JP5221053B2 - Urea concentration detector - Google Patents

Urea concentration detector Download PDF

Info

Publication number
JP5221053B2
JP5221053B2 JP2007102106A JP2007102106A JP5221053B2 JP 5221053 B2 JP5221053 B2 JP 5221053B2 JP 2007102106 A JP2007102106 A JP 2007102106A JP 2007102106 A JP2007102106 A JP 2007102106A JP 5221053 B2 JP5221053 B2 JP 5221053B2
Authority
JP
Japan
Prior art keywords
light
urea
light emitting
urea water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102106A
Other languages
Japanese (ja)
Other versions
JP2008256663A (en
Inventor
理江 大▲崎▼
直也 加藤
典保 天野
聡 谷口
香織 吉田
之弘 塚▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2007102106A priority Critical patent/JP5221053B2/en
Publication of JP2008256663A publication Critical patent/JP2008256663A/en
Application granted granted Critical
Publication of JP5221053B2 publication Critical patent/JP5221053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、ディーゼル車の尿素SCR(Selective Catalytic Reduction)触媒システムに適用される尿素濃度検出装置に関し、更に詳しくは、車両の燃費を悪化させることなく、NOx浄化に最適な尿素水濃度を簡易な構成にて精度良くかつ応答性良く測定できる尿素濃度検出装置に関する。   The present invention relates to a urea concentration detection device applied to a urea SCR (Selective Catalytic Reduction) catalyst system of a diesel vehicle, and more specifically, a simple urea water concentration optimal for NOx purification can be obtained without deteriorating the fuel consumption of the vehicle. The present invention relates to a urea concentration detection device capable of measuring with high accuracy and responsiveness with a configuration.

近年、環境対策からディーゼルエンジン(以下、エンジンと略称する)を搭載した車両においては、エンジンからの排気中のNOx低減技術として、尿素SCR触媒システムが実用化され、また、パティキュレート(Particulate Matter:粒子状物質)低減技術として、触媒再生型パティキュレートフィルタシステムが実用化されている。   In recent years, a urea SCR catalyst system has been put into practical use as a technology for reducing NOx in exhaust from an engine in vehicles equipped with a diesel engine (hereinafter abbreviated as an engine) as an environmental measure, and a particulate matter (Particulate Matter): As a particulate matter) reduction technology, a catalyst regeneration type particulate filter system has been put into practical use.

これらのうち尿素SCR触媒システムは、エンジンからの排気が流通する排気通路の途中に酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えたNOx還元触媒(選択還元型触媒)を備えたものである。   Among these, the urea SCR catalyst system includes a NOx reduction catalyst (selective reduction catalyst) having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust passage through which exhaust from the engine flows. It is a thing.

すなわち、尿素SCR触媒システムは、NOx還元型触媒の上流側に必要量の還元剤を添加して当該還元剤をNOx還元触媒上で排気中のNOx(窒素酸化物)と還元反応させ、水と窒素へと分解することによりNOxの排出濃度を低減させるように構成されたものである。この還元剤としては、毒性のない尿素水を使用して、NOxを高効率で低減させることが実用化されている。   That is, the urea SCR catalyst system adds a necessary amount of a reducing agent upstream of the NOx reduction catalyst and causes the reducing agent to undergo a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the NOx reduction catalyst. The NOx emission concentration is reduced by decomposing it into nitrogen. As this reducing agent, using non-toxic urea water has been put into practical use to reduce NOx with high efficiency.

上記尿素水を触媒に噴霧し、NOxの分解を継続的に維持し、かつ効率を高めるためには、尿素水が特定の濃度範囲(たとえば、32.5%程度)にあるのが好ましいことが知られている。このため、ディーゼルエンジン搭載車両のNOx浄化に最適な尿素水濃度を測定し、判定する手段の提供が望まれていた。   In order to spray the urea water on the catalyst, continuously maintain the decomposition of NOx, and increase the efficiency, it is preferable that the urea water is in a specific concentration range (for example, about 32.5%). Are known. For this reason, it has been desired to provide means for measuring and determining the urea water concentration optimum for NOx purification of diesel engine-equipped vehicles.

たとえば、液体の濃度を測定する従来技術として、つぎのものが公知である(特許文献1参照)。すなわち、この従来技術は、鉛蓄電池の電解液の濃度を測定する装置として、発光素子と受光素子との間に電解液を介在させ、水に吸収され易い波長域の光の受光量から水の増減(電解液濃度)を測定するように構成したものである。   For example, the following is known as a conventional technique for measuring the concentration of a liquid (see Patent Document 1). In other words, this prior art is an apparatus for measuring the concentration of the electrolyte solution of a lead storage battery. An electrolyte solution is interposed between the light emitting element and the light receiving element, and the amount of light received in the wavelength range that is easily absorbed by water It is configured to measure increase / decrease (electrolyte concentration).

なお、関連する従来技術として、異なる波長域で発光する2つの発光素子と、それらの光を受ける受光素子とを用いて油種を判定する技術が提案されている(たとえば、特許文献2参照)。   In addition, as a related prior art, a technique for determining an oil type using two light emitting elements that emit light in different wavelength ranges and a light receiving element that receives the light has been proposed (for example, see Patent Document 2). .

また、測定対象となる液体毎に吸収率の高い波長の光をフィルタによって選択し、液体の漏れを検出する技術が提案されている(たとえば、特許文献3参照)。   Further, a technique has been proposed in which light having a high absorption rate is selected by a filter for each liquid to be measured and a liquid leak is detected (for example, see Patent Document 3).

また、フィルタによって特定の波長の光を選択的に透過させ、液体の濃度を測定する技術が提案されている(たとえば、特許文献4参照)。   Further, a technique has been proposed in which light of a specific wavelength is selectively transmitted through a filter and the concentration of the liquid is measured (see, for example, Patent Document 4).

また、発熱体および感温体を有した濃度検知部と、尿素溶液の温度を測定する液温検知部とを備え、上記発熱体の発熱時における上記感温体の初期温度とピーク温度との差に対応する電圧値から尿素濃度を求める技術が提案されている(たとえば、特許文献5参照)。   In addition, a concentration detection unit having a heating element and a temperature sensing element, and a liquid temperature detection unit for measuring the temperature of the urea solution, the initial temperature and peak temperature of the temperature sensing element when the heating element generates heat A technique for obtaining the urea concentration from a voltage value corresponding to the difference has been proposed (see, for example, Patent Document 5).

特開2005−17261号公報JP 2005-17261 A 特開平10−329899号公報JP 10-329899 A 特開2000−97850号公報JP 2000-97850 A 特開2005−43069号公報JP 2005-43069 A 特開2005−84026号公報JP-A-2005-84026

しかしながら、上記特許文献1〜4に係る従来技術にあっては、ディーゼル車の尿素SCR触媒システムに適用するための具体的手段が開示されておらず、特に、NOx浄化に最適な尿素水濃度(たとえば、32.5%程度)を測定ないし判定する手段の提供が望まれていた。   However, in the conventional techniques according to Patent Documents 1 to 4, specific means for applying to the urea SCR catalyst system of a diesel vehicle is not disclosed, and in particular, the urea water concentration (optimum for NOx purification ( For example, it has been desired to provide a means for measuring or determining 32.5%).

