JP5217477B2 - Control device for voltage type PWM inverter - Google Patents

Control device for voltage type PWM inverter Download PDF

Info

Publication number
JP5217477B2
JP5217477B2 JP2008030082A JP2008030082A JP5217477B2 JP 5217477 B2 JP5217477 B2 JP 5217477B2 JP 2008030082 A JP2008030082 A JP 2008030082A JP 2008030082 A JP2008030082 A JP 2008030082A JP 5217477 B2 JP5217477 B2 JP 5217477B2
Authority
JP
Japan
Prior art keywords
carrier frequency
control
pwm
acceleration
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008030082A
Other languages
Japanese (ja)
Other versions
JP2009194950A (en
Inventor
邦朗 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008030082A priority Critical patent/JP5217477B2/en
Publication of JP2009194950A publication Critical patent/JP2009194950A/en
Application granted granted Critical
Publication of JP5217477B2 publication Critical patent/JP5217477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電動機を可変速駆動する電圧型PWMインバータに係り、特に速度指令に応じてPWMキャリア周波数を切換えるPWMインバータの制御装置に関する。   The present invention relates to a voltage-type PWM inverter that drives a motor at a variable speed, and more particularly to a PWM inverter control device that switches a PWM carrier frequency in accordance with a speed command.

図3に電圧型PWMインバータを用いた可変速駆動装置の例を示す。PWM制御は、出力電圧の振幅Vに比例し、かつ出力周波数と同一周波数Fのそれぞれ120度ずつずれた3相の正弦波信号Vu*、Vv*、Vw*を発生させ、これらを三角波などのキャリア信号fcと比較器で比較して、インバータの主回路を構成するパワーデバイスIGBTなどのスイッチングのタイミングを決めている。 FIG. 3 shows an example of a variable speed driving device using a voltage type PWM inverter. The PWM control generates three-phase sine wave signals Vu * , Vv * , and Vw * that are proportional to the amplitude V of the output voltage and shifted by 120 degrees at the same frequency F as the output frequency. The carrier signal fc is compared with a comparator to determine the switching timing of the power device IGBT or the like constituting the main circuit of the inverter.

このPWMインバータにおけるキャリア周波数fcは、主回路素子のスイッチングの頻度を決める要素であり、スイッチング損失および素子寿命に大きく影響する。一方、キャリア周波数を切り換えることにより付加価値を設けた手法がある。例えば、IGBTのスイッチングロスを低減させるための手法として、単純にキャリア周波数を下げる方法や、主回路のIGBTの3アームのうちのある1アームのスイッチングを休ませる手法(2アーム制御)などがある(例えば、特許文献1参照)。   The carrier frequency fc in the PWM inverter is an element that determines the switching frequency of the main circuit element, and greatly affects the switching loss and the element life. On the other hand, there is a technique that provides added value by switching the carrier frequency. For example, as a method for reducing the switching loss of the IGBT, there are a method of simply lowering the carrier frequency and a method of resting switching of one of the three arms of the IGBT of the main circuit (two-arm control). (For example, refer to Patent Document 1).

また、スイッチングの際の上下アームの短絡を防止するためにデッドタイムを設けるが、このデッドタイムの影響による電圧制御精度の低減を抑制するためにキャリア周波数を下げる手法もある。
特開平5−316744号公報
A dead time is provided in order to prevent the upper and lower arms from being short-circuited at the time of switching, but there is also a method of lowering the carrier frequency in order to suppress a reduction in voltage control accuracy due to the influence of the dead time.
JP-A-5-316744

電圧型PWMインバータをサーボモータの駆動装置に適用した場合、サーボ系のドライバには、主に以下の運転パターンがあることが一般的なインバータと異なる。   When a voltage type PWM inverter is applied to a servo motor drive device, a servo driver differs from a general inverter in that it mainly has the following operation pattern.

(a)短時間・高トルク(大電流)での加減速運転
(b)停止状態での高トルク制御(当て止めや保圧)
特に、(b)の用途では一部の主回路素子に電流が集中するため、熱集中による主回路素子の破壊や寿命の低減に繋がる。
(A) Acceleration / deceleration operation for a short time with high torque (large current) (b) High torque control (stopping and holding pressure) while stopped
In particular, in the application (b), current concentrates on some main circuit elements, which leads to destruction of the main circuit elements due to heat concentration and a reduction in life.

これら運転パターンにおける対策として、以下の方法が考えられる。   The following methods can be considered as countermeasures in these operation patterns.

(1)停止状態での電流耐量を基準として、通常より枠(電流定格)の大きい主回路素子を選定する。   (1) A main circuit element having a larger frame (current rating) than usual is selected based on the current withstand capability in a stopped state.

(2)キャリア周波数を低くして、適用する。   (2) Apply by lowering the carrier frequency.

しかし、(1)についてはコストが上がってしまうことが問題になる。また、(2)については、キャリア周波数を下げることは制御の応答性の低下に繋がるため、特にサーボ系では加減速時のトルクの応答性が重要であるため、適用していない。   However, (1) has a problem that the cost increases. Also, (2) is not applied because lowering the carrier frequency leads to lower control responsiveness, and particularly in the servo system, torque responsiveness during acceleration / deceleration is important.

また、第3の対策として、停止状態での高トルク制御時のみキャリアを下げる方法が考えられるが、停止状態からの加速時に瞬時にキャリア周波数は切り替わらないので(加速開始の判定が必要なので)、停止状態からの加速特性に問題が生じてしまうことになる。   As a third countermeasure, a method of lowering the carrier only at the time of high torque control in the stopped state can be considered, but the carrier frequency does not change instantaneously at the time of acceleration from the stopped state (because it is necessary to determine acceleration start) This will cause a problem in the acceleration characteristics from the stop state.

本発明の目的は、電流容量の大きい主回路素子を不要にして、加減速時の応答性を高めた電圧型PWMインバータの制御装置を提供することにある。   An object of the present invention is to provide a control apparatus for a voltage-type PWM inverter that eliminates the need for a main circuit element having a large current capacity and enhances the response during acceleration / deceleration.

本発明は、前記の課題を解決するため、周波数指令(速度指令)の減速完了後に必要に応じてキャリア周波数を下げ、加速開始前にキャリア周波数を元に戻すキャリア周波数切換制御を行い、この切換制御には運転パターンで決まる加減速期間に必要なトルク応答を得るスケジューリング手段を設けたもので、以下の構成を特徴とする。   In order to solve the above-mentioned problem, the present invention performs carrier frequency switching control for lowering the carrier frequency as necessary after completion of deceleration of the frequency command (speed command) and returning the carrier frequency to the original state before starting the acceleration. The control is provided with scheduling means for obtaining a torque response necessary for the acceleration / deceleration period determined by the operation pattern, and has the following configuration.

(1)予め定められた運転パターンを基に電動機の速度制御を行い、PWMキャリア周波数を切換制御できるPWMインバータの制御装置であって、
前記PWMキャリア周波数の切換制御は、速度指令の減速完了後における、停止状態での高トルク制御が必要な期間はキャリア周波数を下げ、停止状態からの加速開始前にキャリア周波数を元に戻すキャリア周波数切換えを行い、
前記運転パターンに従った時刻または電動機の回転位置で決まる加減速期間に必要なトルク応答を得るスケジューリング手段を備えたことを特徴とする。
(1) A control device for a PWM inverter that performs speed control of an electric motor based on a predetermined operation pattern and can perform switching control of a PWM carrier frequency,
In the PWM carrier frequency switching control, after completion of deceleration of the speed command, the carrier frequency is lowered during the period when high torque control in the stopped state is necessary, and the carrier frequency is restored to the original state before starting acceleration from the stopped state. Switch,
There is provided scheduling means for obtaining a torque response necessary for an acceleration / deceleration period determined by a time according to the operation pattern or a rotational position of the electric motor.

(2)前記スケジューリング手段は、インバータの主回路素子のスイッチング損失による発熱量と、電動機の加減速に必要なトルクからPWMキャリア周波数の切換制御を設定することを特徴とする。   (2) The scheduling means sets the switching control of the PWM carrier frequency from the amount of heat generated by the switching loss of the main circuit element of the inverter and the torque necessary for the acceleration / deceleration of the electric motor.

以上のとおり、本発明によれば、周波数指令(速度指令)の減速完了後に必要に応じてキャリア周波数を下げ、加速開始前にキャリア周波数を元に戻すキャリア周波数切換制御を行い、この切換制御には運転パターンで決まる加減速期間に必要なトルク応答を得るスケジューリング手段を設けたため、加減速時の応答性を高めた制御ができる。   As described above, according to the present invention, after the completion of the deceleration of the frequency command (speed command), the carrier frequency is lowered as necessary, and the carrier frequency switching control for returning the carrier frequency before starting the acceleration is performed. Since the scheduling means for obtaining the torque response required during the acceleration / deceleration period determined by the operation pattern is provided, control with improved response during acceleration / deceleration can be performed.

具体的には、短時間・高トルク(大電流)での加減速運転、また、停止状態での高トルク制御が必要なサーボドライバにおいて、熱集中による主回路素子の破壊や寿命の低減を防止するための対策として、通常より枠(電流定格)の大きい主回路素子を選定する必要が無くなるため、コストダウンに繋がる。また、キャリア周波数を低くして適用することによる、加減速性能の低下を防ぐことが出来る。   Specifically, in servo drivers that require acceleration / deceleration operation for a short time with high torque (large current) and high torque control in a stopped state, destruction of the main circuit elements due to heat concentration and reduction of life are prevented. As a countermeasure for this, it becomes unnecessary to select a main circuit element having a larger frame (current rating) than usual, which leads to cost reduction. Further, it is possible to prevent the acceleration / deceleration performance from being lowered by applying the carrier frequency at a low level.

図1は、本発明の実施形態を示す電圧型PWMインバータの構成図である。この構成は、図3と同様に、V/F制御部1は周波数指令Fに比例したαβ軸の電圧Vα*、Vβ*を求め、位相検出部2は周波数指令Fの積分で位相θを求め、2相/3相変換器3は電圧Vα*、Vβ*と位相θから3相の正弦波信号Vu*、Vv*、Vw*を発生する。 FIG. 1 is a configuration diagram of a voltage type PWM inverter showing an embodiment of the present invention. In this configuration, as in FIG. 3, the V / F control unit 1 obtains αβ-axis voltages Vα * and Vβ * proportional to the frequency command F, and the phase detection unit 2 obtains the phase θ by integration of the frequency command F. The two-phase / three-phase converter 3 generates three-phase sine wave signals Vu * , Vv * , Vw * from the voltages Vα * , Vβ * and the phase θ.

PWM制御部4は、これら正弦波信号Vu*、Vv*、Vw*を三角波などのキャリア信号fcと比較してUVW相別の正弦波PWM信号を発生する比較器4Aと、キャリア信号fcを発生する信号発生器4Bと、正弦波PWM信号間にデッドタイムを形成するデッドタイム回路4Cと、この出力になる正弦波PWM信号でインバータの主回路部5のパワーデバイス(IGBTなど)のドライブ信号を発生するドライブ回路4Dで構成する。 The PWM control unit 4 compares the sine wave signals Vu * , Vv * , and Vw * with a carrier signal fc such as a triangular wave to generate a comparator 4A that generates a sine wave PWM signal for each UVW phase, and generates a carrier signal fc. A signal generator 4B for generating a signal, a dead time circuit 4C for forming a dead time between the sine wave PWM signals, and a drive signal for a power device (IGBT or the like) of the main circuit section 5 of the inverter using the sine wave PWM signal to be output The generated drive circuit 4D is configured.

この装置構成において、本実施形態では、予め設定される運転パターンを規定する時刻Tn別の周波数指令Fnとキャリア周波数指令Fcnを発生するテーブル処理部6を追加している。   In this apparatus configuration, in this embodiment, a table processing unit 6 that generates a frequency command Fn and a carrier frequency command Fcn for each time Tn that defines a preset operation pattern is added.

ここで、射出成型機やタレパン加工用のサーボモータをPWMインバータで駆動する場合、テーブル処理部6の出力を決定する運転パターンは、前記のように、(a)短時間・高トルク(大電流)での加減速運転、(b)停止状態での高トルク制御(当て止めや保圧)などの特徴がある。しかし、これらの用途では機械や製造品によって運転パターンが決められており、基本的にその繰り返し運転となり、一旦運転パターンを決めてしまえば、後で変更することはほとんど無いと言える。   Here, when driving the injection molding machine or the servomotor for the saucer pan with the PWM inverter, the operation pattern for determining the output of the table processing unit 6 is (a) short time, high torque (large current) ) Acceleration / deceleration operation, and (b) high torque control (stopping and holding pressure) in a stopped state. However, in these applications, the operation pattern is determined depending on the machine or the manufactured product, and basically the operation is repeated. Once the operation pattern is determined, it can be said that there is almost no change later.

この運転パターンによる繰り返し運転(周波数/電圧制御)において、運転パターンに従った時刻によって周波数指令Fを順次切換える制御に加えて、PWMキャリア周波数の切換え制御を行い、しかもキャリア周波数の切換えは高トルク発生に入る前に切換えておく。   In repetitive operation (frequency / voltage control) based on this operation pattern, PWM carrier frequency switching control is performed in addition to control for sequentially switching the frequency command F according to the time according to the operation pattern. Switch before entering.

図2は、テーブル処理部6に搭載する、周波数、キャリア周波数テーブルによる運転パターンの例を示す。パターン1周期間に周波数F1〜F8、キャリア周波数Fc1〜Fc8を切換える運転パターンにおいて、トルク波形に斜線部分で示す期間が、“停止状態での高トルク制御”が必要な部分とした場合、この期間では前述したように、主回路素子に電流が集中するため、熱集中による主回路素子の破壊や寿命の低減に繋がることになる。   FIG. 2 shows an example of an operation pattern based on a frequency and carrier frequency table mounted on the table processing unit 6. In the operation pattern in which the frequencies F1 to F8 and the carrier frequencies Fc1 to Fc8 are switched in one cycle of the pattern, the period indicated by the hatched portion in the torque waveform is a portion where “high torque control in a stopped state” is necessary. As described above, since current concentrates on the main circuit element, it leads to destruction of the main circuit element and reduction of life due to heat concentration.

そこで、電流集中期間のみキャリア周波数を下げれば、主回路素子のスイッチング損失を低減できるが、加減速時にキャリア周波数を下げたままでは加減速特性が悪くなってしまう。そこで、テーブル処理部6では、同じ運転パターンの繰り返し制御になるPWMインバータにおけるキャリア周波数の切換えタイミングをスケジューリングし、主回路素子に負担がかかる条件ではキャリア周波数を低くして素子の破壊や寿命低下を防ぎつつ、加減速時にはキャリア周波数を“事前に”元に戻して加減速性能の悪化を防ぐ。   Therefore, if the carrier frequency is lowered only during the current concentration period, the switching loss of the main circuit element can be reduced. However, if the carrier frequency is kept lowered during acceleration / deceleration, the acceleration / deceleration characteristics will be deteriorated. Therefore, the table processing unit 6 schedules the carrier frequency switching timing in the PWM inverter that is repeatedly controlled with the same operation pattern, and under conditions where the main circuit element is burdened, the carrier frequency is lowered to reduce the element destruction or the lifespan. While preventing acceleration / deceleration, the carrier frequency is restored to "original" in advance to prevent deterioration of acceleration / deceleration performance.

図2の例では、速度F3からF5に下げる減速期間F4にはキャリア周波数を高いままにしておくことで急減速に必要なトルク電流を確保し、速度F5の低速期間にはキャリア周波数を下げてスイッチング損失を軽減し、速度F5からF7に上げる加速期間F6にキャリア周波数を元に戻すことで急加速に必要なトルク電流を確保する。なお、速度F2の減速期間にはキャリア周波数を下げる制御を行わない。これは、該減速期間では運転パターンの初期になるため、主回路素子のスイッチング損失による発熱量がいまだ低いとしてテーブル設定されるものであり、運転パターンによって決められる。   In the example of FIG. 2, the torque frequency necessary for rapid deceleration is secured by keeping the carrier frequency high during the deceleration period F4 where the speed is decreased from F3 to F5, and the carrier frequency is decreased during the low speed period of the speed F5. The switching loss is reduced, and the torque current necessary for the rapid acceleration is secured by returning the carrier frequency to the original acceleration period F6 from the speed F5 to F7. Note that control for lowering the carrier frequency is not performed during the deceleration period of the speed F2. Since this is the initial operation pattern during the deceleration period, the heat setting due to the switching loss of the main circuit element is still set low, and is determined by the operation pattern.

なお、実施形態では、V/F制御方式のPWMインバータに適用した場合を示すが、ベクトル制御方式の可変速PWMインバータなどに適用して同等の作用効果を得ることができる。また、テーブル処理部6は、周波数指令とキャリア周波数を時刻に従って切換えるのに代えて、運転パターンが電動機の回転量(位置)で決まる場合にはその位置に従って切換えることもできる。   Although the embodiment shows a case where the present invention is applied to a V / F control type PWM inverter, it can be applied to a vector control type variable speed PWM inverter or the like to obtain the same effect. Further, instead of switching the frequency command and the carrier frequency according to the time, the table processing unit 6 can also switch according to the position when the operation pattern is determined by the rotation amount (position) of the electric motor.

本発明の実施形態を示す電圧型PWMインバータの構成図。The block diagram of the voltage type | mold PWM inverter which shows embodiment of this invention. 運転パターンの例。Example of driving pattern. 可変速駆動装置の例。An example of a variable speed drive.

符号の説明Explanation of symbols

1 V/F制御部
2 位相検出部
3 2相/3相変換器
4 PWM制御部
5 インバータの主回路部
6 テーブル処理部
1 V / F control unit 2 Phase detection unit 3 2-phase / 3-phase converter 4 PWM control unit 5 Inverter main circuit unit 6 Table processing unit

Claims (2)

予め定められた運転パターンを基に電動機の速度制御を行い、PWMキャリア周波数を切換制御できるPWMインバータの制御装置であって、
前記PWMキャリア周波数の切換制御は、速度指令の減速完了後における、停止状態での高トルク制御が必要な期間はキャリア周波数を下げ、停止状態からの加速開始前にキャリア周波数を元に戻すキャリア周波数切換えを行い、
前記運転パターンに従った時刻または電動機の回転位置で決まる加減速期間に必要なトルク応答を得るスケジューリング手段を備えたことを特徴とする電圧型PWMインバータの制御装置。
A control device for a PWM inverter that performs speed control of an electric motor based on a predetermined operation pattern, and that can switch and control a PWM carrier frequency,
In the PWM carrier frequency switching control, after completion of deceleration of the speed command, the carrier frequency is lowered during the period when high torque control in the stopped state is necessary, and the carrier frequency is restored to the original state before starting acceleration from the stopped state. Switch,
A voltage-type PWM inverter control device comprising scheduling means for obtaining a torque response necessary for an acceleration / deceleration period determined by a time according to the operation pattern or a rotational position of an electric motor.
前記スケジューリング手段は、インバータの主回路素子のスイッチング損失による発熱量と、電動機の加減速に必要なトルクからPWMキャリア周波数の切換制御を設定することを特徴とする請求項1に記載の電圧型PWMインバータの制御装置。   2. The voltage type PWM according to claim 1, wherein the scheduling means sets PWM carrier frequency switching control based on a heat generation amount due to switching loss of a main circuit element of an inverter and a torque required for acceleration / deceleration of an electric motor. Inverter control device.
JP2008030082A 2008-02-12 2008-02-12 Control device for voltage type PWM inverter Expired - Fee Related JP5217477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030082A JP5217477B2 (en) 2008-02-12 2008-02-12 Control device for voltage type PWM inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030082A JP5217477B2 (en) 2008-02-12 2008-02-12 Control device for voltage type PWM inverter

Publications (2)

Publication Number Publication Date
JP2009194950A JP2009194950A (en) 2009-08-27
JP5217477B2 true JP5217477B2 (en) 2013-06-19

Family

ID=41076471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030082A Expired - Fee Related JP5217477B2 (en) 2008-02-12 2008-02-12 Control device for voltage type PWM inverter

Country Status (1)

Country Link
JP (1) JP5217477B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549384B2 (en) * 2010-06-03 2014-07-16 日産自動車株式会社 Electric motor control device and electric motor control system
JP5549864B2 (en) * 2010-06-15 2014-07-16 株式会社Ihi Power saving drive apparatus and method for apparatus having the same load pattern
EP2584695B1 (en) 2010-06-15 2022-08-10 IHI Corporation Power-saving driving apparatus and power-saving driving method for apparatus with uniform load pattern
CN115173720A (en) * 2014-12-09 2022-10-11 江森自控科技公司 Electromagnetic compatibility filter
JP6100292B2 (en) * 2015-01-26 2017-03-22 株式会社日本製鋼所 Control method for power supply device of electric injection molding machine and power supply device
JP7363702B2 (en) * 2019-12-24 2023-10-18 トヨタ自動車株式会社 motor drive device
WO2022030290A1 (en) * 2020-08-06 2022-02-10 ローム株式会社 Motor drive device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120693U (en) * 1990-03-26 1991-12-11
JPH06233571A (en) * 1993-02-04 1994-08-19 Fuji Electric Co Ltd Method of suppressing rise of dc intermediate voltage of voltage-type inverter
JPH10164884A (en) * 1996-12-02 1998-06-19 Fuji Electric Co Ltd Inverter control apparatus
JP2001275393A (en) * 2000-03-28 2001-10-05 Meidensha Corp Static inverter device
JP3520514B2 (en) * 2001-04-18 2004-04-19 株式会社ニイガタマシンテクノ Electric injection molding machine
JP4120694B1 (en) * 2007-01-09 2008-07-16 ダイキン工業株式会社 Inverter compressor operation method and compressor drive device

Also Published As

Publication number Publication date
JP2009194950A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5217477B2 (en) Control device for voltage type PWM inverter
JP6217554B2 (en) Inverter device
JP2007097363A (en) Control method and control device of hydraulic brushless motor
CN107241047B (en) Motor drive control device
US20120286705A1 (en) Apparatus and method for controlling rotary electric machine
JP2008022678A (en) Electric motor drive unit and electric motor braking method
JP2004350491A (en) Apparatus and method for controlling inverter for driving three-phase motor
WO2009014245A1 (en) Device for controlling drive of semiconductor switching element
WO2020095802A1 (en) Drive system
JP2000270591A (en) Chopping current application controller for electric motor
JP2007135343A (en) Power converter
JP6961096B2 (en) Inverter device
KR102277350B1 (en) Method of operating an electronically commutated synchronous machine, and operating circuit
US9287807B2 (en) Apparatus and method of decreasing speed of sensorless brush less direct current (BLDC) motor
JP2019083643A5 (en)
JP7121248B2 (en) Synchronous motor control device and control method
JP6776821B2 (en) Inverter controller
JP5606899B2 (en) Drive control device for brushless motor
WO2021048999A1 (en) Electric power conversion device
JP5163047B2 (en) Electric motor control apparatus and electric motor control method
JP2005176453A (en) Driver of brushless motor
JP2006141192A (en) Inductive load drive device and inductive load drive method
JP2009278827A (en) Drive assembly
JP5303903B2 (en) Electric motor control device and control method thereof
JP2010193566A (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees