JPH01119741A - Detecting apparatus of turbidity of oil - Google Patents

Detecting apparatus of turbidity of oil

Info

Publication number
JPH01119741A
JPH01119741A JP27747087A JP27747087A JPH01119741A JP H01119741 A JPH01119741 A JP H01119741A JP 27747087 A JP27747087 A JP 27747087A JP 27747087 A JP27747087 A JP 27747087A JP H01119741 A JPH01119741 A JP H01119741A
Authority
JP
Japan
Prior art keywords
light
oil
light emitting
light receiving
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27747087A
Other languages
Japanese (ja)
Inventor
Masae Nozawa
野沢 政衛
Mitsuo Inagaki
光夫 稲垣
Shigeru Kamiya
茂 神谷
Akishi Numata
沼田 晃志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP27747087A priority Critical patent/JPH01119741A/en
Publication of JPH01119741A publication Critical patent/JPH01119741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the detection of turbidity of a lubricating oil, by introducing the lubricating oil between a light-emitting element and a photosensing element and by varying a distance between these elements. CONSTITUTION:A light from a light-emitting element 1 reaches a photosensing surface 2 through an inner-oil optical path varying to be of distances Da and Db. On the occasion, the intensities Ia and Ib of the light reaching the photosensing surface 2 are expressed by Ia=Io.C.B.e<->K<alpha>D<a>... (I) and Ib= Io.C.B.e<->K<alpha>D<b>... (II) respectively (where Io is an emission intensity of a light- emitting element (in the case when an oil is new with turbidity alpha=0, when no film due to contamination or the like sticks on glass surfaces 3' and 4' and before the emission intensity characteristic of the light-emitting element 1 varies), C is a light absorption coefficient of the film due to the contamination on the glass surfaces, B is a variation coefficient of the emission intensity of the light-emitting element itself, and alpha is the turbidity of the oil (concentration of carbon in the oil). When the percentage of the turbidity of the oil is determined from the equations (I) and (II), therefore, C and B are eliminated and the turbidity alpha can be determined by an equation III.

Description

【発明の詳細な説明】 〔概 要〕 発光部と受光部の間に潤滑油を導入し、発光部と受光部
の間の距離を変化させることにより2種類の間隙を実現
し、潤滑油の汚濁度を演算する。
[Detailed description of the invention] [Summary] Lubricating oil is introduced between the light emitting part and the light receiving part, and two types of gaps are realized by changing the distance between the light emitting part and the light receiving part. Calculate the degree of pollution.

〔産業上の利用分野〕[Industrial application field]

本発明は、潤滑油汚濁度検出測定装置に関する。 The present invention relates to a lubricating oil contamination level detection and measurement device.

本発明による装置は、例えば車載用測定装置として、内
燃機関、特にディーゼル機関の潤滑油中に含まれるカー
ボン粒子濃度を測定する場合等に用いられる。
The device according to the present invention is used, for example, as an on-vehicle measuring device to measure the concentration of carbon particles contained in lubricating oil of an internal combustion engine, particularly a diesel engine.

〔従来の技術〕[Conventional technology]

内燃機関、特にディーゼル機関においては、潤滑油中に
排気ガス中に含まれるカーボン粒子が多量に混入するた
め、ガソリン機関に比べて比較的短時間に潤滑油が汚濁
する。このカーボン粒子は機関各部の摺動部の摩耗を増
大させるため、ディーゼル機関の潤滑油交換インターバ
ルは、カーボン粒子による汚濁のほとんどないガソリン
機関に比べて一般に短かくなっている。一方、カーボン
粒子に依る潤滑油の汚濁の程度は、機関の運転条件によ
り大きく異なって来る。高速道路走行、山岳走行、ある
いはタクシ−等の急加速急発進の多い運転条件では、一
般走行に比べ早く汚濁が進む傾向にある。しかしながら
潤滑油の交換インターバルは、一般にこれら運転条件に
関係なく、単に車輌の走行距離だけで決められていた。
In internal combustion engines, especially diesel engines, a large amount of carbon particles contained in exhaust gas are mixed into the lubricating oil, so the lubricating oil becomes contaminated in a relatively short time compared to a gasoline engine. These carbon particles increase wear on the sliding parts of various parts of the engine, so the lubricating oil change intervals for diesel engines are generally shorter than for gasoline engines, which are hardly contaminated by carbon particles. On the other hand, the degree of contamination of lubricating oil due to carbon particles varies greatly depending on the operating conditions of the engine. Under driving conditions that involve a lot of sudden acceleration and sudden starts, such as when driving on a highway, in the mountains, or in a taxi, pollution tends to progress more quickly than when driving in general. However, the lubricating oil change interval has generally been determined solely by the distance traveled by the vehicle, regardless of these operating conditions.

このためある車輌においては汚濁が進んでいないにもか
かわらずオイル交換を行ったり、逆に交換すべき時期が
過ぎたにもかかわらずオイル交換を行わない等の場合が
生じ、これにより潤滑油を無駄に消費したり、オイル交
換が遅れ摺動部の摩耗を著しく増大させる場合があった
For this reason, in some vehicles, oil may be changed even though the pollution has not progressed, or conversely, oil may not be changed even though the time for oil change has passed, resulting in lubricating oil being replaced. In some cases, oil was wasted or oil changes were delayed, resulting in a significant increase in wear on the sliding parts.

そこで従来から、走行距離に対しである程度直線的な相
関を持ち、潤滑油の他の特性、例えば全塩基価あるいは
p旧直等とも相関がみられる油中のカーボン粒子等の汚
濁度を光学的に検出し、これによって潤滑油の交換時期
を知らせる方法が知られている。この種の装置としては
、例えば特開昭57−98842号公報あるいは実開昭
57−182152号公報に開示されたものがある。こ
れらは油中に浸漬された発光素子と、受光素子の間に介
在する潤滑油の透明度の大小により、係る潤滑油の汚濁
度を検知しこの信号を基に表示回路上の表示ランプ等を
点灯し、運転者に潤滑油の汚濁度を知らせると共に適正
な交換時期を実現しようとするものである。
Therefore, optical methods have been used to measure the degree of contamination of carbon particles in oil, which has a somewhat linear correlation with mileage and also with other properties of lubricating oil, such as total base number or p-old linearity. There is a known method of detecting the lubricating oil and thereby notifying the lubricant when it is time to change it. This type of device is disclosed, for example, in Japanese Unexamined Patent Publication No. 57-98842 or Japanese Utility Model Application No. 57-182152. These devices detect the degree of contamination of the lubricating oil based on the degree of transparency of the lubricating oil interposed between the light-emitting element immersed in oil and the light-receiving element, and based on this signal, the indicator lamps etc. on the display circuit are turned on. The purpose is to notify the driver of the degree of contamination of the lubricating oil and to realize the appropriate replacement timing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術の潤滑油の汚濁度を計測する手段として、前述
の特開昭57−98842号及び実開昭57−1821
52号公報の他に、実開昭60−59142号及び実開
昭60−131615号の公報に公開されたものがある
As conventional means for measuring the degree of contamination of lubricating oil, the above-mentioned Japanese Unexamined Patent Publication No. 57-98842 and Utility Model Application No. 57-1821 are used.
In addition to Japanese Utility Model Application No. 52, there are publications such as Japanese Utility Model Application No. 60-59142 and Japanese Utility Model Application Publication No. 60-131615.

これらにおいては、発光および受光素子間に潤滑油を介
在させ、該潤滑油による光の吸収の大小によりlη濁度
を測定する手段が開示されている。これらを例にとって
従来技術の構成及び作動を説明する。第12図に示した
ものがその代表的な装置であり、111は発光ダイオー
ド等の光源、112はフォトダイオードもしくはフォト
トランジスタよりなる受光素子、121及び122はガ
ラスもしくは透明合成樹脂等より成るウィンドウである
These documents disclose means for interposing lubricating oil between the light emitting and light receiving elements and measuring lη turbidity based on the magnitude of light absorption by the lubricating oil. The configuration and operation of the prior art will be explained using these as examples. The one shown in Fig. 12 is a typical device. 111 is a light source such as a light emitting diode, 112 is a light receiving element made of a photodiode or a phototransistor, and 121 and 122 are windows made of glass or transparent synthetic resin. be.

121及び122の相対する面の間(距離D)が光路ギ
ャップ113となる。115は樹脂もしくは一部金属よ
り成るボデ一部で、光源及び受光素子を規定の位置に保
持すると共に、機関のオイル留め、その他の個所に装着
する役も担っている。116は光源及び受光素子を図示
しない信号処理及び表示部と電気的に連通させるための
端子部を示している。
The distance between the opposing surfaces 121 and 122 (distance D) is the optical path gap 113. Reference numeral 115 is a part of the body made of resin or part of metal, which not only holds the light source and the light receiving element in a specified position, but also serves to attach it to the engine's oil retainer and other parts. Reference numeral 116 indicates a terminal section for electrically communicating the light source and the light receiving element with a signal processing and display section (not shown).

しかし以上の様なこの種の装置を車輌に搭載し、長期間
連続的に作動させようとすると、発光素子111、ある
いは受光素子112のウィンドウ121及び122のガ
ラス表面に、油中のフェス分等から成る皮膜が付着し、
該皮膜により発光素子より発せられた光が吸収されたり
、発光素子自体の発光強度特性が熱的影響により変化す
ることなどから、汚濁度の正確な計測が困難となるとい
う欠点を有する。加うるに、発光素子として一般的に使
用されている発光ダイオード等は、発光強度の温度依存
性が第13図に示すような(順向を示し、発光素子の発
光強度が素子温度が上界するに従い低下するので、これ
もまた測定誤差の要因となる。
However, when this type of device is mounted on a vehicle and operated continuously for a long period of time, the glass surface of the windows 121 and 122 of the light emitting element 111 or the light receiving element 112 may be exposed to the surface of the surface in the oil. A film consisting of
The film absorbs the light emitted from the light emitting element, and the emission intensity characteristics of the light emitting element itself change due to thermal effects, making it difficult to accurately measure the degree of contamination. In addition, in light-emitting diodes, which are commonly used as light-emitting devices, the temperature dependence of the light-emitting intensity is as shown in FIG. This is also a cause of measurement error.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するための手段としては、発光部およ
び該発光部からの光を受光する受光部を有する検出部を
具備し、該発光部と該受光部の間に間隙を設けて、内燃
機関の潤滑油中に該検出部を浸漬した時、該間隙に潤滑
油が導入されるようにし、該発光部と該受光部、あるい
はいずれか−方を変位させて該発光部と該受光部間に存
在する測定されるべき潤滑油の厚さを変化させる手段を
設け、互いに相異なる少なくとも2種類の厚さにおける
該受光部出力を演算処理して潤滑油の汚れを検出するよ
うにした油汚濁度検出装置が提供される。
As a means for solving the above-mentioned problem, a detection section is provided that has a light emitting section and a light receiving section that receives light from the light emitting section, and a gap is provided between the light emitting section and the light receiving section to prevent internal combustion. When the detection part is immersed in lubricating oil of the engine, the lubricating oil is introduced into the gap, and the light emitting part and/or the light receiving part are displaced. A method for detecting contamination of the lubricating oil by providing means for changing the thickness of the lubricating oil to be measured between the lubricating oils and calculating the outputs of the light receiving section at at least two different thicknesses. A pollution level detection device is provided.

〔作 用] 本発明による基本的原理図を第1図及び第2図に示す。[For production] The basic principle diagram according to the present invention is shown in FIGS. 1 and 2.

本装置は2つの異なる油膜厚さDa及びDb(油中での
光の光路長)を通過した光の強度を測定し、演算するこ
とにより汚濁度を求めることと、更に上記した発光素子
1と受光素子2の間隙に形成する異なる油膜厚さDa及
びDbを実現するために、発光素子と受光素子、あるい
はいずれか一方を何らかの駆動源を用いてその位置を変
位させるところに最大の特徴がある。
This device measures the intensity of light that has passed through two different oil film thicknesses Da and Db (optical path length of light in oil) and calculates the degree of contamination. The biggest feature is that in order to realize different oil film thicknesses Da and Db formed in the gap between the light-receiving elements 2, the positions of the light-emitting element and the light-receiving element, or either one of them, are displaced using some kind of drive source. .

この発明に依れば、発光素子及び受光素子のガラス面に
付着する汚れ等による皮膜による光吸収の影響、及び発
光素子の発光強度特性の、変化の影響を全く受けないと
いう利点を有する。第り図において、■は発光素子、2
はフォトダイオード等から成る受光素子である。まず発
光素子1から出た光は各々距QDa及びDbの油中光路
を経て2の受光面に到達する。光路長Da及びDbを実
現する為に本図では発光素子を(Da−Db)だけ、前
後どちらかの方向に変位させた場合を示しであるが、も
ちろん受光素子を変位させても、あるいは両方共に変位
させたとしても一部に問題はない。
According to this invention, there is an advantage that it is completely unaffected by the influence of light absorption by a film caused by dirt or the like adhering to the glass surfaces of the light emitting element and the light receiving element, and by changes in the emission intensity characteristics of the light emitting element. In the figure, ■ is a light emitting element, 2
is a light receiving element consisting of a photodiode or the like. First, the light emitted from the light emitting element 1 reaches the light receiving surface 2 through optical paths in the oil having distances QDa and Db, respectively. In order to realize the optical path lengths Da and Db, this figure shows the case where the light emitting element is displaced by (Da - Db) in either the front or back direction, but of course the light receiving element can also be displaced or both. Even if they are both displaced, there is no problem with some of them.

この時受光面に到達する光の強度をそれぞれIa、Ib
とすると、Iaおよびrbは各々次式%式% Ia  −fo  −C−B  −e−’α”    
  (1)Tb  =Io  −C−B  −e−”α
Db     (2)ただしIo 二発光素子発光強度
(新油(汚濁度α=0>の時で、かつガラス表面上3′
および4′に汚れ等による皮膜が付着せず、発光素子1
の発光強度特性が変化する以前の発光強度)。
At this time, the intensity of the light reaching the light receiving surface is Ia and Ib, respectively.
Then, Ia and rb are each expressed by the following formula % Ia -fo -C-B -e-'α"
(1) Tb = Io −C−B −e−”α
Db (2) However, Io Two light-emitting element emission intensity (new oil (when the degree of contamination α = 0>, and 3' on the glass surface)
And 4' does not have a film due to dirt, etc., and the light emitting element 1
(emission intensity before the emission intensity characteristics change).

Cニガラス表面の汚れ等の皮膜による光の吸収係数、B
:発光素子自体の発光強度の変化係数、K:定数、α;
油の汚濁度(油中のカーボン・濃度)。
C: Light absorption coefficient due to film such as dirt on glass surface, B:
: Change coefficient of emission intensity of the light emitting element itself, K: Constant, α;
Oil pollution level (carbon concentration in oil).

ゆえに、(1) 、 (2)式より油の汚濁度α(%)
を求めると、C及びBは消去され汚濁度αは次式により
求められる。
Therefore, from equations (1) and (2), the oil pollution degree α (%)
When , C and B are deleted and the degree of pollution α is determined by the following formula.

よって(3)式より明らかな如く、本発明に依れば、ガ
ラス表面の汚れ、発光素子の光強度特性の変化に影響さ
れることなく、油のlη濁度を計測することが可能であ
る。従って、従来のように発光素子の光強度特性の温度
依存性に対する影響はなくなる。更に受光素子2の出力
を演算処理する対数アンプの0点ドリフトは計測値に影
響しない。
Therefore, as is clear from equation (3), according to the present invention, it is possible to measure the lη turbidity of oil without being affected by dirt on the glass surface or changes in the light intensity characteristics of the light emitting element. . Therefore, there is no influence on the temperature dependence of the light intensity characteristics of the light emitting element as in the conventional case. Furthermore, the zero point drift of the logarithmic amplifier that processes the output of the light receiving element 2 does not affect the measured value.

(光路長DaとDb時の出力の差から濃度を求めるため
。)又1組の発光素子と受光素子を用いた可変光路長方
式の利点で、同一の発光、受光素子及び同一の対数アン
プで各光路長Da、Dbでの測定に共通使用できるので
、測定精度が大きく向上すると共に、対数アンプの共用
化によるコストダウンという有利性がある。又1図中5
は潤滑油とカーボンの混合体を表わす。
(To determine the concentration from the difference in output at optical path lengths Da and Db.) Also, with the advantage of the variable optical path length method that uses one set of light emitting element and light receiving element, the same light emitting element, the same light receiving element, and the same logarithmic amplifier can be used. Since it can be commonly used for measurements at each optical path length Da and Db, there is an advantage that measurement accuracy is greatly improved and costs are reduced by sharing the logarithmic amplifier. Also, 5 in figure 1
represents a mixture of lubricating oil and carbon.

又第2図は本発明の原理に基いた計測方法を実現するた
めのシステムブロック図である。
Further, FIG. 2 is a system block diagram for realizing a measurement method based on the principle of the present invention.

1及び2がそれぞれ発光素子、受光素子であり104の
駆動源により発光素子1は位置が変位し、両者の間隙が
2段階に制御される。
Reference numerals 1 and 2 are a light emitting element and a light receiving element, respectively, and the position of the light emitting element 1 is displaced by a driving source 104, and the gap between the two is controlled in two stages.

100が17の対数変換器で対数変換された受光素子の
2段階での出力に基いて汚濁度を演算する演算部、10
3はその値を表示する表示部である。又102は演算部
100に対してはデータサンプリング、アクチュエータ
コントローラ101に対してはアクチュエータ104の
駆動タイミング信号を送るためのタイミングジェネレー
タである。
a calculation unit 10 that calculates the degree of pollution based on the two-stage output of the light-receiving element which has been logarithmically converted by a logarithmic converter in which 100 is 17;
3 is a display section that displays the value. Further, 102 is a timing generator for sampling data to the calculation unit 100 and for sending a drive timing signal for the actuator 104 to the actuator controller 101.

これらの各ブロックが全説明した様に機能的に作動する
ことによって本発明の意図は達せられる。
The intent of the present invention is achieved by each of these blocks functioning functionally as fully described.

〔実施例〕〔Example〕

本発明に基づく第1実施例を第3図に示す。本実施例で
は油中の光路長をDaとDbの2段階に制御するため、
発光素子1を変位させる例を示したもので、その変位を
起こさせる駆動源として、圧電素子を幾層も重ねた構造
のピエゾスタックを用いている。
A first embodiment based on the present invention is shown in FIG. In this example, in order to control the optical path length in oil into two stages, Da and Db,
This shows an example of displacing the light emitting element 1, in which a piezo stack having a structure in which piezoelectric elements are stacked in many layers is used as a driving source for causing the displacement.

第4図は第3図の装置の動作を説明する計測タイミング
チャートである。
FIG. 4 is a measurement timing chart illustrating the operation of the apparatus shown in FIG.

以下第3図および第4図をもとに説明を行う。The following explanation will be given based on FIGS. 3 and 4.

第3図中1及び2はそれぞれ発光素子、受光素子であり
、■の発光素子は10の皿バネでピエゾスタック7の左
端面へ押し付けられているプランジャー6の中に接着等
の手段で固定されている。又2の受光素子は内側にネジ
を有する光路長設定用のリング5′を介して、ボデー3
に位置固定され、先の発光素子1を収納するプランジャ
ー6と対向して配されているプランジャー5の中に収め
られている。ボデー3は前記プランジャーを収納する貫
通穴に対して直角方向の片端面にオイルの流入口3′、
もう一方の端面に流出口3″を備えて居り、測定すべき
潤滑油を発光素子1と受光素子2の間に導入すると同時
に外へ排出する。0リング4及び4′によってw人オイ
ルが洩れないように密封されたプランジャー5と6のう
ち11発光素子1を収納したプランジャー6は7のピエ
ゾ積層素子とスキ間なく係合されている。
In Fig. 3, 1 and 2 are a light emitting element and a light receiving element, respectively, and the light emitting element (3) is fixed by adhesive or other means into the plunger 6 which is pressed against the left end surface of the piezo stack 7 by a disc spring 10. has been done. The second light receiving element is connected to the body 3 through an optical path length setting ring 5' having a screw inside.
The light emitting element 1 is housed in a plunger 5 which is fixed in position and is disposed opposite the plunger 6 that houses the light emitting element 1 described earlier. The body 3 includes an oil inlet 3' on one end surface in a direction perpendicular to the through hole that houses the plunger;
The other end face is provided with an outflow port 3'', through which the lubricating oil to be measured is introduced between the light emitting element 1 and the light receiving element 2 and discharged to the outside at the same time. Of the plungers 5 and 6, which are sealed so as not to be damaged, the plunger 6, which houses 11 light emitting elements 1, is engaged with the 7 piezo laminated elements without any gaps.

この状態でピエゾ素子7に電圧を印加しないとピエゾ素
子は収縮したままとなり、この時に大きな光路長となる
様にリング5′を用いて、プランジャー5の位置を調整
設定する。次にピエゾ素子7に直流電圧を印加すると、
ピエゾ素子は一定量伸長する為に、光路長はDaからD
bに縮まり、Dbの小光路長が実現できる。
If no voltage is applied to the piezo element 7 in this state, the piezo element remains contracted, and at this time the position of the plunger 5 is adjusted and set using the ring 5' so that a large optical path length is achieved. Next, when a DC voltage is applied to the piezo element 7,
Since the piezo element expands by a certain amount, the optical path length changes from Da to D.
b, and a short optical path length of Db can be realized.

