説明は省略する。   In the third embodiment, by controlling the temperature adjusting three-way valve 48, the amount of cooling water supplied to the heat exchanger 21 can be adjusted, and the lubricating oil of the compressor 5 can be maintained at a desired temperature. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

図4は、本発明のボイラ給水システム1の実施例4を備える蒸気システム2の一例を示す概略図である。本実施例4のボイラ給水システム1と、これを備える蒸気システム2とは、基本的に前記実施例2および前記実施例3と同様である。そこで、以下では、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 4 is a schematic diagram illustrating an example of a steam system 2 including the fourth embodiment of the boiler water supply system 1 of the present invention. The boiler water supply system 1 according to the fourth embodiment and the steam system 2 including the same are basically the same as the second embodiment and the third embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例4は、前記実施例3の構成を基本に、その補給水タンク20を前記実施例2と同様に構成したものである。逆にいうと、前記実施例2の構成を基本に、熱交給水ポンプ40をインバータ制御することに代えて、前記実施例3と同様に、温調三方弁48により熱交換器21への給水量を調整するものである。   In the fourth embodiment, the makeup water tank 20 is configured in the same manner as the second embodiment based on the configuration of the third embodiment. In other words, based on the configuration of the second embodiment, instead of inverter-controlling the heat exchange water pump 40, water is supplied to the heat exchanger 21 by the temperature control three-way valve 48, as in the third embodiment. The amount is adjusted.

本実施例4でも、前記実施例2と同様に、補給水タンク20内の水に、隔壁47を介して、高温領域と低温領域とを作り出すことができる。すなわち、隔壁47よりも上部領域は、下部領域よりも高温領域とされ、隔壁47よりも下部領域は、上部領域よりも低温領域とされる。そして、脱酸素装置11からの比較的低温の給水は低温領域へ行われる一方、排水路45への排水は高温領域から行われる。また、潤滑油を冷却するための熱交換器21への給水は低温領域から行われる一方、熱交換器21にて温められた水の戻しは高温領域へ行われる。さらに、給水タンク7への給水は高温領域から行われる一方、分岐路30からの水の戻しは高温領域へ行われる。このようにして、熱交換能力の維持とシステム効率の向上とを図ることができる。その他の構成は、前記実施例3と同様であるため、説明は省略する。   In the fourth embodiment, similarly to the second embodiment, a high temperature region and a low temperature region can be created in the water in the makeup water tank 20 via the partition wall 47. That is, the region above the partition wall 47 is a higher temperature region than the lower region, and the region below the partition wall 47 is a lower temperature region than the upper region. And the comparatively low temperature water supply from the deoxygenation apparatus 11 is performed to a low temperature area | region, while the waste_water | drain to the drainage channel 45 is performed from a high temperature area | region. In addition, water supply to the heat exchanger 21 for cooling the lubricating oil is performed from the low temperature region, while the water warmed by the heat exchanger 21 is returned to the high temperature region. Further, water supply to the water supply tank 7 is performed from the high temperature region, while water return from the branch path 30 is performed to the high temperature region. In this way, it is possible to maintain heat exchange capability and improve system efficiency. Since other configurations are the same as those of the third embodiment, description thereof is omitted.

図5は、本発明のボイラ給水システム1の実施例5を備える蒸気システム2の一例を示す概略図である。本実施例5のボイラ給水システム1と、これを備える蒸気システム2とは、基本的に前記実施例2と同様である。そこで、以下では、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 5 is a schematic diagram illustrating an example of a steam system 2 including the fifth embodiment of the boiler water supply system 1 of the present invention. The boiler water supply system 1 according to the fifth embodiment and the steam system 2 including the same are basically the same as the second embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例5は、前記実施例2の構成において、排水路45および排水弁46の設置がなされない。この場合、第二温度センサ39の検出温度に基づき、補給水タンク20内の水温が上限温度を上回ると、給水弁24を開放して、オーバフロー路44から高温水を捨てて、補給水タンク20内の水の入れ替えが図られる。そして、このような給排水により、補給水タンク20内の水が下限温度を下回ると、給水弁24が閉鎖される。その他の構成は、前記実施例2と同様であるため、説明は省略する。   In the fifth embodiment, the drainage channel 45 and the drainage valve 46 are not installed in the configuration of the second embodiment. In this case, when the water temperature in the make-up water tank 20 exceeds the upper limit temperature based on the temperature detected by the second temperature sensor 39, the water supply valve 24 is opened, the high-temperature water is discarded from the overflow path 44, and the make-up water tank 20 The water inside is replaced. When the water in the makeup water tank 20 falls below the lower limit temperature due to such water supply / drainage, the water supply valve 24 is closed. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

