JP5218823B2 - Capacitor leakage current measuring method and capacitor leakage current measuring apparatus - Google Patents

Capacitor leakage current measuring method and capacitor leakage current measuring apparatus Download PDF

Info

Publication number
JP5218823B2
JP5218823B2 JP2008091260A JP2008091260A JP5218823B2 JP 5218823 B2 JP5218823 B2 JP 5218823B2 JP 2008091260 A JP2008091260 A JP 2008091260A JP 2008091260 A JP2008091260 A JP 2008091260A JP 5218823 B2 JP5218823 B2 JP 5218823B2
Authority
JP
Japan
Prior art keywords
capacitor
charging
leakage current
measurement
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008091260A
Other languages
Japanese (ja)
Other versions
JP2009244116A (en
Inventor
島 弘 明 青
岡 明 武
沢 隆 正 長
西 規 敏 中
Original Assignee
株式会社 東京ウエルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東京ウエルズ filed Critical 株式会社 東京ウエルズ
Priority to JP2008091260A priority Critical patent/JP5218823B2/en
Priority to TW98107864A priority patent/TWI418808B/en
Priority to CN 200910132515 priority patent/CN101551430B/en
Publication of JP2009244116A publication Critical patent/JP2009244116A/en
Application granted granted Critical
Publication of JP5218823B2 publication Critical patent/JP5218823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、コンデンサの漏れ電流測定を行うコンデンサ漏れ電流測定方法およびコンデンサ漏れ電流測定装置に関する。   The present invention relates to a capacitor leakage current measuring method and a capacitor leakage current measuring apparatus for measuring a capacitor leakage current.

コンデンサの漏れ電流測定方法は、日本工業規格であるJIS C 5101-1の4.9項の規定に従うのが一般的である。この規定は、「コンデンサに直流電圧を印加し、ほぼその電圧に到達したときから最大5分後に測定する。規定の漏れ電流値に短時間で達した場合は、5分間印加する必要はない」、というものである。   The method for measuring the leakage current of a capacitor generally follows the provisions of 4.9 of JIS C 5101-1, which is a Japanese industrial standard. This regulation is “Apply a DC voltage to the capacitor and measure it up to about 5 minutes after reaching that voltage. If the specified leakage current value is reached in a short time, it is not necessary to apply it for 5 minutes.” That's it.

図7は漏れ電流測定に関わる一般的なコンデンサC0の等価回路図である。図7に示すようにコンデンサC0は等価的に、主容量Cと、絶縁抵抗R1と、誘電吸収因子Dとを並列接続して構成される。誘電吸収因子Dは、コンデンサC0に電圧を印加したときに内部に発生する電界により形成される誘電分極を、直列接続された内部抵抗と容量(以下、誘電分極容量)とで表したものである。誘電分極は、非特許文献1に記載されているように、コンデンサC0の充電を開始してから一定時間経過後に安定するが、安定するまでの間は内部抵抗を介して誘電分極容量への充電が行われる。以下では、誘電分極容量への充電を誘電吸収因子Dへの充電と呼ぶ。   FIG. 7 is an equivalent circuit diagram of a general capacitor C0 involved in leakage current measurement. As shown in FIG. 7, the capacitor C0 is equivalently configured by connecting a main capacitance C, an insulation resistance R1, and a dielectric absorption factor D in parallel. The dielectric absorption factor D represents a dielectric polarization formed by an electric field generated inside when a voltage is applied to the capacitor C0 by an internal resistance and a capacitance (hereinafter referred to as dielectric polarization capacitance) connected in series. . As described in Non-Patent Document 1, the dielectric polarization stabilizes after a certain time has elapsed since the start of charging of the capacitor C0, but until the stabilization, the dielectric polarization capacitance is charged via an internal resistance. Is done. Hereinafter, the charging to the dielectric polarization capacitance is referred to as charging to the dielectric absorption factor D.

誘電吸収因子Dは、図7に示すように直列接続された内部抵抗と誘電分極容量の一組だけで等価的に表されるとは限らず、直列接続された内部抵抗と誘電分極容量の組を複数組並列に接続した等価回路で表される場合もありうる。このような場合でも、コンデンサC0の充電時にコンデンサC0に流れる電流の時間変化は誘電吸収因子Dの内部構成に依存しないため、図7では、簡略化のために、内部抵抗と誘電分極容量の一組だけで誘電吸収因子Dを等価的に表している。   As shown in FIG. 7, the dielectric absorption factor D is not necessarily represented equivalently by only one set of internal resistance and dielectric polarization capacitance connected in series, but a set of internal resistance and dielectric polarization capacitance connected in series. May be represented by an equivalent circuit in which a plurality of sets are connected in parallel. Even in such a case, since the time change of the current flowing through the capacitor C0 during charging of the capacitor C0 does not depend on the internal configuration of the dielectric absorption factor D, in FIG. The dielectric absorption factor D is equivalently expressed only by the set.

誘電分極が安定した後にコンデンサC0に流れる電流は、実際には絶縁抵抗R1を流れる漏れ電流である。したがって、コンデンサC0の漏れ電流を精度よく測定するには、誘電分極が安定した後に漏れ電流を測定する必要があり、この漏れ電流を測定することにより、絶縁抵抗R1も求めることができる。   The current flowing through the capacitor C0 after the dielectric polarization is stabilized is actually a leakage current flowing through the insulation resistance R1. Therefore, in order to accurately measure the leakage current of the capacitor C0, it is necessary to measure the leakage current after the dielectric polarization is stabilized. By measuring this leakage current, the insulation resistance R1 can also be obtained.

図8はコンデンサC0に規定電圧を印加して充電を行った場合のコンデンサC0に流れる電流の時間変化を示す図であり、横軸は時間、縦軸はコンデンサC0に流れる電流である。図8の領域Xは充電電流領域であり、主として主容量Cが充電される。領域Yは誘電吸収領域であり、誘電吸収因子Dが充電される。領域Zは誘電吸収因子Dが十分に充電された後の漏れ電流領域であり、この領域で漏れ電流が測定される。   FIG. 8 is a diagram showing a time change of the current flowing through the capacitor C0 when charging is performed by applying a specified voltage to the capacitor C0. The horizontal axis represents time and the vertical axis represents the current flowing through the capacitor C0. A region X in FIG. 8 is a charging current region, and the main capacitor C is mainly charged. The region Y is a dielectric absorption region, and the dielectric absorption factor D is charged. A region Z is a leakage current region after the dielectric absorption factor D is sufficiently charged, and the leakage current is measured in this region.

誘電吸収領域Yにおいて誘電吸収因子Dを充電するのにはある程度長い時間を要するため、コンデンサC0に規定電圧を印加してから、漏れ電流領域Zに到達するまでの時間も長くなってしまう。上述したJIS C 5101-1の「コンデンサに直流電圧を印加し、ほぼその電圧に到達したときから最大5分後に測定する」、という規定は、上記の誘電吸収因子Dを充電して、漏れ電流領域に達した後に漏れ電流を測定しないと、正確な電流値を測定できないことを意味する。   Since it takes a certain amount of time to charge the dielectric absorption factor D in the dielectric absorption region Y, the time from application of the specified voltage to the capacitor C0 until reaching the leakage current region Z also becomes long. The above JIS C 5101-1 rule that “a DC voltage is applied to the capacitor and measured approximately 5 minutes after reaching that voltage” is charged with the above dielectric absorption factor D, and the leakage current If the leakage current is not measured after reaching the area, it means that an accurate current value cannot be measured.

しかしながら、これでは、個々のコンデンサC0を充電するのに時間がかかるため、この規定の後半の「規定の漏れ電流値に短時間で達した場合は、5分間印加する必要はない」、に着目し、これに対応するために、漏れ電流領域に短時間で到達する方法がいくつか提案されている。   However, since it takes time to charge the individual capacitors C0 in this case, pay attention to the latter half of this rule “if the specified leakage current value is reached in a short time, it is not necessary to apply for 5 minutes”. In order to cope with this, several methods for reaching the leakage current region in a short time have been proposed.

例えば、特許文献1は、複数回に分けて充電を行うことにより、1回当たりの充電期間を短縮し、かつ充電期間ごとに充電電圧を制御して、可能な範囲内で高い電圧をコンデンサに印加して急速充電を実現している。
電気工学ハンドブック(第6版)110頁、181頁 特開平10−115651号公報
For example, in Patent Document 1, charging is performed in a plurality of times, the charging period per time is shortened, and the charging voltage is controlled for each charging period, and a high voltage is applied to the capacitor within a possible range. Apply to achieve fast charging.
Electrical Engineering Handbook (6th edition), pages 110, 181 JP-A-10-115651

しかしながら、特許文献1の手法には以下の問題がある。   However, the method of Patent Document 1 has the following problems.

図9は従来の漏れ電流測定装置の平面図である。被測定対象コンデンサC0からなるワークはリニアフィーダ1にて分離供給部2に搬送される。分離供給部2は、個々のワークを、円形の搬送テーブル3の周囲に等間隔で配置された複数のワーク収納孔4に一つずつ収納する。搬送テーブル3は、その中心軸5の周りを例えば図示のA方向に間欠的に回転可能とされ、搬送テーブル3の周縁部に沿って、複数の充電ステージ6と測定ステージ7とが互いに間隔を隔てて配置されている。   FIG. 9 is a plan view of a conventional leakage current measuring apparatus. A workpiece composed of the capacitor C0 to be measured is conveyed to the separation supply unit 2 by the linear feeder 1. The separation supply unit 2 stores individual workpieces one by one in a plurality of workpiece storage holes 4 arranged at equal intervals around the circular transfer table 3. The transport table 3 can be intermittently rotated around the central axis 5 in, for example, the direction A shown in the figure, and a plurality of charging stages 6 and measurement stages 7 are spaced apart from each other along the peripheral edge of the transport table 3. They are spaced apart.

複数の充電ステージ6の底面には2つのプローブ(図9では不図示)がワークの両端に設けた電極に対し上下に移動可能に設けられている。搬送テーブル3の移動に伴って、ワーク収納孔4が充電ステージ6の位置に来ると、2つのプローブがワークの両端電極に当接してワークを初期充電する。   Two probes (not shown in FIG. 9) are provided on the bottom surfaces of the plurality of charging stages 6 so as to be movable up and down with respect to the electrodes provided at both ends of the workpiece. When the workpiece storage hole 4 comes to the position of the charging stage 6 as the transfer table 3 moves, the two probes come into contact with both end electrodes of the workpiece to charge the workpiece initially.

複数の充電ステージ6間、または充電ステージ6と測定ステージ7間をワークが移動している最中は、プローブがワークの両端電極に当接しておらず、ワークに蓄積された電荷は自然放電される。この放電期間には、図7の等価回路からわかるように、主容量Cに蓄えられた電荷が誘電吸収因子Dの充電に使われるとともに、絶縁抵抗R1に流れる電流となって消費される。   While the workpiece is moving between the plurality of charging stages 6 or between the charging stage 6 and the measurement stage 7, the probe is not in contact with both end electrodes of the workpiece, and the charge accumulated on the workpiece is naturally discharged. The As can be seen from the equivalent circuit of FIG. 7, during this discharge period, the charge stored in the main capacitor C is used for charging the dielectric absorption factor D and consumed as a current flowing through the insulation resistor R1.

測定ステージ7では、測定用のプローブをワークの端子に接触させて、規定の直流電圧を印加しつつ漏れ電流を測定する。測定ステージ7とその手前の充電ステージ6とは距離を隔てて配置されており、ワークが測定ステージ7に到達するまでの間にワークの主容量Cの電荷の一部が放電される。このため、漏れ電流を測定する直前に主容量Cをフル充電して、誘電吸収因子Dに流れる電流を無視できる状態にしてから漏れ電流を測定する必要がある。したがって、漏れ電流を測定するのに要する真の測定時間と主容量Cをフル充電するのに要する時間との和が見かけ上の測定時間になり、漏れ電流の測定が完了するまでにかなりの時間(一般的には1分以上)がかかってしまう。   In the measurement stage 7, a measurement probe is brought into contact with a work terminal, and a leakage current is measured while applying a specified DC voltage. The measurement stage 7 and the charging stage 6 in front of the measurement stage 7 are arranged at a distance from each other, and a part of the charge of the main capacity C of the work is discharged until the work reaches the measurement stage 7. For this reason, it is necessary to measure the leakage current after fully charging the main capacitor C immediately before measuring the leakage current so that the current flowing through the dielectric absorption factor D can be ignored. Therefore, the sum of the true measurement time required to measure the leakage current and the time required to fully charge the main capacity C is an apparent measurement time, and a considerable time is required until the measurement of the leakage current is completed. (Generally more than 1 minute).

このように、従来の漏れ電流測定装置では、測定時間が長くなり、測定の処理効率がよくないという問題があった。処理効率を向上するには、主容量Cをフル充電する際に流す電流を大きくして充電時間を短縮することが考えられ、耐電圧の公称値以上の電圧を印加する方法もあるが、漏れ電流測定時に使用される精密な電流計には電流制限用の抵抗が直列接続されるのが一般的であり、主容量Cに流す電流は制限されてしまい、結果として主容量Cの充電時間を大幅に短縮することはできない。   As described above, the conventional leakage current measuring apparatus has a problem that the measurement time becomes long and the processing efficiency of the measurement is not good. In order to improve the processing efficiency, it may be possible to shorten the charging time by increasing the current that flows when the main capacity C is fully charged. There is also a method of applying a voltage exceeding the nominal value of the withstand voltage. A precision ammeter used at the time of current measurement is generally connected in series with a current limiting resistor, and the current flowing through the main capacitor C is limited. As a result, the charging time of the main capacitor C is reduced. It cannot be shortened significantly.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、短い測定時間で、精度よく漏れ電流を測定可能なコンデンサC0漏れ電流測定方法および測定装置を提供するものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a capacitor C0 leakage current measuring method and measuring apparatus capable of accurately measuring a leakage current in a short measurement time.

本発明の一態様によれば、被測定対象であるコンデンサに直流電圧を印加して漏れ電流を測定する漏れ電流測定方法において、
前記コンデンサ内部の誘電吸収因子を含めて、前記コンデンサを充電するステップと、
前記コンデンサの充電後の両端電位差が漏れ電流測定時の前記コンデンサの両端電位差に等しくなるまでの所定期間、前記コンデンサ内部の絶縁抵抗を介して、前記コンデンサに蓄積された電荷を放電させるステップと、
前記所定期間後に前記絶縁抵抗に流れる漏れ電流を測定するステップと、を備え、
前記コンデンサを充電するステップで使用される第1の電流制限回路の充電完了時のインピーダンスは、前記コンデンサの漏れ電流測定時に使用される第2の電流制限回路のインピーダンスよりも小さく設定されることを特徴とするコンデンサ漏れ電流測定方法が提供される。
According to one aspect of the present invention, in a leakage current measuring method for measuring a leakage current by applying a DC voltage to a capacitor to be measured,
Charging the capacitor, including a dielectric absorption factor inside the capacitor;
Discharging a charge accumulated in the capacitor through an insulation resistance inside the capacitor for a predetermined period until a potential difference between both ends of the capacitor after charging becomes equal to a potential difference between both ends of the capacitor at the time of leakage current measurement;
Measuring a leakage current flowing through the insulation resistance after the predetermined period,
The impedance at the completion of charging of the first current limiting circuit used in the step of charging the capacitor is set to be smaller than the impedance of the second current limiting circuit used when measuring the leakage current of the capacitor. A characteristic capacitor leakage current measurement method is provided.

また、本発明の一態様によれば、被測定対象であるコンデンサに直流電圧を印加して漏れ電流を測定する漏れ電流測定装置において、
前記コンデンサ内部の誘電吸収因子を含めて、前記コンデンサを充電する充電手段と、
前記コンデンサの充電後の両端電位差が漏れ電流測定時の前記コンデンサの両端電位差に等しくなるまでの所定期間、前記コンデンサ内部の絶縁抵抗を介して、前記コンデンサに蓄積された電荷を放電させる放電手段と、
前記所定期間後に前記絶縁抵抗に流れる漏れ電流を測定する漏れ電流測定手段と、を備え、
前記充電手段は、前記コンデンサに直列接続される第1の電流制限回路を有し、
前記測定手段は、前記コンデンサに直列接続される第2の電流制限回路を有し、
前記第1の電流制限回路の充電完了時のインピーダンスは、前記第2の電流制限回路のインピーダンスよりも小さく設定されることを特徴とするコンデンサ漏れ電流測定装置が提供される。
Moreover, according to one aspect of the present invention, in a leakage current measuring apparatus that measures a leakage current by applying a DC voltage to a capacitor to be measured,
Charging means for charging the capacitor, including a dielectric absorption factor inside the capacitor;
Discharging means for discharging the charge accumulated in the capacitor through an insulation resistance inside the capacitor for a predetermined period until the potential difference between both ends of the capacitor after charging becomes equal to the potential difference between both ends of the capacitor at the time of leakage current measurement; ,
A leakage current measuring means for measuring a leakage current flowing through the insulation resistance after the predetermined period,
The charging means has a first current limiting circuit connected in series to the capacitor,
The measuring means has a second current limiting circuit connected in series to the capacitor,
An impedance at the time of completion of charging of the first current limiting circuit is set smaller than the impedance of the second current limiting circuit, and a capacitor leakage current measuring device is provided.

本発明によれば、短い測定時間で、精度よく漏れ電流を測定することができる。   According to the present invention, it is possible to accurately measure a leakage current in a short measurement time.

以下、図面を参照しながら、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態は、コンデンサC0をフル充電してから漏れ電流測定までのコンデンサC0の放電期間を最適化して、短時間で精度よく漏れ電流を測定することに特徴がある。以下、本実施形態を詳細に説明する前に、本実施形態の原理について説明する。   The present embodiment is characterized by optimizing the discharge period of the capacitor C0 from the full charge of the capacitor C0 to the leakage current measurement and measuring the leakage current accurately in a short time. Hereinafter, the principle of this embodiment will be described before describing this embodiment in detail.

図7に示したように、コンデンサC0には等価的に誘電吸収因子Dが存在し、この誘電吸収因子Dを十分に充電して誘電吸収因子Dを充電するための誘電吸収電流が約ゼロになった後でないと、コンデンサC0の漏れ電流を精度よく測定できない。   As shown in FIG. 7, the capacitor C0 has an equivalent dielectric absorption factor D, and the dielectric absorption current for charging the dielectric absorption factor D sufficiently by charging the dielectric absorption factor D becomes approximately zero. The leakage current of the capacitor C0 cannot be measured with high accuracy until after.

図1はコンデンサC0の充電時間と誘電吸収電流との関係を示す図である。図8に示したように、コンデンサC0を充電すると、充電電流領域Xから誘電吸収領域Yに移行し、最終的に漏れ電流領域Zに到達する。すなわち、誘電吸収領域Yでは、誘電吸収因子Dへの充電が行われ、漏れ電流領域Zに近づくと、主容量Cと誘電吸収因子Dにはほとんど電流が流れなくなる。この状態では、時間Δt=t2−t1だけ変化した場合の誘電吸収電流の変化量ΔI=I2−I1は、図1からわかるように、わずかな値になる。したがって、時間Δtが小さい場合には、誘電吸収電流の変化量ΔIを無視することができる。   FIG. 1 is a diagram showing the relationship between the charging time of the capacitor C0 and the dielectric absorption current. As shown in FIG. 8, when the capacitor C0 is charged, the charging current region X shifts to the dielectric absorption region Y and finally reaches the leakage current region Z. That is, in the dielectric absorption region Y, the dielectric absorption factor D is charged, and when it approaches the leakage current region Z, almost no current flows through the main capacitance C and the dielectric absorption factor D. In this state, as shown in FIG. 1, the change amount ΔI = I2−I1 of the dielectric absorption current when the time Δt = t2−t1 is changed becomes a slight value. Therefore, when the time Δt is small, the change amount ΔI of the dielectric absorption current can be ignored.

本実施形態では、後述するように、測定前に少なくとも一つの充電ステージ6を用いて、コンデンサC0を初期充電して、誘電吸収電流の変化量ΔIがほぼ無視できる程度までコンデンサC0を充電することと、その後、コンデンサC0が充電ステージ6間を移動する間に充電を中断することとを少なくとも1回行い、さらにその後、測定ステージ7に近接した位置に設けられる測定前充電ステージにてコンデンサC0の主容量Cをフル充電する。測定前充電ステージでの充電が完了すると(図1における時間t1)、予め最適化された放電期間だけコンデンサC0の放電を行った後に、測定ステージ7での漏れ電流測定を行う。この放電期間を最適化する点に本実施形態の特徴がある。   In this embodiment, as will be described later, the capacitor C0 is initially charged using at least one charging stage 6 before measurement, and the capacitor C0 is charged to such an extent that the change ΔI of the dielectric absorption current can be almost ignored. Thereafter, the charging is interrupted at least once while the capacitor C0 moves between the charging stages 6, and then the capacitor C0 is connected to the charging stage before measurement provided at a position close to the measuring stage 7. Fully charge main capacity C. When the charging at the pre-measurement charging stage is completed (time t1 in FIG. 1), the capacitor C0 is discharged for the discharge period optimized in advance, and then the leakage current is measured at the measurement stage 7. The present embodiment is characterized in that this discharge period is optimized.

また、最適化した放電期間は極めて小さいため、上記のように放電期間Δtの間の誘電吸収電流の変化量ΔIは無視できる。   Further, since the optimized discharge period is extremely small, the change amount ΔI of the dielectric absorption current during the discharge period Δt can be ignored as described above.

従来技術においては、誘電吸収領域Yを通過して漏れ電流領域Zに到達してから漏れ電流を測定していたのに対して、本実施形態においては、漏れ電流領域Zに到達する前に、誘電吸収領域Yの中の漏れ電流領域Zに近い領域において上記Δtを最適化すれば、漏れ電流を精度よく測定できることに着目している。これは、漏れ電流測定開始までの時間短縮に他ならない。   In the prior art, the leakage current was measured after passing through the dielectric absorption region Y and reaching the leakage current region Z, whereas in the present embodiment, before reaching the leakage current region Z, It is noted that the leakage current can be accurately measured by optimizing Δt in a region near the leakage current region Z in the dielectric absorption region Y. This is nothing but a reduction in the time until the start of leakage current measurement.

図2(a)は誘電吸収因子Dに誘電吸収電流が流れない状態での測定前充電ステージの充電動作を示す等価回路図、図2(b)は測定前充電ステージから測定ステージ7までコンデンサC0が搬送される間の放電動作を示す等価回路図、図2(c)は測定ステージ7での測定動作を示す等価回路図をそれぞれ示している。   2A is an equivalent circuit diagram illustrating the charging operation of the pre-measurement charging stage in a state where no dielectric absorption current flows through the dielectric absorption factor D, and FIG. 2B is a capacitor C0 from the pre-measurement charging stage to the measurement stage 7. FIG. 2C shows an equivalent circuit diagram showing the measurement operation at the measurement stage 7, respectively.

図2(a)〜図2(c)では、誘電吸収因子Dに誘電吸収電流が流れないことを前提としており、誘電吸収因子Dを省略することが可能である。したがって、コンデンサC0は等価的に、並列接続された主容量Cと絶縁抵抗R1とで表される。   2A to 2C, it is assumed that no dielectric absorption current flows through the dielectric absorption factor D, and the dielectric absorption factor D can be omitted. Therefore, the capacitor C0 is equivalently represented by a main capacitor C and an insulation resistance R1 connected in parallel.

図2(a)の等価回路は、並列接続された主容量Cおよび絶縁抵抗R1と、この並列回路に直列接続される電流制限回路(第1の電流制限回路)8とを有する。電流制限回路8は、抵抗により構成されるか、または電子部品を利用して抵抗と同等の電流制限機能を実現したかのいずれかであり、この電流制限回路8のインピーダンスはR2である。このインピーダンスR2は、誘電吸収因子Dに誘電吸収電流が流れない場合(すなわち、誘電吸収因子Dに十分に充電を行った場合)の値である。   The equivalent circuit of FIG. 2A includes a main capacitor C and an insulation resistor R1 connected in parallel, and a current limiting circuit (first current limiting circuit) 8 connected in series to the parallel circuit. The current limiting circuit 8 is either constituted by a resistor or realizes a current limiting function equivalent to the resistor using an electronic component, and the impedance of the current limiting circuit 8 is R2. The impedance R2 is a value when a dielectric absorption current does not flow through the dielectric absorption factor D (that is, when the dielectric absorption factor D is sufficiently charged).

図2(b)の等価回路は、並列接続された主容量Cと絶縁抵抗R1とを有し、電源電圧Eとは切り離されている。この回路では、主容量Cからの放電電流が絶縁抵抗R1に流れる。   The equivalent circuit of FIG. 2B has a main capacitor C and an insulation resistor R1 connected in parallel, and is disconnected from the power supply voltage E. In this circuit, the discharge current from the main capacitor C flows through the insulation resistance R1.

図2(c)の等価回路は、並列接続された主容量Cおよび絶縁抵抗R1と、この並列回路に直列接続される電流制限回路(第2の電流制限回路)9とを有する。この電流制限回路9のインピーダンスはR3である。   The equivalent circuit of FIG. 2C includes a main capacitor C and an insulation resistor R1 connected in parallel, and a current limiting circuit (second current limiting circuit) 9 connected in series to the parallel circuit. The impedance of the current limiting circuit 9 is R3.

測定前充電ステージでは、短時間で主容量Cへの充電が行えるように、電流制限回路8のインピーダンスR2を小さくしている。一方、電流制限回路9のインピーダンスR3は、不図示の電流計の内部抵抗であり、高精度に電流を測定できるように比較的大きな値にしている。すなわち、R2<R3の関係にある。これに対して、絶縁抵抗R1は、R3よりも大きな値であり、通常はメガオーム台の高インピーダンスである。   In the pre-measurement charging stage, the impedance R2 of the current limiting circuit 8 is reduced so that the main capacitor C can be charged in a short time. On the other hand, the impedance R3 of the current limiting circuit 9 is an internal resistance of an ammeter (not shown), and has a relatively large value so that the current can be measured with high accuracy. That is, there is a relationship of R2 <R3. On the other hand, the insulation resistance R1 is larger than R3, and usually has a high impedance on the order of megaohms.

ここで、図2(a)と図2(c)の電源電圧Eが等しいとし、図2(a)の場合のコンデンサC0の両端電位差をV2、図2(b)の場合のコンデンサC0の両端電位差をV3とすると、R2<R3の関係が成り立つことから、V2>V3となる。これは、測定前充電が終わった後、放電期間内にコンデンサC0の両端電位差が徐々に低下し、漏れ電流測定時にV3になることを示している。言い方を変えると、放電期間終了後のコンデンサC0の両端電位差がV3になるように放電期間を設定すれば、漏れ電流測定時にコンデンサC0にプローブを接続したときに、コンデンサC0に充放電電流が流れなくなり、即座に漏れ電流の測定を行うことができる。   Here, it is assumed that the power supply voltage E in FIGS. 2A and 2C is equal, the potential difference between both ends of the capacitor C0 in the case of FIG. 2A is V2, and both ends of the capacitor C0 in the case of FIG. Assuming that the potential difference is V3, the relationship of R2 <R3 is established, so that V2> V3. This indicates that the potential difference between both ends of the capacitor C0 gradually decreases within the discharge period after the pre-measurement charging is finished, and becomes V3 when measuring the leakage current. In other words, if the discharge period is set so that the potential difference between both ends of the capacitor C0 after the end of the discharge period becomes V3, the charge / discharge current flows through the capacitor C0 when the probe is connected to the capacitor C0 during the leakage current measurement. The leakage current can be measured immediately.

このように、漏れ電流測定時に、コンデンサC0の両端電位差をできるだけ短時間でV3に設定することが、漏れ電流を短時間で精度よく測定するための必須要件である。   Thus, when measuring the leakage current, setting the potential difference across the capacitor C0 to V3 in the shortest possible time is an essential requirement for accurately measuring the leakage current in a short time.

漏れ電流の測定時に、コンデンサC0に充放電電流が流れないようにするには、放電期間tを精度よく設定する必要がある。この放電期間tの最適値は、コンデンサC0の容量をCとすると、t=C(R3−R2)で表される。この式の導入過程については後述する。   In order to prevent the charge / discharge current from flowing through the capacitor C0 when measuring the leakage current, it is necessary to set the discharge period t with high accuracy. The optimum value of the discharge period t is expressed by t = C (R3−R2), where C is the capacitance of the capacitor C0. The introduction process of this equation will be described later.

すなわち、測定前充電により、測定時より少し高い電圧V2で主容量Cを充電しておき、次に測定時にV2より少し低い電圧V3を印加して測定する。この測定前充電の完了から測定開始までの時間をtとすると、測定前充電の電圧V2が測定開始までの時間tの間に内部放電により低下し、測定開始時には主容量Cの両端電位差が測定時の印加電圧V3になっていることから、測定開始時には印加電圧V3により絶縁抵抗R1に漏れ電流のみが流れることになる。   That is, the main capacitor C is charged with a voltage V2 slightly higher than that at the time of measurement before charging, and then measured by applying a voltage V3 that is slightly lower than V2 at the time of measurement. Assuming that the time from the completion of the pre-measurement charge to the start of measurement is t, the pre-measurement charge voltage V2 decreases due to internal discharge during the time t until the start of measurement, and the potential difference across the main capacitor C is measured at the start of measurement. Therefore, only the leakage current flows through the insulation resistance R1 due to the applied voltage V3 at the start of measurement.

なお、ここでは、誘電吸収因子Dへの電流の変化量を無視したが、以下に一例としてtを求めて、その可否を検討する。   Here, although the amount of change in the current to the dielectric absorption factor D is ignored, t is obtained as an example below, and the feasibility is examined.

例えば、C=100μF、R2=100Ω、R3=1kΩとすると、
t=100×10-6(1000−100)
=9×10-3
≒1/10[秒]
となる。
For example, if C = 100 μF, R2 = 100Ω, and R3 = 1 kΩ,
t = 100 × 10 −6 (1000−100)
= 9 × 10 -3
≒ 1/10 [second]
It becomes.

本実施形態によれば、充電ステージ6により初期充電を行い、図7における誘電吸収領域Yの中の漏れ電流領域Zに近い領域までコンデンサを充電しておき、その状態で測定前充電によりコンデンサの両端電位差がV2になるまで充電し、その後、t=1/10[秒]=1/600[分]という極めて短い時間だけ放電することになり、すなわち図1のΔtが上記のt=C(R3−R2)となり、漏れ電流領域に近い誘電吸収領域におけるΔtではΔIはほぼゼロとみなせる。以上より、主容量Cと誘電吸収因子Dの双方に電流が流れ込まなくなり、放電期間tの経過後すぐに漏れ電流を測定できる。   According to the present embodiment, initial charging is performed by the charging stage 6, the capacitor is charged to a region close to the leakage current region Z in the dielectric absorption region Y in FIG. 7, and in this state, the capacitor is charged by pre-measurement charging. The battery is charged until the potential difference at both ends reaches V2, and then discharged for a very short time of t = 1/10 [seconds] = 1/600 [minutes], that is, Δt in FIG. R3-R2), and ΔI in the dielectric absorption region close to the leakage current region can be regarded as substantially zero. As described above, the current does not flow into both the main capacitance C and the dielectric absorption factor D, and the leakage current can be measured immediately after the discharge period t has elapsed.

このように、本実施形態によれば、時間を要する初期充電は充電ステージ6の数を予め任意に調整して行い、漏れ電流測定の処理速度に影響する測定前充電から測定までは、測定前充電ステージでの充電を行った後、放電期間t=C(R3−R2)またはそれに近い時間だけ放電を行い、その後すぐに漏れ電流を測定できるため、漏れ電流の測定が完了するまでの時間を大幅に短縮できる。また、コンデンサC0を充電し、コンデンサC0の両端電位差を測定電圧に一致させてから漏れ電流の測定を行うため、漏れ電流の測定を精度よく行える。   As described above, according to the present embodiment, the time-consuming initial charging is performed by arbitrarily adjusting the number of the charging stages 6 in advance, and from the pre-measurement charging to the measurement that affects the processing speed of the leakage current measurement, before the measurement. After charging at the charging stage, the discharge period t = C (R3−R2) or discharge is performed for a time close to it, and the leakage current can be measured immediately thereafter. Can be greatly shortened. Further, since the leakage current is measured after charging the capacitor C0 and matching the potential difference between both ends of the capacitor C0 with the measurement voltage, the leakage current can be measured with high accuracy.

以下、本実施形態について具体的に説明する。以下では、漏れ電流を測定するための被測定対象コンデンサC0をワークと呼ぶ。   Hereinafter, this embodiment will be specifically described. Hereinafter, the measurement target capacitor C0 for measuring the leakage current is referred to as a work.

図3は本発明の一実施形態に係るコンデンサC0漏れ電流測定装置の平面図である。図3の装置は、図9に示す従来の装置と同様に、リニアフィーダ1と、分離供給部2と、複数のワーク収納孔4が等間隔で形成された円形の搬送テーブル3と、複数の(初期)充電ステージ6と、測定ステージ7とを備えている。この他、図3の装置は、図9にはなかった構成として、充電ステージ6に近接して配置される測定前充電ステージ10を備えている。この測定前充電ステージ10は、被測定対象コンデンサC0であるワークの漏れ電流を測定する直前にワークをフル充電する目的で設けられている。   FIG. 3 is a plan view of the capacitor C0 leakage current measuring apparatus according to one embodiment of the present invention. The apparatus of FIG. 3 is similar to the conventional apparatus shown in FIG. 9, and includes a linear feeder 1, a separation supply unit 2, a circular transfer table 3 in which a plurality of work storage holes 4 are formed at equal intervals, and a plurality of An (initial) charging stage 6 and a measurement stage 7 are provided. In addition, the apparatus of FIG. 3 includes a pre-measurement charging stage 10 that is disposed in the vicinity of the charging stage 6 as a configuration that is not shown in FIG. 9. This pre-measurement charging stage 10 is provided for the purpose of fully charging the workpiece immediately before measuring the leakage current of the workpiece which is the capacitor C0 to be measured.

測定前充電ステージ10は、測定ステージ7からワーク収納孔4の1間隔分だけ離れて配置されている。したがって、測定前充電ステージ10に到達したワークは、同ステージにて充電され、その後、搬送テーブル3が1間隔だけ回転すると、測定ステージ7に到達する。   The pre-measurement charging stage 10 is arranged away from the measurement stage 7 by one interval of the workpiece storage hole 4. Therefore, the work that has reached the pre-measurement charging stage 10 is charged in the same stage, and then reaches the measurement stage 7 when the transfer table 3 is rotated by one interval.

複数の充電ステージ6、測定前充電ステージ10および測定ステージ7のそれぞれは、底面から上下に移動可能な2つのプローブを備えており、各ステージにワークが搬送されてきたときに、ワークの両端電極に2つのプローブを当接させてワークの充電または漏れ電流測定を行う。   Each of the plurality of charging stages 6, the pre-measurement charging stage 10, and the measuring stage 7 includes two probes that can move up and down from the bottom surface. The two probes are brought into contact with each other to charge the workpiece or measure the leakage current.

図4は複数の充電ステージ6のそれぞれでワークを充電する場合の等価回路図である。図4では、ワークに対応する被測定対象コンデンサC0を、並列接続された主容量C、絶縁抵抗R1および誘電吸収因子Dで表している。この並列回路には、電流制限回路8とスイッチSW1が直列接続されている。このスイッチSW1は、充電ステージ6のプローブをワークの両端電極に当接させたか否かの状態を等価的に表しており、当接させるとスイッチSW1がオンして、コンデンサC0への充電が行われる。プローブを当接させないとスイッチSW1がオフするため、主容量Cに蓄積された電荷は絶縁抵抗R1を介して放電する。主容量Cから放電した電荷は、誘電吸収因子Dを充電するために用いられる。このように、ワークを複数の充電ステージ6に順送りする間には、ワークの充電と充電の中断とが交互に行われ、充電の中断中に誘電吸収因子Dの充電が行われる。   FIG. 4 is an equivalent circuit diagram in the case where the workpiece is charged at each of the plurality of charging stages 6. In FIG. 4, the capacitor C0 to be measured corresponding to the workpiece is represented by a main capacitance C, an insulation resistance R1, and a dielectric absorption factor D connected in parallel. In this parallel circuit, a current limiting circuit 8 and a switch SW1 are connected in series. This switch SW1 equivalently represents the state of whether or not the probe of the charging stage 6 is brought into contact with both end electrodes of the work. When the switch SW1 is brought into contact, the switch SW1 is turned on and the capacitor C0 is charged. Is called. Since the switch SW1 is turned off when the probe is not brought into contact, the charge accumulated in the main capacitor C is discharged through the insulation resistance R1. The electric charge discharged from the main capacitor C is used to charge the dielectric absorption factor D. As described above, while the workpiece is sequentially transferred to the plurality of charging stages 6, charging of the workpiece and interruption of charging are alternately performed, and charging of the dielectric absorption factor D is performed during the interruption of charging.

図5は測定前充電ステージ10と測定ステージ7での充電および漏れ電流測定の等価回路である。図5(a)は測定前充電ステージ10でワークの充電を行う場合の等価回路図、図5(b)は測定前充電ステージ10から測定ステージ7にワークが搬送される間の放電動作を示す等価回路図、図5(c)は測定ステージ7でワークの漏れ電流を測定する場合の等価回路図である。   FIG. 5 is an equivalent circuit for charging and leakage current measurement at the pre-measurement charging stage 10 and the measurement stage 7. FIG. 5A is an equivalent circuit diagram in the case where the workpiece is charged at the pre-measurement charging stage 10, and FIG. 5B shows the discharging operation while the workpiece is conveyed from the pre-measurement charging stage 10 to the measurement stage 7. FIG. 5C is an equivalent circuit diagram when the leakage current of the workpiece is measured at the measurement stage 7.

図5(a)〜図5(c)の等価回路は、測定前充電ステージ10で充電用に用いられる電流制限回路8と、測定ステージ7で漏れ電流測定用に用いられる電流制限回路9および電流計11と、電流制限回路9をワークの一端に接続するか否かを切り替えるスイッチSW2とを有する。測定前充電ステージ10での充電と測定ステージ7での漏れ電流測定では、同じ電圧レベルの電源12を用いるものとする。   The equivalent circuits of FIGS. 5A to 5C include a current limiting circuit 8 used for charging in the pre-measurement charging stage 10, a current limiting circuit 9 used for leakage current measurement in the measurement stage 7, and a current. And a switch SW2 for switching whether to connect the current limiting circuit 9 to one end of the work. It is assumed that the power supply 12 having the same voltage level is used for the charging at the pre-measurement charging stage 10 and the leakage current measurement at the measurement stage 7.

スイッチSW2は、測定前充電ステージ10または測定ステージ7に搬送されたワークの両端電極にプローブを当接するか否かを等価的に表したものである。   The switch SW2 equivalently represents whether or not the probe is brought into contact with both end electrodes of the work conveyed to the pre-measurement charging stage 10 or the measurement stage 7.

図5(a)の場合、プローブがワークの両端電極に当接したときにスイッチSW2が切り替わって、電流制限回路8がワークの一端に接続される。これにより、電源12からの電流は、電流制限回路8を通ってワーク内の主容量Cに流れて(図5(a)の矢印)、主容量Cが充電される。   In the case of FIG. 5A, the switch SW2 is switched when the probe comes into contact with both end electrodes of the workpiece, and the current limiting circuit 8 is connected to one end of the workpiece. Thereby, the current from the power source 12 flows through the current limiting circuit 8 to the main capacitor C in the workpiece (arrow in FIG. 5A), and the main capacitor C is charged.

主容量Cの充電動作が終了して、ワークが測定前充電ステージ10から測定ステージ7まで搬送される間は、放電期間であり、図5(b)のような等価回路になる。この場合は、ワークの主容量Cに蓄積された過剰電荷が絶縁抵抗R1を通って放電される(図5(b)の矢印)。   While the charging operation of the main capacity C is completed and the work is transported from the pre-measurement charge stage 10 to the measurement stage 7, it is a discharge period, and an equivalent circuit as shown in FIG. 5B is obtained. In this case, excess electric charge accumulated in the main capacitance C of the work is discharged through the insulation resistance R1 (arrow in FIG. 5B).

ワークが測定ステージ7に到達して、ワークの両端電極にプローブが当接されると、図5(c)の等価回路が形成されて、電源12からの電流は、電流制限回路9と、電流計11と、絶縁抵抗R1とを通過して流れ、電流計11により漏れ電流が測定される。なお、電流制限回路9は、電流計11の内部抵抗である。この内部抵抗は、雑音対策上、ある程度大きなインピーダンス(例えば1kΩ)に設定せざるを得ない。このため、図5(a)の等価回路から図5(c)の等価回路に直接切り替えると、図5(a)で主容量Cに蓄積された過剰電荷により、絶縁抵抗R1に流れる電流が急増して漏れ電流の測定に支障が生じるおそれがある。そこで、本実施形態では、測定前充電と漏れ電流測定との間に放電期間を設けて、主容量Cの過剰な電荷を予め放電させている。放電方法にも種々考えられるが、ワークを搬送中に主容量Cの蓄積電荷が絶縁抵抗を介して自然放電するため、本実施形態では、この自然放電を利用して主容量Cの過剰な電荷を放電させている。   When the workpiece reaches the measurement stage 7 and the probe is brought into contact with both end electrodes of the workpiece, the equivalent circuit of FIG. 5C is formed, and the current from the power source 12 is supplied to the current limiting circuit 9 and the current. It flows through the total 11 and the insulation resistance R1, and the leak current is measured by the ammeter 11. The current limiting circuit 9 is an internal resistance of the ammeter 11. This internal resistance must be set to a somewhat large impedance (for example, 1 kΩ) for noise countermeasures. For this reason, when the equivalent circuit of FIG. 5A is directly switched to the equivalent circuit of FIG. 5C, the current flowing through the insulation resistor R1 rapidly increases due to excess charge accumulated in the main capacitor C in FIG. As a result, there is a risk that the measurement of leakage current may be hindered. Therefore, in the present embodiment, a discharge period is provided between the pre-measurement charge and the leakage current measurement, and the excessive charge of the main capacitor C is discharged in advance. Although various discharge methods are conceivable, since the accumulated charge in the main capacitor C spontaneously discharges through the insulation resistance while the work is being conveyed, in this embodiment, the excessive charge in the main capacitor C is utilized using this natural discharge. Is discharged.

図6は測定前充電ステージ10と測定ステージ7での充電および漏れ電流測定のタイミング図である。搬送テーブル3はワーク収納孔4の1間隔分ずつ間欠的に回転動作を行う。時刻t1でワークが測定前充電ステージ10に到達すると、同ステージのプローブが上昇してワークの両端電極に当接し(時刻t2)、ワークの主容量Cが充電される(時刻t2〜t3)。   FIG. 6 is a timing chart of charging and leakage current measurement in the pre-measurement charging stage 10 and the measurement stage 7. The transfer table 3 rotates intermittently for each interval of the work storage holes 4. When the workpiece reaches the pre-measurement charging stage 10 at time t1, the probe of the same stage rises and comes into contact with both end electrodes of the workpiece (time t2), and the main capacity C of the workpiece is charged (time t2 to t3).

ワークの充電が終了すると、プローブが下降して主容量Cの放電動作が始まる。その後、ワークの搬送が行われる(時刻t4〜t5)。   When the charging of the workpiece is completed, the probe descends and the discharging operation of the main capacity C starts. Thereafter, the workpiece is conveyed (time t4 to t5).

時刻t5になると、ワークは測定ステージ7に到達して、同ステージのプローブが上昇してワークの両端電極に当接して、漏れ電流測定が行われる(時刻t6〜t7)。   At time t5, the workpiece reaches the measurement stage 7, the probe of the same stage rises and contacts both end electrodes of the workpiece, and leakage current measurement is performed (time t6 to t7).

上述した図2(a)〜図2(c)は、図5(a)〜図5(c)からスイッチSW2、電流計11および誘電吸収因子Dを省略した回路になっている。スイッチSW2と電流計11は回路の動作に影響しないため、省略している。また、誘電吸収因子Dを省略した理由は、測定前充電ステージ10で充電を行う時点では、すでに誘電吸収因子Dは十分に充電されており、誘電吸収因子Dに流れる電流を無視できるためである。   2 (a) to 2 (c) described above are circuits in which the switch SW2, the ammeter 11 and the dielectric absorption factor D are omitted from FIGS. 5 (a) to 5 (c). The switch SW2 and the ammeter 11 are omitted because they do not affect the operation of the circuit. The reason why the dielectric absorption factor D is omitted is that the dielectric absorption factor D is already sufficiently charged at the time of charging at the pre-measurement charging stage 10 and the current flowing through the dielectric absorption factor D can be ignored. .

図2(a)の等価回路から以下の(1)式が成り立つ。
V2=E{R1/(R1+R2)} …(1)
The following expression (1) is established from the equivalent circuit of FIG.
V2 = E {R1 / (R1 + R2)} (1)

図2(c)の等価回路から以下の(2)式が成り立つ。
V3=E{R1/(R1+R3)} …(2)
The following equation (2) is established from the equivalent circuit of FIG.
V3 = E {R1 / (R1 + R3)} (2)

図2(b)において、放電時間をtとすると、以下の(3)式が成り立つ。
V=V2e−t/CR1 …(3)
In FIG. 2B, when the discharge time is t, the following equation (3) is established.
V = V2e- t / CR1 (3)

V=V3が成り立つとすると、以下の(4)式が成り立つ。
E{R1/(R1+R3)}=E{R1/(R1+R2)}e−t/CR1 …(4)
If V = V3 holds, the following equation (4) holds.
E {R1 / (R1 + R3)} = E {R1 / (R1 + R2)} e− t / CR1 (4)

上記(4)式より、放電時間tは、以下の(5)式のようになる。
t=−CR1・ln{(R1+R2)/(R1+R3)}
=CR1・ln{(R1+R3)/(R1+R2)}
=CR1{ln(R1+R3)−ln(R1+R2)}
=C{R1・ln(R1+R3)−R1・ln(R1+R2)}
=C{R1・lnR1(1+R3/R1)−R1・lnR1(1+R2/R1)}
=C[R1{lnR1+ln(1+R3/R1)}
−R1{lnR1+ln(1+R2/R1)}] …(5)
From the above equation (4), the discharge time t is expressed by the following equation (5).
t = −CR1 · ln {(R1 + R2) / (R1 + R3)}
= CR1 · ln {(R1 + R3) / (R1 + R2)}
= CR1 {ln (R1 + R3) -ln (R1 + R2)}
= C {R1 · ln (R1 + R3) −R1 · ln (R1 + R2)}
= C {R1 · lnR1 (1 + R3 / R1) −R1 · lnR1 (1 + R2 / R1)}
= C [R1 {lnR1 + ln (1 + R3 / R1)}
−R1 {lnR1 + ln (1 + R2 / R1)}] (5)

ここで、以下の(6)式が成り立つことが知られている。

Figure 0005218823
Here, it is known that the following expression (6) holds.
Figure 0005218823

(6)式において、X<<1であれば、X以降の項を無視できることから、(7)式が成り立つ。
ln(1+X)≒X …(7)
In (6), if X << 1, since a negligible X 2 and subsequent sections (7) holds.
ln (1 + X) ≈X (7)

(5)式において、コンデンサC0の絶縁抵抗R1は、電流制限回路8,8のインピーダンスR2,R3と比べて遙かに大きく、R3/R1<<1、R2/R1<<1であることから、(7)式を用いて(5)式を近似させることが可能であり、以下の(8)式が得られる。
t≒C[R1{lnR1+R3/R1}−R1{lnR1+R2/R1}]
=C{R1・lnR1+R3−R1・lnR1−R2}
=C(R3−R2) …(8)
In the equation (5), the insulation resistance R1 of the capacitor C0 is much larger than the impedances R2 and R3 of the current limiting circuits 8 and 8, and R3 / R1 << 1 and R2 / R1 << 1. , (7) can be used to approximate equation (5), and the following equation (8) is obtained.
t≈C [R1 {lnR1 + R3 / R1} -R1 {lnR1 + R2 / R1}]
= C {R1 · lnR1 + R3-R1 · lnR1-R2}
= C (R3-R2) (8)

(8)式で求められる放電期間tは、放電時間の最適値であり、必ずしも、このtと同じ値に設定しなければならないというわけではない。測定前充電ステージ10と測定ステージ7との間の放電期間は、(8)式の放電期間tにできるだけ近づくように設定される。実際には、測定前充電ステージ10や測定ステージ7でワークの両端電極にプローブを当接するタイミングを調整したり、搬送ステージの回転速度を制御することなどにより、放電期間tが(8)式に近づくような制御を行うことができる。より具体的には、放電期間tの制御は、簡易なソフトウェア制御により実現可能である。   The discharge period t obtained by the equation (8) is an optimum value of the discharge time, and does not necessarily have to be set to the same value as this t. The discharge period between the pre-measurement charging stage 10 and the measurement stage 7 is set so as to be as close as possible to the discharge period t in the equation (8). Actually, the discharge period t can be expressed by equation (8) by adjusting the timing at which the probe is brought into contact with both end electrodes of the workpiece in the pre-measurement charging stage 10 and the measurement stage 7, or by controlling the rotation speed of the transfer stage. Control that approaches is possible. More specifically, the control of the discharge period t can be realized by simple software control.

従来は、コンデンサC0の充電を行ってから漏れ電流を測定するまでに、コンデンサC0の容量CとR3との時定数CR3の2〜5倍の時間待機してからでないと精度よく漏れ電流を測定できなかったが、本実施形態では、(8)式よりCR3よりも短い時間だけ待機すればよくなり、従来よりもかなり短い時間で漏れ電流の測定を開始することができる。   Conventionally, the leakage current is measured accurately only after waiting for 2 to 5 times the time constant CR3 between the capacitance C and R3 of the capacitor C0 before the leakage current is measured after the capacitor C0 is charged. However, in this embodiment, it is only necessary to wait for a time shorter than CR3 from the equation (8), and the measurement of the leakage current can be started in a considerably shorter time than in the past.

このように、本実施形態では、まず複数の充電ステージ6に順次ワークを搬送して、ワーク内の誘電吸収因子Dを十分に充電する。その後、測定ステージ7に近接した測定前充電ステージ10にワークを搬送して、ワーク内の主容量Cをフル充電する。その後、測定ステージ7までワークを搬送する間に、主容量Cに過剰に充電した電荷を絶縁抵抗R1を介して放電する。その後、測定ステージ7にワークが到達すると漏れ電流測定を行う。測定前充電ステージ10と測定ステージ7との間の放電期間を最適化することにより、ワークに充電を開始してから漏れ電流測定を行うまでの時間を短縮でき、漏れ電流測定の効率向上が図れる。また、ワーク内に誘電吸収電流が流れなくなった状態で漏れ電流測定を行うため、漏れ電流の測定精度がよくなる。   As described above, in the present embodiment, first, the workpiece is sequentially conveyed to the plurality of charging stages 6 to sufficiently charge the dielectric absorption factor D in the workpiece. Thereafter, the work is transported to the pre-measurement charging stage 10 adjacent to the measurement stage 7, and the main capacity C in the work is fully charged. Thereafter, while the work is transported to the measurement stage 7, the charge excessively charged in the main capacitor C is discharged through the insulation resistance R1. Thereafter, when the workpiece reaches the measurement stage 7, the leakage current is measured. By optimizing the discharge period between the pre-measurement charging stage 10 and the measurement stage 7, it is possible to shorten the time from the start of charging the workpiece to the measurement of the leakage current, thereby improving the efficiency of the leakage current measurement. . Further, since the leakage current is measured in a state where the dielectric absorption current stops flowing in the workpiece, the measurement accuracy of the leakage current is improved.

上述した実施形態では、複数の充電ステージ6とは別個に、測定ステージ7に近接して測定前充電ステージ10を設ける例を説明したが、測定前充電ステージ10を別個に設ける代わりに、複数の充電ステージ6のうち一つを測定テーブルに近接配置してもよい。この場合は、測定テーブルに近接配置される充電ステージ6と測定テーブルとの間の放電期間が上述した(8)式で示す時間になるようにプローブの当接タイミングや搬送テーブル3の回転速度などを調節すればよい。   In the above-described embodiment, the example in which the pre-measurement charging stage 10 is provided in proximity to the measurement stage 7 separately from the plurality of charging stages 6 has been described, but instead of providing the pre-measurement charging stage 10 separately, a plurality of charging stages 10 are provided. One of the charging stages 6 may be arranged close to the measurement table. In this case, the contact timing of the probe, the rotation speed of the transfer table 3 and the like so that the discharge period between the charging stage 6 disposed close to the measurement table and the measurement table becomes the time indicated by the above-described equation (8). You can adjust.

上述した実施形態では、充電ステージ6を複数設置した例を説明したが、充電ステージ6が一つだけであっても、測定前充電ステージ10で充電を行う時点で誘電吸収因子Dが十分に充電されているのであれば、充電ステージ6は一つだけでよい。   In the embodiment described above, an example in which a plurality of charging stages 6 are installed has been described. However, even when there is only one charging stage 6, the dielectric absorption factor D is sufficiently charged at the time of charging at the pre-measurement charging stage 10. If so, only one charging stage 6 is required.

上述した実施形態では、搬送テーブル3の主面を水平方向に設置する例について説明したが、搬送テーブル3の主面を鉛直方向に設置したり、斜め方向に設置する場合にも本発明は適用可能である。   In the above-described embodiment, the example in which the main surface of the transfer table 3 is installed in the horizontal direction has been described. However, the present invention is also applied to the case where the main surface of the transfer table 3 is installed in the vertical direction or in the oblique direction. Is possible.

また、上述した実施形態では、ワークの両端に計2個の電極が設けられる例を説明したが、本発明は、3個以上の電極を持つワークにも適用可能である。この場合、電極の数に応じたプローブを各ステージに設置すればよい。   In the above-described embodiment, an example in which a total of two electrodes are provided at both ends of the workpiece has been described. However, the present invention can also be applied to a workpiece having three or more electrodes. In this case, a probe corresponding to the number of electrodes may be installed on each stage.

さらに、上述した実施形態では、各ステージの底面から上下方向にプローブを移動させる例を説明したが、プローブの設置場所や移動方向は任意に設定可能であり、例えば、上方と下方からプローブを移動させてワークに当接させてもよいし、搬送テーブル3の外側方向から水平または斜め方向に移動させてプローブをワークに当接させてもよい。   Furthermore, in the above-described embodiment, the example in which the probe is moved in the vertical direction from the bottom surface of each stage has been described. However, the installation location and the movement direction of the probe can be arbitrarily set, for example, the probe is moved from above and below. The probe may be brought into contact with the workpiece, or the probe may be brought into contact with the workpiece by moving horizontally or obliquely from the outer side of the transfer table 3.

上述した実施形態では、各充電ステージにてプローブを上下に移動させてワークに当接させるか否かを切り替える例を説明したが、プローブを上下に移動させるのには時間がかかるため、ワークの容量が小さい場合には、放電期間が短いことから、プローブがワークに当接するまでに放電期間が経過してしまい、最適な放電期間を設定できないおそれがある。そこで、例えば測定前ステージ10を設けずに測定ステージ7において、プローブの位置を固定にして、プローブとワークとの間に高速のスイッチ(例えば、FET)からなる通電装置を設置して、このスイッチをオン/オフさせて、プローブとワークの導通/遮断を切り替えてもよい。スイッチをオン/オフするタイミングを調整することで、放電期間tを最適化できる。このような通電装置は初期充電ステージ6に設けてもよい。   In the above-described embodiment, an example in which the probe is moved up and down at each charging stage to switch whether to contact the workpiece has been described. However, since it takes time to move the probe up and down, When the capacity is small, since the discharge period is short, the discharge period elapses until the probe comes into contact with the workpiece, and the optimum discharge period may not be set. Therefore, for example, in the measurement stage 7 without providing the pre-measurement stage 10, the position of the probe is fixed, and an energizing device including a high-speed switch (for example, FET) is installed between the probe and the work, and this switch May be switched on / off to switch between conduction / interruption of the probe and the workpiece. By adjusting the timing for turning on / off the switch, the discharge period t can be optimized. Such an energizing device may be provided in the initial charging stage 6.

また、上述した実施形態では、搬送テーブル3を用いてワークを搬送させる例を説明したが、無端ベルトを用いてワークを搬送してもよい。   Moreover, although embodiment mentioned above demonstrated the example which conveys a workpiece | work using the conveyance table 3, you may convey a workpiece | work using an endless belt.

コンデンサC0の充電時間と誘電吸収電流との関係を示す図。The figure which shows the relationship between the charge time of the capacitor | condenser C0, and a dielectric absorption current. (a)は誘電吸収因子Dに誘電吸収電流が流れない状態での測定前充電ステージの充電動作を示す等価回路図、(b)は測定前充電ステージから測定ステージ7までコンデンサC0が搬送される間の放電動作を示す等価回路図、c)は測定ステージ7での測定動作を示す等価回路図。(A) is an equivalent circuit diagram showing the charging operation of the pre-measurement charging stage in a state where the dielectric absorption current does not flow through the dielectric absorption factor D, and (b) is the capacitor C0 conveyed from the pre-measurement charging stage to the measurement stage 7. FIG. 7 is an equivalent circuit diagram showing a measurement operation in the measurement stage 7; 本発明の一実施形態に係るコンデンサC0漏れ電流測定装置の平面図。The top view of the capacitor | condenser C0 leakage current measuring apparatus which concerns on one Embodiment of this invention. 複数の充電ステージ6のそれぞれでワークを充電する場合の等価回路図。The equivalent circuit diagram in the case of charging a workpiece at each of a plurality of charging stages 6. (a)は測定前充電ステージ10でワークの充電を行う場合の等価回路図、(b)は測定前充電ステージ10から測定ステージ7にワークが搬送される間の放電動作を示す等価回路図、(c)は測定ステージ7でワークの漏れ電流を測定する場合の等価回路図。(A) is an equivalent circuit diagram in the case where the workpiece is charged in the pre-measurement charging stage 10; (b) is an equivalent circuit diagram showing a discharging operation while the workpiece is conveyed from the pre-measurement charging stage 10 to the measurement stage 7; (C) is an equivalent circuit diagram when measuring the leakage current of the workpiece at the measurement stage 7. 測定前充電ステージ10と測定ステージ7での充電および漏れ電流測定のタイミング図。FIG. 6 is a timing chart of charging and leakage current measurement at the pre-measurement charging stage 10 and the measurement stage 7; 漏れ電流測定に関わる一般的なコンデンサC0の等価回路図。The equivalent circuit diagram of the general capacitor | condenser C0 in connection with a leakage current measurement. コンデンサC0に規定電圧を印加して充電を行った場合のコンデンサC0に流れる電流の時間変化を示す図。The figure which shows the time change of the electric current which flows into the capacitor | condenser C0 at the time of charging by applying a specified voltage to the capacitor | condenser C0. 従来の漏れ電流測定装置の平面図。The top view of the conventional leakage current measuring apparatus.

符号の説明Explanation of symbols

1 リニアフィーダ
2 分離供給部
3 搬送テーブル
4 ワーク収納孔
5 中心軸
6 充電ステージ
7 測定ステージ
8,9 電流制限回路
10 測定前充電ステージ
11 電流計
DESCRIPTION OF SYMBOLS 1 Linear feeder 2 Separation supply part 3 Conveyance table 4 Work accommodation hole 5 Center axis 6 Charging stage 7 Measurement stage 8, 9 Current limiting circuit 10 Pre-measurement charging stage 11 Ammeter

Claims (14)

被測定対象であるコンデンサに直流電圧を印加して漏れ電流を測定する漏れ電流測定方法において、
前記コンデンサ内部の誘電吸収因子を含めて、前記コンデンサを充電するステップと、
前記コンデンサの充電後の両端電位差が漏れ電流測定時の前記コンデンサの両端電位差に等しくなるまでの所定期間、前記コンデンサ内部の絶縁抵抗を介して、前記コンデンサに蓄積された電荷を放電させるステップと、
前記所定期間後に前記絶縁抵抗に流れる漏れ電流を測定するステップと、を備え、
前記コンデンサを充電するステップで使用される第1の電流制限回路の充電完了時のインピーダンスは、前記コンデンサの漏れ電流測定時に使用される第2の電流制限回路のインピーダンスよりも小さく設定され
前記漏れ電流測定時の前記コンデンサの両端電位差は、前記コンデンサに漏れ電流測定用のプローブを接続したときに前記コンデンサに充電電流が流れない電圧であることを特徴とするコンデンサ漏れ電流測定方法。
In a leakage current measurement method for measuring a leakage current by applying a DC voltage to a capacitor to be measured,
Charging the capacitor, including a dielectric absorption factor inside the capacitor;
Discharging a charge accumulated in the capacitor through an insulation resistance inside the capacitor for a predetermined period until a potential difference between both ends of the capacitor after charging becomes equal to a potential difference between both ends of the capacitor at the time of leakage current measurement;
Measuring a leakage current flowing through the insulation resistance after the predetermined period,
The impedance at the completion of charging of the first current limiting circuit used in the step of charging the capacitor is set smaller than the impedance of the second current limiting circuit used when measuring the leakage current of the capacitor ,
The capacitor leakage current measuring method , wherein the potential difference between both ends of the capacitor at the time of measuring the leakage current is a voltage at which a charging current does not flow through the capacitor when a leakage current measuring probe is connected to the capacitor.
前記所定期間は、前記コンデンサの容量と、前記第1の電流制限回路の充電完了時のインピーダンスと、漏れ電流測定時の前記第2の電流制限回路のインピーダンスとに基づいて最適化されることを特徴する請求項1に記載のコンデンサ漏れ電流測定方法。   The predetermined period is optimized based on the capacitance of the capacitor, the impedance when the charging of the first current limiting circuit is completed, and the impedance of the second current limiting circuit when measuring the leakage current. The capacitor leakage current measuring method according to claim 1, wherein the capacitor leakage current is measured. 前記所定期間をt、前記コンデンサの主容量をC、前記第1の電流制限回路の充電完了時のインピーダンスをR2、前記第2の電流制限回路のインピーダンスをR3とすると、t=C(R3−R2)が成り立つように前記所定期間を最適化することを特徴とする請求項2に記載のコンデンサ漏れ電流測定方法。   Assuming that the predetermined period is t, the main capacitance of the capacitor is C, the impedance at the completion of charging of the first current limiting circuit is R2, and the impedance of the second current limiting circuit is R3, t = C (R3− 3. The capacitor leakage current measuring method according to claim 2, wherein the predetermined period is optimized so that R2) holds. 前記コンデンサを充電するステップは、前記コンデンサの誘電吸収因子に誘電吸収電流が流れなくなるまで、前記コンデンサへの充電と充電中断とを交互に少なくとも一回ずつ行うステップを含むことを特徴とする請求項1乃至3のいずれかに記載のコンデンサ漏れ電流測定方法。   The step of charging the capacitor includes the step of alternately charging the capacitor and interrupting charging at least once until no dielectric absorption current flows through the dielectric absorption factor of the capacitor. 4. The capacitor leakage current measuring method according to any one of 1 to 3. 前記コンデンサを充電するステップは、前記コンデンサを前記所定期間放電させる直前に、前記コンデンサの主容量を充電するステップをさらに含むことを特徴とする請求項4に記載のコンデンサ漏れ電流測定方法。 5. The capacitor leakage current measuring method according to claim 4, wherein the step of charging the capacitor further includes a step of charging a main capacity of the capacitor immediately before discharging the capacitor for the predetermined period . 前記コンデンサを搬送する搬送手段の搬送経路に沿って、少なくとも一つの初期充電ステージと、測定前充電ステージと、測定ステージとがそれぞれ間隔を隔てて順に配置され、
前記コンデンサへの充電と充電中断とを交互に少なくとも一回ずつ行うステップは、前記初期充電ステージを用いて行われ、
前記コンデンサを前記所定期間放電させる直前に前記コンデンサの主容量を充電するステップは、前記測定前充電ステージを用いて行われ、
前記絶縁抵抗に流れる漏れ電流を測定するステップは、前記測定ステージを用いて行われ、
前記測定前充電ステージと前記測定ステージとの間の放電期間が前記所定期間に設定されることを特徴とする請求項5に記載のコンデンサ漏れ電流測定方法。
Along the transport path of the transport means for transporting the capacitor, at least one initial charging stage, a pre-measurement charging stage, and a measurement stage are sequentially arranged at intervals,
The step of alternately charging the capacitor and interrupting charging at least once is performed using the initial charging stage,
The step of charging the main capacitance of the capacitor immediately before discharging the capacitor for the predetermined period is performed using the pre-measurement charging stage,
The step of measuring the leakage current flowing through the insulation resistance is performed using the measurement stage,
6. The capacitor leakage current measuring method according to claim 5, wherein a discharging period between the pre-measurement charging stage and the measuring stage is set to the predetermined period.
前記コンデンサを搬送する搬送手段の搬送経路に沿って、少なくとも一つの初期充電ステージと測定ステージとがそれぞれ間隔を隔てて順に配置され、
前記コンデンサへの充電と充電中断とを交互に少なくとも一回ずつ行うステップは、前記初期充電ステージを用いて行われ、
前記コンデンサを前記所定期間放電させる直前に前記コンデンサの主容量を充電するステップと前記絶縁抵抗に流れる漏れ電流を測定するステップとは、前記測定ステージを用いて行われ、
前記測定ステージにおいて、前記コンデンサの主容量を充電してから前記絶縁抵抗に流れる漏れ電流を測定するまでの放電期間が前記所定期間に設定され、
少なくとも前記測定ステージには、前記コンデンサへの通電および通電遮断を切替可能な通電手段が設けられ、
前記測定ステージでは、前記通電手段にて前記コンデンサの電極に通電した状態で前記コンデンサへの充電を行い、前記通電手段にて前記コンデンサの電極への通電を遮断するタイミングを調整することにより前記所定期間を調整し、前記所定期間の経過後に前記絶縁抵抗に流れる漏れ電流を測定することを特徴とする請求項5に記載のコンデンサ漏れ電流測定方法。
Along the transport path of the transport means for transporting the capacitor, at least one initial charging stage and a measurement stage are sequentially arranged at intervals,
The step of alternately charging the capacitor and interrupting charging at least once is performed using the initial charging stage,
The step of charging the main capacitance of the capacitor immediately before discharging the capacitor for the predetermined period and the step of measuring the leakage current flowing through the insulation resistance are performed using the measurement stage,
In the measurement stage, a discharge period from charging the main capacitance of the capacitor to measuring a leakage current flowing through the insulation resistance is set to the predetermined period,
At least the measurement stage is provided with energization means capable of switching between energization and deenergization of the capacitor,
In the measurement stage, the capacitor is charged in a state where the electrode of the capacitor is energized by the energization means, and the predetermined timing is adjusted by adjusting a timing at which the energization of the capacitor electrode is interrupted by the energization means. 6. The capacitor leakage current measuring method according to claim 5, wherein a period is adjusted, and a leakage current flowing through the insulation resistance is measured after elapse of the predetermined period.
被測定対象であるコンデンサに直流電圧を印加して漏れ電流を測定する漏れ電流測定装置において、
前記コンデンサ内部の誘電吸収因子を含めて、前記コンデンサを充電する充電手段と、
前記コンデンサの充電後の両端電位差が漏れ電流測定時の前記コンデンサの両端電位差に等しくなるまでの所定期間、前記コンデンサ内部の絶縁抵抗を介して、前記コンデンサに蓄積された電荷を放電させる放電手段と、
前記所定期間後に前記絶縁抵抗に流れる漏れ電流を測定する漏れ電流測定手段と、を備え、
前記充電手段は、前記コンデンサに直列接続される第1の電流制限回路を有し、
前記測定手段は、前記コンデンサに直列接続される第2の電流制限回路を有し、
前記第1の電流制限回路の充電完了時のインピーダンスは、前記第2の電流制限回路のインピーダンスよりも小さく設定され
前記漏れ電流測定時の前記コンデンサの両端電位差は、前記コンデンサに漏れ電流測定用のプローブを接続したときに前記コンデンサに充電電流が流れない電圧であることを特徴とするコンデンサ漏れ電流測定装置。
In a leakage current measuring device that measures a leakage current by applying a DC voltage to a capacitor to be measured,
Charging means for charging the capacitor, including a dielectric absorption factor inside the capacitor;
Discharging means for discharging the charge accumulated in the capacitor through an insulation resistance inside the capacitor for a predetermined period until the potential difference between both ends of the capacitor after charging becomes equal to the potential difference between both ends of the capacitor at the time of leakage current measurement; ,
A leakage current measuring means for measuring a leakage current flowing through the insulation resistance after the predetermined period,
The charging means has a first current limiting circuit connected in series to the capacitor,
The measuring means has a second current limiting circuit connected in series to the capacitor,
The impedance at the completion of charging of the first current limiting circuit is set smaller than the impedance of the second current limiting circuit ,
The capacitor leakage current measuring device, wherein the potential difference between both ends of the capacitor at the time of measuring the leakage current is a voltage at which a charging current does not flow through the capacitor when a probe for measuring leakage current is connected to the capacitor.
前記所定期間は、前記コンデンサの容量と、前記第1の電流制限回路の充電完了時のインピーダンスと、漏れ電流測定時の前記第2の電流制限回路のインピーダンスとに基づいて最適化されることを特徴する請求項8に記載のコンデンサ漏れ電流測定装置。   The predetermined period is optimized based on the capacitance of the capacitor, the impedance when the charging of the first current limiting circuit is completed, and the impedance of the second current limiting circuit when measuring the leakage current. 9. The capacitor leakage current measuring apparatus according to claim 8, wherein 前記所定期間をt、前記コンデンサの主容量をC、前記第1の電流制限回路の充電完了時のインピーダンスをR2、前記第2の電流制限回路のインピーダンスをR3とすると、t=C(R3−R2)が成り立つように前記所定期間を最適化することを特徴とする請求項9に記載のコンデンサ漏れ電流測定装置。   Assuming that the predetermined period is t, the main capacitance of the capacitor is C, the impedance at the completion of charging of the first current limiting circuit is R2, and the impedance of the second current limiting circuit is R3, t = C (R3− 10. The capacitor leakage current measuring device according to claim 9, wherein the predetermined period is optimized so that R2) holds. 前記充電手段は、前記コンデンサの誘電吸収因子に誘電吸収電流が流れなくなるまで、前記コンデンサへの充電と充電中断とを交互に少なくとも一回ずつ行う初期充電手段を有することを特徴とする請求項8乃至10のいずれかに記載のコンデンサ漏れ電流測定装置。   9. The charging unit according to claim 8, further comprising an initial charging unit that alternately charges and charges the capacitor at least once until a dielectric absorption current does not flow through the dielectric absorption factor of the capacitor. The capacitor | condenser leakage current measuring apparatus in any one of thru | or 10. 前記充電手段は、前記コンデンサを前記所定期間放電させる直前に、前記コンデンサの主容量を充電する測定前充電手段を有することを特徴とする請求項11に記載のコンデンサ漏れ電流測定装置。 12. The capacitor leakage current measuring device according to claim 11, wherein the charging unit includes a pre-measurement charging unit that charges a main capacity of the capacitor immediately before the capacitor is discharged for the predetermined period . 前記コンデンサを搬送する搬送手段の搬送経路に沿って、少なくとも一つの初期充電ステージと、測定前充電ステージと、測定ステージとがそれぞれ間隔を隔てて順に配置され、
前記初期充電手段は、前記初期充電ステージを用いて前記コンデンサへの充電と充電中断とを交互に少なくとも一回ずつ行い、
前記測定前充電手段は、前記測定前充電ステージを用いて前記コンデンサを前記所定期間放電させる直前に前記コンデンサの主容量を充電し、
前記漏れ電流測定手段は、前記測定ステージを用いて前記絶縁抵抗に流れる漏れ電流を測定し、
前記測定前充電ステージと前記測定ステージとの間の放電期間が前記所定期間に設定されることを特徴とする請求項12に記載のコンデンサ漏れ電流測定装置。
Along the transport path of the transport means for transporting the capacitor, at least one initial charging stage, a pre-measurement charging stage, and a measurement stage are sequentially arranged at intervals,
The initial charging means alternately performs charging and interruption of the capacitor at least once using the initial charging stage,
The pre-measurement charging means charges the main capacity of the capacitor immediately before discharging the capacitor for the predetermined period using the pre-measurement charging stage,
The leakage current measuring means measures a leakage current flowing through the insulation resistance using the measurement stage,
The capacitor leakage current measuring device according to claim 12, wherein a discharge period between the pre-measurement charging stage and the measurement stage is set to the predetermined period.
前記コンデンサを搬送する搬送手段の搬送経路に沿って、少なくとも一つの初期充電ステージと測定ステージとがそれぞれ間隔を隔てて順に配置され、
前記初期充電手段は、前記初期充電ステージを用いて前記コンデンサへの充電と充電中断とを交互に少なくとも一回ずつ行い、
前記測定前充電手段は、前記測定ステージを用いて前記コンデンサの主容量を充電し、 前記漏れ電流測定手段は、前記測定ステージを用いて前記コンデンサを前記所定期間放電させた後に前記絶縁抵抗に流れる漏れ電流を測定し、
前記測定ステージにおいて、前記コンデンサの主容量を充電してから前記絶縁抵抗に流れる漏れ電流を測定するまでの放電期間が前記所定期間に設定され、
少なくとも前記測定ステージは、前記コンデンサへの通電および通電遮断を切替可能な通電手段をさらに備え、
前記測定ステージでは、前記通電手段にて前記コンデンサの電極に通電した状態で前記コンデンサへの充電を行い、前記通電手段にて前記コンデンサの電極への通電を遮断するタイミングを調整することにより前記所定期間を調整し、前記所定期間の経過後に前記絶縁抵抗を流れる漏れ電流を測定することを特徴とする請求項12に記載のコンデンサ漏れ電流測定装置。
Along the transport path of the transport means for transporting the capacitor, at least one initial charging stage and a measurement stage are sequentially arranged at intervals,
The initial charging means alternately performs charging and interruption of the capacitor at least once using the initial charging stage,
The pre-measurement charging unit charges the main capacity of the capacitor using the measurement stage, and the leakage current measurement unit flows to the insulation resistance after discharging the capacitor for the predetermined period using the measurement stage. Measure the leakage current,
In the measurement stage, a discharge period from charging the main capacitance of the capacitor to measuring a leakage current flowing through the insulation resistance is set to the predetermined period,
At least the measurement stage further includes energization means capable of switching energization and deenergization to the capacitor,
In the measurement stage, the capacitor is charged in a state where the electrode of the capacitor is energized by the energization means, and the predetermined timing is adjusted by adjusting a timing at which the energization of the capacitor electrode is interrupted by the energization means. 13. The capacitor leakage current measuring device according to claim 12, wherein a period is adjusted and a leakage current flowing through the insulation resistance is measured after elapse of the predetermined period.
JP2008091260A 2008-03-31 2008-03-31 Capacitor leakage current measuring method and capacitor leakage current measuring apparatus Active JP5218823B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008091260A JP5218823B2 (en) 2008-03-31 2008-03-31 Capacitor leakage current measuring method and capacitor leakage current measuring apparatus
TW98107864A TWI418808B (en) 2008-03-31 2009-03-11 Capacitor leakage current measurement method and capacitor leakage measuring device
CN 200910132515 CN101551430B (en) 2008-03-31 2009-03-31 Method and apparatus for measuring capacitor leakage current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091260A JP5218823B2 (en) 2008-03-31 2008-03-31 Capacitor leakage current measuring method and capacitor leakage current measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009244116A JP2009244116A (en) 2009-10-22
JP5218823B2 true JP5218823B2 (en) 2013-06-26

Family

ID=41155780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091260A Active JP5218823B2 (en) 2008-03-31 2008-03-31 Capacitor leakage current measuring method and capacitor leakage current measuring apparatus

Country Status (3)

Country Link
JP (1) JP5218823B2 (en)
CN (1) CN101551430B (en)
TW (1) TWI418808B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180053769A (en) * 2013-12-27 2018-05-23 가부시키가이샤 니콘 Imaging unit and imaging device
JP6390355B2 (en) * 2014-11-06 2018-09-19 オムロン株式会社 Power supply apparatus and power supply method
CN106655321B (en) * 2016-10-10 2017-11-14 东南大学 Electrolytic capacitor leakage current/insulation measurement instrument charge and discharge device and method
CN108802554B (en) * 2018-06-13 2021-05-11 中车株洲电力机车有限公司 Capacitor leakage abnormity detection method and system and computer equipment
JP7243175B2 (en) * 2018-12-20 2023-03-22 株式会社村田製作所 Apparatus for Determining Quality of Multilayer Ceramic Capacitor and Method for Determining Quality Thereof
CN110687467A (en) * 2019-11-13 2020-01-14 珠海冠宇电池有限公司 Method for detecting leakage current of lithium battery
CN110987172B (en) * 2019-12-18 2020-10-30 扬州天润传感技术有限公司 Photosensitive sensor performance test instrument
US11656257B2 (en) * 2020-01-28 2023-05-23 Kioxia Corporation Systems and methods for PLP capacitor health check
US11448680B2 (en) 2020-03-31 2022-09-20 KYOCERA AVX Components Corporation Screening method for electrolytic capacitors that maintains individual capacitor unit identity
CN112122178A (en) * 2020-08-27 2020-12-25 惠州亿纬锂能股份有限公司 Composite power supply screening device and screening method
JP7449581B2 (en) 2021-06-28 2024-03-14 株式会社 東京ウエルズ Capacitor measuring device and capacitor measuring method
CN116699463B (en) * 2023-07-28 2024-02-06 珠海禅光科技有限公司 MLCC capacitor leakage current measuring method, device, control device and medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821905B1 (en) * 1969-06-26 1973-07-02
JPH10115651A (en) * 1996-08-20 1998-05-06 Nec Corp Inspection method for leak current characteristic of capacitor
JP3077122B2 (en) * 1998-06-22 2000-08-14 株式会社村田製作所 Capacitor insulation resistance measurement method
JP2001215247A (en) * 2000-01-31 2001-08-10 Soronju Japan:Kk Leakage current measuring instrument
JP2001257136A (en) * 2000-03-10 2001-09-21 Matsushita Electric Ind Co Ltd Device for measuring leakage current in chip capacitor
JP4167872B2 (en) * 2001-10-04 2008-10-22 株式会社日立産機システム Leakage current monitoring device and monitoring system therefor
CN2526855Y (en) * 2001-12-29 2002-12-18 神达电脑股份有限公司 Aid for measuring leak current of capacitor
TWI269041B (en) * 2004-03-09 2006-12-21 Nanya Technology Corp A test key for detecting leakage current between deep trench capacitors
JP2006349424A (en) * 2005-06-14 2006-12-28 Toyoji Ahei System and method for detecting leak current
TWI289675B (en) * 2005-10-04 2007-11-11 Via Tech Inc Apparatus and method of measuring leakage current values of capacitors
CN2844931Y (en) * 2005-10-10 2006-12-06 威盛电子股份有限公司 Device for measuring leakage current value of capacitor

Also Published As

Publication number Publication date
CN101551430B (en) 2012-03-07
TW200951455A (en) 2009-12-16
TWI418808B (en) 2013-12-11
CN101551430A (en) 2009-10-07
JP2009244116A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5218823B2 (en) Capacitor leakage current measuring method and capacitor leakage current measuring apparatus
US10229819B2 (en) Plasma processing apparatus and probe apparatus
KR100329165B1 (en) How to discharge work material from electrostatic chuck
US8149562B2 (en) System for decharging a wafer or substrate after dechucking from an electrostatic chuck
JP2001298073A (en) Method and device for dechucking work piece from electrostatic chuck
JP2014115283A5 (en)
JP5574962B2 (en) Plasma processing apparatus and plasma processing method
KR20150136481A (en) Insulation inspection apparatus and insulation inspection method
JPWO2002059954A1 (en) Plasma processing apparatus and plasma processing method
JP4484883B2 (en) Method for treating adsorbed material
TW201447334A (en) Substrate inspecting apparatus, substrate inspecting method and jig for inspecting substrate
KR20160078881A (en) Charging method and charging device
JP2009025187A (en) Inspection apparatus, probe card, and inspection method
JP5957287B2 (en) Power supply device
KR101024892B1 (en) Condenser leakage current measuring method and condenser leakage current measuring apparatus
KR20190060985A (en) Electrolytic treatment jig and electrolytic treatment method
US20160059337A1 (en) Electrical discharge machining device, electrical discharge machining method, and design method
WO2002067410A1 (en) Discharge pulse generator
JP3077122B2 (en) Capacitor insulation resistance measurement method
JPH1140661A (en) Measuring method for quantity of residual charge and judging method for its condition of movement
JP3458548B2 (en) Work potential measurement method
JP6165210B2 (en) Machining power supply for wire electrical discharge machining equipment
KR101433996B1 (en) Plasma processing system esc high voltage control
JP4579206B2 (en) Detachment state determination method and vacuum processing apparatus
JP6230481B2 (en) Multi-wire electric discharge machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5218823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250