また、上記特許文献5に係る従来技術にあっては、発熱体(電極)を発熱させるため、発熱体の劣化が懸念されるとともに、消費電力が大きくなり、車両の燃費を悪化させてしまうという課題があった。更に、発熱により尿素水濃度が変化してしまい、精度良く濃度を計測できない虞があるとともに、発熱させるため計測の応答性が良くないという課題があった。   Moreover, in the prior art which concerns on the said patent document 5, since it heat-generates a heat generating body (electrode), while being concerned about deterioration of a heat generating body, power consumption becomes large and it will worsen the fuel consumption of a vehicle. There was a problem. Furthermore, the urea aqueous solution concentration is changed by heat generation, and there is a possibility that the concentration cannot be measured with high accuracy, and there is a problem that measurement responsiveness is not good because heat is generated.

この発明は、上記に鑑みてなされたものであって、車両の燃費を悪化させることなく、NOx浄化に最適な尿素水濃度を簡易な構成にて精度良くかつ応答性良く測定できる尿素濃度検出装置を提供することを目的とする。   The present invention has been made in view of the above, and a urea concentration detection device capable of measuring the urea water concentration optimal for NOx purification with a simple configuration with high accuracy and responsiveness without deteriorating the fuel consumption of the vehicle. The purpose is to provide.

上述した課題を解決し、目的を達成するために、この発明の請求項1に係る尿素濃度検出装置は、測定対象たる尿素水を貯留する尿素水タンクに設置され、かつ、発光手段と受光手段とを有し、前記発光手段と前記受光手段との間に前記尿素水を介在させ、予め求められた前記受光手段による受光量と前記尿素水の濃度との関係に基づいて前記尿素水の濃度を検出する尿素濃度検出装置であって、前記発光手段は、前記受光手段による前記受光量に基づいて算出される透過率の変化量が大きい第1の波長域の光と第2の波長域の光のうち少なくとも一方を発するように形成され、外郭として密閉形成されかつ前記尿素水タンクに固定されるとともに前記発光手段と前記受光手段を収容する筐体と、前記筐体とシールされて位置決めされかつ前記尿素水に前記発光手段からの光線を導くとともに前記尿素水を通過した光線を前記受光手段に導くプリズムと、前記プリズムに設けられかつ前記尿素水の濃度を検出するために当該尿素水が進入可能な凹部と、前記凹部に設けられ、かつ前記発光手段の前記光を導くとともに、濃度検出時の前記光の光路長を規定し該光路長を維持しつつ前記尿素水の流動によって可動するように構成された導光部材とを備えていることを特徴とするものである。 In order to solve the above-described problems and achieve the object, a urea concentration detection device according to claim 1 of the present invention is installed in a urea water tank that stores urea water as a measurement target, and a light emitting means and a light receiving means. And the urea water is interposed between the light emitting means and the light receiving means, and the concentration of the urea water based on the relationship between the amount of light received by the light receiving means and the concentration of the urea water determined in advance. The light emitting means detects light in the first wavelength range and the second wavelength range in which the amount of change in transmittance calculated based on the amount of light received by the light receiving means is large. Formed to emit at least one of light, hermetically sealed as an outer shell and fixed to the urea water tank and housing the light emitting means and the light receiving means, and sealed and positioned with the housing Before A prism that guides the light from the light emitting means to the urea water and guides the light that has passed through the urea water to the light receiving means, and the urea water that is provided in the prism and that can enter to detect the concentration of the urea water A concave portion provided in the concave portion and guiding the light of the light-emitting means, and defining the optical path length of the light at the time of concentration detection so as to be movable by the flow of the urea water while maintaining the optical path length. It comprises the light guide member comprised, It is characterized by the above-mentioned.

また、この発明の請求項2に係る尿素濃度検出装置は、請求項1に記載の発明において、検出された前記尿素濃度が所定の既定値となっているか否かを判定する濃度判定手段を備えたことを特徴とするものである。   According to a second aspect of the present invention, there is provided a urea concentration detecting device according to the first aspect of the present invention, further comprising a concentration determining means for determining whether or not the detected urea concentration is a predetermined default value. It is characterized by that.

また、この発明の請求項3に係る尿素濃度検出装置は、請求項1または2に記載の発明において、前記濃度判定手段によって前記尿素濃度が所定の既定値となっていない場合には、その旨を報知する報知手段を備えたことを特徴とするものである。
また、この発明の請求項4に係る尿素濃度検出装置は、請求項1から3のうちいずれかに記載の発明において、前記発光手段として、第1の波長域の光と第2の波長域の光のうち一方の光を発するように構成された第1発光素子と、他方の光を発するように構成された第2発光素子と、が設けられ、前記受光素子として、第1発光素子から発光された光線を受光する第1受光素子と、第2発光素子から発光された光線を受光する第2受光素子と、が設けられ、前記導光部材は、段部を備えて、光路長として、前記一方の光の光路長と、前記他方の光の光路長とを規定することを特徴とするものである。
The urea concentration detecting device according to claim 3 of the present invention is the invention according to claim 1 or 2, wherein when the urea concentration is not a predetermined default value by the concentration determining means, that effect is provided. It is characterized by comprising notifying means for notifying of the above.
According to a fourth aspect of the present invention, there is provided the urea concentration detection device according to any one of the first to third aspects, wherein the light emitting means includes light in the first wavelength range and light in the second wavelength range. A first light emitting element configured to emit one of the lights and a second light emitting element configured to emit the other light are provided, and the light receiving element emits light from the first light emitting element. A first light receiving element that receives the emitted light and a second light receiving element that receives the light emitted from the second light emitting element, and the light guide member includes a step portion, The optical path length of the one light and the optical path length of the other light are defined.

この発明に係る尿素濃度検出装置(請求項1)によれば、発光手段として低消費電力の発光ダイオードを、受光手段として低消費電力のフォトダイオードを用いて簡易に構成することができ、濃度測定時の尿素水の加熱等も不要であるため、応答性が良く、車両の燃費を悪化させることがない。また、少なくとも一方の波長域を用いることにより、NOx浄化に最適な尿素水濃度を精度良く測定できる。   According to the urea concentration detection device of the present invention (Claim 1), it is possible to simply configure a light emitting diode with low power consumption as the light emitting means and a low power consumption photodiode as the light receiving means. Since there is no need to heat the urea water at the time, the responsiveness is good and the fuel consumption of the vehicle is not deteriorated. Further, by using at least one wavelength region, it is possible to accurately measure the urea water concentration optimum for NOx purification.

また、この発明に係る尿素濃度検出装置(請求項2)によれば、NOx浄化に最適な尿素濃度であるか否かを判定することができる。   Moreover, according to the urea concentration detection apparatus (claim 2) according to the present invention, it is possible to determine whether or not the urea concentration is optimal for NOx purification.

また、この発明に係る尿素濃度検出装置(請求項3)によれば、異常がある場合にその旨を報知し、所定の処置(たとえば、尿素水の点検、交換等)を行うようにユーザに注意喚起することができる。   Further, according to the urea concentration detection device according to the present invention (Claim 3), when there is an abnormality, that fact is notified and the user is instructed to perform a predetermined treatment (for example, inspection or replacement of urea water). You can call attention.

以下に、この発明に係る尿素濃度検出装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a urea concentration detection device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明は、後述するように、水と尿素水(たとえば、32.5%)の光透過率特性の差が見られる波長が1500〜1900nmまたは2100〜2300nmの近赤外光を用いて、測定対象である尿素水を透過する光の透過率の減衰量から尿素濃度を算出するように構成したものである。   As will be described later, the present invention uses near infrared light having a wavelength of 1500 to 1900 nm or 2100 to 2300 nm where a difference in light transmittance characteristics between water and urea water (for example, 32.5%) is observed. The urea concentration is calculated from the attenuation amount of the transmittance of light that passes through the target urea water.

先ず、本発明に係る尿素濃度検出装置20を適用する公知の尿素SCR触媒システムについて図2に基づいて説明する。ここで、図2は、尿素濃度検出装置を適用する尿素SCR触媒システムを示すブロック図である。   First, a known urea SCR catalyst system to which the urea concentration detection device 20 according to the present invention is applied will be described with reference to FIG. Here, FIG. 2 is a block diagram showing a urea SCR catalyst system to which the urea concentration detection device is applied.

図2に示すように、エンジン10の排気通路11には、上流側に酸化触媒12が設けられ、下流側に尿素SCR触媒13が設けられている。排気通路11の酸化触媒12と尿素SCR触媒13との間には、尿素水を添加するための尿素水噴射ノズル16が設けられている。   As shown in FIG. 2, the exhaust passage 11 of the engine 10 is provided with an oxidation catalyst 12 on the upstream side and a urea SCR catalyst 13 on the downstream side. A urea water injection nozzle 16 for adding urea water is provided between the oxidation catalyst 12 and the urea SCR catalyst 13 in the exhaust passage 11.

この尿素水噴射ノズル16へは、尿素水を貯留する尿素水タンク14から尿素水供給通路15によって尿素水が供給されるようになっている。尿素水添加システムタンク17は、図示しない電子制御装置(以下、ECUと記す)からエンジン10の運転情報を得て、エンジン出力等に合わせた最適な尿素水添加を行うための制御手段である。このECUは、尿素濃度が所定の既定値となっているか否かを判定する濃度判定手段としても機能するものである。   The urea water is supplied to the urea water injection nozzle 16 through a urea water supply passage 15 from a urea water tank 14 that stores urea water. The urea water addition system tank 17 is a control means for obtaining operation information of the engine 10 from an electronic control device (hereinafter referred to as ECU) (not shown) and optimally adding urea water in accordance with the engine output and the like. This ECU also functions as a concentration determination means for determining whether or not the urea concentration is a predetermined default value.

本実施例1に係る尿素濃度検出装置20は、たとえば上記尿素水タンク14に設置されており、その先端部(検出部)が尿素水に浸され、その濃度を測定するものである。この尿素濃度検出装置20について、図1、図3および図4に基づいて更に詳しく説明する。ここで、図1は、この発明の実施例1に係る尿素濃度検出装置を示す断面図、図3は、尿素濃度検出装置を示す平面図、図4は、尿素濃度検出装置の導光部材を示す斜視図である。   The urea concentration detection apparatus 20 according to the first embodiment is installed, for example, in the urea water tank 14, and its tip (detection unit) is immersed in urea water and measures its concentration. The urea concentration detection device 20 will be described in more detail based on FIGS. 1, 3, and 4. Here, FIG. 1 is a sectional view showing a urea concentration detection device according to Embodiment 1 of the present invention, FIG. 3 is a plan view showing the urea concentration detection device, and FIG. 4 shows a light guide member of the urea concentration detection device. It is a perspective view shown.

図1に示すように、尿素濃度検出装置20は、筒状の筐体21,22を主な外殻として密閉形成され、後述する各部材を収納して構成されている。すなわち、筐体21は、筐体22に対してねじ部21aにて螺合され、シール部材29にてシールされている。また、筐体22と後述するプリズム40とは、シール部材29にてシールされている。   As shown in FIG. 1, the urea concentration detection device 20 is hermetically formed with cylindrical casings 21 and 22 as main outer shells, and is configured to accommodate each member described later. That is, the housing 21 is screwed to the housing 22 by the screw portion 21 a and is sealed by the seal member 29. Further, the housing 22 and a prism 40 described later are sealed by a seal member 29.

また、ホルダ24は、後述する発光素子(発光手段)30、受光素子(受光手段)34、基板25を固定し、保持するためのものであり、ピン26によって筐体22に固定されている。なお、筐体22は、取り付け穴22cを用いてねじ等によって尿素水タンク14に固定することができる。   The holder 24 is for fixing and holding a light emitting element (light emitting means) 30, a light receiving element (light receiving means) 34 and a substrate 25, which will be described later, and is fixed to the housing 22 by pins 26. The housing 22 can be fixed to the urea water tank 14 with screws or the like using the mounting holes 22c.

発光素子30は、波長1500〜1900nm(第1の波長域)または2100〜2300nm(第2の波長域)の近赤外光を発する素子であり、たとえば、信頼性が高く低消費電力であるとともに、安価な発光ダイオード(LED)を用いることができる。発光素子30による光線の波長域を上記のように選択したのは、つぎの理由による。   The light emitting element 30 is an element that emits near-infrared light having a wavelength of 1500 to 1900 nm (first wavelength range) or 2100 to 2300 nm (second wavelength range). For example, the light emitting element 30 has high reliability and low power consumption. An inexpensive light emitting diode (LED) can be used. The reason why the wavelength range of the light beam by the light emitting element 30 is selected as described above is as follows.

すなわち、光の透過率(以下、適宜、透過率と記す)と測定される濃度との関係は光路長で変化することが実験により確認できた。たとえば、光路長が長い場合は、透過率の変化は高濃度域で小さくなるが、低濃度域では大きくなり、検出精度が高くなることが分かった。   That is, it has been confirmed by experiments that the relationship between the light transmittance (hereinafter referred to as “transmittance” where appropriate) and the measured concentration varies with the optical path length. For example, it was found that when the optical path length is long, the change in transmittance is small in the high concentration region, but is large in the low concentration region, and the detection accuracy is increased.

また、上述したように、尿素SCR触媒システムにおいては、尿素水濃度が32.5%前後で精度良く測定されることが重要である。このため、図5に示すように、尿素水と水との透過率の差が顕著となっている波長域に着目することが重要である。   As described above, in the urea SCR catalyst system, it is important that the urea water concentration is accurately measured at around 32.5%. For this reason, as shown in FIG. 5, it is important to pay attention to the wavelength region where the difference in transmittance between urea water and water is remarkable.

すなわち、精度良く濃度測定できるのは、波長が1500〜1900nmおよび2100〜2300nmの範囲であることが分かる。ここで、図5は、水と尿素水の透過率特性を示すグラフであり、光路長を1mm、尿素水濃度を32.5%とした場合のものを示している。なお、図5に示したグラフは、他の光路長においても上記2つの波長域で同様の傾向が見られる。   That is, it can be seen that the concentration can be measured with high accuracy in the wavelength range of 1500 to 1900 nm and 2100 to 2300 nm. Here, FIG. 5 is a graph showing transmittance characteristics of water and urea water, and shows a case where the optical path length is 1 mm and the urea water concentration is 32.5%. Note that the graph shown in FIG. 5 shows the same tendency in the above two wavelength ranges for other optical path lengths.

以上の理由から、本実施例1では、波長が1500〜1900nmまたは2100〜2300nmのいずれかの波長域の近赤外光を発する発光素子30を用いることとしたものである。   For the above reason, in the first embodiment, the light-emitting element 30 that emits near-infrared light in the wavelength range of 1500 to 1900 nm or 2100 to 2300 nm is used.

実験の結果、たとえば、光路長が0.5mm、波長が2200nmの場合の透過率と尿素濃度との関係は、図6に示すマップのようになる。また、光路長が2mm、波長が1650nmの場合の透過率と尿素濃度との関係は、図7に示すマップのようになる。ここで、図6は、光路長が0.5mm、波長が2200nmの場合の透過率と尿素濃度との関係を示すマップ、図7は、光路長が2mm、波長が1650nmの場合の透過率と尿素濃度との関係を示すマップである。   As a result of the experiment, for example, the relationship between the transmittance and the urea concentration when the optical path length is 0.5 mm and the wavelength is 2200 nm is as shown in the map of FIG. Further, the relationship between the transmittance and the urea concentration when the optical path length is 2 mm and the wavelength is 1650 nm is as shown in the map of FIG. Here, FIG. 6 is a map showing the relationship between the transmittance and the urea concentration when the optical path length is 0.5 mm and the wavelength is 2200 nm, and FIG. 7 is the transmittance when the optical path length is 2 mm and the wavelength is 1650 nm. It is a map which shows the relationship with a urea concentration.

したがって、本実施例1では、たとえば、光路長となる、後述する隙間部45の間隔を0.5mmに設定し、かつ波長が2200nmの発光素子30を用いたり、または隙間部45の間隔を2mmに設定し、かつ波長が1650nmの発光素子30を用いることができる。   Therefore, in the first embodiment, for example, an interval between gaps 45 to be described later, which is an optical path length, is set to 0.5 mm, and a light emitting element 30 having a wavelength of 2200 nm is used, or an interval between gaps 45 is set to 2 mm. And a light emitting element 30 having a wavelength of 1650 nm can be used.

また、受光素子34は、発光素子30から発せられた後、尿素水を透過して減衰した光線を受光するためのものであり、たとえば、フォトダイオードを用いることができる。   The light receiving element 34 is for receiving a light beam emitted from the light emitting element 30 and then attenuated by passing through urea water. For example, a photodiode can be used.

また、光量モニタ用受光素子36は、環境温度変化の影響をキャンセルして発光素子30の光量補正を行うために発光素子30の近傍(発光素子30と同一の環境温度条件)に設けられたものであり、たとえば、フォトダイオードを用いることができる。   The light quantity monitoring light receiving element 36 is provided in the vicinity of the light emitting element 30 (the same environmental temperature condition as the light emitting element 30) in order to cancel the influence of the environmental temperature change and correct the light quantity of the light emitting element 30. For example, a photodiode can be used.

すなわち、光量モニタ用受光素子36の出力に基づいて得られるモニタ光量Im(V)と発光素子30の発光量Io(V)との関係を、図8に示すようなマップあるいは所定の関係式として上記ECU等に記憶させておき、光量補正時に出力されたモニタ光量Im(V)とこのマップとから、発光素子30の発光量Io(V)を算出できるようにしたものである。ここで、図8は、光量モニタ用受光素子のモニタ光量Imと発光素子の発光量Ioとの関係を示すマップである。   That is, the relationship between the monitor light quantity Im (V) obtained based on the output of the light quantity monitor light receiving element 36 and the light emission quantity Io (V) of the light emitting element 30 is expressed as a map or a predetermined relational expression as shown in FIG. The light amount Io (V) of the light emitting element 30 can be calculated from the monitor light amount Im (V) output at the time of light amount correction and this map. Here, FIG. 8 is a map showing the relationship between the monitor light quantity Im of the light receiving element for monitoring the light quantity and the light emission quantity Io of the light emitting element.

プリズム40は、検査対象液体である尿素水に発光素子30からの光線を導くとともに、尿素水を通過した光線を受光素子34に導くためのものである。なお、このプリズム40も上記ピン26によって筐体22に対して位置決めされている。   The prism 40 guides the light beam from the light emitting element 30 to the urea water that is the liquid to be inspected, and guides the light beam that has passed through the urea water to the light receiving element 34. The prism 40 is also positioned with respect to the housing 22 by the pin 26.

また、図1および図4に示すように、直方体状の導光部材43は、プリズム40の凹部41に設けられ、隙間部45によって光路長を設定するとともに、当該光路長を維持しつつ尿素水の流動によって可動するように構成され、検出面の汚れを自動的に除去できるように構成されている。また、この導光部材43は、図1および図3に示すように、固定部材46を介して抜け止め部材47によって凹部41から脱落しないようになっている。   As shown in FIGS. 1 and 4, the rectangular parallelepiped light guide member 43 is provided in the concave portion 41 of the prism 40, sets the optical path length by the gap 45, and maintains the optical path length with urea water. It is configured so that it can be moved by the flow of the liquid and so that the contamination on the detection surface can be automatically removed. Further, as shown in FIGS. 1 and 3, the light guide member 43 is prevented from dropping from the recess 41 by the retaining member 47 via the fixing member 46.

サーミスタ38は、発光素子30、受光素子34、光量モニタ用受光素子36を熱的に保護するため、尿素濃度検出装置20内部の環境温度が動作温度を超えた場合に、これら部材への通電を必要に応じて遮断するためのものである。   The thermistor 38 thermally protects the light emitting element 30, the light receiving element 34, and the light quantity monitoring light receiving element 36, and therefore energizes these members when the environmental temperature inside the urea concentration detector 20 exceeds the operating temperature. It is for blocking as necessary.

基板25は、これら発光素子30、受光素子34、光量モニタ用受光素子36、サーミスタ38等を固定するとともに、発光素子30の駆動回路や受光素子34の増幅回路等が設けられている。   The substrate 25 fixes the light emitting element 30, the light receiving element 34, the light quantity monitoring light receiving element 36, the thermistor 38, and the like, and is provided with a drive circuit for the light emitting element 30, an amplifier circuit for the light receiving element 34, and the like.

コネクタ23は、これら発光素子30、受光素子34、光量モニタ用受光素子36、サーミスタ38等と配線23aにて接続され、これらに電源を供給するとともに、受光素子34、光量モニタ用受光素子36からの信号を図示しない上記ECUに出力するためのものである。このコネクタ23は、筐体21に固定されている。   The connector 23 is connected to the light emitting element 30, the light receiving element 34, the light quantity monitoring light receiving element 36, the thermistor 38, and the like through the wiring 23 a, and supplies power to them, and from the light receiving element 34 and the light quantity monitoring light receiving element 36. This signal is for outputting to the ECU (not shown). This connector 23 is fixed to the housing 21.

筐体22の放熱フィン部22aは、尿素濃度検出装置20内部に蓄熱されるのを抑制し、発光素子30や受光素子34、光量モニタ用受光素子36等を熱劣化から保護するために設けられたものである。   The heat radiating fin portion 22a of the housing 22 is provided to suppress heat accumulation in the urea concentration detection device 20 and to protect the light emitting element 30, the light receiving element 34, the light amount monitoring light receiving element 36, and the like from thermal deterioration. It is a thing.

つぎに、尿素濃度検出装置20の制御方法について図9に基づいて図1等を参照しつつ説明する。ここで、図9は、尿素濃度検出装置20の制御方法を示すフローチャートである。なお、以下の制御は、上記ECUによって適宜タイミングで実行される。   Next, a control method of the urea concentration detection device 20 will be described with reference to FIG. Here, FIG. 9 is a flowchart showing a control method of the urea concentration detection device 20. The following control is executed at appropriate timing by the ECU.

図9に示すように、先ず、発光素子30に通電する(ステップS10)。これにより、発光素子30は発光し、図1に示すように、その光線がプリズム40および導光部材43によって隙間部45内に存在する尿素水を透過し、所定量光量を減衰させてから受光素子34に導かれる。   As shown in FIG. 9, first, the light emitting element 30 is energized (step S10). As a result, the light emitting element 30 emits light, and as shown in FIG. 1, the light beam passes through the urea water existing in the gap 45 by the prism 40 and the light guide member 43 and attenuates a predetermined amount of light before receiving the light. Guided to element 34.

この透過光線の光量に応じた出力信号が受光素子34によって出力されるので、その出力に基づいて尿素水の透過光量I(V)を算出する(ステップS20)。   Since an output signal corresponding to the amount of transmitted light is output by the light receiving element 34, the transmitted light amount I (V) of urea water is calculated based on the output (step S20).

また、上記ステップS10にて発光された発光素子30の光線は、光量モニタ用受光素子36によっても受光されるので、その光量モニタ用受光素子36の出力に基づいてモニタ光量Imを算出する(ステップS30)。   Since the light beam of the light emitting element 30 emitted in step S10 is also received by the light quantity monitoring light receiving element 36, the monitor light quantity Im is calculated based on the output of the light quantity monitoring light receiving element 36 (step S10). S30).

上記モニタ光量Imが算出されれば、図8に示したマップを用いることにより、発光素子30の発光量Io(尿素水により光量が減衰されていない値)を算出することができる(ステップS40)。   When the monitor light amount Im is calculated, the light emission amount Io (a value in which the light amount is not attenuated by urea water) of the light emitting element 30 can be calculated by using the map shown in FIG. 8 (step S40). .

つぎに、上記ステップS20で算出した透過光量Iと、上記ステップS40で算出した発光量Ioとに基づいて光透過率Tを算出する(ステップS50)。上述したように、光路長および波長は既知であるから、該当する図6または図7に示したマップを用い、この光透過率Tに基づいて尿素濃度を容易に算出することができる(ステップS60)。   Next, the light transmittance T is calculated based on the transmitted light amount I calculated in step S20 and the light emission amount Io calculated in step S40 (step S50). As described above, since the optical path length and wavelength are known, the urea concentration can be easily calculated based on the light transmittance T using the corresponding map shown in FIG. 6 or FIG. 7 (step S60). ).

つぎに、NOx浄化に最適な尿素濃度であるか否かを判断するため、上記ステップS60にて算出された尿素濃度が32.5%近傍の既定値であるか否かを判断する(ステップS70)。   Next, in order to determine whether or not the urea concentration is optimal for NOx purification, it is determined whether or not the urea concentration calculated in step S60 is a predetermined value near 32.5% (step S70). ).

尿素濃度が既定値であるならば(ステップS70肯定)、制御を終了する。尿素濃度が既定値でないならば(ステップS70否定)、異常である旨を音声ないし表示手段等の報知手段によって報知し(ステップS80)、所定の処置(たとえば、尿素水の点検、交換等)を行うようにユーザに注意喚起する。   If the urea concentration is a predetermined value (Yes at step S70), the control is terminated. If the urea concentration is not a predetermined value (No at Step S70), the fact that it is abnormal is notified by a notification means such as a voice or a display means (Step S80), and a predetermined treatment (for example, inspection or replacement of urea water) is performed. Alert the user to do so.

以上のように、この実施例1に係る尿素濃度検出装置20によれば、つぎの効果を奏する。すなわち、上記発光素子30、受光素子34、光量モニタ用受光素子36は、非接触で計測でき、かつ応答性が良いとともに、消費電力が極めて少なく、車両の燃費を悪化させることはない。   As described above, the urea concentration detection apparatus 20 according to the first embodiment has the following effects. That is, the light emitting element 30, the light receiving element 34, and the light quantity monitoring light receiving element 36 can be measured in a non-contact manner, have good responsiveness, consume very little power, and do not deteriorate the fuel consumption of the vehicle.

また、上記所定の波長域を用いることにより、簡易な構成にて尿素水のみを測定することができ、NOx浄化に最適な尿素水濃度を精度良く測定できる。また、濃度測定に際して、従来技術では必要であった尿素水を加熱する等の余分な工程が不要である。   In addition, by using the predetermined wavelength range, it is possible to measure only urea water with a simple configuration, and it is possible to accurately measure the urea water concentration optimum for NOx purification. Further, when the concentration is measured, an extra step such as heating urea water, which is necessary in the prior art, is unnecessary.

なお、上記実施例1においては、発光素子30として発光ダイオード(LED)を用いるものとして説明したが、これに限定されず、たとえば、より光量が大きいLD(レーザダイオード)を用いることもできる。   In the first embodiment, a light emitting diode (LED) is used as the light emitting element 30. However, the present invention is not limited to this. For example, an LD (laser diode) having a larger amount of light can be used.

また、光量モニタ用受光素子36を設けるものとして説明したが、これに限定されず、光量モニタ用受光素子36に相当する受光素子を発光素子30に内蔵し、ワンパッケージ化することにより、体格の小型化を図ってもよい。   In addition, the light amount monitoring light receiving element 36 has been described as being provided. However, the present invention is not limited to this, and a light receiving element corresponding to the light amount monitoring light receiving element 36 is built in the light emitting element 30 to form one package. The size may be reduced.

上記実施例1は、波長が1500〜1900nmまたは2100〜2300nmのいずれかの波長域の近赤外光を発する発光素子30を用いる場合について説明したが、本実施例2では、これら両者の波長域を用いることができるように、各波長域の光量を発・受光可能な2組の発光・受光素子を用いて更に精度の良い濃度測定ができるように構成したものである。   Although the said Example 1 demonstrated the case where the light emitting element 30 which emits the near-infrared light of the wavelength range of either 1500-1900nm or 2100-2300nm was used, in this Example 2, both these wavelength ranges are demonstrated. Thus, it is configured so that a more accurate density measurement can be performed using two sets of light emitting / receiving elements capable of emitting and receiving light in each wavelength region.

図10は、この発明の実施例2に係る尿素濃度検出装置を示す断面図、図11は、尿素濃度検出装置の導光部材を示す斜視図、図12は、尿素濃度検出装置の検出部を拡大して示す断面図である。なお、以下の説明において、すでに説明した部材またはステップ番号と同一もしくは相当するものには、同一の符号を付して重複説明を省略または簡略化する。   10 is a cross-sectional view showing a urea concentration detection device according to Embodiment 2 of the present invention, FIG. 11 is a perspective view showing a light guide member of the urea concentration detection device, and FIG. 12 shows a detection unit of the urea concentration detection device. It is sectional drawing expanded and shown. In the following description, the same or corresponding parts as those already described or the step numbers are denoted by the same reference numerals, and redundant description is omitted or simplified.

図10〜図12に示すように、導光部材43は、段部43aを備え、隙間部45に2種類の光路長L1,L2を形成できるように構成されている。たとえば、この光路長L1は0.5mmに設定され、光路長L2は2mmに設定されている。   As shown in FIGS. 10 to 12, the light guide member 43 includes a stepped portion 43 a and is configured to be able to form two types of optical path lengths L <b> 1 and L <b> 2 in the gap portion 45. For example, the optical path length L1 is set to 0.5 mm, and the optical path length L2 is set to 2 mm.

そして、図10に示すように、第1発光素子(発光手段)30aは、この光路長が上記L1および波長が2200nmに対応するように構成され、第2発光素子(発光手段)30bは、光路長が上記L2および波長が1650nmに対応するように構成されている。   As shown in FIG. 10, the first light emitting element (light emitting means) 30a is configured such that the optical path length corresponds to the above L1 and the wavelength is 2200 nm, and the second light emitting element (light emitting means) 30b The length is configured to correspond to the L2 and the wavelength of 1650 nm.

また、第1受光素子(受光手段)34aは、第1発光素子30aから発光され、導光部材43および隙間部45を経た光線を受光するように設けられている。同様に、第2受光素子(受光手段)34bは、第2発光素子30bから発光され、導光部材43および隙間部45を経た光線を受光するように設けられている。   The first light receiving element (light receiving means) 34 a is provided so as to receive light emitted from the first light emitting element 30 a and passing through the light guide member 43 and the gap 45. Similarly, the second light receiving element (light receiving means) 34 b is provided so as to receive light emitted from the second light emitting element 30 b and passing through the light guide member 43 and the gap 45.

また、図示を省略するが、上記実施例1において説明した光量モニタ用受光素子36に相当する光量モニタ用受光素子は、上記第1発光素子30aに内蔵されており、第1発光素子30aおよび隣接する第2発光素子30bの光量をモニタすることにより、環境温度変化の影響をキャンセルして光量補正を行うことができるように構成されている。なお、その他の構成は、上記実施例1の場合と同様であるので、重複説明を省略する。   Although not shown, the light quantity monitoring light receiving element corresponding to the light quantity monitoring light receiving element 36 described in the first embodiment is built in the first light emitting element 30a and is adjacent to the first light emitting element 30a. By monitoring the light amount of the second light emitting element 30b, the influence of the environmental temperature change can be canceled and the light amount can be corrected. Other configurations are the same as those in the case of the first embodiment, and a duplicate description is omitted.

つぎに、尿素濃度検出装置20の制御方法について図13に基づいて図10等を参照しつつ説明する。ここで、図13は、尿素濃度検出装置20の制御方法を示すフローチャートである。なお、以下の制御は、上記ECUによって適宜タイミングで実行される。   Next, a control method of the urea concentration detection device 20 will be described with reference to FIG. Here, FIG. 13 is a flowchart showing a control method of the urea concentration detection device 20. The following control is executed at appropriate timing by the ECU.

図13に示すように、先ず、第1,第2発光素子30a,30bに通電する(ステップS110)。これにより、第1,第2発光素子30a,30bは発光し、図10に示すように、その光線がプリズム40および導光部材43によって対応する隙間部45内に存在する尿素水を透過し、所定量光量を減衰させてから第1,第2受光素子34a,34bに導かれる。   As shown in FIG. 13, first, the first and second light emitting elements 30a and 30b are energized (step S110). As a result, the first and second light emitting elements 30a and 30b emit light, and as shown in FIG. 10, the light rays pass through the urea water present in the corresponding gap 45 by the prism 40 and the light guide member 43, and After a predetermined amount of light is attenuated, the light is guided to the first and second light receiving elements 34a and 34b.

この透過光線の光量に応じた出力信号が第1,第2受光素子34a,34bによって出力されるので、その出力に基づいて尿素水の透過光量I1,I2(V)を算出する(ステップS120)。   Since output signals corresponding to the amount of the transmitted light are output by the first and second light receiving elements 34a and 34b, the transmitted light amounts I1 and I2 (V) of the urea water are calculated based on the outputs (step S120). .

また、上記ステップS110にて発光された第1,第2発光素子30a,30bの光線は、第1発光素子30aに内蔵された図示しない光量モニタ用受光素子によっても受光されるので、その光量モニタ用受光素子の出力に基づいてそれぞれのモニタ光量Imを算出する(ステップS130)。   Further, the light beams of the first and second light emitting elements 30a and 30b emitted in the step S110 are also received by a light quantity monitoring light receiving element (not shown) built in the first light emitting element 30a. Each monitor light amount Im is calculated based on the output of the light receiving element for light (step S130).

上記各モニタ光量Imが算出されれば、上記実施例1の図8に示したマップを用いることにより、第1,第2発光素子30a,30bの発光量I1o,I2o(尿素水により光量が減衰されていない値)を算出することができる(ステップS140)。   When each of the monitor light amounts Im is calculated, the light emission amounts I1o and I2o of the first and second light emitting elements 30a and 30b (the light amount is attenuated by urea water) by using the map shown in FIG. It is possible to calculate a value that has not been performed (step S140).

つぎに、上記ステップS120で算出した透過光量I1,I2と、上記ステップS140で算出した発光量I1o,I2oとに基づいて光透過率T1,T2を算出する(ステップS150)。   Next, light transmittances T1 and T2 are calculated based on the transmitted light amounts I1 and I2 calculated in step S120 and the light emission amounts I1o and I2o calculated in step S140 (step S150).

そして、つぎに、上記ステップS150で算出された光透過率T1,T2に異常がないかどうか図14に示すマップを用いて判断する(ステップS155)。ここで、図14は、ある任意の尿素水濃度に対して上記2種類の波長域における透過率の関係を示すマップであり、波長が1650nmの場合の光透過率T2と波長が2200nmの場合の透過率T1との関係を示したものである。   Next, it is determined using the map shown in FIG. 14 whether there is any abnormality in the light transmittances T1 and T2 calculated in step S150 (step S155). Here, FIG. 14 is a map showing the relationship between the transmittances in the two wavelength ranges with respect to a certain concentration of urea water, and the light transmittance T2 when the wavelength is 1650 nm and the wavelength when it is 2200 nm. The relationship with the transmittance | permeability T1 is shown.

すなわち、算出された上記透過率T1,T2が、図14に示すグラフ上に乗れば、所定濃度の尿素水である(異常なし)と判断することができ、乗らなければ尿素水以外の溶液(異常あり)であると判断することができる。   That is, if the calculated transmittances T1 and T2 are on the graph shown in FIG. 14, it can be determined that the aqueous urea solution has a predetermined concentration (no abnormality). It can be determined that there is an abnormality.

したがって、異常がない場合(ステップS155肯定)は、光路長および波長は既知であるから、予め作成された図14に相当するマップを用い、これら光透過率T1,T2に基づいて尿素濃度を容易に算出することができる(ステップS160)。   Therefore, if there is no abnormality (Yes in step S155), the optical path length and wavelength are known, so the urea concentration can be easily determined based on these light transmittances T1 and T2 using a map corresponding to FIG. 14 prepared in advance. (Step S160).

一方、異常がある場合(ステップS155否定)は、異常である旨を報知し(ステップS180)、所定の処置(たとえば、尿素水の点検、交換等)を行うようにユーザに注意喚起する。   On the other hand, if there is an abnormality (No at Step S155), the user is informed of the abnormality (Step S180) and alerts the user to perform a predetermined treatment (for example, inspection or replacement of urea water).

つぎに、NOx浄化に最適な尿素濃度であるか否かを判断するため、上記ステップS160にて算出された尿素濃度が32.5%近傍の既定値であるか否かを判断する(ステップS170)。   Next, in order to determine whether or not the urea concentration is optimal for NOx purification, it is determined whether or not the urea concentration calculated in step S160 is a predetermined value near 32.5% (step S170). ).

尿素濃度が既定値であるならば(ステップS170肯定)、制御を終了する。尿素濃度が既定値でないならば(ステップS170否定)、異常である旨を報知し(ステップS180)、所定の処置(たとえば、尿素水の点検、交換等)を行うようにユーザに注意喚起する。   If the urea concentration is a predetermined value (Yes at step S170), the control is terminated. If the urea concentration is not the predetermined value (No at Step S170), the fact that it is abnormal is notified (Step S180), and the user is alerted to perform a predetermined treatment (for example, inspection or replacement of urea water).

以上のように、この実施例2に係る尿素濃度検出装置20によれば、2組の発光・受光素子を用いて2つの波長域を用いて構成したので、上記実施例1と同様の効果を奏するほか、更に精度の良い濃度測定を行うことができる。   As described above, according to the urea concentration detection apparatus 20 according to the second embodiment, since the two wavelength regions are configured using the two sets of light emitting / receiving elements, the same effect as the first embodiment can be obtained. In addition to this, it is possible to measure the concentration with higher accuracy.

また、測定結果に異常を見出した際には、その旨をユーザに報知するようにしたので、その後の迅速な対応が可能となる。   In addition, when an abnormality is found in the measurement result, the user is notified of this, so that it is possible to respond quickly thereafter.

また、上記実施例1において説明した光量モニタ用受光素子36に相当する光量モニタ用受光素子を、第1発光素子30aに内蔵し、かつ当該1つの光量モニタ用受光素子で第1,第2発光素子30a,30bの光量補正を行うことができるので、装置全体を小型化することができる。   Further, the light quantity monitoring light receiving element corresponding to the light quantity monitoring light receiving element 36 described in the first embodiment is built in the first light emitting element 30a, and the first and second light emitting elements are provided by the one light quantity monitoring light receiving element. Since the light amount correction of the elements 30a and 30b can be performed, the entire apparatus can be reduced in size.

なお、上記実施例1および上記実施例2においては、説明の都合上、光路長および波長を限定して示したが、これに限定されず、上記効果を奏することができれば、その他の光路長や波長であってもよい。   In the first embodiment and the second embodiment, the optical path length and the wavelength are limited for the convenience of description. However, the optical path length and the wavelength are not limited to the above, and other optical path lengths or It may be a wavelength.

以上のように、この発明に係る尿素濃度検出装置は、ディーゼル車の尿素SCR触媒システムに有用であり、特に、車両の燃費を悪化させることなく、NOx浄化に最適な尿素水濃度を簡易な構成にて精度良くかつ応答性良く測定することを目指す尿素濃度検出装置に適している。   As described above, the urea concentration detection device according to the present invention is useful for a urea SCR catalyst system of a diesel vehicle, and particularly has a simple configuration with a urea water concentration optimum for NOx purification without deteriorating the fuel consumption of the vehicle. It is suitable for a urea concentration detection device aiming at measuring with high accuracy and responsiveness.

この発明の実施例1に係る尿素濃度検出装置を示す断面図である。It is sectional drawing which shows the urea concentration detection apparatus which concerns on Example 1 of this invention. 尿素濃度検出装置を適用する尿素SCR触媒システムを示すブロック図である。It is a block diagram which shows the urea SCR catalyst system to which a urea concentration detection apparatus is applied. 尿素濃度検出装置を示す平面図である。It is a top view which shows a urea concentration detection apparatus. 尿素濃度検出装置の導光部材を示す斜視図である。It is a perspective view which shows the light guide member of a urea concentration detection apparatus. 水と尿素水の透過率特性を示すグラフである。It is a graph which shows the transmittance | permeability characteristic of water and urea water. 光路長が0.5mm、波長が2200nmの場合の透過率と尿素濃度との関係を示すマップである。It is a map which shows the relationship between the transmittance | permeability and urea concentration in case an optical path length is 0.5 mm and a wavelength is 2200 nm. 光路長が2mm、波長が1650nmの場合の透過率と尿素濃度との関係を示すマップである。It is a map which shows the relationship between the transmittance | permeability and urea concentration in case an optical path length is 2 mm and a wavelength is 1650 nm. 光量モニタ用受光素子のモニタ光量Imと発光素子の発光量Ioとの関係を示すマップである。It is a map which shows the relationship between the monitor light quantity Im of the light receiving element for light quantity monitoring, and the light emission quantity Io of a light emitting element. 尿素濃度検出装置の制御方法を示すフローチャートである。It is a flowchart which shows the control method of a urea concentration detection apparatus. この発明の実施例2に係る尿素濃度検出装置を示す断面図である。It is sectional drawing which shows the urea concentration detection apparatus which concerns on Example 2 of this invention. 尿素濃度検出装置の導光部材を示す斜視図である。It is a perspective view which shows the light guide member of a urea concentration detection apparatus. 尿素濃度検出装置の検出部を拡大して示す断面図である。It is sectional drawing which expands and shows the detection part of a urea concentration detection apparatus. 尿素濃度検出装置の制御方法を示すフローチャートである。It is a flowchart which shows the control method of a urea concentration detection apparatus. 任意の尿素水濃度に対して2種類の波長域における透過率の関係を示すマップである。It is a map which shows the relationship of the transmittance | permeability in two types of wavelength ranges with respect to arbitrary urea water density | concentrations.

符号の説明Explanation of symbols

10 エンジン
11 排気通路
12 酸化触媒
13 尿素SCR触媒
14 尿素水タンク
15 尿素水供給通路
16 尿素水噴射ノズル
17 尿素水添加システムタンク
20 尿素濃度検出装置
21、22 筐体
24 ホルダ
25 基板
30 発光素子(発光手段)
30a 第1発光素子(発光手段)
30b 第2発光素子(発光手段)
34 受光素子(受光手段)
34a 第1受光素子(受光手段)
34b 第2受光素子(受光手段)
36 光量モニタ用受光素子(受光手段)
38 サーミスタ
40 プリズム
41 凹部
43 導光部材
43a 段部
45 隙間部
DESCRIPTION OF SYMBOLS 10 Engine 11 Exhaust passage 12 Oxidation catalyst 13 Urea SCR catalyst 14 Urea water tank 15 Urea water supply passage 16 Urea water injection nozzle 17 Urea water addition system tank 20 Urea concentration detectors 21 and 22 Case 24 Holder 25 Substrate 30 Light emitting element ( (Light emitting means)
30a First light emitting element (light emitting means)
30b Second light emitting element (light emitting means)
34 Light receiving element (light receiving means)
34a First light receiving element (light receiving means)
34b Second light receiving element (light receiving means)
36 Light receiving element for light intensity monitoring (light receiving means)
38 Thermistor 40 Prism 41 Concave portion 43 Light guide member 43a Step portion 45 Clearance portion

Claims (4)

測定対象たる尿素水を貯留する尿素水タンクに設置され、かつ、発光手段と受光手段とを有し、前記発光手段と前記受光手段との間に前記尿素水を介在させ、予め求められた前記受光手段による受光量と前記尿素水の濃度との関係に基づいて前記尿素水の濃度を検出する尿素濃度検出装置であって、
前記発光手段は、前記受光手段による前記受光量に基づいて算出される透過率の変化量が大きい第1の波長域の光と第2の波長域の光のうち少なくとも一方を発するように形成され、
外郭として密閉形成されかつ前記尿素水タンクに固定されるとともに前記発光手段と前記受光手段を収容する筐体と、
前記筐体とシールされて位置決めされかつ前記尿素水に前記発光手段からの光線を導くとともに前記尿素水を通過した光線を前記受光手段に導くプリズムと、
前記プリズムに設けられかつ前記尿素水の濃度を検出するために当該尿素水が進入可能な凹部と、
前記凹部に設けられ、かつ前記発光手段の前記光を導くとともに、濃度検出時の前記光の光路長を規定し該光路長を維持しつつ前記尿素水の流動によって可動するように構成された導光部材とを備えていることを特徴とする尿素濃度検出装置。
The urea water tank that stores the urea water to be measured has a light emitting means and a light receiving means, the urea water is interposed between the light emitting means and the light receiving means, A urea concentration detection device that detects the concentration of the urea water based on the relationship between the amount of light received by the light receiving means and the concentration of the urea water,
The light emitting means is formed to emit at least one of light in a first wavelength range and light in a second wavelength range that has a large amount of change in transmittance calculated based on the amount of light received by the light receiving means. ,
A housing that is hermetically formed as an outer shell and is fixed to the urea water tank and contains the light emitting means and the light receiving means,
A prism that is positioned sealed with the housing and guides the light beam from the light emitting means to the urea water and guides the light beam that has passed through the urea water to the light receiving means;
A recess provided in the prism and into which the urea water can enter in order to detect the concentration of the urea water;
A light guide that is provided in the recess and guides the light of the light emitting means and is configured to be movable by the flow of the urea water while defining the optical path length of the light at the time of concentration detection and maintaining the optical path length. A urea concentration detection device comprising an optical member .
検出された前記尿素濃度が所定の既定値となっているか否かを判定する濃度判定手段を備えたことを特徴とする請求項1に記載の尿素濃度検出装置。   The urea concentration detection device according to claim 1, further comprising concentration determination means for determining whether or not the detected urea concentration is a predetermined default value. 前記濃度判定手段によって前記尿素濃度が所定の既定値となっていない場合には、その旨を報知する報知手段を備えたことを特徴とする請求項1または2に記載の尿素濃度検出装置。   The urea concentration detection device according to claim 1, further comprising a notification unit that notifies the fact that the concentration determination unit does not provide a predetermined predetermined value for the urea concentration. 前記発光手段として、第1の波長域の光と第2の波長域の光のうち一方の光を発するように構成された第1発光素子と、他方の光を発するように構成された第2発光素子と、が設けられ、  As the light emitting means, a first light emitting element configured to emit one of the light in the first wavelength band and the light in the second wavelength band, and a second configured to emit the other light. A light emitting element, and
前記受光素子として、第1発光素子から発光された光線を受光する第1受光素子と、第2発光素子から発光された光線を受光する第2受光素子と、が設けられ、  As the light receiving element, a first light receiving element that receives the light emitted from the first light emitting element and a second light receiving element that receives the light emitted from the second light emitting element are provided,
前記導光部材は、段部を備えて、光路長として、前記一方の光の光路長と、前記他方の光の光路長とを規定することを特徴とする請求項1から3のうちいずれかに記載の尿素濃度検出装置。  The said light guide member is provided with the step part, The optical path length of said one light and the optical path length of said other light are prescribed | regulated as an optical path length, The any one of Claim 1 to 3 characterized by the above-mentioned. The urea concentration detection apparatus described in 1.
JP2007102106A 2007-04-09 2007-04-09 Urea concentration detector Expired - Fee Related JP5221053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102106A JP5221053B2 (en) 2007-04-09 2007-04-09 Urea concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102106A JP5221053B2 (en) 2007-04-09 2007-04-09 Urea concentration detector

Publications (2)

Publication Number Publication Date
JP2008256663A JP2008256663A (en) 2008-10-23
JP5221053B2 true JP5221053B2 (en) 2013-06-26

Family

ID=39980360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102106A Expired - Fee Related JP5221053B2 (en) 2007-04-09 2007-04-09 Urea concentration detector

Country Status (1)

Country Link
JP (1) JP5221053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143590A1 (en) * 2016-02-26 2017-08-31 东莞正扬电子机械有限公司 Optical density sensor protective casing and optical density testing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804619B2 (en) * 2009-07-01 2015-11-04 株式会社司測研 Light-emitting element luminous intensity compensation device in opacimeter
WO2012170743A1 (en) 2011-06-07 2012-12-13 Sentelligence, Inc. Optical sensing device for fluid sensing and methods therefor
EP4083609A4 (en) * 2019-12-24 2024-01-24 Kubota Kk Urea concentration sensor and ammonia concentration sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106174U (en) * 1975-12-29 1976-08-25
JPS61202142A (en) * 1985-03-06 1986-09-06 Teijin Ltd Analyzing method and apparatus using absorbance
JPH0731116B2 (en) * 1986-04-10 1995-04-10 株式会社日本自動車部品総合研究所 Oil deterioration detector
JPS6342353Y2 (en) * 1987-08-05 1988-11-07
JPH01119741A (en) * 1987-11-04 1989-05-11 Nippon Soken Inc Detecting apparatus of turbidity of oil
JPH01174946A (en) * 1987-12-29 1989-07-11 Tsurumi Mfg Co Ltd Apparatus for detecting density and interface of sludge
JPH03189542A (en) * 1989-12-19 1991-08-19 Kyoto Denshi Kogyo Kk Colorimetric analysis apparatus and analysis method
JPH07280727A (en) * 1994-04-08 1995-10-27 Marcom:Kk Flux concentration meter and flux concentration control device for washing liquid
JPH0886751A (en) * 1994-09-19 1996-04-02 Nippondenso Co Ltd Liquid dirtiness detecting device
JP2004177242A (en) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd Intra-cylinder physical quantity detector
JP4260049B2 (en) * 2004-03-09 2009-04-30 三井金属鉱業株式会社 Liquid detection device and liquid detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143590A1 (en) * 2016-02-26 2017-08-31 东莞正扬电子机械有限公司 Optical density sensor protective casing and optical density testing device

Also Published As

Publication number Publication date
JP2008256663A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5221053B2 (en) Urea concentration detector
WO2017222002A1 (en) Gas sensor, and method for measuring concentrations of plurality of target components in gas to be measured
JP5959509B2 (en) Measuring unit and gas analyzer
WO2017222003A1 (en) Exhaust gas purification system and exhaust gas purification method
EP2133686A1 (en) Laser gas analyzer
JP5197345B2 (en) Exhaust gas purification device and water level measurement device
KR20110040896A (en) Gas detection device
JP2003501622A (en) Gas sensor mechanism
WO2010087370A1 (en) Exhaust gas purifying apparatus
JP5537174B2 (en) Gas concentration measuring device
US20100318471A1 (en) Systems and Methods for Monitoring the Quality of a Reducing Agent
JP2005084025A (en) Urea concentration discrimination device for urea solution
JP2006343293A (en) Exhaust gas analyzer
US10976254B2 (en) Fire detection system, receiver, and fire detection method
US20140132951A1 (en) Device for measuring urea concentration
JP2007040887A (en) Gas analyzer
US7414244B2 (en) Mixing ration detecting apparatus, method of controlling mixing ration detecting apparatus, and fuel cell system incorporating mixing ratio detecting apparatus
JP4260049B2 (en) Liquid detection device and liquid detection method
US10456864B2 (en) Laser processing system having function of cleaning laser optical path
US11764542B2 (en) Semiconductor laser device, and method and program for driving the same
JP5670717B2 (en) Ozone gas supply device
KR102600381B1 (en) Probe device, analysis apparatus for exhaust gas and correction method
JP2010096561A (en) Calibration device for laser type gas analyzer
WO2021131616A1 (en) Urea concentration sensor and ammonia concentration sensor
JP2013134235A (en) Gas analyzing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees