JP5215547B2 - Spatial information detection device - Google Patents

Spatial information detection device Download PDF

Info

Publication number
JP5215547B2
JP5215547B2 JP2006290353A JP2006290353A JP5215547B2 JP 5215547 B2 JP5215547 B2 JP 5215547B2 JP 2006290353 A JP2006290353 A JP 2006290353A JP 2006290353 A JP2006290353 A JP 2006290353A JP 5215547 B2 JP5215547 B2 JP 5215547B2
Authority
JP
Japan
Prior art keywords
light
target space
incident
output
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006290353A
Other languages
Japanese (ja)
Other versions
JP2008107205A (en
Inventor
史和 栗原
睦裕 山中
裕司 高田
健一 萩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006290353A priority Critical patent/JP5215547B2/en
Publication of JP2008107205A publication Critical patent/JP2008107205A/en
Application granted granted Critical
Publication of JP5215547B2 publication Critical patent/JP5215547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象空間に光を投光するとともに対象空間からの光を受光し、投光した光に対する受光した光の変化から対象空間に関する空間情報を検出する空間情報の検出装置に関するものである。   The present invention relates to a spatial information detection device for projecting light into a target space, receiving light from the target space, and detecting spatial information regarding the target space from a change in the received light with respect to the projected light. .

従来から、対象空間における物体の有無、媒質の透過率、物体の位置、物体までの距離などの空間情報を検出するために、対象空間に光を投光するとともにその反射光を受光し、対象空間に投光した光と受光した光との強度変化や位相変化を検出する技術が知られている。   Conventionally, in order to detect spatial information such as the presence of an object in the target space, the transmittance of the medium, the position of the object, the distance to the object, etc., light is projected into the target space and the reflected light is received, and the target A technique for detecting a change in intensity and a phase change between light projected into space and received light is known.

この種の光の投受光を行うアクティブ型のセンサに用いる受光素子のダイナミックレンジには制限がある。したがって、近距離からの反射光や反射率の高い物体からの反射光を受光しても飽和しないように受光素子から受光出力を取り出すと、遠距離からの反射光や反射率の低い物体からの反射光に対する受光出力が微小になって、遠距離の空間情報を検出したり反射率の低い物体に関して空間情報を検出するのが困難になる。逆に、遠距離の空間情報を検出したり反射率の低い物体に関して空間情報が得やすいように受光出力を取り出すと、近距離からの反射光や反射率の高い物体からの反射光に対して光検出素子が飽和しやすくなる。   There is a limit to the dynamic range of a light receiving element used in an active type sensor that projects and receives this type of light. Therefore, if the received light output is taken out from the light receiving element so that it does not saturate even when reflected light from a short distance or reflected light from an object with high reflectivity is received, it is from reflected light from a long distance or an object with low reflectivity. The light reception output with respect to the reflected light becomes minute, and it becomes difficult to detect spatial information at a long distance or to detect spatial information on an object with low reflectivity. On the other hand, if the received light output is extracted so that spatial information at a long distance can be detected or spatial information can be easily obtained for an object with low reflectance, reflected light from a short distance or reflected light from an object with high reflectance The light detection element is likely to be saturated.

この種の問題を解決するために、光検出素子での光の検出期間の長さを複数設定しておき、各検出期間のうち得られた受光出力が許容範囲内で最大になる検出期間を求め、この検出期間の受光出力を用いて空間情報を求めることが考えられている(たとえば、特許文献1参照)。つまり、1つの光検出素子で検出期間の長さを変えて複数回受光し、複数回の受光による受光出力のうち飽和せず最大である受光出力を用いることによって、光検出素子への入射光の強度が小さければ検出期間の長い受光出力を採用し、光検出素子への入射光の強度が大きければ検出期間の短い受光出力を採用することになる。この動作によって、光検出素子への入射光の強度の広範囲に亘って適正な(つまり、SNRが十分に大きいが飽和しない)受光出力を得ることができる。
特開2006−844300号公報
In order to solve this type of problem, the length of the light detection period in the light detection element is set in plural, and the detection period in which the received light output obtained in each detection period becomes the maximum within the allowable range is set. It is considered that the spatial information is obtained using the received light output during this detection period (see, for example, Patent Document 1). In other words, incident light to the photodetection element is received by changing the length of the detection period with one photodetection element multiple times, and using the maximum photodetection output without saturation among the photodetection outputs from the multiple light receptions. If the intensity of light is small, a light reception output with a long detection period is adopted, and if the intensity of incident light to the light detection element is large, a light reception output with a short detection period is adopted. By this operation, it is possible to obtain a light receiving output that is appropriate (that is, SNR is sufficiently high but not saturated) over a wide range of the intensity of incident light to the light detection element.
JP 2006-844300 A

しかしながら、上述の技術では同じ光検出素子で検出期間の長さを変えて複数回受光し、受光毎に受光出力を取り出すとともに、受光出力の大小を比較するために受光毎の受光出力を記憶することが必要である。したがって、検出期間ごとの受光出力には比較的大きな時間差があり、対象空間の状態が刻々と変化している場合には、正しい空間情報を検出することができないという問題が生じる。とくに、光検出素子としてイメージセンサを用いて対象空間を撮像し、イメージセンサの各画素ごとの受光出力について、検出期間を異ならせた同じ位置の受光出力を比較し、各位置ごとに上述の条件を満たす画素の受光出力を組み合わせるとすれば、1つの画像内に異なる時刻の受光出力で得られた空間情報が含まれるという問題が生じる。   However, in the above-described technique, the same light detection element changes the length of the detection period and receives light a plurality of times, takes out the received light output for each received light, and stores the received light output for each received light to compare the magnitude of the received light output. It is necessary. Accordingly, there is a relatively large time difference in the light reception output for each detection period, and there arises a problem that correct spatial information cannot be detected when the state of the target space is constantly changing. In particular, the target space is imaged using an image sensor as a light detection element, and the light reception output of each pixel of the image sensor is compared with the light reception output at the same position with different detection periods. If the light reception outputs of pixels satisfying the above are combined, there arises a problem that spatial information obtained by light reception outputs at different times is included in one image.

本発明は上記事由に鑑みて為されたものであり、その目的は、複数の受光出力から選択することにより入射光の強度の広範囲に亘って適正な受光出力を用いて空間情報を求めることを可能にしながらも、各受光出力の時間差を少なくした空間情報の検出装置を提供することにある。   The present invention has been made in view of the above reasons, and its object is to obtain spatial information using an appropriate light receiving output over a wide range of the intensity of incident light by selecting from a plurality of light receiving outputs. An object of the present invention is to provide a spatial information detection device that can reduce the time difference between the light reception outputs.

請求項1の発明は、対象空間に赤外線を投光する発光源と、前記対象空間の同じ空間領域からの光を受光しそれぞれ受光量に応じた受光出力が得られる複数個の光検出素子と、前記対象空間から前記光検出素子への光路上に配置され前記対象空間からの入射光を前記光検出素子ごとに振り分ける光路制御要素と、前記光検出素子ごとの受光出力のうち受光出力の上限としての飽和閾値と受光出力の下限としての不感閾値とにより定められた適正範囲である前記光検出素子の受光出力を用いて前記対象空間に関する空間情報を検出する評価部とを備え、前記光路制御要素は、前記入射光が入射するプリズムを備え、光路を2分岐する部分透過ミラーからなる光分岐部を前記光検出素子の個数より1個少なく備える構成であり、前記光分岐部の反射率および透過率により設定された所定の分配比率で前記入射光を前記光検出素子にそれぞれ振り分けることにより前記光検出素子ごとの受光量を互いに異ならせる機能を有し、前記プリズムは一面に配置された前記光分岐部で反射された反射光を前記対象空間からの入射面である他面で全反射させた後に前記光検出素子の一つに入射させる光路を形成することを特徴とする。 The invention of claim 1 includes a light emitting source for projecting infrared target space, and a plurality of light detecting elements receiving output corresponding to each light receiving quantity receives light is obtained from the same spatial region of the target space , the optical path control element is disposed on the optical path from the object space to the light detection element distributes the incoming light from the target space to each of the light detecting element, the upper limit of the light receiving output of the light receiving output of each of the light detection element and a evaluation unit for detecting the spatial information about the object space using the saturation threshold is proper range defined by the dead threshold as the lower limit of the light-receiving output light receiving output of said light detecting element as the optical path control element, the comprises a prism incident light is incident, the light branching unit comprising an optical path from the partial transmission mirror that 2 branch is configured to include one less than the number of the light detection element, anti of the optical branching section Has a function of Ru was different from each other received light amount of each of the light detecting element by a predetermined distribution ratio set by the rate and transmittance distributing each said incident light to the light detection element, wherein the prism is arranged on one side An optical path is formed in which the reflected light reflected by the light branching unit is totally reflected on the other surface, which is an incident surface from the target space, and then incident on one of the light detection elements .

請求項2の発明では、請求項1の発明において、前記各光制御要素の露光時間は実質的同一であることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention, the exposure times of the respective light control elements are substantially the same.

請求項3の発明は、対象空間に赤外線を投光する発光源と、前記対象空間の同じ空間領域からの光を受光しそれぞれ受光量に応じた受光出力が得られる複数個の光検出素子と、前記対象空間から前記光検出素子への光路上に配置され前記対象空間からの入射光を前記光検出素子ごとに振り分ける光路制御要素と、前記光検出素子ごとの受光出力のうち受光出力の上限としての飽和閾値と受光出力の下限としての不感閾値とにより定められた適正範囲である前記光検出素子の受光出力を用いて前記対象空間に関する空間情報を検出する評価部とを備え、前記光路制御要素は、光を透過させる状態と反射させる状態とが選択可能であって光路を2系統に切り替える光分岐部を前記光検出素子の個数より1個少なく備え、前記光分岐部での前記光検出素子ごとの露光時間により入射光を所定の分配比率で前記光検出素子にそれぞれ振り分けることを特徴とする。 The inventions of claim 3, the light emitting source for projecting infrared target space and the plurality of light receiving output in accordance with the respective amount of light received by receiving light from the same spatial region of the target space is obtained photodetecting element An optical path control element that is arranged on an optical path from the target space to the light detection element and distributes incident light from the target space for each of the light detection elements, and a light reception output of light reception outputs for each of the light detection elements An evaluation unit that detects spatial information about the target space using a light reception output of the light detection element that is in an appropriate range determined by a saturation threshold as an upper limit and a deadness threshold as a lower limit of the light reception output, and the optical path control element comprises a state that reflects a state for transmitting light a selectable optical branching unit for switching the optical path into two systems one less than the number of the light detection element, said light in said optical branching part Inspection Wherein the distributing each of the light detection element incident light at a predetermined distribution ratio by the exposure time per element.

請求項4の発明では、請求項3の発明において、前記光路制御要素は、前記対象空間からの光を前記光検出素子のいずれかに択一的に入射させ、前記光検出素子ごとに1回ずつ光を入射させる期間内において前記光検出素子ごとに光を入射させる期間を互いに連続させることを特徴とする。
請求項5の発明では、請求項1ないし請求項4のいずれかの発明において、前記光路制御要素は、前記光検出素子のうち、入射光の強度が大きいときに適正な受光出力が得られる前記光検出素子は、入射光の強度が小さいときに適正な受光出力が得られる前記光検出素子よりも入射光の分配比率が小さく設定されることを特徴とする。
In the invention of claim 4, in the invention of claim 3, wherein the optical path control element, alternatively to be incident either before Symbol photodetector light from the target space, for each of the light detecting element 1 and wherein each other thereby continuously period for light to each of the light detection element in a period in which the incidence of light by times.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the optical path control element can obtain an appropriate received light output when the intensity of incident light is large among the light detection elements. The light detecting element is characterized in that the distribution ratio of incident light is set smaller than that of the light detecting element that can obtain an appropriate received light output when the intensity of incident light is small.

請求項6の発明では、請求項1ないし請求項5のいずれかの発明において、前記評価部における選択条件は、規定の飽和閾値以下の範囲で最大の受光出力を選択することであって、前記光検出素子は、それぞれ前記対象空間からの光を受光して受光量に応じた電荷を生成する複数個の感光部を有し前記対象空間を撮像することにより前記感光部で生成された電荷を受光出力とするイメージセンサであり、前記評価部は、前記光検出素子において前記対象空間の同じ位置に対応付けられた前記感光部で得られる受光出力のうち前記選択条件を満たす受光出力を前記対象空間の位置ごとに選択することを特徴とする。 According to a sixth aspect of the invention, in the invention according to any one of the first to fifth aspects, the selection condition in the evaluation unit is to select a maximum received light output within a range below a prescribed saturation threshold, serial photodetector is generated in the photosensitive portion by imaging the object space has a plurality of photosensitive unit generating an electric charge according to the amount of light received by receiving light from each of the target space charge is an image sensor that a light receiving output, the evaluation unit, the said selection criteria received light output of the light receiving output obtained by the light-sensitive portion associated with the same position of the target space in the light detection element and selecting for each position of the target space.

請求項7の発明では、請求項1ないし請求項5の発明において、前記発光源は、所定周期の変調信号で強度変調された光を対象空間に照射し、前記評価部における選択条件は、規定の飽和閾値以下の範囲で最大の受光出力を選択することであって、前記光検出素子は、それぞれ前記対象空間からの光を受光して受光量に応じた電荷を生成する複数個の感光部を有し前記対象空間を撮像することにより前記感光部で生成された電荷を受光出力とするイメージセンサであり、前記評価部は、前記光検出素子において前記対象空間の同じ位置に対応付けられた前記感光部で得られる受光出力のうち前記選択条件を満たす受光出力を用いて物体までの距離を求め、前記感光部に対応付けた前記対象空間の位置ごとの距離を画素値とする距離画像を生成することを特徴とする。 According to a seventh aspect of the present invention, in the first to fifth aspects of the present invention, the light emitting source irradiates the target space with light whose intensity is modulated with a modulation signal having a predetermined period, and the selection condition in the evaluation unit is defined as the method comprising the selecting the maximum of the light receiving output in the range below the saturation threshold, before Symbol light detecting element, a plurality of photosensitive generating a charge according to the amount of light received by receiving light from each of the target space is an image sensor that a light receiving output the generated in the photosensitive unit charges by imaging the object space has a section, the evaluation unit is associated in the light detection element at the same position of the target space said one of the light-receiving output obtained by the photosensitive unit, using the selected satisfying the received light output seek distance to the object, the distance image to the pixel value distance for each position of the target space associated with said photosensitive portion Generate a And wherein the Rukoto.

請求項1の発明の構成によれば、対象空間の同じ空間領域からの光を受光する複数個の光検出素子を設け、対象空間から各光検出素子への光路上に光路制御要素を設けて各光検出素子での受光量を異ならせるから、光路制御要素による各光検出素子への光の分配比率を適宜に調節することによって、光路制御要素への入射光の強度が広範囲に変化しても、いずれかの光検出素子での受光量が適正範囲になる可能性が高くなり、結果的に入射光の強度の広範囲に亘って適正な受光出力を用いて空間情報を求めることが可能になる。しかも、光路制御要素への入射光を複数個の光検出素子に振り分けているから、各光検出素子には、同時刻または時刻がわずかにずれただけの光が入射することになり、各光検出素子の受光出力の時間差が少なくなる。 According to the configuration of the first aspect of the present invention, a plurality of light detection elements that receive light from the same space region of the target space are provided, and an optical path control element is provided on the optical path from the target space to each light detection element. Since the amount of light received by each light detection element is different, the intensity of incident light to the light path control element changes over a wide range by appropriately adjusting the light distribution ratio to each light detection element by the light path control element. also, either the amount of light received by the light detecting element likely to become the proper range, is possible to obtain the spatial information using an appropriate light output over a wide range of intensity as a result, the incident light It becomes possible. In addition, since the incident light to the optical path control element is distributed to a plurality of light detection elements, each light detection element is incident with light at the same time or slightly shifted in time. The time difference between the light receiving outputs of the detection elements is reduced.

このことは、たとえば、各光検出素子が複数の感光部を備えるイメージセンサであって、対象空間の同じ位置に対応付けた感光部ごとに受光出力を比較し、各位置ごとに適正な受光出力を選択する場合であっても、各感光部から得られる受光出力の時間差をとくに考慮せずに用いることを可能にする。しかも、飽和しない範囲で最大の受光出力を空間情報の検出に用いるから、光検出素子のショットノイズの影響を低減することができ、結果的に空間情報の検出精度を高めることができる。
しかも、光路制御要素に部分透過ミラーで構成された光分岐部を設け、各光検出素子への光の分配比率を光分岐部の反射率および透過率により設定しているから、光路制御要素は各光検出素子から見れば減光率の異なる減光フィルタと同様に機能し、特段の制御を行わずに各光検出素子の感度を異ならせることができる。また、各光検出素子には対象空間の同じ領域からの光が同時に入射するから、各受光出力を時間差なく同時に得ることが可能になる。
This is, for example, an image sensor in which each photodetecting element includes a plurality of photosensitive portions, and the light reception output is compared for each photosensitive portion associated with the same position in the target space, and an appropriate light reception output is obtained for each position. Even in the case of selecting, it is possible to use the light receiving output obtained from each photosensitive portion without special consideration. In addition, since the maximum received light output is used for detecting spatial information in a range where saturation does not occur, the influence of shot noise of the light detection element can be reduced, and as a result, the detection accuracy of spatial information can be increased.
In addition, the optical path control element is provided with a light branching unit configured by a partial transmission mirror, and the light distribution ratio to each photodetecting element is set by the reflectance and transmittance of the light branching part. When viewed from each light detection element, it functions in the same way as a neutral density filter having a different light attenuation rate, and the sensitivity of each light detection element can be made different without performing special control. In addition, since light from the same region of the target space is simultaneously incident on each photodetecting element, it is possible to simultaneously obtain each light reception output without a time difference.

請求項2の発明の構成によれば、各光制御要素の露光時間を実質的に同一にしているから、各光検出素子から同時刻の受光出力を得ることができ、複数の光検出素子のうちのどの受光出力を用いても実質的に同時刻の空間情報を検出することができる。 According to the configuration of the second aspect of the invention, since the exposure time of each light control element is substantially the same, it is possible to obtain a light reception output at the same time from each light detection element, and a plurality of light detection elements The spatial information at substantially the same time can be detected using any of the received light outputs.

請求項3の発明の構成によれば、光路制御要素として光を透過させる状態と反射させる状態との選択が可能な光分岐部を設け、各光検出素子の露光時間を光分岐部により調節することで各光検出素子への光の分配比率を調節しているから、光路制御要素は各光検出素子から見れば露光時間の異なるシャッタと同様に機能し、各光検出素子の感度を異ならせることができる。この構成では、各光検出素子に対象空間の同じ領域からの光が必ずしも同時に入射するわけではないが、光検出素子からの受光出力は同時に取り出すことができるから、1個の光検出素子を用いて露光時間の異なる受光出力を得る場合に比較すると、複数の受光出力の時間差を小さくすることができる。 According to the configuration of the invention of claim 3, the optical branching unit capable of selecting a light transmitting state and a reflecting state as the optical path control element is provided, and the exposure time of each photodetecting element is adjusted by the light branching unit. Thus, the light distribution ratio to each photodetecting element is adjusted, so that the optical path control element functions in the same manner as a shutter having a different exposure time when viewed from each photodetecting element, and makes the sensitivity of each photodetecting element different. be able to. In this configuration, light from the same region of the target space does not necessarily enter each photodetecting element at the same time. However, since the light reception output from the photodetecting element can be extracted simultaneously, one photodetecting element is used. Thus, the time difference between a plurality of light receiving outputs can be reduced as compared with the case where light receiving outputs having different exposure times are obtained.

請求項4の発明の構成によれば、各光検出素子の露光時間を個々に制御することができる。この構成では、各光検出素子が対象空間の同じ領域からの光を同時に受光することはなく、各光検出素子から取り出す受光出力には時間差が生じるが、1個の光検出素子を用いて露光時間の異なる受光出力を得る場合に比較すると、複数の受光出力の時間差を小さくすることができる。また、各光検出素子に光が入射する期間は各光検出素子に1回ずつ光が入射する期間では互いに連続しているから、各光検出素子の受光出力の時間差は小さくなる。
請求項5の発明の構成によれば、光路制御要素による各光検出素子への光の分配比率を異ならせているから、光路制御要素によって各光検出素子の感度を調節していることになり、複数段階の感度の光検出素子を配置したことと等価になる。したがって、光路制御要素に入射する光の強度が広範囲に変化したとしても、いずれかの光検出素子では適正な受光出力が得られる可能性が高くなる。
According to the configuration of the invention of claim 4 , the exposure time of each photodetecting element can be individually controlled. In this configuration, each light detection element does not simultaneously receive light from the same region of the target space, and there is a time difference in the light reception output extracted from each light detection element, but exposure is performed using one light detection element. Compared with the case where light reception outputs having different times are obtained, the time difference between the plurality of light reception outputs can be reduced. In addition, since the period in which light is incident on each photodetecting element is continuous with each other in the period in which light is incident on each photodetecting element, the time difference between the light reception outputs of the respective photodetecting elements is small.
According to the configuration of the fifth aspect of the invention, since the distribution ratio of the light to each light detection element by the light path control element is made different, the sensitivity of each light detection element is adjusted by the light path control element. This is equivalent to the arrangement of photodetection elements with multiple levels of sensitivity. Therefore, even if the intensity of light incident on the optical path control element changes in a wide range, there is a high possibility that an appropriate received light output can be obtained with any of the light detection elements.

請求項6の発明の構成によれば、光検出素子としてイメージセンサを用いることにより対象空間を撮像した情報から空間情報を検出するものであり、各光検出素子において対象空間の各位置に対応付けた感光部で得られる受光出力についてそれぞれ選択条件によって最適な受光出力を選択するから、イメージセンサで得られる画像内のどの部位においても光の強度に関して広いダイナミックレンジを確保することができる。 According to the configuration of the sixth aspect of the invention, spatial information is detected from information obtained by imaging the target space by using an image sensor as the light detection element, and each light detection element is associated with each position in the target space. Since the optimum light receiving output is selected according to the selection condition for the light receiving output obtained by the photosensitive section, a wide dynamic range can be secured with respect to the light intensity at any part in the image obtained by the image sensor.

請求項7の発明の構成によれば、強度変調された光を用いるとともに、光検出素子としてイメージセンサを用いることにより、対象空間を撮像した情報から対象空間に関する距離画像を求めるものであり、複数個の光検出素子から得られる各感光部に対応した受光出力のうち飽和していない最大の受光出力を用いて求めた距離を画素値とするから、近距離から遠距離までの広い距離範囲に亘る距離の計測が可能になる。 According to the configuration of the seventh aspect of the invention, the intensity-modulated light is used and an image sensor is used as the light detection element to obtain a distance image related to the target space from information obtained by imaging the target space. Since the distance obtained using the maximum light receiving output that is not saturated among the light receiving outputs corresponding to each photosensitive part obtained from each photodetecting element is used as the pixel value, it can be used in a wide distance range from a short distance to a long distance. It is possible to measure the distance over the distance.

以下に説明する実施形態では、空間情報として対象空間に存在する物体までの距離を求める。また、以下に説明する空間情報の検出装置は、対象空間の画像を撮像することにより対象空間の位置ごとの距離を各画素に対応付けた距離画像を生成する。   In the embodiment described below, a distance to an object existing in the target space is obtained as spatial information. In addition, the spatial information detection device described below generates a distance image in which a distance for each position in the target space is associated with each pixel by capturing an image of the target space.

実施形態について説明する前に、まず距離を計測する原理について簡単に説明する。空間情報の検出装置は、図5に示すように、対象空間に光を投光する発光源2を備えるとともに、対象空間からの光を受光し受光量を反映した出力が得られる光検出素子1を備える。発光源2としては、単一波長のものを用いており、可視光を用いるよりは不可視である赤外線を用いるのが望ましい。対象空間に存在する物体Obまでの距離は、発光源2から対象空間に光が投光されてから物体Obでの反射光が光検出素子1に入射するまでの時間(「飛行時間」と呼ぶ)によって求める。飛行時間を求めるために、対象空間に投光する光の強度が一定周期で周期的に変化するように変調した強度変調光を発光源2から対象空間に投光し、光の強度の変調成分について投受光の位相差を求め、この位相差を飛行時間に換算する。すなわち、投受光の位相差ψの単位を[rad]、物体Obまでの距離をL[m]、光速をc[m/s]、強度変調光の角周波数をω[rad/s]とすれば、L=ψ・c/2ωになる。   Before describing the embodiment, first, the principle of measuring the distance will be briefly described. As shown in FIG. 5, the spatial information detection device includes a light emitting source 2 that projects light into a target space, and receives a light from the target space and obtains an output that reflects the amount of received light. Is provided. As the light emitting source 2, one having a single wavelength is used, and it is desirable to use invisible infrared rays rather than using visible light. The distance to the object Ob existing in the target space is the time from when light is projected from the light emission source 2 to the target space until the reflected light from the object Ob enters the light detection element 1 (referred to as “time of flight”). ) In order to obtain the time of flight, intensity-modulated light, which is modulated so that the intensity of the light projected into the target space changes periodically at a constant period, is projected from the light source 2 into the target space, and the light intensity modulation component A phase difference between light transmission and reception is obtained for, and this phase difference is converted into a flight time. That is, the unit of the phase difference ψ of light transmission / reception is [rad], the distance to the object Ob is L [m], the speed of light is c [m / s], and the angular frequency of the intensity modulated light is ω [rad / s]. For example, L = ψ · c / 2ω.

位相差ψは、発光源2から対象空間に投光した光を変調する変調信号の波形に同期する複数のタイミングで検出した受光量を用いることにより計算することができる。いま、変調信号の位相が0〜90度、90〜180度、180〜270度、270〜360度である4つの位相区間で求めた受光量をそれぞれA0、A1、A2、A3とする。つまり、各位相区間における受光量A0、A1、A2、A3は、それぞれ変調信号に同期する90度ずつの期間に光検出素子1に入射した光の強度を積分した値になる。   The phase difference ψ can be calculated by using received light amounts detected at a plurality of timings synchronized with the waveform of a modulation signal that modulates the light projected from the light source 2 into the target space. Now, the received light amounts obtained in the four phase sections in which the phase of the modulation signal is 0 to 90 degrees, 90 to 180 degrees, 180 to 270 degrees, and 270 to 360 degrees are A0, A1, A2, and A3, respectively. That is, the received light amounts A0, A1, A2, and A3 in each phase section are values obtained by integrating the intensity of the light incident on the light detection element 1 during a period of 90 degrees synchronized with the modulation signal.

いま、受光量A0、A1、A2、A3を求める間に、位相差ψが変化せず(つまり、物体Obまでの距離が変化せず)、かつ物体Obの反射率にも変化がないものとする。また、発光源2から放射する光の強度を正弦波で変調し、時刻tにおいて光検出素子1で受光される光の強度がA・sin(ωt+δ)+Bで表されるものとする。ただし、Aは振幅、Bは直流成分(環境光成分と反射光成分との平均値)、ωは強度変調光の角周波数(ω=2πf;fは変調周波数)、δは初期位相である。これらの条件を満たすとき、位相差ψは、たとえば次式で表すことができる。
ψ=tan−1(A2−A0)/(A1−A3)
上式は積分する区間の取り方(たとえば、上述の例では1区間の位相幅が90度であるが、180度などにしてもよい)によって符号が変化したり位相が90度異なったりするが、位相差ψは4つの位相区間の受光量A0、A1、A2、A3を用いて求めることができる。
Now, while obtaining the received light amounts A0, A1, A2, and A3, the phase difference ψ does not change (that is, the distance to the object Ob does not change), and the reflectance of the object Ob does not change. To do. Further, it is assumed that the intensity of light emitted from the light emitting source 2 is modulated by a sine wave, and the intensity of light received by the light detection element 1 at time t is represented by A · sin (ωt + δ) + B. However, A is an amplitude, B is a direct current component (an average value of an ambient light component and a reflected light component), ω is an angular frequency (ω = 2πf; f is a modulation frequency) of intensity-modulated light, and δ is an initial phase. When these conditions are satisfied, the phase difference ψ can be expressed by the following equation, for example.
ψ = tan −1 (A2−A0) / (A1−A3)
The above equation changes the sign or the phase differs by 90 degrees depending on how to take the interval to be integrated (for example, the phase width of one section is 90 degrees in the above example, but may be 180 degrees). The phase difference ψ can be obtained by using the received light amounts A0, A1, A2, and A3 in the four phase sections.

発光源2には、たとえば多数個の発光ダイオードを一平面上に配列したものや半導体レーザと発散レンズとを組み合わせたものなどを用いる。発光源2を駆動する変調信号は、たとえば20MHzの正弦波であり、タイミング制御部3から出力される。発光源2から放射される光の強度はこの変調信号により変調される。変調信号の波形は、正弦波のほかに、三角波、鋸歯状波などを用いることもできる。   As the light emitting source 2, for example, a light emitting diode in which a large number of light emitting diodes are arranged on one plane or a combination of a semiconductor laser and a diverging lens is used. The modulation signal for driving the light emission source 2 is, for example, a 20 MHz sine wave and is output from the timing control unit 3. The intensity of light emitted from the light source 2 is modulated by this modulation signal. As the waveform of the modulation signal, a triangular wave, a sawtooth wave, or the like can be used in addition to a sine wave.

光検出素子1は、フォトダイオードのような1個の光電変換素子を用いることもできるが、距離画像を得るにはCCDイメージセンサのように複数個の感光部を備えたイメージセンサを用いる。ただし、イメージセンサは二次元イメージセンサに限らず、一次元イメージセンサであってもよい。感光部への光の入射経路には受光光学系5が配置され、受光光学系5によって各感光部に対象空間の各位置が対応付けられる。ここに、受光量は感光部に入射する光の強度と感光部に光が入射している時間との積(つまり、入射時間における光の強度の積分値)であり、感光部が飽和しない範囲では、各感光部は受光量に応じた電荷を生成する。また、感光部11は、平面格子の格子点上に配置され、たとえば垂直方向(つまり、縦方向)と水平方向(つまり、横方向)とにそれぞれ等間隔で複数個ずつ並べたマトリクス状に配列される。   The photodetection element 1 may be a single photoelectric conversion element such as a photodiode, but an image sensor having a plurality of photosensitive portions such as a CCD image sensor is used to obtain a distance image. However, the image sensor is not limited to a two-dimensional image sensor, and may be a one-dimensional image sensor. A light receiving optical system 5 is arranged on the light incident path to the photosensitive portion, and each position of the target space is associated with each photosensitive portion by the light receiving optical system 5. Here, the amount of received light is the product of the intensity of light incident on the photosensitive portion and the time that the light is incident on the photosensitive portion (that is, the integrated value of the light intensity at the incident time), and the range where the photosensitive portion is not saturated. Then, each photosensitive part generates electric charge according to the amount of received light. Further, the photosensitive portions 11 are arranged on the lattice points of the planar lattice, and are arranged in a matrix in which, for example, a plurality are arranged at equal intervals in the vertical direction (that is, the vertical direction) and the horizontal direction (that is, the horizontal direction). Is done.

上述のように、物体Obまでの距離を求めるために、変調信号に同期する4つの位相区間の受光量A0、A1、A2、A3を求めるから、目的の受光量A0、A1、A2、A3を得るためのタイミングの制御が必要である。この動作は、IT(インターライントランスファ)型のCCDイメージセンサであれば、たとえば、感光部から垂直転送部への電荷の移動とオーバーフロードレインによる電荷の廃棄のタイミングとを制御することにより実現することができる。また、FT(フレームトランスファ)型のCCDイメージセンサであれば、たとえば、電荷を廃棄するためのオーバーフロードレインを用いて目的とする位相区間以外の電荷を廃棄するように廃棄のタイミングを制御することにより実現することができる。   As described above, in order to obtain the distance to the object Ob, the received light amounts A0, A1, A2, and A3 of the four phase sections synchronized with the modulation signal are obtained, so that the desired received light amounts A0, A1, A2, and A3 are obtained. Control of the timing to obtain is necessary. In the case of an IT (interline transfer) type CCD image sensor, for example, this operation can be realized by controlling the movement of charges from the photosensitive section to the vertical transfer section and the timing of discarding charges by the overflow drain. Can do. Further, in the case of an FT (frame transfer) type CCD image sensor, for example, by using an overflow drain for discarding charges, the discard timing is controlled so as to discard charges other than the target phase section. Can be realized.

ただし、発光源2から対象空間に投光され物体Obで反射された後に光検出素子1の感光部に入射する光の強度は小さいから、上述した各区間の受光量A0、A1、A2、A3に相当する電荷を強度変調光の変調周期の1周期内で集積したとしても各受光量A0、A1、A2、A3に十分な大きさの差が得られず、距離の測定精度が低くなる。したがって、実際には各区間に相当して生成される電荷を強度変調光の複数周期(たとえば、1万周期)にわたって蓄積した後に、蓄積した電荷を光検出素子1から取り出すようにタイミング制御部3の出力で光検出素子1を制御する。   However, since the intensity of the light incident on the photosensitive portion of the light detection element 1 after being projected from the light source 2 into the target space and reflected by the object Ob is small, the received light amounts A0, A1, A2, A3 of each section described above. Is accumulated within one period of the modulation period of the intensity-modulated light, a sufficient difference in the received light amounts A0, A1, A2, A3 cannot be obtained, and the distance measurement accuracy is lowered. Therefore, in practice, the timing control unit 3 so that the charge generated corresponding to each section is accumulated over a plurality of periods (for example, 10,000 periods) of the intensity-modulated light and then the accumulated charge is taken out from the light detection element 1. The light detection element 1 is controlled by the output of.

光検出素子1から出力される受光出力は評価部としての距離演算部4に与えられ、距離演算部4では上述の4つの位相区間の受光量A0、A1、A2、A3に相当する電荷に相当する受光出力を受け取り、上述した位相差ψを求める数式に当て嵌めるか、あるいは当該数式に相当するテーブルに当て嵌めることによって位相差ψを求め、さらに位相差ψから物体Obまでの距離を求める。距離演算部4は対象空間の複数方向について距離を求めるから、対象空間についての三次元情報を得ることができるのであって、画素値に距離値を対応付けた距離画像を生成することができる。   The light reception output output from the light detection element 1 is given to the distance calculation unit 4 as an evaluation unit, and the distance calculation unit 4 corresponds to the charges corresponding to the received light amounts A0, A1, A2, and A3 in the above four phase sections. The received light output is received and applied to the above-described equation for obtaining the phase difference ψ, or is applied to a table corresponding to the equation to obtain the phase difference ψ, and further the distance from the phase difference ψ to the object Ob is obtained. Since the distance calculation unit 4 obtains distances in a plurality of directions of the target space, it can obtain three-dimensional information about the target space, and can generate a distance image in which distance values are associated with pixel values.

(実施形態1)
本実施形態では、上述の動作原理によって距離画像を生成するにあたり、図1に示すように、複数個(図示例では3個)の光検出素子1a,1b,1cを用いている。各光検出素子1a,1b,1cは、それぞれ複数個の感光部を有したイメージセンサであり、上述した光検出素子1と同じ構成のものである。また、各光検出素子1には同仕様のものを用いている。対象空間から各光検出素子1a,1b,1cへの光路上には、対象空間からの入射光を各光検出素子1a,1b,1cに振り分けて入射させる光路制御要素11が配置されている。
(Embodiment 1)
In the present embodiment, a plurality of (three in the illustrated example) photodetecting elements 1a, 1b, and 1c are used as shown in FIG. Each of the light detection elements 1a, 1b, and 1c is an image sensor having a plurality of photosensitive portions, and has the same configuration as the light detection element 1 described above. Each photodetecting element 1 has the same specifications. On the optical path from the target space to each of the light detection elements 1a, 1b, and 1c, an optical path control element 11 that distributes incident light from the target space to each of the light detection elements 1a, 1b, and 1c and enters it.

図1に示す光路制御要素11は、3個のプリズム11a,11b,11cを組み合わせて構成され、各プリズム11a,11b,11cを接合している部位の境界面には部分透過ミラーが光分岐部12a,12bとして配置されている。また、図示していないが、対象空間と光路制御要素11との間には、対象空間の各位置を光検出素子1a,1b,1cの各感光部に対応付けるための受光光学系が配置される。ここに、各光検出素子1a,1b,1cは、同位置の感光部が対象空間の同じ位置に対応するように配置される。   The optical path control element 11 shown in FIG. 1 is configured by combining three prisms 11a, 11b, and 11c, and a partial transmission mirror is provided on the boundary surface of the portion where the prisms 11a, 11b, and 11c are joined. 12a and 12b are arranged. Although not shown, a light receiving optical system for associating each position in the target space with each photosensitive portion of the light detection elements 1a, 1b, and 1c is disposed between the target space and the optical path control element 11. . Here, the light detection elements 1a, 1b, and 1c are arranged so that the photosensitive portions at the same position correspond to the same position in the target space.

対象空間からの光が直接入射する第1のプリズム11aは断面三角形状であり、入射光の延長線上である第2のプリズム11bとの境界面に配置した光分岐部12aで反射された光が、入射面で全反射されプリズム11aの残りの一面である出射面から出射して光検出素子1aに入射するように形成されている。   The first prism 11a into which the light from the target space is directly incident has a triangular cross section, and the light reflected by the light branching portion 12a arranged on the boundary surface with the second prism 11b on the extension line of the incident light. The light is totally reflected on the incident surface, and is emitted from the emission surface, which is the remaining surface of the prism 11a, and is incident on the light detection element 1a.

第2のプリズム11bおよび第3のプリズム11cは、ともに断面四角形状であり、第1のプリズム11aの入射面に直交する一直線上に配列されている。つまり、第1のプリズム11aに入射した光は、第2のプリズム11bおよび第3のプリズム11cにも導入される。光分岐部12aを通して第2のプリズム11bに入射した光は、第3のプリズム11cとの境界面に配置された光分岐部12bで反射され、第1のプリズム11aとの境界面および第3のプリズム11cとの境界面とは異なる出射面から出射して光検出素子1bに入射する。   Both the second prism 11b and the third prism 11c have a quadrangular cross section, and are arranged on a straight line orthogonal to the incident surface of the first prism 11a. That is, the light incident on the first prism 11a is also introduced into the second prism 11b and the third prism 11c. The light incident on the second prism 11b through the light branching portion 12a is reflected by the light branching portion 12b disposed on the boundary surface with the third prism 11c, and the boundary surface with the first prism 11a and the third prism The light exits from an exit surface different from the boundary surface with the prism 11c and enters the light detection element 1b.

さらに、第2プリズム11bと第3のプリズム11cとの境界面に配置した部分透過ミラーからなる光分岐部12bを通して第3のプリズム11cに入射した光は、第3のプリズム11cにおいて第2のプリズム11bとの境界面の反対側に位置する出射面から出射して光検出素子1cに入射する。   Further, the light incident on the third prism 11c through the light branching portion 12b formed of a partial transmission mirror disposed on the boundary surface between the second prism 11b and the third prism 11c is transmitted to the third prism 11c by the second prism 11c. The light exits from the exit surface located on the opposite side of the boundary surface with 11b and enters the light detection element 1c.

上述のように、光路制御要素11は、それぞれ光路を2分岐する部分透過ミラーからなる光分岐部12a,12bを2個(つまり、光検出素子1a,1b,1cよりも1個少ない個数)備えることにより、光路制御要素11に入射した光を3分岐して3個の光検出素子1a,1b,1cに振り分けることができる。各光分岐部12a,12bの反射率および透過率は、光路制御要素11への入射光を各光検出素子1a,1b,1cに振り分ける分配比率が互いに異なるように設定される。つまり、各光検出素子1a,1b,1cには同仕様のものを用いながらも光路制御要素11への入射光の強度に対する感度を異ならせることができる。 As described above, the optical path control element 11 has two light branching portions 12a and 12b each composed of a partial transmission mirror that splits the optical path into two (that is, one fewer than the light detection elements 1a, 1b, and 1c ). Thus, the light incident on the optical path control element 11 can be branched into three and distributed to the three photodetectors 1a, 1b, and 1c. The reflectance and transmittance of each of the light branching portions 12a and 12b are set so that the distribution ratios for distributing the light incident on the optical path control element 11 to the respective light detection elements 1a, 1b, and 1c are different from each other. That is, the sensitivity with respect to the intensity of the incident light to the optical path control element 11 can be varied while using the light detection elements 1a, 1b, and 1c having the same specifications.

このように、各光検出素子1a,1b,1cの感度を互いに異ならせることができるから、各光検出素子1a,1b,1cの受光量が適正範囲となるときの光路制御要素11への入射光の強度を3つの範囲(以下、強度範囲という)に分けることが可能になる。すなわち、図2に示すように、光検出素子1a,1b,1cの受光出力がノイズと区別できる最小値から受光出力が飽和するまでの範囲であって、受光量と受光出力とが一対一に対応する範囲を適正範囲Rfとするとき、各光検出素子1a,1b,1cの受光出力が適正範囲Rfになる強度範囲Sa,Sb,Scを互いに異ならせることができる。ここで、各強度範囲Sa,Sb,Scが連続するように設定すれば、光路制御要素11への入射光が強度範囲Sa,Sb,Scを合わせた範囲Si内の強度であるときに、いずれかの光検出素子1a,1b,1cから適正範囲Rfの出力が得られる。   In this way, the sensitivity of the light detection elements 1a, 1b, and 1c can be made different from each other, so that the light incident on the light path control element 11 when the amount of light received by each of the light detection elements 1a, 1b, and 1c falls within an appropriate range. The light intensity can be divided into three ranges (hereinafter referred to as intensity ranges). That is, as shown in FIG. 2, the received light output of the light detection elements 1a, 1b, and 1c is in a range from the minimum value that can be distinguished from noise to the saturated received light output, and the received light amount and the received light output are one-to-one. When the corresponding range is the appropriate range Rf, the intensity ranges Sa, Sb, and Sc in which the light reception outputs of the light detection elements 1a, 1b, and 1c become the appropriate range Rf can be made different from each other. Here, if each of the intensity ranges Sa, Sb, and Sc is set to be continuous, when the incident light to the optical path control element 11 has an intensity within the range Si that combines the intensity ranges Sa, Sb, and Sc, An output in the appropriate range Rf is obtained from the light detection elements 1a, 1b, and 1c.

言い換えると、各光検出素子1a,1b,1cは、光路制御要素11への入射光の強度範囲Sa,Sb,Scにそれぞれ対応付けられていることになる。ここにおいて、強度範囲Sa,Sb,Scのレベルが高いほど、その強度範囲Sa,Sb,Scに対応付ける光検出素子1a,1b,1cを低感度に設定しなければならないから、光路制御要素11での分配比率は、光検出素子1a,1b,1bに対応付けた強度範囲Sa,Sb,Scのレベルが高いほど小さく設定されることになる。   In other words, the light detection elements 1a, 1b, and 1c are respectively associated with the intensity ranges Sa, Sb, and Sc of the incident light to the optical path control element 11. Here, as the level of the intensity ranges Sa, Sb, Sc is higher, the light detection elements 1a, 1b, 1c associated with the intensity ranges Sa, Sb, Sc must be set to lower sensitivity. Is set to be smaller as the levels of the intensity ranges Sa, Sb, Sc associated with the light detection elements 1a, 1b, 1b are higher.

評価部としての距離演算部4において距離を正確に求めるには、受光出力が適正範囲Rfである光検出素子1a,1b,1cを択一的に選択することが必要になる。そこで、距離演算部4には、各光検出素子1a,1b,1cの受光出力を規定の選択条件に従って評価する出力判定部4aと、出力判定部4aの判定結果を用いていずれかの光検出素子1a,1b,1cの受光出力を選択するセレクタ4bとが設けられる。   In order to accurately obtain the distance in the distance calculation unit 4 as the evaluation unit, it is necessary to alternatively select the light detection elements 1a, 1b, and 1c whose received light output is within the appropriate range Rf. Therefore, the distance calculation unit 4 uses the output determination unit 4a that evaluates the light reception output of each of the light detection elements 1a, 1b, and 1c in accordance with a specified selection condition, and uses any of the detection results of the output determination unit 4a to detect light. A selector 4b for selecting the light reception output of the elements 1a, 1b, 1c is provided.

出力判定部4aでの選択条件は、各光検出素子1a,1b,1cの受光出力について適正範囲Rfか否かを判定し、さらに受光出力が適正範囲Rfになる光検出素子1a,1b,1cが複数存在するときには、受光出力が最大である光検出素子1a,1b,1cを選択するというものである。適正範囲Rfか否かは、受光出力の上限としての飽和閾値と、受光出力の下限としての不感閾値とを設定し、受光出力を飽和閾値Tsおよび不感閾値Tiと大小比較することにより判定する。   The selection condition in the output determination unit 4a is to determine whether or not the light reception output of each of the light detection elements 1a, 1b, and 1c is within the proper range Rf, and further, the light detection elements 1a, 1b, and 1c that have the light reception output within the proper range Rf. Is present, the light detection elements 1a, 1b, and 1c having the maximum light reception output are selected. Whether or not it is within the appropriate range Rf is determined by setting a saturation threshold as an upper limit of the light reception output and a dead threshold as the lower limit of the light reception output, and comparing the light reception output with the saturation threshold Ts and the dead threshold Ti.

受光出力の比較は、各光検出素子1a,1b,1cにおいて対象空間の同じ位置に対応付けられている感光部ごとに行う。つまり、対象空間の同じ位置から得られた情報について受光出力を比較し、上述の判定を行うことにより、適正な受光出力を選択する。したがって、対象空間の位置ごとに距離の演算に用いる光検出素子1a,1b,1cが決められることになる。   The comparison of the received light output is performed for each photosensitive unit associated with the same position in the target space in each of the light detection elements 1a, 1b, and 1c. That is, the light reception output is compared with respect to information obtained from the same position in the target space, and an appropriate light reception output is selected by performing the above-described determination. Therefore, the light detection elements 1a, 1b, and 1c used for calculating the distance are determined for each position in the target space.

なお、不感閾値Tiは設定するのが望ましいが必ずしも必要ではない。また、もっともレベルの高い強度範囲Scに対応付けた光検出素子1cの受光出力が飽和閾値Tsを超えているときには、距離の演算を正常に行うことができないから、距離の演算を行わずに距離測定が不能である場合の処理を行う。この処理では、測定不能の報知、あるいは前の測定値によるみなしを行う。同様に、不感閾値Tiを設定している場合において、もっともレベルの低い強度範囲Saに対応付けた光検出素子1aの受光出力が不感閾値Tiを下回っているときにも、距離測定が不能である場合の処理を行う。   Although it is desirable to set the dead threshold Ti, it is not always necessary. In addition, when the light reception output of the light detecting element 1c associated with the highest intensity range Sc exceeds the saturation threshold Ts, the distance cannot be normally calculated, so the distance is not calculated. Processing is performed when measurement is impossible. In this process, a notification that measurement is impossible or a determination based on the previous measurement value is performed. Similarly, when the insensitive threshold Ti is set, the distance measurement is impossible even when the light reception output of the light detecting element 1a associated with the lowest intensity range Sa is below the insensitive threshold Ti. Process the case.

上述の構成により、3個の光検出素子1a,1b,1cを用いて、各光検出素子1a,1b,1cを単独で用いる場合に比較して、光路制御要素11への入射光の強度範囲を広げることができ、光路制御要素11に入射する光の広範囲の強度変化に対してSNRの大きい受光出力を用いて距離を求めることができる。つまり、計測できる距離の範囲を大きくとることができ、また対象空間に存在する物体Obの反射率の相違に対する対応範囲も広くなる。図示例では、各強度範囲Sa,Sb,Scを重複なしに異ならせているが、一部を重複させるのが望ましい。これは、強度範囲Sa,Sb,Scの一部を重複させることにより、選択する光検出素子1a,1b,1cが切り替わる際の受光出力の変化を小さくし、結果的にSNRの変化を小さくすることができるからである。   Compared with the case where each of the light detection elements 1a, 1b, and 1c is used alone by using the three light detection elements 1a, 1b, and 1c, the intensity range of the incident light to the optical path control element 11 can be obtained. And the distance can be obtained by using a light receiving output having a large SNR with respect to a wide range of intensity changes of light incident on the optical path control element 11. That is, the range of the distance that can be measured can be increased, and the corresponding range for the difference in reflectance of the object Ob existing in the target space is also widened. In the illustrated example, the intensity ranges Sa, Sb, and Sc are made different without overlapping, but it is desirable to partially overlap them. This is because a part of the intensity range Sa, Sb, Sc is overlapped to reduce the change in the light reception output when the photodetection elements 1a, 1b, 1c to be selected are switched, and as a result, the change in the SNR is reduced. Because it can.

ところで、本実施形態の構成では、光路制御要素11は静的であって光分岐部12a,12bの反射率および透過率が変化しないから、各光検出素子1a,1b,1cにおいて対象空間の同領域から同時に空間情報を得ることができる。つまり、各光検出素子1a,1b,1cによって得られる空間情報には時間差が生じない。本実施形態では、各光検出素子1a,1b,1cの露光時間は実質的に同一であるが、各光分岐部12a,12bでは光の吸収が生じるから、実際には理論値通りの分配比率を得ることはできない。したがって、必要に応じて露光時間を調整する手段を設けてもよい。   By the way, in the structure of this embodiment, since the optical path control element 11 is static and the reflectance and transmittance of the light branching portions 12a and 12b do not change, the light detection elements 1a, 1b and 1c have the same target space. Spatial information can be obtained simultaneously from the region. That is, there is no time difference in the spatial information obtained by the light detection elements 1a, 1b, 1c. In the present embodiment, the exposure times of the light detection elements 1a, 1b, and 1c are substantially the same, but light absorption occurs in each of the light branching portions 12a and 12b. Can't get. Therefore, means for adjusting the exposure time may be provided as necessary.

一例として各光分岐部12a,12bが、入射光の2/3を反射し、1/3を透過させる場合を想定する。また、各光検出素子1a,1b,1cの露光時間Peを18msとし、受光出力の読み出しに要する読出時間Prを8msとする。この設定では、各光検出素子1a,1b,1cの感度は、光路制御要素11を用いない場合の感度を1とするとき、実質的に2/3、2/9、1/9に設定したことになる。また、露光時間Peが等しいから受光量は感度の比率に比例し、実際の露光時間Peに感度の割合を乗じて得られる露光時間での受光量に相当する電荷が生成されることになる。要するに、光検出素子1a,1b,1cでは、それぞれ18ms×(2/3)=12ms,18ms×(2/9)=4ms,18ms×(1/9)=2msの露光時間に相当する受光出力が得られる。   As an example, it is assumed that each of the light branching portions 12a and 12b reflects 2/3 of incident light and transmits 1/3. In addition, the exposure time Pe of each of the light detection elements 1a, 1b, and 1c is 18 ms, and the read time Pr required for reading the received light output is 8 ms. In this setting, the sensitivity of each of the light detection elements 1a, 1b, and 1c is substantially set to 2/3, 2/9, and 1/9 when the sensitivity when the optical path control element 11 is not used is 1. It will be. Since the exposure time Pe is equal, the amount of received light is proportional to the ratio of sensitivity, and a charge corresponding to the amount of received light at the exposure time obtained by multiplying the actual exposure time Pe by the ratio of sensitivity is generated. In short, in the light detection elements 1a, 1b, and 1c, light reception outputs corresponding to exposure times of 18 ms × (2/3) = 12 ms, 18 ms × (2/9) = 4 ms, and 18 ms × (1/9) = 2 ms, respectively. Is obtained.

仮に1個の光検出素子を用いて露光時間Peを12ms、4ms、2msと変化させるとすれば、同じ露光時間Peの受光出力を得ることができるが、1回の読出時間Prは8msであるから、図3(b)のように、3種類の受光出力を得るために42msを要することになる。これに対して、本実施形態の構成では、図3(a)のように26msで3種類の受光出量を得ることができるのであって、本実施形態のほうが1枚の距離画像を生成するのに要する時間を短縮することができ、結果的に単位時間内に得られる情報量が多くなる。しかも、本実施形態では3種類の受光出力に時間差がないから、3個の光検出素子1a,1b,1cの受光出力を用いながらも同じ条件で物体Obまでの距離を計測することができる。つまり、物体Obが相対的に移動している場合でも同じ時刻における距離を求めることができる。   If the exposure time Pe is changed to 12 ms, 4 ms, and 2 ms using one photodetecting element, a light-receiving output with the same exposure time Pe can be obtained, but one readout time Pr is 8 ms. Therefore, as shown in FIG. 3B, it takes 42 ms to obtain three types of light reception outputs. On the other hand, in the configuration of the present embodiment, three kinds of received light output amounts can be obtained in 26 ms as shown in FIG. 3A, and the present embodiment generates one distance image. The time required for this can be shortened, resulting in an increase in the amount of information obtained within a unit time. In addition, in the present embodiment, since there is no time difference between the three types of light reception outputs, the distance to the object Ob can be measured under the same conditions while using the light reception outputs of the three light detection elements 1a, 1b, and 1c. That is, the distance at the same time can be obtained even when the object Ob moves relatively.

なお、図2に示す関係から明らかなように、各強度範囲Sa,Sb,Scの上限値はべき乗の関係で増加する。つまり、飽和閾値Tsと不感閾値Tiとを用い、最小の強度範囲Saの上限値をVaとすれば、(Ts/Ti)・Vaという関係で表すことができるから、12ms、4ms、2msの露光時間Peに相当するように感度を調整する代わりに、8ms、4ms、2msの露光時間Peに相当する関係としたり、10ms、4.4ms(=2×50.5)、2msの露光時間Peに相当する関係としたりすればよい。 As is clear from the relationship shown in FIG. 2, the upper limit values of the intensity ranges Sa, Sb, and Sc increase with a power relationship. That is, if the saturation threshold Ts and the dead threshold Ti are used and the upper limit value of the minimum intensity range Sa is Va, it can be expressed by the relationship of (Ts / Ti) n · Va. Instead of adjusting the sensitivity to correspond to the exposure time Pe, a relationship corresponding to an exposure time Pe of 8 ms, 4 ms, 2 ms, or an exposure time of 10 ms, 4.4 ms (= 2 × 5 0.5 ), 2 ms A relationship corresponding to Pe may be used.

(実施形態2)
実施形態1では、光路制御要素11において透過率および反射率が一定で光路を2分岐させる部分透過ミラーからなる光分岐部12a,12bを用いたが、本実施形態では、光を透過させる状態と反射させる状態とを選択可能であり、光路を2系統に切り替える光分岐部12a,12bを用いている。光分岐部12a,12bの配置は、図1に示した実施形態1と同様であるものとする。
(Embodiment 2)
In the first embodiment, the optical path control element 11 uses the light branching portions 12a and 12b made up of partial transmission mirrors that have a constant transmittance and reflectance and branch the optical path into two branches. However, in the present embodiment, The reflecting state can be selected, and the optical branching units 12a and 12b that switch the optical path to two systems are used. The arrangement of the light branching portions 12a and 12b is the same as that of the first embodiment shown in FIG.

本実施形態で用いる光分岐部12a,12bは、調光ミラー(特開昭60−247226号公報等参照)として知られており、エレクトリッククロミック材料に印加する電圧を変化させることにより、光を反射させる状態と透過させる状態とを切り替えることができる。   The light branching portions 12a and 12b used in the present embodiment are known as dimming mirrors (see Japanese Patent Application Laid-Open No. 60-247226), and reflect light by changing the voltage applied to the electric chromic material. The state to be transmitted and the state to be transmitted can be switched.

本実施形態では、タイミング制御部3から各光分岐部12a,12bの透過と反射とを選択する信号を出力する(図示せず)。したがって、各光分岐部12a,12bの透過と反射とを選択することにより、各光検出素子1a,1b,1cに択一的に光を導入することが可能になる。具体的には、光分岐部12aを反射の状態にすれば光分岐部12bの状態にかかわらず光検出素子1aにのみ光が導入され、光分岐部12aを透過の状態として光分岐部12bを反射の状態とすれば光検出素子1bにのみ光が導入され、光分岐部12a,12bをともに透過の状態とすれば光検出素子1cにのみ光が導入される。   In the present embodiment, the timing control unit 3 outputs a signal for selecting transmission and reflection of each of the optical branching units 12a and 12b (not shown). Therefore, it is possible to selectively introduce light into the light detection elements 1a, 1b, and 1c by selecting transmission and reflection of the light branching portions 12a and 12b. Specifically, if the light branching portion 12a is in a reflective state, light is introduced only into the light detection element 1a regardless of the state of the light branching portion 12b, and the light branching portion 12b is set in a transmission state. If the light is reflected, light is introduced only into the light detection element 1b. If both the light branching portions 12a and 12b are in the transmission state, light is introduced only into the light detection element 1c.

実施形態1では各光分岐部12a,12bにおける反射率および透過率を調節することにより、各光検出素子1a,1b,1cに対する光の強度について分配比率を調節しているが、本実施形態における光分岐部12a,12bは反射と透過とを選択するのみであって、一種のシャッタとしての機能しか持たないから、光の強度について分配比率を調節することはできない。ただし、光分岐部12a,12bはシャッタとして機能するから、露光時間によって光の分配比率を調節することは可能である。   In the first embodiment, the distribution ratio is adjusted with respect to the light intensity with respect to each of the light detection elements 1a, 1b, and 1c by adjusting the reflectance and transmittance in each of the light branching portions 12a and 12b. Since the light branching portions 12a and 12b only select reflection and transmission, and have only a function as a kind of shutter, the distribution ratio cannot be adjusted with respect to the light intensity. However, since the light branching portions 12a and 12b function as shutters, it is possible to adjust the light distribution ratio according to the exposure time.

そこで、図4に示すように、各光検出素子1a,1b,1cの露光時間が異なるように光分岐部12a,12bを制御することに加え、光検出素子1a,1b,1cの露光時間Teの一部に他の光検出素子1a,1b,1cの読出時間Trを重複させている。図示例では、実施形態1と同様に、各光検出素子1a,1b,1cの実質的な露光時間Teが12ms,4ms,2msになるように光分岐部12a,12bを制御している。読出時間Trは8msであって、光検出素子1b,1cの露光時間Teの合計が6msであるから、この関係では光検出素子1aの読出時間Teにおいて光検出素子1b,1cの露光時間Teが終了する。つまり、光検出素子1aの露光時間Teと読出時間Trとを合計した20msで、光検出素子1b,1cの露光が終了する。ただし、すべての光検出素子1a,1b,1cの受光出力を読み出すのに要する時間は26msになる。   Therefore, as shown in FIG. 4, in addition to controlling the light branching portions 12a, 12b so that the exposure times of the light detection elements 1a, 1b, 1c are different, the exposure time Te of the light detection elements 1a, 1b, 1c. Is partially overlapped with the readout time Tr of the other light detection elements 1a, 1b, and 1c. In the illustrated example, as in the first embodiment, the light branching portions 12a and 12b are controlled so that the substantial exposure times Te of the light detection elements 1a, 1b, and 1c are 12 ms, 4 ms, and 2 ms. Since the readout time Tr is 8 ms and the total exposure time Te of the light detection elements 1b and 1c is 6 ms, in this relationship, the exposure time Te of the light detection elements 1b and 1c is equal to the read time Te of the light detection element 1a. finish. That is, the exposure of the photodetecting elements 1b and 1c is completed in 20 ms, which is the sum of the exposure time Te and the reading time Tr of the photodetecting element 1a. However, the time required to read out the light reception outputs of all the light detection elements 1a, 1b, and 1c is 26 ms.

本実施形態の構成では、各光検出素子1a,1b,1cには異なる時刻の光が入射するから、光検出素子1a,1b,1cの受光出力に含まれる情報に時間差が生じるが、1個の光検出素子のみを用いて露光時間Teと読出時間Trとを交互に繰り返す場合に比較すると、各光検出素子1a,1b,1cの受光出力に含まれる情報の時間差は少なく、またすべての光検出素子1a,1b,1cから受光出力を得るのに要する時間も短くなる。さらに、実施形態1の構成では最大感度に対応付けた光検出素子1aであっても、入射光の強度が光路制御要素11への入射光に対して減衰しているから、減衰分だけ露光時間を延長する必要があるのに対して、本実施形態では最大感度に対応付けた光検出素子1aへの入射光の強度が、光路制御要素11への入射光の強度とほぼ等しいから、露光時間の延長が不要である。   In the configuration of the present embodiment, since light at different times is incident on each of the light detection elements 1a, 1b, and 1c, there is a time difference in information included in the light reception output of the light detection elements 1a, 1b, and 1c. Compared with the case where the exposure time Te and the readout time Tr are alternately repeated using only the photodetecting elements, the time difference of the information contained in the light receiving outputs of the photodetecting elements 1a, 1b, 1c is small, and all the light The time required to obtain the light reception output from the detection elements 1a, 1b, 1c is also shortened. Further, in the configuration of the first embodiment, even in the light detection element 1a associated with the maximum sensitivity, the intensity of the incident light is attenuated with respect to the incident light to the optical path control element 11, so that the exposure time is equal to the attenuation. In this embodiment, since the intensity of the incident light to the light detection element 1a associated with the maximum sensitivity is substantially equal to the intensity of the incident light to the optical path control element 11, the exposure time No extension is required.

なお、光分岐部12a,12bの個数は2個に限らず、1個あるいは3個以上でもよい。3個以上設ける場合には、2分岐した後にさらに2分岐するように光分岐部を配置してもよい。また、上述した構成例では、光検出素子1bの光軸上に各光分岐部12a,12bを配置した例を示しているが、光分岐部はこの光軸とは異なる位置に配置してもよい。他の構成および動作は実施形態1と同様である。   Note that the number of the optical branching portions 12a and 12b is not limited to two, and may be one or three or more. When three or more are provided, the light branching section may be arranged so that it is further branched after being branched into two. In the configuration example described above, an example in which the optical branching portions 12a and 12b are arranged on the optical axis of the light detection element 1b is shown. However, the optical branching portion may be arranged at a position different from the optical axis. Good. Other configurations and operations are the same as those of the first embodiment.

実施形態を示す概略構成図である。It is a schematic block diagram which shows embodiment. 実施形態1の動作説明図である。FIG. 3 is an operation explanatory diagram of the first embodiment. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 実施形態2の動作説明図である。FIG. 9 is an operation explanatory diagram of the second embodiment. 同上の動作原理を説明するブロック図である。It is a block diagram explaining the principle of operation same as the above.

符号の説明Explanation of symbols

1 光検出素子
1a,1b,1c 光検出素子
2 発光源
3 タイミング制御部
4 距離演算部(評価部)
4a 出力判定部
4b セレクタ
5 受光光学系
11 光路制御要素
11a,11b,11c プリズム
12a,12b 光分岐部
Ob 物体
DESCRIPTION OF SYMBOLS 1 Photodetection element 1a, 1b, 1c Photodetection element 2 Light emission source 3 Timing control part 4 Distance calculating part (evaluation part)
4a Output determination unit 4b Selector 5 Light receiving optical system 11 Optical path control element 11a, 11b, 11c Prism 12a, 12b Optical branching unit Ob Object

Claims (7)

対象空間に赤外線を投光する発光源と、前記対象空間の同じ空間領域からの光を受光しそれぞれ受光量に応じた受光出力が得られる複数個の光検出素子と、前記対象空間から前記光検出素子への光路上に配置され前記対象空間からの入射光を前記光検出素子ごとに振り分ける光路制御要素と、前記光検出素子ごとの受光出力のうち受光出力の上限としての飽和閾値と受光出力の下限としての不感閾値とにより定められた適正範囲である前記光検出素子の受光出力を用いて前記対象空間に関する空間情報を検出する評価部とを備え、前記光路制御要素は、前記入射光が入射するプリズムを備え、光路を2分岐する部分透過ミラーからなる光分岐部を前記光検出素子の個数より1個少なく備える構成であり、前記光分岐部の反射率および透過率により設定された所定の分配比率で前記入射光を前記光検出素子にそれぞれ振り分けることにより前記光検出素子ごとの受光量を互いに異ならせる機能を有し、前記プリズムは一面に配置された前記光分岐部で反射された反射光を前記対象空間からの入射面である他面で全反射させた後に前記光検出素子の一つに入射させる光路を形成することを特徴とする空間情報の検出装置。 A light emitting source for projecting infrared target space, and a plurality of light detecting elements receiving output corresponding to each light receiving quantity receives light is obtained from the same spatial region of the object space, the light from the target space an optical path control element is disposed on the optical path of the detecting element distributes the incoming light from the target space to each of the light detecting element, the saturation threshold and a light receiving output of the upper limit of the light receiving output of the light receiving output of each of the light detection element and a evaluation unit for detecting the spatial information about the object space by using the light receiving output of the light detection element is proper range defined by the dead threshold as the lower limit of the optical path control element, the incident light The optical branching unit includes an incident prism, and includes a light branching portion including a partial transmission mirror that branches the optical path in two, which is smaller than the number of the light detection elements. Ri has a function of Ru was different from each other received light amount of each of the light detecting element by at set predetermined distribution ratio to distribute respectively the incident light on the light detecting element, the light the prism is disposed on one surface An apparatus for detecting spatial information, comprising: forming an optical path for causing the reflected light reflected by the branching part to be totally reflected by the other surface, which is an incident surface from the target space, and then to be incident on one of the light detection elements. . 前記各光制御要素の露光時間は実質的同一であることを特徴とする請求項1記載の空間情報の検出装置。 2. The apparatus for detecting spatial information according to claim 1, wherein the exposure time of each of the light control elements is substantially the same . 対象空間に赤外線を投光する発光源と、前記対象空間の同じ空間領域からの光を受光しそれぞれ受光量に応じた受光出力が得られる複数個の光検出素子と、前記対象空間から前記光検出素子への光路上に配置され前記対象空間からの入射光を前記光検出素子ごとに振り分ける光路制御要素と、前記光検出素子ごとの受光出力のうち受光出力の上限としての飽和閾値と受光出力の下限としての不感閾値とにより定められた適正範囲である前記光検出素子の受光出力を用いて前記対象空間に関する空間情報を検出する評価部とを備え、前記光路制御要素は、光を透過させる状態と反射させる状態とが選択可能であって光路を2系統に切り替える光分岐部を前記光検出素子の個数より1個少なく備え、前記光分岐部での前記光検出素子ごとの露光時間により入射光を所定の分配比率で前記光検出素子にそれぞれ振り分けることを特徴とする空間情報の検出装置。 A light source that emits infrared light into a target space; a plurality of light detection elements that receive light from the same spatial region of the target space and obtain a light reception output corresponding to the amount of received light; and the light from the target space An optical path control element that is arranged on the optical path to the detection element and distributes incident light from the target space for each of the photodetection elements, and a saturation threshold and a photodetection output as an upper limit of the photodetection output among the light reception outputs for each of the photodetection elements An evaluation unit that detects spatial information about the target space using a light reception output of the light detection element that is an appropriate range determined by a dead threshold as a lower limit of the insensitive threshold, and the optical path control element transmits light A light branching section that can select a state and a reflecting state and switches the optical path to two systems is provided by one less than the number of the light detection elements, and exposure is performed for each light detection element in the light branching section. Detector spatial information, characterized in that distributed to each of the light detection element incident light at a predetermined distribution ratio by. 前記光路制御要素は、前記対象空間からの光を前記光検出素子のいずれかに択一的に入射させ、前記光検出素子ごとに1回ずつ光を入射させる期間内において前記光検出素子ごとに光を入射させる期間を互いに連続させることを特徴とする請求項3記載の空間情報の検出装置。 The optical path control element selectively makes light from the target space incident on any one of the light detection elements, and for each light detection element within a period in which light is incident once for each light detection element. 4. The spatial information detecting apparatus according to claim 3, wherein the periods during which light is incident are continuous with each other . 前記光路制御要素は、前記光検出素子のうち、入射光の強度が大きいときに適正な受光出力が得られる前記光検出素子は、入射光の強度が小さいときに適正な受光出力が得られる前記光検出素子よりも入射光の分配比率が小さく設定されることを特徴とする請求項1ないし請求項4のいずれか1項に記載の空間情報の検出装置。 The optical path control element can obtain a proper light receiving output when the intensity of incident light is large among the light detecting elements, and the light detecting element can obtain a proper light receiving output when the intensity of incident light is small. The spatial information detection device according to claim 1, wherein a distribution ratio of incident light is set smaller than that of the light detection element . 前記評価部における選択条件は、規定の飽和閾値以下の範囲で最大の受光出力を選択することであって、前記光検出素子は、それぞれ前記対象空間からの光を受光して受光量に応じた電荷を生成する複数個の感光部を有し前記対象空間を撮像することにより前記感光部で生成された電荷を受光出力とするイメージセンサであり、前記評価部は、前記光検出素子において前記対象空間の同じ位置に対応付けられた前記感光部で得られる受光出力のうち前記選択条件を満たす受光出力を前記対象空間の位置ごとに選択することを特徴とする請求項1ないし請求項5のいずれか1項に記載の空間情報の検出装置。 The selection condition in the evaluation unit is to select the maximum light reception output within a range equal to or less than a predetermined saturation threshold, and the light detection element receives light from the target space and responds to the light reception amount. An image sensor having a plurality of photosensitive units for generating electric charges and taking the electric charges generated by the photosensitive unit by imaging the target space, and the evaluation unit is configured to detect the target in the light detection element. 6. The light receiving output satisfying the selection condition is selected for each position of the target space from among the light receiving outputs obtained by the photosensitive units associated with the same position in the space. The spatial information detecting device according to claim 1. 前記発光源は、所定周期の変調信号で強度変調された光を対象空間に照射し、前記評価部における選択条件は、規定の飽和閾値以下の範囲で最大の受光出力を選択することであって、前記光検出素子は、それぞれ前記対象空間からの光を受光して受光量に応じた電荷を生成する複数個の感光部を有し前記対象空間を撮像することにより前記感光部で生成された電荷を受光出力とするイメージセンサであり、前記評価部は、前記光検出素子において前記対象空間の同じ位置に対応付けられた前記感光部で得られる受光出力のうち前記選択条件を満たす受光出力を用いて物体までの距離を求め、前記感光部に対応付けた前記対象空間の位置ごとの距離を画素値とする距離画像を生成することを特徴とする請求項1ないし請求項5のいずれか1項に記載の空間情報の検出装置。 The light emitting source irradiates the target space with light whose intensity is modulated with a modulation signal having a predetermined period, and the selection condition in the evaluation unit is to select a maximum light receiving output within a range equal to or less than a prescribed saturation threshold. , before Symbol photodetector is generated by the photosensitive unit by imaging the object space has a plurality of photosensitive unit generating an electric charge according to the amount of light received by receiving light from each of the target space and is an image sensor that a light receiving output charge, the evaluation unit, the light associated with the same position of the target space in the detection element and the one of the light-receiving output obtained by the photosensitive unit and the selection criteria received light output obtains the distance to the object using the distance of each position of the target space associated with the photosensitive unit claims 1 and generates a distance image and pixel values either claim 5 Or 1 Detection equipment of the spatial information of the placement.
JP2006290353A 2006-10-25 2006-10-25 Spatial information detection device Expired - Fee Related JP5215547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290353A JP5215547B2 (en) 2006-10-25 2006-10-25 Spatial information detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290353A JP5215547B2 (en) 2006-10-25 2006-10-25 Spatial information detection device

Publications (2)

Publication Number Publication Date
JP2008107205A JP2008107205A (en) 2008-05-08
JP5215547B2 true JP5215547B2 (en) 2013-06-19

Family

ID=39440671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290353A Expired - Fee Related JP5215547B2 (en) 2006-10-25 2006-10-25 Spatial information detection device

Country Status (1)

Country Link
JP (1) JP5215547B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202776A (en) * 2011-03-24 2012-10-22 Toyota Central R&D Labs Inc Distance measuring device
JP6525603B2 (en) * 2015-01-27 2019-06-05 キヤノン株式会社 Imaging device
JP6399971B2 (en) * 2015-06-12 2018-10-03 三菱電機株式会社 Laser radar equipment
JP7191570B2 (en) 2018-07-27 2022-12-19 京セラ株式会社 Electromagnetic wave detector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769422B2 (en) * 1988-09-01 1995-07-31 日本電気株式会社 Pulse laser range finder
JPH10332814A (en) * 1997-06-04 1998-12-18 Nec Corp High-speed quantity-of-light regulator and laser radar using it
JPH1123710A (en) * 1997-06-30 1999-01-29 Nec Corp Range finder
JP2000121854A (en) * 1998-10-16 2000-04-28 Nok Corp Optical part, optical branching device, optical demultiplexer and optical multiplexer
JP3156690B2 (en) * 1999-01-18 2001-04-16 日本電気株式会社 Laser radar device
JP3827557B2 (en) * 2001-11-01 2006-09-27 松下電器産業株式会社 Optical measuring device and optical measuring method
JP2006014133A (en) * 2004-06-29 2006-01-12 Lasertec Corp Imaging device and imaging method
JP2006064468A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 3-d configuration measurement device
JP4438603B2 (en) * 2004-11-05 2010-03-24 ジック オプテックス株式会社 Optical displacement sensor
JP5122728B2 (en) * 2005-01-05 2013-01-16 パナソニック株式会社 Photodetector, photodetector control method, and spatial information detector

Also Published As

Publication number Publication date
JP2008107205A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP6899005B2 (en) Photodetection ranging sensor
JP6977045B2 (en) Systems and methods for determining the distance to an object
US9332246B2 (en) Time of flight camera unit and optical surveillance system
RU2538418C2 (en) Optical rangefinder
RU2602734C2 (en) Measuring device for measurement of distance between it and a target object by means of measuring optical radiation
CA3017735C (en) Integrated illumination and detection for lidar based 3-d imaging
US7009690B2 (en) Three-dimensional measurement device and three-dimensional measurement method
US8848172B2 (en) Distance measuring device having homogenizing measurement evaluation
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP5261571B2 (en) Distance measuring device
KR102451010B1 (en) A system for determining the distance to an object
JP5665159B2 (en) Distance image sensor
US6094270A (en) Range finder
KR20180073571A (en) System and method for determining distance to an object
JP5655133B2 (en) Spatial information detector
US11054524B2 (en) Optimizing a lidar system using sub-sweep sampling
CN111448474A (en) Full-waveform multi-pulse optical distance measuring instrument
JP5215547B2 (en) Spatial information detection device
US20020135747A1 (en) Distance measuring device
US11947068B2 (en) Electromagnetic wave detection apparatus and information acquisition system
KR20160101312A (en) Apparatus for measuring distance
JP4673674B2 (en) Shape measuring device
JP2006201037A (en) Shape measuring apparatus
US20240061085A1 (en) Solid-state scanning flash lidar by diffractive field-of-view steering with digital micromirror device
JP2023072106A (en) Ranging apparatus and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees