JPS61202142A - Analyzing method and apparatus using absorbance - Google Patents

Analyzing method and apparatus using absorbance

Info

Publication number
JPS61202142A
JPS61202142A JP4259885A JP4259885A JPS61202142A JP S61202142 A JPS61202142 A JP S61202142A JP 4259885 A JP4259885 A JP 4259885A JP 4259885 A JP4259885 A JP 4259885A JP S61202142 A JPS61202142 A JP S61202142A
Authority
JP
Japan
Prior art keywords
concentration
absorbance
test tube
test liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4259885A
Other languages
Japanese (ja)
Inventor
Takeo Furuki
古木 建夫
Koichiro Sakota
迫田 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4259885A priority Critical patent/JPS61202142A/en
Publication of JPS61202142A publication Critical patent/JPS61202142A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Abstract

PURPOSE:To enable accurate and stable analysis, by altering the specified wavelength of a transmission light corresponding to the concentration of a specified material in a liquid to be inspected and/or altering the transmission light path length in the liquid being inspected before the measurement of the absorbance. CONSTITUTION:A test tube having a colored liquid is put into a test tube insertion port 5 and them, a switch 1 is depressed. Light with the wavelength of 660nm hits the liquid in the test tube from a light source 3 and the transmission light hits a detector 7, where the light is converted into an electrical signal and then, into concentration in the liquid being inspected according to a calibration curve memorized into an arithmetic unit 9, the results obtained are shown on a concentration display section 9. When the display value of the display section 9 exceeds a specified value, the test tube is taken out of the insertion port 5 to put it into a test tube insertion port 6 and then, a switch 2 is depressed. Light with the wavelength of 560nm hits the liquid in the test tube from the light source 4, the transmission light hits a detector 8 and the concentration obtained with the arithmetic unit 9 is shown on a concentration display section 10. Thus, accurate and stable analysis can be done.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、吸光度を用いた定量分析方法及び定量分析装
置に関するものである。さらに詳細には、本発明は被検
液中における分析対象物質の濃度が高い領域においても
精度よく安定に分析することができる定量分析方法及び
そのための装置を提供するものである。特に血液、胆液
等の体液や、尿等の排泄物の中に含まれる種々の成分、
たとえばホルモン、ビタミン、酵素、その他の生体成分
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a quantitative analysis method and a quantitative analysis apparatus using absorbance. More specifically, the present invention provides a quantitative analysis method and an apparatus for the same, which allows accurate and stable analysis even in a region where the concentration of an analyte substance in a test liquid is high. In particular, various components contained in body fluids such as blood and bile, and excretions such as urine,
For example, hormones, vitamins, enzymes, and other biological components.

薬物などの分析に適した簡便な定石分析方法及び装置を
提供するものである。
The present invention provides a simple routine analysis method and device suitable for analyzing drugs and the like.

[従来技術] これまでの光を用いた定量分析において、目的物質を含
んだ被検液の透過光を測定し吸光度を求めることが通常
用いられている。この場合、被検液に対する入射光の強
度をIo、透過光の強度を1、濃度をC9光路長を文、
εを定数とすると、吸光度Eは次式で表わすことができ
、濃度Cに比例することが知られている。
[Prior Art] In conventional quantitative analysis using light, it has been usual to measure the transmitted light of a test liquid containing a target substance to determine the absorbance. In this case, the intensity of the incident light on the test liquid is Io, the intensity of the transmitted light is 1, the concentration is C9, the optical path length is
When ε is a constant, the absorbance E can be expressed by the following equation, and is known to be proportional to the concentration C.

E−リO(+(10/T)−εC用 しかしながらこの比例関係が成立するのは、被検液中の
目的物質の濃度が比較的低く、透過光の強度Iが入射光
の強度IOに比較して小さくなり過ぎないような範囲に
限られている。この範囲以上に目的物質の濃度が高くな
った場合には、上記の比例関係が成立しないばかりか、
その′a痘の差による吸光度の差が非常に小さくなるた
めに精度よく定量分析を行なうことが出来ない。このた
めの方策として、被検液の希釈法が用いられているが、
この方法では操作が煩雑であるという大きな欠点があっ
た。
For E-LiO(+(10/T)-εC) However, this proportional relationship holds because the concentration of the target substance in the test liquid is relatively low and the intensity I of the transmitted light is equal to the intensity IO of the incident light. It is limited to a range that does not become too small in comparison.If the concentration of the target substance becomes higher than this range, not only will the above proportional relationship not hold;
Since the difference in absorbance due to the difference in apox becomes extremely small, accurate quantitative analysis cannot be performed. As a strategy for this purpose, dilution of the test solution is used, but
This method has a major drawback in that the operation is complicated.

[発明の目的] 本発明は、吸光度を用いた分析方法における上記の欠点
を解決することを目的とするものである。
[Object of the Invention] The object of the present invention is to solve the above-mentioned drawbacks in analytical methods using absorbance.

即ち被検液中において高濃度に含まれる物質を精度よく
安定して且つ極めて簡単に分析することが可能な分析方
法及び分析装置を提供することを目的としている。
That is, the object of the present invention is to provide an analysis method and an analysis apparatus that can accurately, stably, and extremely easily analyze a substance contained in a test liquid at a high concentration.

[発明の構成] 本発明者は、かかる目的を達成すべく鋭意研究した結果
、目的物質の高濃度領域における透過光の強度の極端な
低下を防止することが非常に有効であることを見い出し
、それを極めて簡単な操作で行ない得る方策として以下
の如き本発明に到達した。
[Structure of the Invention] As a result of intensive research to achieve the above object, the present inventor found that it is very effective to prevent an extreme decrease in the intensity of transmitted light in a high concentration region of the target substance, We have arrived at the following invention as a measure to accomplish this with an extremely simple operation.

即ち本発明は、被検液に光束を照射しその透過光の特定
波長に関する吸光度を測定することによって該被検液中
の特定物質の濃度を測定する分析方法において、該被検
液中の該特定物質の濃度領域に対応して該特定波長の変
更及び/又は該被検液中での透過光路長の変更を行なう
ことを特徴とする号光度を用いた分析方法;及び被検液
に光束を照射する手段、その透過光を受け特定波長に関
する吸光度を測定する手段を有した該被検液中の特定物
質の分析装置において、該被検液中の該特定物質の濃度
に対応して該特定波長を・変更する手段及び/又は該濃
度に対応して該被検物中での透過光路長を変更する手段
を具備したことを特徴とする吸光度を用いた分析装置を
提供するものである。
That is, the present invention provides an analytical method for measuring the concentration of a specific substance in a test liquid by irradiating the test liquid with a light beam and measuring the absorbance of the transmitted light at a specific wavelength. An analysis method using optical intensity, which is characterized by changing the specific wavelength and/or changing the transmitted optical path length in the test liquid in accordance with the concentration range of the specific substance; and In an analyzer for a specific substance in the test liquid, the analyzer has a means for irradiating light, and a means for receiving the transmitted light and measuring the absorbance at a specific wavelength. The present invention provides an analyzer using absorbance, characterized in that it is equipped with a means for changing a specific wavelength and/or a means for changing a transmitted optical path length in the specimen in accordance with the concentration. .

以下に本発明のさらに詳細な説明を行なう。A more detailed explanation of the invention follows.

本発明に言う透過光を用いた定量分析方法の測定原理は
、被検液の吸収スペクトルが被検液中の特定物質の濃度
に応じて変化することに立脚したもので、該特定物質に
よって適当な特定波長を選択し、その波長における該透
過光の吸光度の変化を光電的に測定し、さらに該特定物
質の吸光特性等から得られる濃度対吸光度の相関関係に
より濃度単位に変換し表示するものである。
The measurement principle of the quantitative analysis method using transmitted light according to the present invention is based on the fact that the absorption spectrum of the test liquid changes depending on the concentration of a specific substance in the test liquid. A device that selects a specific wavelength, photoelectrically measures the change in absorbance of the transmitted light at that wavelength, and then converts it into a concentration unit and displays it based on the correlation between concentration and absorbance obtained from the absorption characteristics of the specific substance, etc. It is.

本発明はこの吸光度を用いた定量分析において、被検液
中の分析対象である特定物質の濃度に応じて、特定波長
の変更及び/又は被検液中での透過光路長の変更を行な
うことを特徴とするものである。
In quantitative analysis using this absorbance, the present invention involves changing the specific wavelength and/or changing the length of the transmitted optical path in the test liquid depending on the concentration of the specific substance to be analyzed in the test liquid. It is characterized by:

この特定波長を変更する形式としては特に限定されるも
のではないが、該特定物質の′a度の広い範囲にわたっ
て吸光度が精度よく安定に測定でき且つ測定操作及び測
定装置が簡便なものとして以下に示す形式が好ましい。
The method of changing this specific wavelength is not particularly limited, but the following method is one that can accurately and stably measure the absorbance of the specific substance over a wide range of 'a degrees, and the measurement operation and measuring device are simple. The format shown is preferred.

即ち被検液中の該特定物質の濃度範囲を複数領域に分割
し、その各々の領域に対応して別々の特定波長を用いる
ことが望ましい。特定波長としては、各々の濃度範囲に
おける該特定物質の吸光度特性からその濃度変化により
吸光度が出来るだけ大きく変化し得る波長を選択するの
がj;い。特に該特定物質の高濃度領域では、低濃度領
域と同様の特定波長を用いたのでは吸光度が大きくなり
過ぎて測定不能となることから、それよりも吸光度が小
さく且つ濃度変化による吸光度変化の大きい特定波長を
選択すべきである。通常は、該濃度範囲を2領域に分割
し、それに対応した2種の波長を用いることが、操作等
が簡便で好ましい。
That is, it is desirable to divide the concentration range of the specific substance in the test liquid into a plurality of regions and use different specific wavelengths corresponding to each region. As the specific wavelength, it is preferable to select a wavelength at which the absorbance can change as much as possible depending on the concentration change based on the absorbance characteristics of the specific substance in each concentration range. In particular, in the high concentration region of the specific substance, if the same specific wavelength as in the low concentration region is used, the absorbance will be too large and it will be impossible to measure. A specific wavelength should be selected. Normally, it is preferable to divide the concentration range into two regions and use two corresponding wavelengths because the operation is simple.

また本発明の被検液中での透過光路長を変更する形式と
しては特に限定されるものではないが、該被検液中の透
過光路部の一部にスペーサーを設けることにより透過光
路長を減少せしめる方式が好ましい。かかるスペーサー
としては、その吸光度が小さくてそれを挿入することに
よる分析精度への影響の小さいものが好ましく、その好
ましい材質としてはガラス、石英などの無機物質、ポリ
スチレン、メチルメタアクリレートなどの有機高分子物
質等が挙げられ、内部に空間を有していてもよい。透過
光路長を変更する手段としてのスペーサーを2個以上用
いてもよいが、操作性や装置の簡便さから1個のスペー
サーを用いることでそ一7= の効果が充分得られる。
Furthermore, the method of changing the length of the transmitted optical path in the test liquid of the present invention is not particularly limited, but the length of the transmitted optical path can be changed by providing a spacer in a part of the transmitted optical path in the test liquid. A method that reduces the amount of water is preferred. It is preferable that such a spacer has a low absorbance so that inserting it will have little effect on analysis accuracy, and preferable materials include inorganic materials such as glass and quartz, and organic polymers such as polystyrene and methyl methacrylate. Examples include substances, and may have a space inside. Although two or more spacers may be used as a means for changing the length of the transmitted light path, from the viewpoint of operability and simplicity of the device, the effect of Part 7 can be sufficiently obtained by using one spacer.

また透過光路長を変える他の方法としては測定されるセ
ルの形状を変えることにより光路長を変えることも考え
られる。たとえば被検液のはいる同一セルにおいてその
上部の内径又は奥行を大きくし、下部の内径又は奥行を
小さくする方法が考えられる。即ち第2図に例示するよ
うな測定セルを用いて、まず光を上部の内径の太い部分
20に当てて、得られる透過光があらかじめ決められた
強さより強い場合は、下部の内径の細い部分21に光を
当てる。
Another method of changing the transmitted optical path length is to change the optical path length by changing the shape of the cell to be measured. For example, a method can be considered in which the inner diameter or depth of the upper part of the same cell containing the test liquid is increased, and the inner diameter or depth of the lower part thereof is decreased. That is, using a measuring cell as illustrated in FIG. 2, first irradiate the upper part 20 with the thicker inner diameter with light, and if the transmitted light obtained is stronger than a predetermined intensity, the lower part with the narrower inner diameter Shine a light on 21.

また本発明において上記した特定波長の変更と透過光路
長の変更の両方を併用してもよいが、通常はいずれか一
方を用いることが好ましい。特に特定波長の変更方式が
操作性が良好であって好ましい態様である。
Further, in the present invention, both the above-mentioned change of the specific wavelength and change of the transmitted optical path length may be used together, but it is usually preferable to use either one of them. In particular, the method of changing the specific wavelength is a preferable embodiment since it has good operability.

本発明に言う被検液としては、場合によっては乳化物や
懸濁物等の固体を少量含むものであってもよいが、固体
を含まない均一な溶液状態にあるものが好ましい。尚被
検液はガラス等の無機物質−Ω − や有機高分子物質などで出来た測定セルに入れた状態で
分析に供される。かかる被検液の溶媒には分析対象物質
を溶解するのに適したものが用いられるが特に限定され
ない。
The test liquid referred to in the present invention may contain a small amount of solids such as emulsions and suspensions depending on the case, but it is preferably in a uniform solution state that does not contain solids. The test liquid is placed in a measurement cell made of an inorganic material such as glass or an organic polymer material for analysis. The solvent for such a test liquid is not particularly limited, although a solvent suitable for dissolving the substance to be analyzed can be used.

本発明における分析対象である特定物質としては特に限
定されるものではないが、本発明に特に適した該特定物
質としては、ペプチドホルモン。
The specific substance to be analyzed in the present invention is not particularly limited, but the specific substance particularly suitable for the present invention is a peptide hormone.

非ペプチドホルモン、その他のホルモン、酵素。Non-peptide hormones, other hormones, enzymes.

ビールス、特異抗原、血清蛋白成分、ビタミン。Viruses, specific antigens, serum protein components, vitamins.

薬物、その伯が挙げられる。Drugs can be mentioned.

即ちペプチドホルモンとしては、たとえばインシュリン
、C−ペプチド、グルカゴン、副甲状腺ホルモン、カル
シトニン、■リス口ポエチン、セクレチン、コレシスト
キニン、ガストリン、アンギオテンシン■、パップレシ
ン、オキシトシン。
That is, examples of peptide hormones include insulin, C-peptide, glucagon, parathyroid hormone, calcitonin, ``squirrel poetin,'' secretin, cholecystokinin, gastrin, angiotensin, ``pappressin,'' and oxytocin.

メラニン細胞刺激ホルモン、副腎皮質刺激ホルモン、甲
状腺刺激ホルモン(TS)−1)、TSH分泌促進ホル
モン、成長ホルモン、プロラクチン、黄体形成ホルモン
(LH)、LH分泌促進ホルモン(LHRH)、絨毛性
ゴナドトロピン(HcG)。
Melanocyte stimulating hormone, adrenocorticotropic hormone, thyroid stimulating hormone (TS)-1), TSH secretagogue hormone, growth hormone, prolactin, luteinizing hormone (LH), LH secretagogue hormone (LHRH), chorionic gonadotropin (HcG) ).

卵胞刺戟ホルモン等が挙げられる。非ペプチドホルモン
としては、たとえばステロイドホルモン類のグルココル
チコイド、アルドステロン、テストステロン、エストリ
オール、エストラジオール。
Examples include follicle stimulating hormone. Examples of non-peptide hormones include steroid hormones such as glucocorticoids, aldosterone, testosterone, estriol, and estradiol.

プロゲステロン等が挙げられる。またその他のホルモン
としては、たとえば甲状線ホルモン(サイロキシン、ト
リヨードサイロニン、リバーストリヨードサイロニン)
、コルチゾール、アドレナリン、ノルアドレナリン、メ
ラトニン、アセチルコリン等が挙げられる。さらに酵素
としては、たとえばC1エステラーゼ、アルカリホスフ
ァターゼ。
Examples include progesterone. Other hormones include, for example, thyroid hormone (thyroxine, triiodothyronine, reverse triiodothyronine).
, cortisol, adrenaline, noradrenaline, melatonin, acetylcholine, etc. Furthermore, examples of enzymes include C1 esterase and alkaline phosphatase.

ペプシノーゲン、トリプシン、カイネース等;特異抗原
としては、たとえばα−フェトプロティン。
Pepsinogen, trypsin, kinase, etc.; specific antigens include, for example, α-fetoprotein.

癌胎児性抗原(CEA)等;血清蛋白成分としてはたと
えばサイロキシン結合グロブリン、β2ミクログロブリ
ン、I(IG、rgv、It)A。
Carcinoembryonic antigen (CEA), etc.; Serum protein components include, for example, thyroxine-binding globulin, β2 microglobulin, I (IG, rgv, It)A.

10D、I(IE等;薬物としては、たとえばジフェニ
ルヒダントイン、フエノバルビタール、メフォバルビタ
ール、カルバマゼピン、パルプロ酸。
10D, I (IE, etc.; drugs include, for example, diphenylhydantoin, phenobarbital, mephobarbital, carbamazepine, and palproic acid.

プリミドン、エトサクシミド、メトサクシミド。Primidone, ethosuximide, methosuximide.

メフエニトイン、フェンサクシミド、グルテチミド、ク
ロナゼパム、クロルジアゼポキサイド、二トラゼパム、
アンフェタミン、イミプラミン、アミトリブチリン、プ
ロトリブチリン、フェノチアジン、メブロバメート、コ
カイン等;ビタミンとしては、たとえばビタミンA(レ
チノール)、ビタミンB+  (サイアミン)、ビタミ
ンB2  (リボフラビン)、ビタミンB6  (ピリ
ドキサールリン酸)、ビタミンB12.ビタミンC(ア
スコルビン酸)、ビタミンD、ビタミンE(α−トコフ
ェロール)1葉酸、二]チン酸、パントテン酸、ビオチ
ン等:その伯たとえばリウマチ因子、トIBs抗原、H
Bs抗体、ミオシン等が挙げられる。
mefenytoin, fensuximide, glutethimide, clonazepam, chlordiazepoxide, nitrazepam,
Amphetamine, imipramine, amitributyline, protributyline, phenothiazine, mebrobamate, cocaine, etc.; vitamins such as vitamin A (retinol), vitamin B+ (thiamine), vitamin B2 (riboflavin), vitamin B6 (pyridoxal phosphate), vitamin B12 .. Vitamin C (ascorbic acid), vitamin D, vitamin E (α-tocopherol), folic acid, di]tinic acid, pantothenic acid, biotin, etc., such as rheumatoid factor, IBs antigen, H
Examples include Bs antibody and myosin.

これまでの吸光度を用いた分析法においては、かかる被
検液中に含まれる特定物質をたとえばある濃度基準で表
わした10〜1000の濃度の範囲で測定したい場合、
この濃度範囲がある特定波長へで吸光度即ちO,D、 
 (Optical density)が約0.1から
5.0の程度の値を示すことがある。この場合ふつう光
度計の性質上、O,D、が約2.0以上の吸光度は誤差
が大きすぎるため、測定のためにこの範囲の吸光度が用
いられることはない。そこで本発明の分析法では、特定
波長をたとえばBにかえることによりたとえばQ、l’
)、5.0をO20,1,0に下げることが可能であり
、そうすることにより、波長Aで測定できなかった高濃
度領域たとえば200〜1000にお()る測定が可能
になる。
In the conventional analysis method using absorbance, when it is desired to measure a specific substance contained in the test liquid in a concentration range of 10 to 1000 expressed by a certain concentration standard, for example,
In this concentration range, the absorbance at a certain wavelength, that is, O, D,
(Optical density) may exhibit a value of about 0.1 to 5.0. In this case, because of the nature of the photometer, absorbances with O, D, greater than about 2.0 have too large an error, so absorbances in this range are not used for measurements. Therefore, in the analysis method of the present invention, by changing the specific wavelength to B, for example, Q, l'
), 5.0 can be lowered to O20,1,0, thereby making it possible to measure in the high concentration range, for example 200-1000, which could not be measured at wavelength A.

ただしこの場合低濃度域(10〜200)を波長Bで測
定することは感度・精度ともに悪くなり好ましくない。
However, in this case, it is not preferable to measure the low concentration range (10 to 200) at wavelength B because both sensitivity and accuracy deteriorate.

この様に低濃度域は波長Aで測定し高濃痩域は別の波長
Bで測定するようにすれば、10〜1000の広い範囲
にわたり同じ被検液調製で精度よく測定が可能である。
In this way, by measuring the low concentration region with wavelength A and the high concentration region with another wavelength B, it is possible to accurately measure a wide range of 10 to 1000 with the same test liquid preparation.

さらに本発明に言う吸光度を用いた定量分析装置は、以
上に述べた如き定量分析を行ないうるちのであって、被
検液中の分析対象物質の濃度に対応して吸光度を測定す
る特定波長を変更する手段及び/又は被検液中の透過光
路長を変更する手段を具備することを特徴としている。
Furthermore, the quantitative analyzer using absorbance according to the present invention performs the quantitative analysis as described above, and selects a specific wavelength for measuring absorbance corresponding to the concentration of the target substance in the test liquid. It is characterized by comprising a means for changing and/or a means for changing the transmitted optical path length in the test liquid.

かかる特定波長の変更手段としては、2種以上、好まし
くは2種の特定された波長の中から選択し、例えば切替
えスイッチ等で簡単に切替えて使用できる形式のものが
好ましい。また透路長を変更する手段としてスペーサー
を用いた場合には、そのスペーサーの出し入れ操作を手
動式あるいはモーター等で自動的に行なってもよい。
The specific wavelength changing means is preferably of a type that can be selected from two or more, preferably two, specified wavelengths and can be easily switched and used, for example, with a changeover switch or the like. Further, when a spacer is used as a means for changing the length of the passage, the operation of inserting and removing the spacer may be performed manually or automatically using a motor or the like.

さらに該分析装置は、測定された吸光度を被検液中の特
定物質濃度に変換するための手段を具備するものである
。かかる濃度変換手段としては、例えば吸光度と濃度の
相関関係を表わしたもの、即ち検量線を、近似式等の数
式変換あるいはパターン認識等の図形変換などを用いた
演算方式を記憶し得る機能を有したものが、実用上非常
に有効である。尚この演算方式は更新して記憶できるこ
とが望ましい。
Furthermore, the analyzer is equipped with means for converting the measured absorbance into the concentration of a specific substance in the test liquid. Such a concentration conversion means has a function of storing a calculation method that uses mathematical conversion such as an approximation formula or graphical conversion such as pattern recognition to express a correlation between absorbance and concentration, that is, a calibration curve. This is very effective in practice. It is desirable that this calculation method can be updated and stored.

以下、実施例を挙げてさらに具体的に説明するが、本発
明はこれらの実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples at all.

実施例1 (1)試料の調製 ヒト絨毛ゴナドトロピン(以下11CGと略す)の国際
標準品であるW HO2nd  I nternati
onal  5tandard for )IcG (
5300国際単位(IU)/アンプル)を0.01 M
リン酸緩衝整理食塩水(PBSと略す)  [Na C
98,5g、 KH2PO40,266g、 K2 H
PO41,401gを蒸留水に溶かして1Jl!とした
]  pH’7.2の5.3mに溶解して1000IU
/dのHCG原液を作った。これを上記PBSで適宜希
釈して、10.25.50. 100. 200゜40
0、 600. 900Tl’L I U / dの溶
液を調製し試料とした。
Example 1 (1) Preparation of sample WHO2nd International, an international standard product of human chorionic gonadotropin (hereinafter abbreviated as 11CG)
onal 5 standard for ) IgG (
5300 international units (IU/ampule) to 0.01 M
Phosphate buffered saline (abbreviated as PBS) [Na C
98.5g, KH2PO40,266g, K2H
Dissolve 41,401g of PO in distilled water to make 1Jl! ] Dissolved in 5.3m of pH'7.2 to 1000IU
/d HCG stock solution was prepared. This was appropriately diluted with the above PBS and 10.25.50. 100. 200°40
0, 600. A solution of 900 Tl'L IU/d was prepared and used as a sample.

(21m素免疫定量法(E nzyIIle l 1m
uno A 5say)の実施 下記の構成成分より成るHOG定量用キッドにより酵素
免疫定量法を実施した。
(21m immunoassay method (EnzyIIle l 1m
Enzyme immunoassay was carried out using a HOG quantitative kit consisting of the following components.

■ 抗体結合スティック: (GCG−ベータザブユニ
ットに対する抗体の結合したプラスチック棒■ 酵素抗
体結合物:HCG−ベータサブユニットに対する抗体の
結合した西洋ワサビペルオキシダーゼ(Horse  
Raddish  Peroxidase )■ 基質
液;  0.03%過酸化水素溶液■ 発色液;テトラ
メチラベンジシン溶液即ち12X 75.ガラス試験管
に試料0.5mi!と酵素抗体結合物 ■ 0.5戒を加えよく混合した。ここに抗体結合ステ
ィックを入れ25℃の水浴中で15分間インキュベーシ
ョンした。この15分間のインキュベーション中に、別
の12X 75mガラス試験管に基質液■ 0.7−と
発色液 ■ 0.3dを加えよく混合した。15分間経
過後スティックを取り出し水道水でよく洗い、このステ
ィックを先に調製した基質液と発色液の混合液中に入れ
て、25℃の水浴中で10分間インキュベーションした
。10分間経過後スティックを捨て、試験管中の液の吸
光度を測定した。(3)吸光度の測定 発色した試験管中の液の吸光度を光路長10IllI1
1のキュベツトを用い、波長660tvで測定した結果
を表1に示す。使用した分光光度翳1は日本分光社製分
光光度計UVIDEC505型である。
■ Antibody-conjugated stick: (Plastic stick bound with antibody against GCG-beta subunit ■ Enzyme-antibody conjugate: Horseradish peroxidase bound with antibody against HCG-beta subunit
Raddish Peroxidase) ■ Substrate solution; 0.03% hydrogen peroxide solution ■ Coloring solution: Tetramethylabendicine solution, i.e. 12X 75. Sample 0.5mm in a glass test tube! and enzyme-antibody conjugate■ 0.5 liters were added and mixed well. An antibody-bound stick was placed therein and incubated in a 25°C water bath for 15 minutes. During this 15 minute incubation, 0.7 d of substrate solution (1) and 0.3 d of color developer (2) were added to another 12X 75 m glass test tube and mixed well. After 15 minutes had elapsed, the stick was taken out and thoroughly washed with tap water, placed in the previously prepared mixture of substrate solution and coloring solution, and incubated in a 25°C water bath for 10 minutes. After 10 minutes, the stick was discarded and the absorbance of the liquid in the test tube was measured. (3) Measurement of absorbance Measure the absorbance of the colored liquid in the test tube with an optical path length of 10IllI1
Table 1 shows the results of measurement using cuvette No. 1 at a wavelength of 660 tv. The spectrophotometer 1 used was a spectrophotometer UVIDEC505 manufactured by JASCO Corporation.

同じ液を本発明の分析装置の1実施態様である第1図に
示した装置により以下の要領で測定した。
The same liquid was measured in the following manner using the apparatus shown in FIG. 1, which is an embodiment of the analyzer of the present invention.

まず発色した液のはいった試験管を試験管挿入口5に入
れてスイッチ1を押す。すると光m3から波長660n
n+の光が手で試験管中の液に当たり、透過した光が検
出器7に当たる。ここで電気信号に変換され、これが演
算装置9の中に記憶されている検量線に従って被検液中
の濃度に変換され、得られた結果を濃度表示部9に表示
する。ただし得られた濃度が5m1U/dより低い場合
は「5イカ」と表示され、150m I Ll /−を
越える場合は「150イジヨウ」と表示される。
First, put a test tube containing a colored liquid into the test tube insertion port 5 and press the switch 1. Then, from the light m3, the wavelength is 660n
The n+ light hits the liquid in the test tube by hand, and the transmitted light hits the detector 7. Here, it is converted into an electrical signal, which is converted into a concentration in the test liquid according to a calibration curve stored in the arithmetic unit 9, and the obtained result is displayed on the concentration display section 9. However, if the obtained concentration is lower than 5 m 1 U/d, it will be displayed as "5 squid", and if it exceeds 150 m I Ll /-, it will be displayed as "150 m U/d".

「150イジヨウ」と表示された場合は試験管を試験管
挿入口5より取出し試験管挿入口6に入れる。スイッチ
2を押すことにより光8!4から波長560nmの光が
出て試験管に当たり、透過した光が検出器8に当たる。
When "150 yen" is displayed, take out the test tube from the test tube insertion port 5 and insert it into the test tube insertion port 6. By pressing the switch 2, light with a wavelength of 560 nm is emitted from the light 8!4 and hits the test tube, and the transmitted light hits the detector 8.

ここで電気信号に変換され、これが演算装置9の中に記
憶されている別の検量線に従って被検液中の濃度に変換
される。こうして得られた濃度が濃度表示部10に表示
される。得られた結果を表2に示す。
Here, it is converted into an electrical signal, which is converted into a concentration in the test liquid according to another calibration curve stored in the arithmetic unit 9. The density thus obtained is displayed on the density display section 10. The results obtained are shown in Table 2.

(以下余白) 表2 以上の結果から明らかな様に波長660nmにおいては
5〜1507+’L I U /dの範囲のl−10G
が測定できるが、1507+’L I U /d以上は
吸光度が高すぎるため測定不可能である。しかし波長5
eoivを採用することにより ioo〜1ooom 
Iu /Idの濃度が精度よく測定できる。
(Leaving space below) Table 2 As is clear from the above results, at a wavelength of 660 nm, l-10G in the range of 5 to 1507+'L I U /d
can be measured, but it is impossible to measure values of 1507+'L I U /d or higher because the absorbance is too high. But wavelength 5
By adopting eoiv ioo~1oooom
The concentration of Iu/Id can be measured with high accuracy.

実施例2 (1)  ヒト応対形成ホルモン(以下LHと略す)の
国際標準品であるW l−10I st  I nte
rnationalReference  P rep
aration of  L H(77国際単位(IU
)/アンプル)を実施例1に記載のPBS 7.7mに
溶解して10IU/m1のHCG原液を作った。これを
PBSで適宜希釈して、5 、10.25゜50、 1
00. 200. 400m I U / udlの溶
液を調製し試料とした。
Example 2 (1) W1-10I st Inte, an international standard product of human response hormone (hereinafter abbreviated as LH)
rnationalReference Prep
arrangement of LH (77 international units (IU)
)/ampule) was dissolved in 7.7 m PBS as described in Example 1 to make a 10 IU/ml HCG stock solution. Dilute this appropriately with PBS to give 5, 10.25°50, 1
00. 200. A solution of 400 mIU/udl was prepared and used as a sample.

(2)酵素免疫定量法(E nzyme I m1un
o A 5say。
(2) Enzyme immunoassay
o A 5say.

E IA)の実施 下記の構成成分より成るLH定定量用フッ1〜より酵素
免疫定量法を実施した。
Implementation of E IA) Enzyme immunoassay was carried out using LH quantitative determination fluids 1~ consisting of the following components.

■ 抗体結合スティック;LHに対する抗体の結合した
プラスチック棒 ■ 酵素抗体結合物;LHに対する抗体の結合した西洋
ワサビペルオキシダーゼ(llorseRaddish
  Peroxidase 、トIRPと略ず)■ 基
質液:  0.03%過酸化水素溶液■ 発色液;テト
ラメチルベンジジン溶液定量は実施例1に記載の方法と
全く同様にして行なった。
■ Antibody-binding stick; plastic stick bound to an antibody against LH ■ Enzyme-antibody conjugate; horseradish peroxidase bound to an antibody against LH
Peroxidase (abbreviated as IRP) Substrate solution: 0.03% hydrogen peroxide solution Color development solution: Tetramethylbenzidine solution Quantification was carried out in exactly the same manner as described in Example 1.

(3)吸光度の測定 発色した試験管中の液の吸光度を光路長10mmのキュ
ベツトを用い、波長660nmで測定した結果を表3に
示す。使用した分光光度計は日本分光社製分光光度計U
VIDEC505型である。
(3) Measurement of absorbance The absorbance of the colored liquid in the test tube was measured at a wavelength of 660 nm using a cuvette with an optical path length of 10 mm. Table 3 shows the results. The spectrophotometer used was spectrophotometer U manufactured by JASCO Corporation.
It is VIDEC505 type.

同じ液を図1に示した装置(ただしこの場合演算装置は
L H用に作成したものを使用)で測定した結果を表4
に示す。
Table 4 shows the results of measuring the same liquid using the device shown in Figure 1 (however, in this case, the calculation device used was one made for LH).
Shown below.

(以下余白) 表4 以上の結果から明らかな様に、波長eeonmにおイテ
ハ5〜150m1U/#li!の範囲のLHが測定でき
るが、150m I LJ / rd以上は吸光度が高
すぎるため測定不可能である。しかし波長560nmを
採用することにより 100〜500m I Ll /
1uftの濃度が精度よく測定できる。
(Leaving space below) Table 4 As is clear from the above results, the wavelength of eeonm is 5~150m1U/#li! It is possible to measure LH in the range of 150 m I LJ / rd or more, but it is impossible to measure it because the absorbance is too high. However, by adopting a wavelength of 560 nm, 100 to 500 m I Ll /
The concentration of 1uft can be measured with high accuracy.

実施例3 (1)試料の調製 実施例1と同様に行なった。Example 3 (1) Sample preparation The same procedure as in Example 1 was carried out.

(2)酵素免疫定損法の実施 基質液ど発色液を入れる試験管は第2図に示したものを
使用した以外は実施例1の場合と同様に行なった。
(2) Enzyme immunoassay assay The procedure was the same as in Example 1, except that the test tubes shown in FIG. 2 were used to hold the substrate solution and coloring solution.

(3)吸光度の測定 第2図に示した試験管中で発色した液を本発明の分析装
置の1実施態様である第3図の測定装置で測定した。
(3) Measurement of absorbance The colored liquid in the test tube shown in FIG. 2 was measured using the measuring device shown in FIG. 3, which is an embodiment of the analyzer of the present invention.

すなわち発色した液のはいった試験管を試験管挿入口1
4に入れスイッチ11を押す。すると光源13からの光
が試験管の内径の太い部分に当たり透過光が検出器15
に当たり電気信号に変換される。これが演算装置16で
ill痘に変換され得られた濃度が8I麿表示部17に
表示される。濃度が5TILIU/mi!より低い場合
は「5イカ」と表示され、15071iL IU/dよ
り高い場合は「150イジ」つ」と表示される。  「
150イジヨウ」と表示された場合はスイッチ12を押
す。すると試験管挿入口4の中の試験管を支えている部
分が少し上昇し、試験管の内径の細い部分が光路にはい
る。次に光源13から光が出て前記した順序に従い、濃
度が濃度表示部17に表示される。
In other words, insert the test tube containing the colored liquid into test tube insertion port 1.
4 and press switch 11. Then, the light from the light source 13 hits the thick inner diameter part of the test tube, and the transmitted light is transmitted to the detector 15.
is converted into an electrical signal. The arithmetic unit 16 converts this into ill-pox and the resulting concentration is displayed on the 8I display section 17. The concentration is 5TILIU/mi! If it is lower than 15071iL IU/d, it will be displayed as "5 IU/d", and if it is higher than 15071 iL IU/d, it will be displayed as "150 IJ". "
150" is displayed, press switch 12. Then, the part of the test tube insertion port 4 that supports the test tube rises a little, and the part with the narrower inner diameter of the test tube enters the optical path. Next, light is emitted from the light source 13 and the density is displayed on the density display section 17 in accordance with the above-described order.

こうして得られた結果を表5に示す。The results thus obtained are shown in Table 5.

(以下余白) 表5 [発明の効果] 本発明は、被検液中における分析対象物質の濃度が高い
領域においても精度よく安定に且つ極めて簡単な操作に
より分析することが可能な吸光度による定量分析方法及
び定量分析装置を提供する。
(Margins below) Table 5 [Effects of the Invention] The present invention provides quantitative analysis using absorbance, which enables accurate and stable analysis even in areas where the concentration of the target substance in the test liquid is high, and with an extremely simple operation. A method and quantitative analysis device are provided.

特に、分析対象物質に対する吸収係数の高い波長及び低
い波長を用いることにより、又は測定用試験管の中にス
ペーサーを入れたり、又は試験管の形状を工夫して光路
長を容易に変換することにより、広範囲の濃度の物質を
精度よく測定する方法及びその装置を提供する。
In particular, by using wavelengths with high and low absorption coefficients for the analyte, by inserting a spacer into the measurement test tube, or by devising the shape of the test tube to easily convert the optical path length. , provides a method and apparatus for accurately measuring substances in a wide range of concentrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明に係る透過型分析装置の1実施態様のブ
ロック図を示す。 第2図は本発明に適した測定セルの1実施態様である試
験管の断面図であり、上部は肉厚が薄く従って内径が大
きく、下部は肉厚になっているため内径が小ざい。 第3図は、第2図の試験管を用いて測定する場合の本発
明における測定装置の1実施態様である。 第1図 第2図 第3図
FIG. 1 shows a block diagram of one embodiment of a transmission type analyzer according to the present invention. FIG. 2 is a cross-sectional view of a test tube that is one embodiment of a measuring cell suitable for the present invention.The upper part has a thinner wall and therefore has a larger inner diameter, and the lower part has a thicker wall and has a smaller inner diameter. FIG. 3 shows one embodiment of the measuring device according to the present invention when measuring using the test tube shown in FIG. 2. Figure 1 Figure 2 Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)被検液に光束を照射しその透過光の特定波長に関
する吸光度を測定することによって該被検液中の特定物
質の濃度を測定する分析方法において、該被検液中の該
特定物質の濃度に対応して該特定波長の変更及び/又は
該被検液中での透過光路長の変更を行なうことを特徴と
する吸光度を用いた分析方法。
(1) In an analysis method that measures the concentration of a specific substance in a test liquid by irradiating the test liquid with a light beam and measuring the absorbance at a specific wavelength of the transmitted light, the specific substance in the test liquid is An analysis method using absorbance, characterized in that the specific wavelength and/or the length of the transmitted optical path in the test liquid are changed in accordance with the concentration of the sample.
(2)該透過光路長の変更が、該被検液中の透過光路部
の一部にスペーサーを挿入すること及び該スペーサーを
該一部から取り出すことによるものである特許請求の範
囲第1項記載の方法。
(2) The length of the transmitted optical path is changed by inserting a spacer into a part of the transmitted optical path in the test liquid and removing the spacer from the part. Method described.
(3)該被検液中の特定物質の濃度範囲を複数領域に分
割し、その領域に対応して該変更を行なう特許請求の範
囲第1項に記載の方法。
(3) The method according to claim 1, wherein the concentration range of the specific substance in the test liquid is divided into a plurality of regions, and the change is made in accordance with the regions.
(4)該領域分割を2分割で行ない、2種の特定波長を
用いる特許請求の範囲第3項記載の方法。
(4) The method according to claim 3, in which the region is divided into two parts and two types of specific wavelengths are used.
(5)被検液に光束を照射する手段、その透過光を受け
特定波長に関する吸光度を測定する手段を有した該被検
液中の特定物質の分析装置において、該被検液中の該特
定物質の濃度に対応して該特定波長を変更する手段及び
/又は該濃度に対応して該被検物中での透過光路長を変
更する手段を具備したことを特徴とする吸光度を用いた
分析装置。
(5) In an analyzer for analyzing a specific substance in the test liquid, which has a means for irradiating the test liquid with a light beam and a means for receiving the transmitted light and measuring the absorbance at a specific wavelength, Analysis using absorbance, characterized by comprising means for changing the specific wavelength in accordance with the concentration of a substance and/or means for changing the length of the transmitted optical path in the specimen in accordance with the concentration. Device.
(6)測定された該吸光度を該被検液中の特定物質の濃
度に変換するための手段を具備した特許請求の範囲第5
項記載の装置。
(6) Claim 5, comprising means for converting the measured absorbance into the concentration of a specific substance in the test liquid.
Apparatus described in section.
(7)該変換手段が、変換用の演算方法を記憶し得る機
能を有したものである特許請求の範囲第6項記載の装置
(7) The device according to claim 6, wherein the conversion means has a function of storing a calculation method for conversion.
JP4259885A 1985-03-06 1985-03-06 Analyzing method and apparatus using absorbance Pending JPS61202142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259885A JPS61202142A (en) 1985-03-06 1985-03-06 Analyzing method and apparatus using absorbance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259885A JPS61202142A (en) 1985-03-06 1985-03-06 Analyzing method and apparatus using absorbance

Publications (1)

Publication Number Publication Date
JPS61202142A true JPS61202142A (en) 1986-09-06

Family

ID=12640490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259885A Pending JPS61202142A (en) 1985-03-06 1985-03-06 Analyzing method and apparatus using absorbance

Country Status (1)

Country Link
JP (1) JPS61202142A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256663A (en) * 2007-04-09 2008-10-23 Nippon Soken Inc Urea concentration detector
KR20140003553A (en) * 2011-01-21 2014-01-09 테라노스, 인코포레이티드 Systems and methods for sample use maximization
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9285366B2 (en) 2007-10-02 2016-03-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109882A (en) * 1975-03-24 1976-09-29 Hitachi Ltd KYUKOBUNSEKIKEI
JPS5529780A (en) * 1978-08-24 1980-03-03 Kyoto Denshi Kogyo Kk Colorimetric analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109882A (en) * 1975-03-24 1976-09-29 Hitachi Ltd KYUKOBUNSEKIKEI
JPS5529780A (en) * 1978-08-24 1980-03-03 Kyoto Denshi Kogyo Kk Colorimetric analyzer

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256663A (en) * 2007-04-09 2008-10-23 Nippon Soken Inc Urea concentration detector
US11092593B2 (en) 2007-10-02 2021-08-17 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9285366B2 (en) 2007-10-02 2016-03-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9435793B2 (en) 2007-10-02 2016-09-06 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9581588B2 (en) 2007-10-02 2017-02-28 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9588109B2 (en) 2007-10-02 2017-03-07 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10634667B2 (en) 2007-10-02 2020-04-28 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US10670588B2 (en) 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US11199489B2 (en) 2011-01-20 2021-12-14 Labrador Diagnostics Llc Systems and methods for sample use maximization
US9677993B2 (en) 2011-01-21 2017-06-13 Theranos, Inc. Systems and methods for sample use maximization
JP2014504731A (en) * 2011-01-21 2014-02-24 セラノス, インコーポレイテッド System and method for maximizing sample usage
CN106323876B (en) * 2011-01-21 2020-02-14 西拉诺斯知识产权有限责任公司 System and method for maximizing sample usage
KR20140003553A (en) * 2011-01-21 2014-01-09 테라노스, 인코포레이티드 Systems and methods for sample use maximization
CN106323876A (en) * 2011-01-21 2017-01-11 提拉诺斯公司 Systems and methods for sample use maximization
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
US9464981B2 (en) 2011-01-21 2016-10-11 Theranos, Inc. Systems and methods for sample use maximization
US10557786B2 (en) 2011-01-21 2020-02-11 Theranos Ip Company, Llc Systems and methods for sample use maximization
US11644410B2 (en) 2011-01-21 2023-05-09 Labrador Diagnostics Llc Systems and methods for sample use maximization
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US9952240B2 (en) 2011-09-25 2018-04-24 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10557863B2 (en) 2011-09-25 2020-02-11 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10534009B2 (en) 2011-09-25 2020-01-14 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10518265B2 (en) 2011-09-25 2019-12-31 Theranos Ip Company, Llc Systems and methods for fluid handling
US10371710B2 (en) 2011-09-25 2019-08-06 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US11009516B2 (en) 2011-09-25 2021-05-18 Labrador Diagnostics Llc Systems and methods for multi-analysis
US11054432B2 (en) 2011-09-25 2021-07-06 Labrador Diagnostics Llc Systems and methods for multi-purpose analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US10627418B2 (en) 2011-09-25 2020-04-21 Theranos Ip Company, Llc Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9719990B2 (en) 2011-09-25 2017-08-01 Theranos, Inc. Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US11524299B2 (en) 2011-09-25 2022-12-13 Labrador Diagnostics Llc Systems and methods for fluid handling
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis

Similar Documents

Publication Publication Date Title
JP3249919B2 (en) Immunoassay method
US4197088A (en) Method for qualitative and quantitative determination of immunological reactions
AU748215B2 (en) Method and apparatus for rapid analysis of analytes in biological samples
EP0298368B1 (en) Non-metal colloidal particle immunoassay
US4290997A (en) Apparatus for automatic measurement of the results of agglutination tests
US4250394A (en) Apparatus for determining immunochemical substances
US4400353A (en) Electro-optical system for use in evaluating immunological reactions
CN105758835A (en) Homogeneous phase immunoassay POCT detection technique and system using same
JP2006300964A (en) Electronic assay device
CA2048302A1 (en) Solubilization reagent for biological test samples
US4203724A (en) Method and apparatus for the measurement of antigens and antibodies
EP0222341B1 (en) A method for immunoassay and reagents therefor
US4411518A (en) Apparatus for use in qualitative determination of immunological reactions
US20040096985A1 (en) Specific binding analyzer and method of analyzing specific binding
JPS61202142A (en) Analyzing method and apparatus using absorbance
AU2009314258B2 (en) Thyroid analyte detection and measurement
EP0223427B1 (en) Method and apparatus for the determination of the antibody content of blood
Inchiosa Direct biuret determination of total protein in tissue homogenates
US4213764A (en) Method for determining immunochemical substances
JPS6365369A (en) Method for measuring antigen-antibody reaction
Carroll et al. Bead injection ELISA for the determination of antibodies implicated in type 1 diabetes mellitus
US20010036645A1 (en) Analyte detector and analyte detection method
JP3780599B2 (en) Method for measuring antigen-antibody reaction substance
JP3779885B2 (en) Immunoassay method
Palmer et al. Cobas Integra: clinical laboratory instrument with continuous and random-access capabilities