ところで、このような補給水タンク20内の水の入れ替えは、実施例2に限らず、他の実施例にも同様に適用可能である。   By the way, such replacement of the water in the makeup water tank 20 is not limited to the second embodiment, and can be similarly applied to other embodiments.

本発明のボイラ給水システム1は、前記各実施例の構成に限らず適宜変更可能である。特に、ボイラ3への給水を用いて、熱交換器21で各種液体の冷却を図る構成であれば足り、蒸気システム2の構成は、前記各実施例に限定されない。   The boiler water supply system 1 of the present invention is not limited to the configuration of each of the embodiments described above and can be changed as appropriate. In particular, it is sufficient if the heat exchanger 21 is used to cool various liquids using the water supplied to the boiler 3, and the configuration of the steam system 2 is not limited to the above embodiments.

また、前記各実施例では、蒸気エンジン4により駆動される圧縮機5の冷却について説明したが、従来公知の電気により駆動される通常の圧縮機に対しても同様に適用できる。   In the above embodiments, the cooling of the compressor 5 driven by the steam engine 4 has been described. However, the present invention can be similarly applied to a conventional compressor driven by electricity.

また、前記各実施例では、熱交換器21に圧縮機5の潤滑油を循環させて、圧縮機5の冷却を図る場合について説明したが、本発明のボイラ給水システム1は、圧縮機5の冷却に限らず、それ以外の用途にも幅広く対応可能である。その場合、熱交換器21には、潤滑油に代えて、冷却を図ろうとする液体を通せばよい。   Moreover, although the said each Example demonstrated the case where the lubricating oil of the compressor 5 was circulated through the heat exchanger 21, and the cooling of the compressor 5 was aimed at, the boiler water supply system 1 of this invention is the compressor 5 of the compressor 5. Not only for cooling but also for other uses. In that case, a liquid to be cooled may be passed through the heat exchanger 21 instead of the lubricating oil.

また、前記各実施例では、給水タンク7と補給水タンク20との各水位は、静電容量式の水位検出器32,26により検出したが、その他の構成で検出してもよい。たとえば、電極棒の下端が水に浸かるか否かで特定水位の有無を検出する構成を用いてもよい。その場合、下端部の高さ位置を互いに異ならせた二本の電極棒を用いる。すなわち、下限水位を検出する電極棒と、上限水位を検出する電極棒との二本の電極棒により、補給水弁29や給水弁24の開閉が制御される。   In each of the embodiments, the water levels in the water supply tank 7 and the makeup water tank 20 are detected by the electrostatic capacity type water level detectors 32 and 26, but may be detected by other configurations. For example, you may use the structure which detects the presence or absence of a specific water level by whether the lower end of an electrode rod is immersed in water. In that case, two electrode rods having different height positions at the lower end are used. That is, the opening and closing of the replenishment water valve 29 and the water supply valve 24 are controlled by the two electrode rods of the electrode rod for detecting the lower limit water level and the electrode rod for detecting the upper limit water level.

また、前記各実施例では、圧縮機5と熱交換器21との間で潤滑油を循環させるために、循環ポンプ36を設けたが、この循環ポンプ36は必ずしも必要ではない。圧縮機5は、通常、その出口において、オイルセパレータを介して、圧縮空気と潤滑油とが分離される。そして、圧縮機5からの潤滑油は、オイルセパレータを介して熱交換器へ供給される。この場合、オイルセパレータの内圧により、潤滑油が熱交換器21へ押し出される一方、圧縮機5の吸込みにより、熱交換器21から圧縮機5へ潤滑油が戻される。これにより、循環ポンプ36がなくても、圧縮機5と熱交換器21との間で、潤滑油を循環させることが可能となる。   In each of the above embodiments, the circulation pump 36 is provided to circulate the lubricating oil between the compressor 5 and the heat exchanger 21. However, the circulation pump 36 is not always necessary. The compressor 5 normally separates compressed air and lubricating oil through an oil separator at the outlet. And the lubricating oil from the compressor 5 is supplied to a heat exchanger via an oil separator. In this case, the lubricating oil is pushed out to the heat exchanger 21 by the internal pressure of the oil separator, while the lubricating oil is returned from the heat exchanger 21 to the compressor 5 by the suction of the compressor 5. As a result, the lubricating oil can be circulated between the compressor 5 and the heat exchanger 21 without the circulation pump 36.

また、前記各実施例では、補給水タンク20から給水タンク7への給水は、補給水弁29の開閉を制御することで、補給水弁29と戻し弁31とを択一的に開放することで実現したが、これ以外の構成を採用してもよい。たとえば、補給水弁29と戻し弁31とを設ける代わりに、補給水路27と分岐路30との分岐部に、三方電磁弁を設けてもよい。この場合、水位検出器32の検出信号に基づき三方電磁弁を制御して、補給水ポンプ28からの水を、給水タンク7へ供給するか、分岐路30を介して補給水タンク20へ戻すかを切り替えればよい。さらに、補給水弁29、分岐路30および戻し弁31を省略して、単に、補給水タンク20の水を補給水ポンプ28で補給水路27を介して給水タンク7へ供給可能としてもよい。この場合、水位検出器32の検出信号に基づき補給水ポンプ28の作動の有無をオンオフ制御すればよい。   Further, in each of the above embodiments, the water supply from the makeup water tank 20 to the water supply tank 7 is to selectively open the makeup water valve 29 and the return valve 31 by controlling the opening and closing of the makeup water valve 29. However, other configurations may be adopted. For example, instead of providing the replenishment water valve 29 and the return valve 31, a three-way electromagnetic valve may be provided at the branch portion between the replenishment water passage 27 and the branch passage 30. In this case, the three-way solenoid valve is controlled based on the detection signal of the water level detector 32 to supply water from the makeup water pump 28 to the feed water tank 7 or return to the makeup water tank 20 through the branch path 30. Can be switched. Furthermore, the makeup water valve 29, the branch path 30 and the return valve 31 may be omitted, and the water in the makeup water tank 20 may simply be supplied to the water supply tank 7 via the makeup water path 27 by the makeup water pump 28. In this case, on / off control of the operation of the makeup water pump 28 may be performed based on the detection signal of the water level detector 32.

さらに、前記実施例1〜4では、所望時に排水弁46を開くことで、補給水タンク20内の水の一部を入れ替える構成としたが、これに代えて、所望時に、クーリングタワーや冷却装置との間で、補給水タンク20内の水を循環させ、補給水タンク20内の水の冷却を図ってもよい。   Furthermore, in the said Examples 1-4, although it was set as the structure which replaces a part of water in the makeup water tank 20 by opening the drain valve 46 at a desired time, instead of this, a cooling tower and a cooling device can be used at a desired time. The water in the makeup water tank 20 may be circulated between them to cool the water in the makeup water tank 20.

本発明のボイラ給水システムの実施例1を備える蒸気システムの一例を示す概略図である。It is the schematic which shows an example of a steam system provided with Example 1 of the boiler water supply system of this invention. 本発明のボイラ給水システムの実施例2を備える蒸気システムの一例を示す概略図である。It is the schematic which shows an example of a steam system provided with Example 2 of the boiler water supply system of this invention. 本発明のボイラ給水システムの実施例3を備える蒸気システムの一例を示す概略図である。It is the schematic which shows an example of a steam system provided with Example 3 of the boiler feed water system of this invention. 本発明のボイラ給水システムの実施例4を備える蒸気システムの一例を示す概略図である。It is the schematic which shows an example of a steam system provided with Example 4 of the boiler water supply system of this invention. 本発明のボイラ給水システムの実施例5を備える蒸気システムの一例を示す概略図である。It is the schematic which shows an example of a steam system provided with Example 5 of the boiler water supply system of this invention.

符号の説明Explanation of symbols

1 ボイラ給水システム
2 蒸気システム
3 ボイラ
5 圧縮機
7 給水タンク
13 蒸気利用機器
20 補給水タンク
21 熱交換器
22 ドレン回収路
24 給水弁
26 水位検出器
27 補給水路
29 補給水弁
30 分岐路
31 戻し弁
32 水位検出器
33 供給路
34 排出路
35 第一温度センサ
37 給水路
38 排水路
40 熱交給水ポンプ
41 インバータ(熱交給水量調整手段)
46 排水弁
47 隔壁
48 温調三方弁(熱交給水量調整手段)
DESCRIPTION OF SYMBOLS 1 Boiler water supply system 2 Steam system 3 Boiler 5 Compressor 7 Water supply tank 13 Steam utilization equipment 20 Supply water tank 21 Heat exchanger 22 Drain collection path 24 Water supply valve 26 Water level detector 27 Supply water path 29 Supply water valve 30 Branch path 31 Return Valve 32 Water level detector 33 Supply path 34 Discharge path 35 First temperature sensor 37 Water supply path 38 Drainage path 40 Heat supply water pump 41 Inverter (heat supply water amount adjusting means)
46 Drain valve 47 Bulkhead 48 Temperature controlled three-way valve (heat supply water amount adjustment means)

Claims (6)

ボイラへの給水を貯留すると共に、ボイラからの蒸気のドレンが回収される給水タンクと、
この給水タンクへの給水を貯留すると共に、前記給水タンク内の水位に基づき前記給水タンクへ給水可能に設けられるが、前記給水タンクからは給水されない補給水タンクと、
この補給水タンクとの間で水が循環されると共に、この循環水で冷却しようとする被冷却液が通される熱交換器と、
前記補給水タンクから前記熱交換器への給水路に設けられる熱交給水ポンプと、
前記熱交換器に通される被冷却液の液温に基づき、前記熱交給水ポンプから前記熱交換器へ供給する水量を調整する熱交給水量調整手段と
を備えることを特徴とするボイラ給水システム。
A water supply tank that stores water supply to the boiler and collects steam drainage from the boiler;
While storing the water supply to this water supply tank, and provided to be able to supply water to the water supply tank based on the water level in the water supply tank, a replenishment water tank not supplied from the water supply tank,
A heat exchanger through which water to be circulated between the make-up water tank and a liquid to be cooled to be cooled by the circulating water is passed;
A heat supply water pump provided in a water supply path from the makeup water tank to the heat exchanger;
Heat supply water amount adjusting means for adjusting the amount of water supplied from the heat exchange water pump to the heat exchanger based on the liquid temperature of the liquid to be cooled that is passed through the heat exchanger. system.
前記補給水タンクから前記給水タンクへの補給水路に設けられ、前記給水タンク内の水位に基づき開閉される補給水弁と、
前記補給水タンクから前記補給水弁への補給水路から分岐して前記補給水タンクへ向かう分岐路に設けられ、前記補給水弁が閉じられることで開かれる戻し弁とをさらに備え、
前記補給水弁は、電磁弁から構成され、
前記戻し弁は、前記補給水弁が閉じられることで開弁圧に達して開放され、前記補給水タンクからの水を再び前記補給水タンクへ戻すことを可能とする逆止弁とされた
ことを特徴とする請求項1に記載のボイラ給水システム。
A replenishment water valve provided in a replenishment water path from the replenishment water tank to the water supply tank and opened and closed based on a water level in the water supply tank;
A return valve that is provided in a branch path that branches from the makeup water path from the makeup water tank to the makeup water valve and goes to the makeup water tank, and that is opened by closing the makeup water valve;
The makeup water valve is composed of a solenoid valve,
The return valve is a check valve that opens when the replenishing water valve is closed to reach a valve opening pressure, and allows water from the replenishing water tank to be returned to the replenishing water tank again. The boiler water supply system according to claim 1.
前記熱交給水量調整手段は、前記熱交換器に通される被冷却液の液温に基づき、前記熱交給水ポンプの回転数を制御するインバータとされ、
前記熱交換器は、前記補給水タンクとの間で水が循環可能とされると共に、油潤滑式の圧縮機との間で前記被冷却液としての潤滑油が循環可能とされ、
前記圧縮機から前記熱交換器へ供給される潤滑油を設定温度に維持するように、前記インバータにより前記熱交給水ポンプを制御して、前記補給水タンクから前記熱交換器へ供給する水量を調整する
ことを特徴とする請求項1または請求項2に記載のボイラ給水システム。
The heat supply water amount adjusting means is an inverter that controls the number of rotations of the heat supply water pump based on the liquid temperature of the liquid to be cooled that is passed through the heat exchanger.
The heat exchanger is configured such that water can be circulated with the make-up water tank, and lubricating oil as the liquid to be cooled can be circulated with an oil-lubricated compressor,
The amount of water supplied from the make-up water tank to the heat exchanger is controlled by controlling the heat supply water pump by the inverter so that the lubricating oil supplied from the compressor to the heat exchanger is maintained at a set temperature. It adjusts. The boiler water supply system of Claim 1 or Claim 2 characterized by the above-mentioned.
前記熱交給水量調整手段は、前記熱交換器に通される被冷却液の液温に基づき、前記熱交給水ポンプからの水を、前記熱交換器を介して前記補給水タンクへ戻すか、前記熱交換器を介さずに前記補給水タンクへ戻すかの分配割合を調整する温調三方弁とされ、
前記熱交換器は、前記補給水タンクとの間で水が循環可能とされると共に、油潤滑式の圧縮機との間で前記被冷却液としての潤滑油が循環可能とされ、
前記圧縮機から前記熱交換器へ供給される潤滑油を設定温度に維持するように、前記温調三方弁を制御して、前記補給水タンクから前記熱交換器へ供給する水量を調整する
ことを特徴とする請求項1または請求項2に記載のボイラ給水システム。
The heat supply water amount adjusting means returns the water from the heat supply water pump to the makeup water tank via the heat exchanger based on the liquid temperature of the liquid to be cooled that is passed through the heat exchanger. , A temperature control three-way valve that adjusts the distribution ratio of whether to return to the makeup water tank without going through the heat exchanger,
The heat exchanger is configured such that water can be circulated with the make-up water tank, and lubricating oil as the liquid to be cooled can be circulated with an oil-lubricated compressor,
Adjusting the amount of water supplied from the makeup water tank to the heat exchanger by controlling the temperature control three-way valve so that the lubricating oil supplied from the compressor to the heat exchanger is maintained at a set temperature. The boiler water supply system according to claim 1 or 2, characterized in that.
前記補給水タンクは、給水弁を介して給水可能とされる一方、排水弁を介して排水可能とされ、
前記給水弁は、前記補給水タンク内の水が下限水位を下回ると開放される一方、上限水位を上回ると閉鎖され、
前記排水弁は、前記熱交換器に供給される水が上限温度を上回ると開放される一方、下限温度を下回ると閉鎖される
ことを特徴とする請求項1〜4のいずれか1項に記載のボイラ給水システム。
The makeup water tank can be supplied with water via a water supply valve, and can be discharged with a drain valve.
The water supply valve is opened when the water in the makeup water tank is lower than the lower limit water level, and is closed when the upper limit water level is exceeded,
5. The drain valve is opened when water supplied to the heat exchanger exceeds an upper limit temperature, and is closed when the water falls below a lower limit temperature. 6. Boiler water supply system.
前記補給水タンク内は、隔壁を介して上下に区画されつつも、その隔壁よりも上部領域と下部領域とは一部において互いに連通されており、
前記給水弁を介した前記補給水タンクへの給水は、前記隔壁よりも下部領域へなされる一方、前記補給水タンクから前記排水弁を介した排水は、前記隔壁よりも上部領域からなされ、
前記補給水タンクから前記熱交換器への給水は、前記隔壁よりも下部領域からなされる一方、前記熱交換器から前記補給水タンクへの排水は、前記隔壁よりも上部領域へなされ、
前記補給水タンクから前記給水タンクへの給水は、前記隔壁よりも上部領域からなされる
ことを特徴とする請求項5に記載のボイラ給水システム。
The inside of the makeup water tank is divided up and down via a partition wall, but the upper region and the lower region are partly communicated with each other in part from the partition wall,
Water supply to the make-up water tank via the water supply valve is made to a lower region than the partition wall, while water discharge from the make-up water tank through the drain valve is made from an upper region than the partition wall,
Water supply from the makeup water tank to the heat exchanger is made from the lower region than the partition wall, while drainage from the heat exchanger to the makeup water tank is made to the upper region than the partition wall,
The boiler water supply system according to claim 5, wherein water supply from the makeup water tank to the water supply tank is performed from an upper region than the partition wall.
JP2008198530A 2008-07-31 2008-07-31 Boiler water supply system Active JP5223525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198530A JP5223525B2 (en) 2008-07-31 2008-07-31 Boiler water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198530A JP5223525B2 (en) 2008-07-31 2008-07-31 Boiler water supply system

Publications (2)

Publication Number Publication Date
JP2010038383A JP2010038383A (en) 2010-02-18
JP5223525B2 true JP5223525B2 (en) 2013-06-26

Family

ID=42011138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198530A Active JP5223525B2 (en) 2008-07-31 2008-07-31 Boiler water supply system

Country Status (1)

Country Link
JP (1) JP5223525B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963823B (en) * 2021-03-31 2022-08-19 成都三山粮油有限公司 Steam heat energy recovery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268907A (en) * 1985-05-24 1986-11-28 株式会社日立製作所 Boiler feedwater system
JP2006105442A (en) * 2004-10-01 2006-04-20 Samson Co Ltd Pressure drain collecting system

Also Published As

Publication number Publication date
JP2010038383A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5223526B2 (en) Boiler water supply system
US10941967B2 (en) Lubrication and cooling system
JP5454778B2 (en) Boiler water supply system
CN108474272B (en) ORC for converting waste heat from a heat source into mechanical energy and cooling system employing the same
JP6448936B2 (en) Oil recovery device for turbo refrigerator
JP2009167999A (en) Freezing preventive method of water lubricated compressor
US9964001B2 (en) Thermal energy recovery device
JP2008082622A (en) Compression type refrigerating device
JP5223525B2 (en) Boiler water supply system
JP2008082623A (en) Compression type refrigerating device
JP5157727B2 (en) Boiler water supply system
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP2009293502A (en) Steam system
JP2017141992A (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
AU2007255673A1 (en) Refrigerating apparatus
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP2018025322A (en) Heat recovery system
KR101825324B1 (en) Thermal energy recovery device and operating method of the same
JP2007147211A (en) Control method for refrigerating cycle device and refrigerating cycle device using the same
JP4685483B2 (en) Power generation device and working medium / lubricant recovery method for power generation device
JP2010181050A (en) Temperature control device
JP5049811B2 (en) Water lubrication compressor
JP5256932B2 (en) Leakage steam heat recovery structure from steam motor shaft seal
JP2018025119A (en) Air compression system
JP2005256752A (en) Power generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250