従ってDa及びDbの各光路長の時の、発光素子1から
の透過光量を受光素子2で受光し、その出力をそれぞれ
Ia及びrbとし、その対数変換したものを、j2og
la及びj2oglbとすれば、濃度αは前記(3)の
式より、(1oglb −7!oglb )の差に、定
数に′を乗した α(wt%) =K ’ (j!oglb −JogI
a )  (4)によって求まる。
Therefore, at each optical path length of Da and Db, the amount of transmitted light from the light emitting element 1 is received by the light receiving element 2, the outputs are respectively Ia and rb, and the logarithmically converted value is j2og
la and j2oglb, the concentration α is calculated from the equation (3) above by multiplying the difference of (1oglb −7!oglb ) by a constant, α (wt%) = K ′ (j!oglb − JogI
a) Determined by (4).

この動作を連続的にくり返し行い、同時にサンプリング
ポンプ等を用いて連続的に被測定油を3′の流入口から
流入させ、3″の流出口から流出させることにより、被
測定油のカーボン濃度変化を連続的に測定することがで
きる。又実験条件等により、測定間隔を長くできる時は
、その間隙に合わせてピエゾ素子駆動間隔を長くすると
共に、発光素子電源及び、受光素子の対数増巾器の電源
も、その測定間隔に同期させ供給することも可能となり
、それによって、発光素子及び受光素子等の各構成部品
の寿命を大巾に延ばすことができる。
By repeating this operation continuously and at the same time using a sampling pump etc., the oil to be measured continuously flows in from the 3' inlet and flows out from the 3'' outlet, thereby changing the carbon concentration of the oil to be measured. can be measured continuously.Also, if the measurement interval can be lengthened due to experimental conditions, etc., the piezo element driving interval is lengthened to match the interval, and the light emitting element power source and the logarithmic amplifier of the light receiving element are It is also possible to supply power in synchronization with the measurement interval, thereby greatly extending the life of each component such as the light emitting element and the light receiving element.

又図中7′はピエゾ素子7に直流電圧を印加する’J−
ト”h?=、8及び9はそれぞれ発光素子1の入力リー
ド線、受光素子2の出力リード線を示す。
In addition, 7' in the figure is 'J-' which applies DC voltage to the piezo element 7.
8 and 9 indicate the input lead wire of the light emitting element 1 and the output lead wire of the light receiving element 2, respectively.

又17は受光素子の出力を対数増巾する対数増巾回路、
17′及び17″はこれを収納する容器部材を形成して
いる。
17 is a logarithmic amplification circuit for logarithmically amplifying the output of the light receiving element;
17' and 17'' form a container member for housing this.

第5図に本発明に依る検出センサーの第2実施例を示す
。第3図に示した実施例では、発光素子あるいは受光素
子の位置変位を起こさせる駆動源としてピエゾ素子7を
使用したものであるのに対し第5図に示したものはソレ
ノイド12を用いているところが大きく異なっている。
FIG. 5 shows a second embodiment of the detection sensor according to the present invention. In the embodiment shown in FIG. 3, a piezo element 7 is used as a driving source for causing the positional displacement of the light emitting element or the light receiving element, whereas the embodiment shown in FIG. 5 uses a solenoid 12. However, there is a big difference.

第5図を用いて詳細に説明すると、1及び2がそれぞれ
発光素子、受光素子、1′及び2′が各素子を保持収納
するプランジャーである。本例では発光素子1を収納す
るプランジャー1′がソレノイド12に依って吸引され
、図面に向かって右方向に所定の寸法だけ移動する。こ
れにより画素子間に大きなギャソフDbを提供すること
になり、この状態で大ギャップでの光の透過量を測定し
た後、先のソレノイド12の電源を遮断すると、リター
ンスプリング15により、プランジャー1′は、吸引さ
れる前の位置に復帰する。これに依り画素子間は小さな
ギャップDaとなり、この状態で光の透過量を測定し、
先の大ギャップでの光の透過量との比較演算を行なうこ
とによりオイル中のカーボン濃度を測定するものである
。又13 、13 ’ 、 13″は0リングを示し、
16及び11は、発光素子及び受光素子1.2を収納す
るプランジャー1′及び2′を保持するハウジングであ
り材質はステンレス材等が適当である。ソレノイド12
のボビン12′は、ハウジング11に注入によって固定
されている。
To explain in detail using FIG. 5, 1 and 2 are a light emitting element and a light receiving element, respectively, and 1' and 2' are plungers for holding and housing each element. In this example, the plunger 1' housing the light emitting element 1 is attracted by the solenoid 12 and moves by a predetermined distance toward the right in the drawing. This provides a large gasoff Db between the pixel elements, and after measuring the amount of light transmitted through the large gap in this state, when the power to the solenoid 12 is cut off, the return spring 15 causes the plunger 1 to ' returns to the position before being sucked. This creates a small gap Da between the pixel elements, and in this state the amount of light transmitted is measured.
The carbon concentration in the oil is measured by performing a comparison calculation with the amount of light transmitted through the large gap described above. Also, 13, 13', 13'' indicate 0 ring,
Reference numerals 16 and 11 are housings that hold plungers 1' and 2' that accommodate the light emitting element and the light receiving element 1.2, and are suitably made of stainless steel or the like. Solenoid 12
The bobbin 12' is fixed to the housing 11 by injection.

測定されるオイルは16′のオイル流入口より流入し先
述の2及び1の受光素子、発光素子間を通過し、16″
の流出口より流出する。
The oil to be measured flows in from the oil inlet at 16', passes between the light receiving elements 2 and 1 mentioned above, and the light emitting element.
It flows out from the outlet.

又8は発光素子の入力、9は受光素子の出力リード線を
示し、18はソレノイドの入力リード線である。I7は
受光素子の出力を対数変換するアンプであり17′はこ
れを収納するハウジングである。
Further, 8 is the input lead of the light emitting element, 9 is the output lead wire of the light receiving element, and 18 is the input lead wire of the solenoid. I7 is an amplifier for logarithmically converting the output of the light receiving element, and 17' is a housing that houses this amplifier.

本実施例では、市販の発光素子(LED)の先端ガラス
部分が球面状態となっているのが多いため、この先端部
を研磨により削り取り、ガラス部を若干残した平面状態
にしたものを用いている。これによりギャップの精度を
高めると共に、所定のギャップでの透過光量を大きくで
き受光素子出力のS/N比を太き(とることが可能とな
る。このことは第3図の実施例でも同様である。
In this example, since the tip glass portion of commercially available light emitting devices (LEDs) is often in a spherical shape, this tip was ground down to a flat surface with some glass remaining. There is. This increases the accuracy of the gap, increases the amount of transmitted light in a given gap, and increases the S/N ratio of the light receiving element output. This is the same in the embodiment shown in FIG. be.

第5図の実施例の中で大ギャップDa及び小ギャップを
決定する部分を■で示し、第6図にその部分の拡大図を
示した。図の中のプランジャー1′が、前もって設定さ
れたスキマΔDをソレノイドに依り往復することにより
、ギャップDa 。
In the embodiment shown in FIG. 5, the portions that determine the large gap Da and the small gap are indicated by ■, and FIG. 6 shows an enlarged view of the portions. A plunger 1' in the figure moves back and forth through a preset gap ΔD using a solenoid, thereby creating a gap Da.

Dbが実現できる。Db can be realized.

第7図に本発明に依る第3実施例を示す。第7図の第3
実施例が第2実施例と異なる点は、第2実施例ではソレ
ノイドで発光素子か、受光素子の収納されたプランジャ
ー1′か2′を駆動し、ギャップ可変を実現していたの
に対し、第3実施例は負圧源を利用している点である。
FIG. 7 shows a third embodiment according to the present invention. 3 in Figure 7
The difference between this embodiment and the second embodiment is that in the second embodiment, a solenoid was used to drive the plunger 1' or 2' in which the light-emitting element or the light-receiving element was housed to achieve variable gap. , the third embodiment utilizes a negative pressure source.

第7図で51が負圧を受けるゴム等からなるベロフラム
、50が前記へロフラムをハウジング11に固定すると
共にリターンスプリング52を収納するケース部材であ
る。又50のケース部材の先端に設けられである53の
部材は負圧源をゴムチューブ等で配管する際に用いる接
続コネクターである。その他の部材で第6図に示した第
2実施例と同一のものについては第6図と同一番号を付
し、説明を省略する。
In FIG. 7, reference numeral 51 denotes a verofram made of rubber or the like that receives negative pressure, and 50 denotes a case member that fixes the helofram to the housing 11 and houses the return spring 52. Further, a member 53 provided at the tip of the case member 50 is a connector used when piping a negative pressure source with a rubber tube or the like. Other members that are the same as those in the second embodiment shown in FIG. 6 are designated by the same numbers as in FIG. 6, and their explanations will be omitted.

第8図に示したのは、ファイバースコープを用いた第4
の実施例で、測定部先端のみを示す。この実施例では1
の発光部より発した光は153のファイバースコープ内
を通過した後、158の三角プリズムにより直角に曲げ
られ、ギヤ7プDの油膜を通過し、再び159のプリズ
ムにより曲げられ、154のファイバースコープを通過
して、受光素子2に入っていく。この時ギャップDはシ
リンダー160がソレノイド152によって吸引された
状態では。シリンダーの厚い部分160−Bがハウジン
グ150に設けられた分割部150−Aに入りこむこと
になり、ギャップDは大きくなる。逆にソレノイド15
2がオフされると、シリンダー160は、リターンスプ
リング157により後方へ戻される。これにより上記分
割部150−Aにシリンダーの薄い部分160−Aが入
りこみ、これによりハウジング150全体のスプリング
効果でギャップは小さくなる。これを交互に行なうこと
によりギヤツブ大(Da)と小(Db)を実現できる。
Figure 8 shows the fourth example using a fiberscope.
In this example, only the tip of the measurement part is shown. In this example, 1
The light emitted from the light emitting part passes through the fiberscope 153, is bent at a right angle by the triangular prism 158, passes through the oil film of gear 7 D, is bent again by the prism 159, and is sent to the fiberscope 154. and enters the light receiving element 2. At this time, the gap D is in the state where the cylinder 160 is sucked by the solenoid 152. The thicker portion 160-B of the cylinder will enter the dividing portion 150-A provided in the housing 150, and the gap D will become larger. On the contrary, solenoid 15
2 is turned off, the cylinder 160 is returned to the rear by the return spring 157. As a result, the thin portion 160-A of the cylinder enters into the divided portion 150-A, and the gap becomes smaller due to the spring effect of the entire housing 150. By doing this alternately, large (Da) and small (Db) gears can be realized.

115はシール用の0リングであり、その他の対数変換
器部等については他の実施例の場合と同様である。又こ
の様な構造にすることにより、ギャップの設定がシリン
ダ一部材160の加工によってできるので加工性が良好
であることと、ファイバースコープ等により光を延長さ
せ、油膜が存在する検知部位と、発光部および受光部を
離して測定できることから、測定する油温が特に高い様
な場合、該発光素子および受光素子が高温にならずに済
み、これはこれら素子の寿命を長くする可能性がある。
115 is an O-ring for sealing, and other components such as the logarithmic converter section are the same as in the other embodiments. In addition, with this structure, the gap can be set by machining the cylinder member 160, so machinability is good, and the light can be extended using a fiberscope or the like to detect the detection area where the oil film is present and the light emission. Since the light emitting element and the light receiving element can be measured while being separated from each other, when the oil temperature to be measured is particularly high, the light emitting element and the light receiving element do not reach high temperatures, which may extend the life of these elements.

第9図は第8図の先端検知部を拡大したものである。FIG. 9 is an enlarged view of the tip detection section of FIG. 8.

次の第10図に示したのが本発明による第5の実施例で
ある。本実施例は素子の位置を変位させる駆動源として
内燃機関等の油圧を使ったもので、機関を一度始動させ
て次に機関を停止させるまでの間に一回だけ測定を行な
うが、この点については、通常の一回の走行でのカーボ
ン濃度の増加割合から見て特に問題はなく、これは逆に
機関始動直後の一定の測定時間以後の発光素子の発光を
停止させることと、特に油温が高い時の発光を避けるこ
とにより発光素子の寿命が長くなる可能性がある。
A fifth embodiment of the present invention is shown in FIG. 10 below. In this example, hydraulic pressure from an internal combustion engine or the like is used as the drive source to displace the position of the element, and the measurement is performed only once between the time when the engine is started and the time when the engine is stopped. Regarding this, there is no particular problem in terms of the rate of increase in carbon concentration during one normal run.On the contrary, this is because the light emitting element stops emitting light after a certain measurement time immediately after the engine starts, and especially when the oil Avoiding light emission when the temperature is high may extend the life of the light emitting element.

まず第10図に於いて203は係る油圧力を受けるベロ
フラムで、機関が始動し油圧が上昇すると、発光及び受
光素子1.2を収納する部材204−1、前記ベロフラ
ム203の内側端部を部材204−1に固定する部材2
04−2と共に202のリターンスプリングに打ち勝っ
て、所定の距離ΔDだけ右側に移動する。これによりそ
の時点まで油圧がなく、リターンスプリングによって左
側に押しつけられて、小ギャップ2D (Da =2D
)での透過量測定状態だったものが、先述の如く油圧に
よるベロフラムの移動と共に各素子を収納する部材20
4−1等も右側にΔDだけ移動するために、ギャップは
2D+2ΔD(Db)となり大ギヤツブでの透過量を受
光素子で測定可能となる。この様にして2つのギャップ
それぞれでの受光素子出力から所定の変換、および演算
を行ないカーボン濃度を求める。
First, in FIG. 10, reference numeral 203 is a bellofram that receives the hydraulic pressure. When the engine starts and the oil pressure increases, a member 204-1 that houses the light emitting and light receiving elements 1.2 and an inner end of the bellofram 203 are connected to each other. Member 2 fixed to 204-1
Together with 04-2, it overcomes the return spring 202 and moves to the right by a predetermined distance ΔD. This results in no oil pressure up to that point and is pushed to the left by the return spring, resulting in a small gap 2D (Da = 2D
), the permeation amount measurement state was changed to the member 20 that houses each element as the velofram is moved by hydraulic pressure as described above.
4-1 etc. also moves to the right by ΔD, the gap becomes 2D+2ΔD (Db), and the amount of transmission through the large gear can be measured with a light receiving element. In this way, the carbon concentration is determined by performing predetermined conversions and calculations from the light receiving element outputs at each of the two gaps.

図中200.201は先述のベロフラム、素子収納部材
204 リターンスプリング202等をその中に内蔵す
るハウジング部材で207は光を1806屈折させるた
めのプリズム206の保持部材208と素子収納部材2
04の間に設けた油の通路、202−2はハウジング部
材200の中に設けた油の通路で互いに連通している。
In the figure, 200 and 201 are housing members that incorporate the above-mentioned velofram, the element housing member 204, the return spring 202, etc., and 207 are the holding member 208 of the prism 206 for refracting the light 1806, and the element housing member 2.
The oil passages 202-2 provided between the housing member 200 and the oil passages 202-2 communicate with each other through oil passages provided in the housing member 200.

200−1は内燃機関の油圧をベロフラム室203−1
に導入するための導入穴である。
200-1 is the hydraulic pressure of the internal combustion engine in the bellofram chamber 203-1.
This is an introduction hole for introducing the

又205は発光素子の入力、受光素子の出力リード部で
ある。
Further, 205 is an input lead portion of the light emitting element and an output lead portion of the light receiving element.

その他の部位については他の実施例と同様であるのでこ
こでは省略する。
The other parts are the same as those in other embodiments, and therefore will not be described here.

従ってこの様な構成にすることで検知部を内燃機関の油
圧通路部に取り付けることにより、特別な駆動源を必要
とせずに測定が可能となりその有利性は高くなる。又演
算部での電気的処理の一例として、機関スタートと同時
に1秒間程度油圧がなくギャップが小さい時の受光素子
出力とし対数変換した後記憶させておき、更に油圧が上
昇したものとして機関スタート後、数十秒後の受光素子
の出力をギヤツブ大の時の出力として対数変換して記憶
し、これらの値から所定の演算を行ない、カーボン濃度
を計算させる方法等が考えられる。
Therefore, with such a configuration, by attaching the detection section to the hydraulic passage section of the internal combustion engine, measurement can be performed without requiring a special drive source, which is highly advantageous. In addition, as an example of electrical processing in the calculation section, the light receiving element output when there is no oil pressure for about 1 second and the gap is small at the same time as the engine starts is logarithmically converted and stored, and then it is assumed that the oil pressure has increased and the output is stored after the engine starts. A conceivable method is to logarithmically transform and store the output of the light receiving element several tens of seconds later as the output when the gear is large, and perform predetermined calculations from these values to calculate the carbon concentration.

最後の第11図に示したのは第10図に示した実施例で
用いたプリズムをやめて、発光素子1と受光素子2を対
向させて配置したもので、この様にすることによりギャ
ップDの設定を第10図の実施例と比較して2にするこ
とができ、より高い濃度のカーボン濃度まで測定が可能
となる。その他の点は第10図と同一なので説明は省略
する。
In the final example shown in FIG. 11, the prism used in the embodiment shown in FIG. The setting can be set to 2 compared to the embodiment shown in FIG. 10, making it possible to measure even higher carbon concentrations. Other points are the same as those in FIG. 10, so explanations will be omitted.

これらの実施例の他にも発光素子あるいは受光素子を変
位させる駆動源として、内燃機関の場合通常運転時と非
運転時に於いて、冷却水温及び油温に大きな温度差が生
ずる。従ってこの温度差を利用し、例えばワックスの熱
膨張で変位を起こさせるワックス封入型のアクチュエー
タでも問題はない。更に最近使われ始めた形状記憶合金
でスプリング等を形成し、先述の温度差でこの形状記憶
合金製スプリングを動作させて、これら駆動源の代わり
とすることも十分可能である。通常の車輌の運転パター
ンでは、1回の走行で1回のみの測定でも汚濁の進み具
合から見てこれら温度差を利用したアクチュエータで特
に問題はなく、ソレノイドあるいは、PZT方式の場合
と較べて、アクチュエータ制御回路がなくて済むか、あ
るいはより少なくできるという利点がある。
In addition to these embodiments, when an internal combustion engine is used as a driving source for displacing a light emitting element or a light receiving element, a large temperature difference occurs between cooling water temperature and oil temperature between normal operation and non-operation. Therefore, there is no problem with a wax-filled actuator that utilizes this temperature difference to cause displacement by thermal expansion of wax, for example. Furthermore, it is quite possible to form a spring or the like using a shape memory alloy that has recently begun to be used, and operate this shape memory alloy spring using the aforementioned temperature difference, thereby replacing these driving sources. In normal vehicle driving patterns, there are no particular problems with actuators that utilize these temperature differences in terms of the progress of contamination even if only one measurement is made per driving, and compared to solenoid or PZT methods, An advantage is that actuator control circuitry can be eliminated or reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発光素子及び受光素子の表面の汚れ、
経時的及び温度による変化の影響を受けることなく、正
確な油汚濁度を検出できる。
According to the present invention, dirt on the surface of the light emitting element and the light receiving element;
Accurate oil pollution level can be detected without being affected by changes over time or temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明による油汚濁センサのシステムブロック
部、 第3図は本発明による油汚濁センサの第1実施例を表わ
す図、 第4図は第1実施例の作動タイミングチャート、第5図
は本発明により油汚濁センサの第2実施例を表わす図、 第6図は第5図に示した実施例の部分拡大図、第7図は
本発明による油汚濁センサの第3実施例を表わす図、 第8図は本発明による油汚濁センサの第4実施例を表わ
す図、 第9図は第8図に示した実施例の部分拡大図、第10図
は本発明による油汚濁センサの第5実施例を表わす図、 第11図は第10図に示した第5実施例の変形例を表わ
す図、 第12図は従来の光透過式汚濁センサのヘッド部を表わ
す図、 第13図は発光素子の発光強度温度特性を表わす図であ
る。 図において、 1・・・発光素子、 2・・・受光素子、 17・・・ログアンプ。
Fig. 1 is a diagram showing the principle of the present invention, Fig. 2 is a system block section of the oil pollution sensor according to the invention, Fig. 3 is a diagram showing the first embodiment of the oil pollution sensor according to the invention, and Fig. 4 is a diagram showing the first embodiment of the oil pollution sensor according to the invention. 5 is a diagram showing a second embodiment of the oil pollution sensor according to the present invention; FIG. 6 is a partially enlarged view of the embodiment shown in FIG. 5; and FIG. 7 is a diagram showing the second embodiment of the oil pollution sensor according to the present invention. FIG. 8 is a diagram showing a fourth embodiment of the oil pollution sensor according to the present invention; FIG. 9 is a partially enlarged view of the embodiment shown in FIG. 8; FIG. The figure shows a fifth embodiment of the oil pollution sensor according to the present invention, FIG. 11 shows a modification of the fifth embodiment shown in FIG. 10, and FIG. 12 shows a conventional light transmission type pollution sensor. FIG. 13 is a diagram showing the head portion, and FIG. 13 is a diagram showing the emission intensity temperature characteristics of the light emitting element. In the figure, 1... Light emitting element, 2... Light receiving element, 17... Log amplifier.

Claims (1)

【特許請求の範囲】 1、発光部および該発光部からの光を受光する受光部を
有し、該発光部と該受光部の間に間隙を設け、これを潤
滑油中に浸漬した時、該間隙に潤滑油が導入されるよう
にした検出部を具備し、該受光部からの出力によって潤
滑油の汚濁度を測定する油汚濁度検出装置において該発
光部か、該受光部、あるいはその両方を変位せしめて該
発光部と該受光部間に2種類の該間隙を実現するための
駆動部を設けたことを特徴とする油汚濁度検出装置。 2、前記2種類の前記間隙において、該受光部から得ら
れた出力値をそれぞれ対数変換する対数変換手段、およ
び両対数変換値の差を求め、この値より前記汚濁度を演
算し、表示出力を行なうデータ処理手段を具備する特許
請求の範囲第1項記載の油汚濁度検出装置。 3、該発光部における発光素子の潤滑油と接する透明体
より成るウィンドウ部の先端形状が平面となっているこ
とを特徴とする特許請求の範囲第1項記載の油汚濁度検
出装置。 4、該受光部における受光素子の潤滑油と接する透明体
より成るウィンドウ部の形状が平面となっていることを
特徴とする特許請求の範囲第1項記載の油汚濁度検出装
置。 5、前記駆動部が圧電素子よりなる特許請求の範囲第1
項記載の油汚濁度検出装置。 6、前記駆動部がソレノイドと、該ソレノイドに通電す
ることにより吸引されるプランジャーと、該吸引力に抗
して作用するスプリングよりなる特許請求の範囲第1項
記載の油汚濁度検出装置。 7、前記駆動部が負圧源と、該負圧を受けるベロフラム
よりなる特許請求の範囲第1項記載の油汚濁度検出装置
。 8、前記発光部から発した光が第1のファイバースコー
プを経て第1の三角プリズムにより直角に曲げられて前
記間隙に達し、該間隙を通過した光が第2の三角プリズ
ムより直角に曲げられて第2のファイバースコープを経
て前記受光部に達し、該第1のファイバースコープを通
過する光の向きが該第2のファイバースコープを通過す
る光の向きとほぼ平行で逆向きである特許請求の範囲第
1項記載の油汚濁度検出装置。 9、前記第1のファイバースコープと前記第1の三角プ
リズムは第1の弾性部材に保持され、前記第2のファイ
バースコープと前記第2の三角プリズムは第2の弾性部
材に保持され、 前記駆動部はソレノイドと、リターンスプリングと、シ
リンダーとからなり、 該シリンダーは該第1の弾性部材と該第2の弾性部材の
間に入り込んで該第1の三角プリズムと該第2の三角プ
リズムの間に第1の間隙を実現する部分と、該第1の弾
性部材と該第2の弾性部材の間に入り込んで該第1の三
角プリズムと該第2の三角プリズムの間に第2の間隙を
実現する部分とを有し、 該ソレノイドを通電することにより該シリンダーが吸引
されて動いて該第1の間隙が実現され、該ソレノイドの
通電を停止することにより該シリンダーが該リターンス
プリングに引張られて動いて該第2の間隙が実現され、 該第1および第2の間隙が前記2種類の間隙に相当する
特許請求の範囲第8項記載の油汚濁度検出装置。 10、前記駆動部は前記潤滑油が潤滑している内燃機関
の油圧を受けるベロフラムである特許請求の範囲第1項
記載の油汚濁度検出装置。 11、前記駆動部は、温度変化に伴って体積もしくは形
状が変化することを利用するものである特許請求の範囲
第1項記載の油汚濁度検出装置。
[Claims] 1. It has a light emitting part and a light receiving part that receives light from the light emitting part, a gap is provided between the light emitting part and the light receiving part, and when this is immersed in lubricating oil, In an oil pollution level detection device that is equipped with a detection section that allows lubricating oil to be introduced into the gap and measures the degree of contamination of the lubricating oil based on the output from the light receiving section, the light emitting section, the light receiving section, or its 1. An oil pollution level detection device comprising a driving section for displacing both of the light emitting section and the light receiving section to realize two types of gaps between the light emitting section and the light receiving section. 2. Logarithmic conversion means for logarithmically converting the output values obtained from the light receiving sections in the two types of gaps, and calculating the difference between the logarithmically converted values, calculating the degree of pollution from this value, and displaying the output. The oil pollution level detection device according to claim 1, further comprising data processing means for performing the following. 3. The oil pollution level detection device according to claim 1, wherein the tip of the window portion made of a transparent body in contact with the lubricating oil of the light emitting element in the light emitting portion is flat. 4. The oil pollution level detection device according to claim 1, wherein the window portion made of a transparent body in contact with the lubricating oil of the light receiving element in the light receiving portion has a flat shape. 5. Claim 1, in which the driving section comprises a piezoelectric element
The oil pollution level detection device described in section. 6. The oil pollution level detection device according to claim 1, wherein the drive section comprises a solenoid, a plunger that is attracted by energizing the solenoid, and a spring that acts against the attraction force. 7. The oil pollution level detection device according to claim 1, wherein the drive section comprises a negative pressure source and a verofram receiving the negative pressure. 8. The light emitted from the light emitting part passes through the first fiberscope and is bent at a right angle by a first triangular prism to reach the gap, and the light passing through the gap is bent at a right angle by a second triangular prism. and reaches the light receiving section via a second fiberscope, and the direction of the light passing through the first fiberscope is substantially parallel to and opposite to the direction of light passing through the second fiberscope. The oil pollution level detection device according to scope 1. 9. The first fiber scope and the first triangular prism are held by a first elastic member, the second fiber scope and the second triangular prism are held by a second elastic member, and the driving The section includes a solenoid, a return spring, and a cylinder, and the cylinder is inserted between the first elastic member and the second elastic member and is inserted between the first triangular prism and the second triangular prism. and a portion that enters between the first elastic member and the second elastic member to create a second gap between the first triangular prism and the second triangular prism. energizing the solenoid attracts and moves the cylinder to realize the first gap, and de-energizing the solenoid causes the cylinder to be pulled by the return spring. 9. The oil pollution level detection device according to claim 8, wherein the second gap is realized by moving the body, and the first and second gaps correspond to the two types of gaps. 10. The oil pollution degree detection device according to claim 1, wherein the drive section is a bellows frame that receives hydraulic pressure of an internal combustion engine lubricated by the lubricating oil. 11. The oil pollution level detection device according to claim 1, wherein the drive unit utilizes a change in volume or shape with temperature change.
JP27747087A 1987-11-04 1987-11-04 Detecting apparatus of turbidity of oil Pending JPH01119741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27747087A JPH01119741A (en) 1987-11-04 1987-11-04 Detecting apparatus of turbidity of oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27747087A JPH01119741A (en) 1987-11-04 1987-11-04 Detecting apparatus of turbidity of oil

Publications (1)

Publication Number Publication Date
JPH01119741A true JPH01119741A (en) 1989-05-11

Family

ID=17584043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27747087A Pending JPH01119741A (en) 1987-11-04 1987-11-04 Detecting apparatus of turbidity of oil

Country Status (1)

Country Link
JP (1) JPH01119741A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466569U (en) * 1990-10-19 1992-06-11
JPH0473855U (en) * 1990-11-06 1992-06-29
JPH05107182A (en) * 1991-10-17 1993-04-27 Nikko Kyodo Co Ltd Oil deterioration sensor
JP2004502959A (en) * 2000-06-16 2004-01-29 トロジャン・テクノロジーズ・インコーポレイテッド Optical radiation sensor system and method for measuring radiation transmission of a fluid
WO2004053467A2 (en) 2002-12-11 2004-06-24 Institut für Textilchemie der Deutschen Institute für Textil- und Faserforschung Stuttgart Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same
JP2004340804A (en) * 2003-05-16 2004-12-02 Nippon Soken Inc Particle concentration detector
DE102004060431A1 (en) * 2004-12-14 2006-07-13 Walter Werne Device for determining the mixture composition of any media
JP2008241378A (en) * 2007-03-27 2008-10-09 Ntn Corp Lubricant degradation detector and bearing with detector
JP2008256663A (en) * 2007-04-09 2008-10-23 Nippon Soken Inc Urea concentration detector
JP2009002861A (en) * 2007-06-22 2009-01-08 Kansai Electric Power Co Inc:The Inspection apparatus of liquid
JPWO2008105146A1 (en) * 2007-02-28 2010-06-03 サントリーホールディングス株式会社 Liquid-type absorbance sensor element and absorptiometer using the same
WO2012074112A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Speed reducer for industrial robot
WO2012074109A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Lubricating oil degradation sensor
JP2012143837A (en) * 2011-01-12 2012-08-02 Nabtesco Corp Speed reducer for industrial robot
WO2013065783A1 (en) * 2011-11-04 2013-05-10 ナブテスコ株式会社 Lubricant oil degradation sensor, speed reducer for industrial robot, and industrial robot
US8996026B2 (en) 2005-01-13 2015-03-31 Fujitsu Limited Scheduling system for radio communication networks
EP2808668A4 (en) * 2012-01-25 2015-11-11 Nabtesco Corp Machine configured to detect degradation of lubricating oil, speed reducer for industrial robot, and industrial robot
GB2585629A (en) * 2019-05-09 2021-01-20 Solumetrix Ltd Ultra-violet transmission in water
JP2021009084A (en) * 2019-07-02 2021-01-28 三菱重工業株式会社 Spectral analysis method and spectral analysis device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466569U (en) * 1990-10-19 1992-06-11
JPH0473855U (en) * 1990-11-06 1992-06-29
JPH05107182A (en) * 1991-10-17 1993-04-27 Nikko Kyodo Co Ltd Oil deterioration sensor
JP2004502959A (en) * 2000-06-16 2004-01-29 トロジャン・テクノロジーズ・インコーポレイテッド Optical radiation sensor system and method for measuring radiation transmission of a fluid
US7359055B2 (en) 2002-12-11 2008-04-15 Institut fur Textilchemie der Deutschen Institute fur Textil-und Faserforschung Stuttgart Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same
WO2004053467A2 (en) 2002-12-11 2004-06-24 Institut für Textilchemie der Deutschen Institute für Textil- und Faserforschung Stuttgart Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same
JP2004340804A (en) * 2003-05-16 2004-12-02 Nippon Soken Inc Particle concentration detector
DE102004060431A1 (en) * 2004-12-14 2006-07-13 Walter Werne Device for determining the mixture composition of any media
DE102004060431B4 (en) * 2004-12-14 2006-10-19 Walter Werne Device for determining the mixture composition of any media
US9655128B2 (en) 2005-01-13 2017-05-16 Fujitsu Limited Radio communications system
US8996026B2 (en) 2005-01-13 2015-03-31 Fujitsu Limited Scheduling system for radio communication networks
JPWO2008105146A1 (en) * 2007-02-28 2010-06-03 サントリーホールディングス株式会社 Liquid-type absorbance sensor element and absorptiometer using the same
JP2008241378A (en) * 2007-03-27 2008-10-09 Ntn Corp Lubricant degradation detector and bearing with detector
JP2008256663A (en) * 2007-04-09 2008-10-23 Nippon Soken Inc Urea concentration detector
JP2009002861A (en) * 2007-06-22 2009-01-08 Kansai Electric Power Co Inc:The Inspection apparatus of liquid
WO2012074109A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Lubricating oil degradation sensor
CN103238059A (en) * 2010-12-02 2013-08-07 纳博特斯克有限公司 Speed reducer for industrial robot
JP2012117951A (en) * 2010-12-02 2012-06-21 Nabtesco Corp Lubrication oil degradation sensor
US9201054B2 (en) 2010-12-02 2015-12-01 Nabtesco Corporation Lubricant sensor
US9329119B2 (en) 2010-12-02 2016-05-03 Nabtesco Corporation Speed reducer for industrial robot
US9494530B2 (en) 2010-12-02 2016-11-15 Nabtesco Corporation Optical sensor for detecting lubricant deterioration
WO2012074112A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Speed reducer for industrial robot
JP2012143837A (en) * 2011-01-12 2012-08-02 Nabtesco Corp Speed reducer for industrial robot
WO2013065783A1 (en) * 2011-11-04 2013-05-10 ナブテスコ株式会社 Lubricant oil degradation sensor, speed reducer for industrial robot, and industrial robot
JP2013096955A (en) * 2011-11-04 2013-05-20 Nabtesco Corp Lubricant deterioration sensor, speed reducer for industrial robot and industrial robot
EP2808668A4 (en) * 2012-01-25 2015-11-11 Nabtesco Corp Machine configured to detect degradation of lubricating oil, speed reducer for industrial robot, and industrial robot
GB2585629A (en) * 2019-05-09 2021-01-20 Solumetrix Ltd Ultra-violet transmission in water
JP2021009084A (en) * 2019-07-02 2021-01-28 三菱重工業株式会社 Spectral analysis method and spectral analysis device

Similar Documents

Publication Publication Date Title
JPH01119741A (en) Detecting apparatus of turbidity of oil
JP6126217B2 (en) Sensor and method for measuring particles in a medium
US4699509A (en) Device for measuring contamination of lubricant
Hoult et al. Calibration of laser fluorescence measurements of lubricant film thickness in engines
ATE177201T1 (en) OPTICAL FLUID SENSOR, ITS MANUFACTURING METHOD AND AUTOMOTIVE OIL AND BATTERY TESTER
EP1903330A3 (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
EP1329721B8 (en) Method of quantifying hemoglobin and method of measuring glycation ratio of hemoglobin
KR940022054A (en) 3D measurement probe
ES2103965T3 (en) OPTICAL SENSOR.
JP2008145353A (en) Concentration detector for particles in liquid
EP0292097B1 (en) Device for detecting the mixing ratio of petrol and an alcohol or the like
JP2009103630A (en) Liquid membrane thickness measurement device and controller for internal combustion engine
US20020069021A1 (en) Automobile oil deterioration diagnosing apparatus
JP2007163152A (en) Flow rate measuring device and its accuracy confirmation method
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
CN105548052A (en) Testing cavity with continuously adjustable length applied to cavity ring-down spectroscope technology
CN2651754Y (en) Fibre-optic raster accelerator
CN102103012A (en) Optical fiber vibration sensor for detecting rotating speed of automobile engine
CN203132986U (en) Laser analyzer
CN207816600U (en) A kind of Bus- Speed Monitoring platform of view-based access control model system
RU93542U1 (en) CAR REFRACTOMETER
CN2148326Y (en) Gas permeability measuring apparatus
JPH0422458B2 (en)
US4912319A (en) Detector device for mixing ratio for gasoline and alcohol or the like
SU938108A1 (en) Method of device for determination of adhesion strength of cutting instrument to machined surface