JP2006201037A - Shape measuring apparatus - Google Patents

Shape measuring apparatus Download PDF

Info

Publication number
JP2006201037A
JP2006201037A JP2005013130A JP2005013130A JP2006201037A JP 2006201037 A JP2006201037 A JP 2006201037A JP 2005013130 A JP2005013130 A JP 2005013130A JP 2005013130 A JP2005013130 A JP 2005013130A JP 2006201037 A JP2006201037 A JP 2006201037A
Authority
JP
Japan
Prior art keywords
light
phase
imaging
irradiation
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005013130A
Other languages
Japanese (ja)
Inventor
Yasuhiro Osawa
康宏 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005013130A priority Critical patent/JP2006201037A/en
Publication of JP2006201037A publication Critical patent/JP2006201037A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise shape measuring apparatus which can easily realize a modulation pattern at a photographing step, is easy to implement the modulation pattern and determines a distance (phase) from refection pulse light returning along the direction of an object to be measured. <P>SOLUTION: The shape measuring apparatus includes an irradiation means 3 for irradiating the object to be measured 2 with an irradiation pattern being a light pattern, and photographing means 4-6 disposed at positions optically identical to that of the irradiation means 3 to obtain a photographed pattern being a light pattern reflected by the surface of the object to be measured 2, and computes a surface shape of the object to be measured 2 from the photographed pattern. The object to be measured 2 is disposed in a prescribed range of distance from the irradiation means 3, and the irradiation means 3 irradiates the object to be measured 2 with the irradiation pattern having a certain intensity modulated with an angular frequency ω, and the photographing means 4-6 modulate reflection light which is reflected by the surface of the object to be measured 2 and returns again to the photographing means 4-6 by passing through the path identical to that of the irradiation, with the angular frequency ω and a phase ϕd, and then detect a temporal average of light intensity, thereby deriving the distance L of the object to be measured 2 from the light intensity obtained under a plurality of modulation conditions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測定物体に照射パターンを照射し、測定物体表面で反射された撮像パターンから測定物体の表面形状を計算する非接触型の形状測定装置に関するものである。   The present invention relates to a non-contact type shape measuring apparatus that irradiates a measurement object with an irradiation pattern and calculates a surface shape of the measurement object from an imaging pattern reflected on the surface of the measurement object.

従来では、人物や商品などを撮像する際に、背景抜き出しや測定物体の表面形状を計測したいという要求があり、このための測定方法が幾つか知られている(例えば、非特許文献1ならびに特許文献1および2参照)。
かかる測定には、通常は、非特許文献1に開示の光切断法と呼ばれ、光スリットを測定物体表面に照射しながら、その変形をカメラで観測することでカメラから測定物体までの距離、つまり表面形状を計測するか、ステレオ法と呼ばれる複数のカメラから視差情報を用いて測定物体の表面形状測定することが多い。
これらの方法は三角測量の原理を用いているため、光源とカメラの間、あるいはカメラ同士の間に距離を必要とする。それらの視差により互いに見えない部分が生じる(いわゆる「隠れ」)ことがある。見えない部分は形状データが得られないので、近傍点から類推するか、測定位置を変えて再測定することで回避するが、表面形状が複雑だと隠れをなくすことが不可能な場合もある。
隠れが生じない測定方法としてはTOF(Time of Flight)法がある。この方法は、距離計測装置から光を発し、測定物体上で反射して戻る光帰還時間をなんらかの方法で計測するものである。
図6は従来の測定装置を説明するブロック図である。この測定装置は変調回路1、半導体レーザ2、コリメータレンズ3、ビームスプリッタ4、このビームスプリッタ4からの光を反射するミラー5、光検出器6、ビームスプリッタ4を通過した光を集める集光レンズ7、測定物体13を走査するスキャナ8を駆動するモータ9、周期/周波数計測回路10、距離演算回路11、および障害物検知回路12を含んでいる。
特許文献1の開示である図6の測定装置は、周波数変調したレーザ光源を照射し、反射光とビートをとることによって距離に相当する位相ずれを測定する方法である。
特許文献1の技術によれば、比較的精度よく距離計測できるが、位相ずれを2次元的に検知できる素子がないため、1度に1点しか距離計測できない短所を持ち、形状測定にはあまり向いていない。また、距離情報に対応するビートの位相を検知する回路が複雑であることも問題である。
Conventionally, when a person or a product is imaged, there is a demand for extracting a background or measuring the surface shape of a measurement object, and several measurement methods for this purpose are known (for example, Non-Patent Document 1 and Patents). Reference 1 and 2).
Such measurement is usually called a light cutting method disclosed in Non-Patent Document 1, and the distance from the camera to the measurement object by observing the deformation with the camera while irradiating the surface of the measurement object with the optical slit, That is, the surface shape is often measured, or the surface shape of the measurement object is often measured using parallax information from a plurality of cameras called a stereo method.
Since these methods use the principle of triangulation, a distance is required between the light source and the camera or between the cameras. These parallaxes may result in parts that are not visible to each other (so-called “hidden”). Since shape data cannot be obtained for invisible parts, it can be avoided by analogizing from neighboring points or by changing the measurement position and re-measurement, but it may be impossible to eliminate hiding if the surface shape is complicated .
There is a TOF (Time of Flight) method as a measurement method that does not cause hiding. This method measures the optical feedback time by emitting light from a distance measuring device and reflecting it back on the measurement object by some method.
FIG. 6 is a block diagram illustrating a conventional measuring apparatus. This measuring apparatus includes a modulation circuit 1, a semiconductor laser 2, a collimator lens 3, a beam splitter 4, a mirror 5 that reflects light from the beam splitter 4, a photodetector 6, and a condenser lens that collects light that has passed through the beam splitter 4. 7, a motor 9 for driving the scanner 8 that scans the measurement object 13, a period / frequency measurement circuit 10, a distance calculation circuit 11, and an obstacle detection circuit 12.
The measurement apparatus of FIG. 6 disclosed in Patent Document 1 is a method of measuring a phase shift corresponding to a distance by irradiating a frequency-modulated laser light source and taking a beat with reflected light.
According to the technique of Patent Document 1, distance measurement can be performed with relatively high accuracy. However, since there is no element capable of two-dimensionally detecting a phase shift, there is a disadvantage that only one distance can be measured at a time, and it is not much for shape measurement. Not suitable. Another problem is that the circuit for detecting the phase of the beat corresponding to the distance information is complicated.

図7は従来の他の測定装置を説明するブロック図である。図8は距離精度を左右する直線状に変調された光強度を示す図である。図9は距離精度を左右する直線状に変調された光強度を示す他の図である。
図7において、信号発生部15からの照明光変調信号S1が投光部16に入って、照明光S6を被写体17に投光する。被写体17からの反射光S7が撮像部18に入り、撮像部18からの出力として映像信号S4a、S4bが信号処理部19で処理されて信号処理部19から立体情報信号S5を出力する。
この場合に、撮像部18には信号発生部15からの撮像利得信号S2が、信号処理部19には制御信号S3が印加される。この測定装置は、時間方向に増加する光パルスと減少する光パルスを照射し、これら2つのパルスに対して各々計測した反射光強度の比を測定することで距離を計測している。
特許文献2の開示である図7の測定装置は、1ns以下のごく狭い時間帯で光量測定を行うことで、数cmきざみの距離分解能を持たせることができる。また短時間のシャッタ機能を備えた2次元受光素子を利用することで、一括で画像の画素ごとに距離計測を行なえる。
図8は直線状に変調された光強度を示すグラフであり、図9は直線状に変調された光強度をで示す他のグラフである。反射して戻った光パルスのどのタイミングで検知されたか(正弦波では位相の検知に相当)により位置を知るため、距離精度は図8および図9に示すような直線状に変調された光強度の形状の精度で決まる。
三角パルスには広い範囲の周波数成分が含まれるため、精度の高い三角パルスを作るために回路が高価になり易い。同じく、ごく短い時間だけ開閉する光シャッタは、高周波を含む矩形状のパルスで駆動するため、同じく回路が高価になり易い。
また、2種類の光パルスの強度比を用いていることから測定物体表面の反射率はキャンセルできるが、測定物体方面から戻る反射パルスの距離決定を背景光が無視できることを前提としている。
吉澤徹、光三次元計測、新技術コミュニケーションズ、平成5年、28−37頁 特開平7−103714号公報 特開平2000−121339公報
FIG. 7 is a block diagram for explaining another conventional measuring apparatus. FIG. 8 is a diagram showing light intensity modulated in a linear manner that affects distance accuracy. FIG. 9 is another diagram showing the light intensity modulated in a straight line that affects the distance accuracy.
In FIG. 7, the illumination light modulation signal S <b> 1 from the signal generation unit 15 enters the light projecting unit 16 and projects the illumination light S <b> 6 onto the subject 17. The reflected light S7 from the subject 17 enters the imaging unit 18, and the video signals S4a and S4b are processed by the signal processing unit 19 as outputs from the imaging unit 18, and the three-dimensional information signal S5 is output from the signal processing unit 19.
In this case, the imaging gain signal S2 from the signal generation unit 15 is applied to the imaging unit 18, and the control signal S3 is applied to the signal processing unit 19. This measuring apparatus irradiates light pulses increasing and decreasing in the time direction, and measures the distance by measuring the ratio of the reflected light intensity measured for each of these two pulses.
The measurement apparatus of FIG. 7 which is the disclosure of Patent Document 2 can have a distance resolution of several centimeters by performing light quantity measurement in a very narrow time zone of 1 ns or less. In addition, by using a two-dimensional light receiving element having a short-time shutter function, distance measurement can be performed for each pixel of the image at once.
FIG. 8 is a graph showing the light intensity modulated linearly, and FIG. 9 is another graph showing the light intensity modulated linearly. In order to know the position based on the timing of the reflected light pulse that has been reflected (corresponding to phase detection in a sine wave), the distance accuracy is linearly modulated light intensity as shown in FIG. 8 and FIG. It depends on the accuracy of the shape.
Since the triangular pulse includes a wide range of frequency components, the circuit tends to be expensive to produce a highly accurate triangular pulse. Similarly, since an optical shutter that opens and closes for a very short time is driven by a rectangular pulse including a high frequency, the circuit is also likely to be expensive.
Further, since the reflectance of the surface of the measurement object can be canceled because the intensity ratio of the two types of light pulses is used, it is assumed that the background light can be ignored in determining the distance of the reflected pulse returning from the direction of the measurement object.
Toru Yoshizawa, Optical 3D Measurement, New Technology Communications, 1993, pp. 28-37 JP-A-7-103714 JP 2000-121339 A

しかしながら、従来のTOF法に基づいて距離計測する方法では、測定物体方面から戻る反射パルスの位相を決定するために応答が高速・広帯域であったり、複雑な回路を有している問題がある。
そこで、本発明の目的は、上述した実情を考慮して、撮像時の変調パターンが簡単に実現でき、この変調パターンの実装がし易く、且つ測定物体方面から戻る反射パルス光から距離(位相)決定を行うための単純で精度の高い形状測定装置を提供することにある。
However, the conventional distance measurement method based on the TOF method has a problem that the response is high-speed and wide-bandwidth or has a complicated circuit in order to determine the phase of the reflected pulse returning from the direction of the measurement object.
Accordingly, an object of the present invention is to easily realize a modulation pattern at the time of imaging in consideration of the above-described situation, and to easily implement this modulation pattern, and from the reflected pulse light returning from the measurement object direction (phase) It is an object of the present invention to provide a simple and highly accurate shape measuring apparatus for making a decision.

上記の課題を解決するために、請求項1に記載の発明は、測定物体に光パターンである照射パターンを照射する照射手段と、前記測定物体表面で反射された光パターンである撮像パターンを得る前記照射手段と光学的に同じ位置にある撮像手段とを備え、前記撮像パターンから前記測定物体の表面形状を計算する形状測定装置において、前記測定物体は前記照射手段から所定距離の範囲に存在し、前記照射手段は角周波数ωで変調した所定強度の照射パターンを前記測定物体に照射し、前記撮像手段は、前記測定物体表面で反射され照射と同じ経路を逆にたどって前記撮像手段に戻る反射光を、角周波数ω、位相φdで変調を行った後に光量の時間平均を検知し、検知した時間平均により前記測定物体の距離Lを、複数の変調条件で得られた光量に基づいて求めることを特徴とする。
また、請求項2に記載の発明は、前記位相φdが0、π/2、π、3π/2である4種類の前記変調条件に対して得られた撮像パターンの光量分布をPpc、Pns、Pnc、Ppsとすると、位相関数Sがφ=atan((Pns−Pps)/(Ppc−Pnc))である請求項1の形状測定装置を特徴とする。
また、請求項3に記載の発明は、前記位相φdが0、π、3π/2である3種類の前記変調条件に対して得られた撮像パターンの光量分布をPpc、Pnc、Ppsとすると、位相関数Sがφ=atan((Pnc−Pps)/(Ppc−Pps))+π/4である請求項1の形状測定装置を特徴とする。
In order to solve the above-described problem, the invention according to claim 1 obtains an irradiation unit that irradiates a measurement object with an irradiation pattern that is a light pattern, and an imaging pattern that is a light pattern reflected by the surface of the measurement object. And a shape measuring device that calculates the surface shape of the measurement object from the imaging pattern, and the measurement object exists within a predetermined distance from the irradiation means. The irradiation unit irradiates the measurement object with an irradiation pattern having a predetermined intensity modulated at an angular frequency ω, and the imaging unit returns to the imaging unit after being reflected on the surface of the measurement object and following the same path as the irradiation. The reflected light is modulated with the angular frequency ω and the phase φd, and then the time average of the amount of light is detected, and the distance L of the measurement object is obtained under a plurality of modulation conditions based on the detected time average. And obtaining, based on the.
In the invention according to claim 2, the light quantity distribution of the imaging pattern obtained for the four types of modulation conditions in which the phase φd is 0, π / 2, π, and 3π / 2 is represented by Ppc, Pns, If Pnc and Pps, the shape measuring apparatus according to claim 1 is characterized in that the phase function S is φ = atan ((Pns−Pps) / (Ppc−Pnc)).
In the invention according to claim 3, when the light quantity distribution of the imaging pattern obtained with respect to the three types of modulation conditions in which the phase φd is 0, π, and 3π / 2 is Ppc, Pnc, and Pps, The shape measuring apparatus according to claim 1, wherein the phase function S is φ = atan ((Pnc−Pps) / (Ppc−Pps)) + π / 4.

また、請求項4に記載の発明は、前記位相φdが0、π/2である2種類の前記変調条件に対して得られた撮像パターンの光量分布を、Ppc、Pns、D=0である変調条件に対して得られた撮像パターンの光量分布をPfとすると、位相関数Sがφ=atan((Pns−Pf)/(Ppc−Pf))である請求項1の形状測定装置を特徴とする。
また、請求項5に記載の発明は、照射と撮像の変調周波数をnω(nは自然数)とし、n=1の位相φ1から形状の概要を求め、該nを順次増やして得られた位相φnから、L=L2−Lo(φn−2mπ+nφo)/(2πn)により、未定の整数mを推定しながら前記距離Lを詳細に求める請求項1の形状測定装置を特徴とする。
また、請求項6に記載の発明は、前記照射手段の前方の距離Lrに反射板を設け(L1≦Lr≦L2)、この反射板から戻る反射光の位相φrとして、φo=φr−2π(L2−Lr)/Loからφoを求める請求項1の形状測定装置を特徴とする。
また、請求項7に記載の発明は、前記照射手段は半導体光源であり、前記撮像手段は光シャッタ付きのCCD素子、またはCMOS素子である請求項1の形状測定装置を特徴とする。
また、請求項8に記載の発明は、前記照射手段はレーザダイオードや発光ダイオードなどの半導体光源であり、前記撮像手段は光利得を変調できるCCD素子、またはCMOS素子である請求項1の形状測定装置を特徴とする。
また、請求項9に記載の発明は、前記照射手段の光源を赤外光源とし、前記撮像手段に可視光を除去する光フィルタを設ける請求項1の形状測定装置を特徴とする。
また、請求項10に記載の発明は、前記照射手段の光源を赤外光源とし、前記撮像手段に赤外光と可視光を分離するミラーを設け、分離した赤外光から形状を測定し、可視光から形状に貼り付けるテキスチャデータを得る請求項9の形状測定装置を特徴とする。
In the invention according to claim 4, the light quantity distribution of the imaging pattern obtained for the two types of modulation conditions in which the phase φd is 0 and π / 2 is Ppc, Pns, and D = 0. 2. The shape measuring apparatus according to claim 1, wherein the phase function S is φ = atan ((Pns−Pf) / (Ppc−Pf)), where Pf is a light amount distribution of the imaging pattern obtained with respect to the modulation condition. To do.
According to the fifth aspect of the present invention, the modulation frequency of irradiation and imaging is nω (n is a natural number), the outline of the shape is obtained from the phase φ1 of n = 1, and the phase φn obtained by sequentially increasing n is obtained. From the above, the shape measuring device according to claim 1 is characterized in that the distance L is obtained in detail while estimating an undetermined integer m by L = L2-Lo (φn−2mπ + nφo) / (2πn).
In the invention described in claim 6, a reflector is provided at a distance Lr in front of the irradiating means (L1 ≦ Lr ≦ L2), and the phase φr of the reflected light returning from the reflector is φo = φr−2π ( The shape measuring apparatus according to claim 1, wherein φo is obtained from L 2 −Lr) / Lo.
The invention according to claim 7 is characterized in that the irradiation means is a semiconductor light source, and the imaging means is a CCD element with a light shutter or a CMOS element.
In the invention described in claim 8, the irradiation means is a semiconductor light source such as a laser diode or a light emitting diode, and the imaging means is a CCD element or a CMOS element capable of modulating optical gain. Features the device.
The invention according to claim 9 is characterized by the shape measuring apparatus according to claim 1, wherein the light source of the irradiating means is an infrared light source, and the image pickup means is provided with an optical filter for removing visible light.
The invention according to claim 10 uses the light source of the irradiating means as an infrared light source, and provides a mirror for separating infrared light and visible light in the imaging means, and measures the shape from the separated infrared light, The shape measuring apparatus according to claim 9, wherein texture data to be attached to a shape from visible light is obtained.

本発明によれば、正弦波状に変調した光パルスを照射し、反射光を同じ周波数の正弦波で変調した後に平均化して位相検知することで距離を測定するので、照射・撮像とも回路が簡単で位相精度が高いため、装置を低コスト化できる。   According to the present invention, a light pulse modulated in a sine wave shape is irradiated, and the reflected light is modulated with a sine wave of the same frequency and then averaged and phase detection is performed, so the circuit is simple for both irradiation and imaging. Since the phase accuracy is high, the cost of the apparatus can be reduced.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明による形状測定装置の第1の実施の形態を示す概略図である。この形状測定装置1において、照射手段はレーザダイオード3からなり、このレーザダイオード3の出力光を変調して照射パターンを生成する。
撮像手段はレンズ5とCMOSフォトダイオードが2次元状に配列された受光素子アレイ6、およびレンズ5の直前に配した光シャッタ4からなる。ハーフミラー7を利用してレンズ5の光学中心とレーザダイオード3の発光中心を光学的に同じ位置に合わせてあるため、測定物体2から見ると、照射手段3と撮像手段は同じ場所にあるように見える。
そのため、通常の光切断法と異なり、照明と撮像の間に視差がない。レーザから照射された光パルスはハーフミラー7で折り曲げられて測定物体2上に照射される。この測定物体2上で散乱された光の一部は、照射と同じ経路を逆にたどって、ハーフミラー7を透過し、光シャッタ4を抜けて受光素子上に結像する。レンズ5の焦点距離をfとすると、レンズ5と受光素子との距離は概ねfとなる。
このように形状測定装置1は、測定物体2に光パターン(照射パターン)を照射する照射手段3と、測定物体2表面で反射された光パターン(撮像パターン)を得る、照射手段3と光学的に同じ位置にある撮像手段4、5、6と、撮像パターンから測定物体2の表面形状を計算する計算手段(図示せず)からなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing a first embodiment of a shape measuring apparatus according to the present invention. In this shape measuring apparatus 1, the irradiation means includes a laser diode 3, and generates an irradiation pattern by modulating the output light of the laser diode 3.
The imaging means comprises a light receiving element array 6 in which a lens 5 and a CMOS photodiode are two-dimensionally arranged, and an optical shutter 4 disposed immediately before the lens 5. Since the optical center of the lens 5 and the light emission center of the laser diode 3 are optically aligned at the same position using the half mirror 7, when viewed from the measurement object 2, the irradiation means 3 and the imaging means seem to be at the same place. Looks like.
Therefore, unlike a normal light cutting method, there is no parallax between illumination and imaging. The light pulse irradiated from the laser is bent by the half mirror 7 and irradiated onto the measurement object 2. A part of the light scattered on the measurement object 2 follows the same path as the irradiation, passes through the half mirror 7, passes through the optical shutter 4, and forms an image on the light receiving element. If the focal length of the lens 5 is f, the distance between the lens 5 and the light receiving element is approximately f.
As described above, the shape measuring apparatus 1 includes the irradiation unit 3 that irradiates the measurement object 2 with the light pattern (irradiation pattern), and the irradiation unit 3 that obtains the light pattern (imaging pattern) reflected from the surface of the measurement object 2 and the optical unit. Imaging means 4, 5, 6 at the same position, and calculation means (not shown) for calculating the surface shape of the measurement object 2 from the imaging pattern.

前記測定物体2は照射手段3から距離L1からL2(L2>L1とする)の範囲に存在し、照射手段3と撮像手段4、5、6は光学的に同じ光軸上にある。したがって、照射手段3は角周波数ωで変調した強度P0=A+Bcos(ωt)の照射パターンを測定物体2に照射する(ω=πc/Lo、Lo=L2−L1、cは光速、tは時間、A、Bは測定条件に依存する定数)。
撮像手段4、5、6は、測定物体2表面で反射され、照射と同じ経路を逆にたどって撮像手段4、5、6に戻る反射光Pr=Ω(A+Bsin(ωt+φ))(Ωは測定条件に依存する定数)を、角周波数ω、位相φdで変調M=C+Dcos(ωt+φd)を行った後に光量の時間平均P=<PrM>を検知する。
ここで、C、Dは測定条件に依存する定数、<>は時間間隔Tの時間平均を意味する。Taは変調周期Toに対して十分大きい(To=2π/ω)。E、D、φdを変えた複数の変調条件で得られた光量P1、P2、・・・を用い、それらのPからA、B、C、D、Ωを消去することで変調の位相遅れφを計算する位相関数φ=S(P1、P2、・・・)を介して、L=L2−Lo(φ−φo)/2π(φoは定数)から測定物体2の距離Lを求める。
測定物体2が照射位置から距離L(L1≦L≦L2)にあり(L1<L2)、Lo=L2−L1、cを光速とし、波長λ=2Loの変調光、つまりλ=2πc/ωから、角周波数ω=πc/Loで変調した光を測定物体2に照射する。
この場合に、測定物体2表面で反射され、照射と同じ経路を逆にたどって照射位置に戻る反射光を検知すると、観察される変調の位相φは、照射位置からの距離Lに応じて位相遅れが生じる。適当な初期位相φoのもとで、例えば、この位相φをL1でφ=2πに、L2でφ=0に対応させることができる。
The measurement object 2 exists in the range of distances L1 to L2 (L2> L1) from the irradiation unit 3, and the irradiation unit 3 and the imaging units 4, 5, and 6 are optically on the same optical axis. Therefore, the irradiation means 3 irradiates the measurement object 2 with an irradiation pattern of intensity P0 = A + Bcos (ωt) modulated at the angular frequency ω (ω = πc / Lo, Lo = L2-L1, c is the speed of light, t is the time, A and B are constants depending on measurement conditions).
The imaging means 4, 5, 6 are reflected by the surface of the measurement object 2, and return to the imaging means 4, 5, 6 by following the same path as the irradiation Pr = Ω (A + Bsin (ωt + φ)) (Ω is measurement) The time average P = <PrM> of the light quantity is detected after the modulation M = C + Dcos (ωt + φd) is performed with the angular frequency ω and the phase φd.
Here, C and D are constants depending on measurement conditions, and <> means a time average of the time interval T. Ta is sufficiently large with respect to the modulation period To (To = 2π / ω). Using the light amounts P1, P2,... Obtained under a plurality of modulation conditions with different E, D, and φd, and eliminating A, B, C, D, and Ω from those P, the phase delay φ of the modulation The distance L of the measuring object 2 is obtained from L = L2−Lo (φ−φo) / 2π (φo is a constant) through the phase function φ = S (P1, P2,.
The measurement object 2 is at a distance L (L1 ≦ L ≦ L2) from the irradiation position (L1 <L2), Lo = L2−L1, c is the speed of light, and the modulated light of wavelength λ = 2Lo, that is, from λ = 2πc / ω The measurement object 2 is irradiated with light modulated at an angular frequency ω = πc / Lo.
In this case, when reflected light that is reflected on the surface of the measurement object 2 and returns to the irradiation position by following the same path as the irradiation is detected, the phase φ of the observed modulation depends on the distance L from the irradiation position. There is a delay. Under an appropriate initial phase φo, for example, this phase φ can correspond to φ = 2π at L1 and φ = 0 at L2.

平面波で例を示すと、時間をtとし、z方向への平面波の伝搬はsin(ωt−(2π/λ)z+φo)と記述できる。Lの位置で反射されて照射位置まで戻る光は、往復の経路を考慮に入れると、z=2L、またλ=2Loからsin(ωt−(2π/Lo)L+φo)となる。t=tdでの位相φは
φ=ωtd−(2π/Lo)L+φo
ここで、例えば、φo=−ωtd+(2π/Lo)L2とおけば、L1でφ=2πと、L2でφ=0と対応させることができる。
さらに光の強度まで考慮して説明すると、照射光の変調強度をA+Bcosωtとすると(A、Bは定数)、測定物体2の表面の反射率に応じた減衰と、照射手段3から撮像手段4、5、6の幾何学的な配置に依存した光の減衰とに依存する係数をΩとして、反射光の変調強度は、Ω(A+Bcos(ωt+φ))となる。
このとき、反射光の位相φは
φ=2π(L2−L)/Lo+φo
と書ける。何らかの方法で反射光の位相φを計測できれば、
L=L2−Lo(φ−φo)/(2π)
から距離Lがわかり、測定物体2表面の形状を計測できたことになる。φoの値を決めるには、例えば、得られた位相が距離L1・・L2で2π・・0に対応するように加減すればよい。
In the case of a plane wave, the time can be expressed as t, and the propagation of the plane wave in the z direction can be described as sin (ωt− (2π / λ) z + φo). The light reflected at the position L and returning to the irradiation position changes from z = 2L and λ = 2Lo to sin (ωt− (2π / Lo) L + φo) when taking into consideration the round-trip path. The phase φ at t = td is φ = ωtd− (2π / Lo) L + φo
Here, for example, if φo = −ωtd + (2π / Lo) L2, it is possible to correspond to φ = 2π in L1 and φ = 0 in L2.
Further, when considering the intensity of the light, if the modulation intensity of the irradiation light is A + B cos ωt (A and B are constants), the attenuation according to the reflectance of the surface of the measurement object 2 and the irradiation means 3 to the imaging means 4, The modulation intensity of the reflected light is Ω (A + Bcos (ωt + φ)), where Ω is a coefficient depending on the attenuation of light depending on the geometrical arrangement of 5 and 6, and Ω.
At this time, the phase φ of the reflected light is φ = 2π (L2−L) / Lo + φo.
Can be written. If the reflected light phase φ can be measured by some method,
L = L2−Lo (φ−φo) / (2π)
From this, the distance L is known, and the shape of the surface of the measuring object 2 can be measured. In order to determine the value of φo, for example, the obtained phase may be adjusted so as to correspond to 2π ·· 0 at the distance L1 ·· L2.

第1の実施の形態では、光量を変調したレーザなどでA+Bcosωtの照射光を生成し、これを測定物体に照射する。φだけ位相遅れが生じた反射光Ω(A+Bcos(ωt+φ))に、検知手段では反射光に対して高速変調器などにより(C+Dcos(ωt+φd))の変調をかける(C、D、φdは定数)。
その後、受光素子アレイ6により光量の時間平均を検知する。時間平均は、To=(2π/ω)を変調周期として、Toより充分長い時間Ta=nTo+Tm(nは十分大きい整数、0≦Tm<To)において、光量の積分値をTaで割った値とする。
時系列信号f(t)のt=0・・Taに関する時間平均を(∫f(t)dt)/Taを<f(t)>で表すと、照射光量P0と、測定物体2表面で反射されて撮像手段4、5、6に戻る反射光量Prは次の通りとなる。
P0=A+Bcos(ωt)
Pr=Ω(A+Bcos(ωt+φ))
変調条件C、D、φdのうち、φdとDを特定化した場合の光変調Mと、変調後に撮像手段の受光素子(受光素子アレイ)6で受光する受光光量Pの例を示す。
φd=π3/2の場合
光変調 Mps=C+Dsinωt
受光光量 Pps=<PrMps>
=Ω(AC+BD<sinωtcos(ωt+φ)>)
=α−βsinφ
φd=π/2の場合
光変調 Mns=C−Dsinωt
受光光量 Pns=<Pr Mns>
=Ω(AC−BD<sinωtcos(ωt+φ)>)
=α+βsinφ
In the first embodiment, irradiation light of A + B cos ωt is generated by a laser or the like whose light quantity is modulated, and this is irradiated to a measurement object. The reflected light Ω (A + Bcos (ωt + φ)) having a phase delay of φ is modulated by (C + Dcos (ωt + φd)) by a high-speed modulator or the like in the detection means (C, D, and φd are constants). .
Thereafter, the light receiving element array 6 detects the time average of the light amount. The time average is a value obtained by dividing the integrated value of the light amount by Ta at a time Ta = nTo + Tm (n is a sufficiently large integer, 0 ≦ Tm <To), where To = (2π / ω) is a modulation period. To do.
When the time average of the time series signal f (t) with respect to t = 0 ·· Ta is represented by (∫f (t) dt) / Ta as <f (t)>, the irradiation light quantity P0 and the reflection on the surface of the measurement object 2 are reflected. The amount of reflected light Pr returned to the imaging means 4, 5, 6 is as follows.
P0 = A + Bcos (ωt)
Pr = Ω (A + Bcos (ωt + φ))
Of the modulation conditions C, D, and φd, an example of the light modulation M when φd and D are specified and the amount of received light P received by the light receiving element (light receiving element array) 6 of the imaging means after modulation is shown.
Light modulation when φd = π3 / 2 Mps = C + Dsinωt
Amount of received light Pps = <PrMps>
= Ω (AC + BD <sinωtcos (ωt + φ)>)
= Α-βsinφ
Light modulation when φd = π / 2 Mns = C-Dsinωt
Amount of received light Pns = <Pr Mns>
= Ω (AC-BD <sinωtcos (ωt + φ)>)
= Α + βsinφ

φd=0の場合
光変調 Mpc=C+Dcosωt
受光光量 Ppc=<Pr Mpc>
=Ω(AC+BD<cosωtcos(ωt+φ)>)
=α+βcosφ
φd=πの場合
光変調 Mnc=C−Dcosωt
受光光量 Pnc=<Pr Mnc>
=Ω(AC−BD<cosωt cos(ωt+φ)>)
=α−βcosφ
D=0の場合
光変調 Mf=C
受光光量 Pf=<Pr Mf>
=Ω<AC+BC cos(ωt+φ)>
=α
ここで、α=ΩAC、β=ΩBD/2であり、次の関係が成り立つことを利用した。
<sin^2ωt>=<cos^2ωt>=1/2
<sinωt cosωt>=0
<sin(ωt)>=0
<cos(ωt)>=0
<sinφ>=sinφ
<cosφ>=cosφ
以上のように、変調された照射光を、同じ周波数で再度変調した後に時間平均した受光光量は、未知の変数α、βと位相φの3つの変数で表せる。受光光量Pps、Pns、Ppc、Pnc、Pfなど、条件を変えたPからαとβを消去して位相φを計算すれば、距離Lが求められる。
Light modulation when φd = 0 Mpc = C + Dcosωt
Amount of received light Ppc = <Pr Mpc>
= Ω (AC + BD <cosωtcos (ωt + φ)>)
= Α + βcosφ
Light modulation when φd = π Mnc = C-Dcosωt
Amount of received light Pnc = <Pr Mnc>
= Ω (AC-BD <cosωt cos (ωt + φ)>)
= Α-βcosφ
Light modulation when D = 0 Mf = C
Received light intensity Pf = <Pr Mf>
= Ω <AC + BC cos (ωt + φ)>
= Α
Here, α = ΩAC, β = ΩBD / 2, and the fact that the following relationship holds is used.
<Sin ^ 2ωt> = <cos ^ 2ωt> = 1/2
<Sinωt cosωt> = 0
<Sin (ωt)> = 0
<Cos (ωt)> = 0
<Sinφ> = sinφ
<Cosφ> = cosφ
As described above, the amount of received light that is time-averaged after the modulated irradiation light is modulated again at the same frequency can be expressed by three variables of unknown variables α and β and phase φ. If the phase φ is calculated by eliminating α and β from P with different conditions such as the received light quantity Pps, Pns, Ppc, Pnc, Pf, etc., the distance L can be obtained.

ところで、上記の時間平均に関する関係式が厳密に成り立つのは、TaがToの整数倍の場合(Tm=0の場合)である。Tmがゼロでない場合は誤差を生じるが、nが大きい場合には誤差を低減できる。以下では周期Toの任意の周期関数f(t)について簡単に誤差評価を行う。
ここで、∫af(t)dtはt=0・・Taの範囲で積分することを、∫mf(t)dtはt=0・・Tmの範囲で積分することを、∫of(t)dtはt=0・・Toの範囲で積分することを、<f(t)>o=(∫of(t)dt)/Toであることを意味する。
<f(t)>=(∫af(t)dt)/(nTo+Tm)
=(n∫of(t)dt+∫mf(t)dt)/(nTo+Tm)
=(<f(t)>o+Rf/n)/(1+Rt/n)
ただし
Rf=(∫mf(t)dt)/To
Rt=Tm/To
とする。
まとめると、<f(t)>o=0の場合、nを増加させると<f(t)>はO(1/n)のオーダーで0に漸近する。<f(t)>o=Kの場合、nを増加させると、<f(t)>はK+O(1/n)のオーダーでKに漸近する。
つまり、<sin^2ωt>と<cos^2ωt>はO(1/n)のオーダーで1/2に、<sinωtcosωt>、<sin(ωt+φ)>、<cos(ωt+φ)>はO(1/n)のオーダーで0に漸近する。
このことから、Taを十分長くとれば(nを十分大きくすれば)、任意の精度で測定誤差を小さくできることが解る。例えば、n=1000とすれば、誤差を0.1%程度にできる。もし位相の誤差が1%程度であれば、十分良い近似で上記の時間平均に関する関係式が成り立っていると言える。
波長λ=2Loに対して変調周波数fは、f=c/λで与えられるので、例えば、Lo=0.15[m]ではf=1GHz、Lo=1.5[m]ではf=100MHz、Lo=3.0[m]ではf=50MHzとなる。位相分解能を2πの1%とすると、各々1.5[mm]、15[mm]、30[mm]の分解能が得られる。
本実施の形態による形状計測の特徴は、短時間の矩形パルスなど広帯域の応答を持つ回路が不要であることで、照射・撮像とも角周波数ωの一定周波数で正弦波変調できればよい。ただし周波数と位相は厳密に管理する必要がある。撮像手段の受光素子(受光素子アレイ)6では平均光量を検知するため、高速応答性や高感度性を要求しないため、民生品の受光素子アレイ6をそのまま利用できる。
By the way, the relational expression relating to the above time average strictly holds when Ta is an integral multiple of To (when Tm = 0). An error occurs when Tm is not zero, but the error can be reduced when n is large. In the following, error evaluation is simply performed for an arbitrary periodic function f (t) of the period To.
Here, ∫af (t) dt is integrated in the range of t = 0 ·· Ta, ∫mf (t) dt is integrated in the range of t = 0 ·· Tm, and ∫of (t) dt means that integration is performed in the range of t = 0 ·· To, and that <f (t)> o = (∫of (t) dt) / To.
<F (t)> = (∫af (t) dt) / (nTo + Tm)
= (N∫of (t) dt + ∫mf (t) dt) / (nTo + Tm)
= (<F (t)> o + Rf / n) / (1 + Rt / n)
Where Rf = (∫mf (t) dt) / To
Rt = Tm / To
And
In summary, when <f (t)> o = 0, when n is increased, <f (t)> gradually approaches 0 in the order of O (1 / n). In the case of <f (t)> o = K, when n is increased, <f (t)> gradually approaches K in the order of K + O (1 / n).
That is, <sin ^ 2ωt> and <cos ^ 2ωt> are halved in the order of O (1 / n), and <sinωtcosωt>, <sin (ωt + φ)>, and <cos (ωt + φ)> are O (1 / Asymptotic to 0 in the order of n).
From this, it can be seen that if Ta is sufficiently long (n is sufficiently large), the measurement error can be reduced with an arbitrary accuracy. For example, if n = 1000, the error can be reduced to about 0.1%. If the phase error is about 1%, it can be said that the relational expression relating to the above time average is established with a sufficiently good approximation.
Since the modulation frequency f is given by f = c / λ for the wavelength λ = 2Lo, for example, f = 1 GHz at Lo = 0.15 [m], f = 100 MHz at Lo = 1.5 [m], When Lo = 3.0 [m], f = 50 MHz. When the phase resolution is 1% of 2π, resolutions of 1.5 [mm], 15 [mm], and 30 [mm] are obtained, respectively.
The feature of the shape measurement according to the present embodiment is that a circuit having a broadband response such as a short-time rectangular pulse is not necessary, and it is only necessary to perform sinusoidal modulation at a constant frequency of the angular frequency ω for both irradiation and imaging. However, it is necessary to strictly manage the frequency and phase. Since the light receiving element (light receiving element array) 6 of the imaging means detects the average light amount, and does not require high-speed response and high sensitivity, the consumer light receiving element array 6 can be used as it is.

上記第1の実施の形態の第1の変形例である形状測定装置では、第1の実施の形態に加え、φd=0、π/2、π、3π/2である4種類の変調条件に対して得られた撮像パターンの光量分布をPpc、Pns、Pnc、Ppsとすると、位相関数Sがφ=atan((Pns−Pps)/(Ppc−Pnc))であることを特徴とする。
照射パターンとして、通常の位相シフト法でよく用いられる、π/2ずつずれた正弦波を4種類用いた例である。上述したように未知の変数はα、β、φの3つなので、4つの条件から位相φを求めるのは、撮像条件数が過剰であるように思える。しかし、Pns−Ppsからsinφ成分を、Ppc−Pncからcosφ成分を抽出するため、正弦波の対称な歪みを相殺できて、位相を安定して検知できる点で実績のある位相関数である。
レーザダイオード3は光強度がP0である変調光を照射する。レンズの光学中心から測定物体2までの距離をLとすると、レーザダイオード3から照射された変調光は、測定物体2上で反射され、その光量は測定物体2表面の反射率に比例する。
反射光は距離の2乗に反比例しながら2Lだけ伝播し、光シャッタ4を透過して、受光素子(受光素子アレイ)6で反射光Prとして撮像される。Ω、φは測定物体2表面の場所ごとに異なる。
In the shape measuring apparatus as the first modification of the first embodiment, in addition to the first embodiment, four types of modulation conditions of φd = 0, π / 2, π, and 3π / 2 are used. When the light quantity distribution of the obtained imaging pattern is Ppc, Pns, Pnc, Pps, the phase function S is φ = atan ((Pns−Pps) / (Ppc−Pnc)).
In this example, four types of sine waves shifted by π / 2, which are often used in a normal phase shift method, are used as the irradiation pattern. As described above, since there are three unknown variables, α, β, and φ, obtaining the phase φ from the four conditions seems to have an excessive number of imaging conditions. However, since the sin φ component is extracted from Pns-Pps and the cos φ component is extracted from Ppc-Pnc, this is a proven phase function in that the symmetrical distortion of the sine wave can be canceled and the phase can be detected stably.
The laser diode 3 emits modulated light having a light intensity P0. When the distance from the optical center of the lens to the measurement object 2 is L, the modulated light emitted from the laser diode 3 is reflected on the measurement object 2, and the amount of light is proportional to the reflectance of the surface of the measurement object 2.
The reflected light propagates by 2L while being inversely proportional to the square of the distance, passes through the optical shutter 4, and is imaged as reflected light Pr by the light receiving element (light receiving element array) 6. Ω and φ are different for each location on the surface of the measurement object 2.

位相ずれφが生じるのは、測定物体2の距離に応じて反射に遅延が生じるためで、距離L=L1で反射される場合が最も位相が進み(φ=2π)、距離L=L2で反射される場合は最も位相が遅れる(φ=0)。
φd=0、π/2、π、3π/2である4種類の変調条件に対して得られた撮像パターンの光量分布Ppc、Pns、Pnc、Ppsを用い、位相関数φ=atan((Pns−Pps)/(Ppc−Pnc))で位相を求め、最後に距離L=L2−Lo(φ−φo)/(2π)を求める。予め、L2の位置に反射板を設けて位相φrを計測し、φo=φr−2π(L2−Lr)/Lo=φrからφoを求めておく。
この装置で高速動作しなくてはならないのは、レーザダイオード3と光シャッタ4だけであり、高価になり易い高速変調素子の数を2個に抑えられることが利点である。受光素子アレイ6を用いているため、この各画素からレンズ5の光学中心を通して見た方向ごとに、測定物体2表面の距離が同時に求められる。
受光素子アレイ6は通常のCCDやCMOS受光素子アレイで十分であるが、位相を正しく検知するには入射光量に対する信号の線形性が必要である。工業用のCCDでは通常1%程度の線形性が得られているので、光量検知に伴う位相誤差は1%程度、つまり変調の1周期に相当するL2−L1に対して1%程度の距離精度が得られる。
正弦波状に変調した照射パターンを、位相が異なる4種類の正弦波による変調条件で平均化して検知することで、簡便な変調パターンとなっているため、撮像を簡単に実現できる。
The phase shift φ occurs because the reflection is delayed according to the distance of the measurement object 2, and the phase is most advanced when the light is reflected at the distance L = L1 (φ = 2π), and the light is reflected at the distance L = L2. In this case, the phase is most delayed (φ = 0).
Using the light quantity distributions Ppc, Pns, Pnc, and Pps of the imaging pattern obtained for four types of modulation conditions where φd = 0, π / 2, π, and 3π / 2, the phase function φ = atan ((Pns− Pps) / (Ppc−Pnc)), and finally the distance L = L2−Lo (φ−φo) / (2π). The phase φr is measured in advance by providing a reflector at the position L2, and φo is obtained from φo = φr−2π (L2−Lr) / Lo = φr.
Only the laser diode 3 and the optical shutter 4 have to operate at high speed in this apparatus, and it is advantageous that the number of high-speed modulation elements that tend to be expensive can be suppressed to two. Since the light receiving element array 6 is used, the distance of the surface of the measurement object 2 is simultaneously obtained for each direction viewed from each pixel through the optical center of the lens 5.
As the light receiving element array 6, a normal CCD or CMOS light receiving element array is sufficient, but linearity of a signal with respect to an incident light amount is necessary to correctly detect the phase. Since the linearity of about 1% is usually obtained in an industrial CCD, the phase error accompanying the light amount detection is about 1%, that is, the distance accuracy is about 1% with respect to L2-L1 corresponding to one modulation period. Is obtained.
Since an irradiation pattern modulated in a sine wave is averaged and detected under modulation conditions of four types of sine waves having different phases, a simple modulation pattern is obtained, so that imaging can be easily realized.

上記第1の実施の形態の第2の変形例である形状測定装置では、第1の実施の形に加え、φd=0、π、3π/2である3種類の変調条件に対して得られた撮像パターンの光量分布をPpc、Pnc、Ppsとすると、位相関数Sがφ=atan((Pnc−Pps)/(Ppc−Pps))+π/4であることを特徴とする。
この第2の変形例は第1の変形例より1枚だけ照射パターンを減らし、位相関数を変更したものである。3回撮像すれば良いので、撮像の手間を第1の変形例より減らせるのが利点である。
理論上は第1の変形例と同じ位相が得られるはずだが、変調が正弦波からずれると第1の変形例の4種パターンに比べて位相誤差が大きくなる。検知の手間(撮像条件の数)と位相誤差はトレードオフ関係にあるので、どちらを選ぶかは、何を目的にシステムを構成するかにより選択される。本第2の変形例の構成は、第1の実施の形態に対して撮像の手間を減らすことに重点を置いている。
この第2の変形例の具体的な構成は図1と同じで、撮像時に3種類の条件で撮像し、上記の位相関数で位相を求め、位相から距離を求める。正弦波状に変調した照射パターンを、位相が異なる3種類の正弦波による変調条件で平均化して検知することによって、簡便な変調パターンとなっているため、撮像を簡単に実現できる。
In the shape measuring apparatus which is the second modification of the first embodiment, in addition to the first embodiment, it is obtained for three types of modulation conditions with φd = 0, π, and 3π / 2. The phase function S is φ = atan ((Pnc−Pps) / (Ppc−Pps)) + π / 4, where the light quantity distribution of the imaging pattern is Ppc, Pnc, and Pps.
The second modification is obtained by reducing the irradiation pattern by one sheet and changing the phase function as compared with the first modification. Since it is sufficient to image three times, it is advantageous that the time and effort of imaging can be reduced compared to the first modification.
Theoretically, the same phase as in the first modified example should be obtained. However, if the modulation deviates from the sine wave, the phase error becomes larger than the four types of patterns in the first modified example. Since the detection effort (number of imaging conditions) and the phase error are in a trade-off relationship, which one is selected is selected depending on what the system is configured for. The configuration of the second modification is focused on reducing the imaging effort with respect to the first embodiment.
The specific configuration of the second modified example is the same as that in FIG. 1, and imaging is performed under three types of conditions at the time of imaging, the phase is obtained using the above phase function, and the distance is obtained from the phase. Since an irradiation pattern modulated in a sine wave is averaged and detected under modulation conditions using three types of sine waves having different phases, a simple modulation pattern is obtained, so that imaging can be easily realized.

第1の実施の形態の第3の変形例である形状測定装置では、第1の実施の形態に加え、φd=0、π/2である2種類の変調条件に対して得られた撮像パターンの光量分布をPpc、Pns、D=0である変調条件に対して得られた撮像パターンの光量分布をPfとすると、位相関数Sがφ=atan((Pns−Pf)/(Ppc−Pf))であることを特徴とする。
この第3の変形例は、第2の変形例と同じ3種類の撮像条件数であるが、そのうち1種類の条件Pfでは撮像時に変調を行っておらず、この条件で光量検知を行うさいは、光シャッタ4の変調と位相管理が不要になる。
第2の変形例では、3種類の位相条件を管理しなければいけないが、第3の変形例では2種類の位相だけ管理すればよく、第2の変形例よりも簡便な回路で十分である。
照射と撮像の変調が理想的な正弦波の場合は第1、第2および第3の変形例とも理論上は同じ精度で距離計測を行えるが、実際は変調が理想的な正弦波からずれを生じ、位相精度に影響する。
精度の最も高い順に第1、第2および第3の変形例の順となるが、撮像条件の手間と位相管理すべき条件数でも同じく第1、第2および第3の変形例の順となるため、精度を優先するか、駆動回路の簡便性を優先するかで第1、第2および第3の変形例のどれを選択するか決めれば良い。
第3の変形例の具体的な構成は図1と同じ構成で、撮像時に3種類の条件で撮像し、上記の位相関数で位相を求め、位相から距離を求める。正弦波状に変調した照射パターンを、位相が異なる2種類の正弦波による変調条件と、変調無しの条件で平均化して検知することで、簡便な変調パターンとなっているため、撮像を簡単に実現できる。
In the shape measuring apparatus which is the third modification of the first embodiment, in addition to the first embodiment, the imaging pattern obtained for two types of modulation conditions with φd = 0 and π / 2 The phase function S is φ = atan ((Pns−Pf) / (Ppc−Pf), where Pf is the light amount distribution of the imaging pattern obtained for the modulation condition of Ppc, Pns, and D = 0. ).
The third modification has the same three types of imaging condition numbers as the second modification, but one of the conditions Pf is not modulated at the time of imaging, and light quantity detection is performed under these conditions. The modulation and phase management of the optical shutter 4 are not necessary.
In the second modification, three types of phase conditions must be managed, but in the third modification, only two types of phases need be managed, and a simpler circuit is sufficient than the second modification. .
When the irradiation and imaging modulation are ideal sine waves, the first, second, and third modifications can theoretically measure distance with the same accuracy, but the modulation actually deviates from the ideal sine wave. Affects the phase accuracy.
The order of the first, second, and third modified examples is the order of the highest accuracy, but the order of the imaging conditions and the number of conditions to be phase-managed are also the order of the first, second, and third modified examples. Therefore, it may be determined which of the first, second, and third modified examples is selected depending on whether accuracy is given priority or simplicity of the drive circuit is given priority.
The specific configuration of the third modified example is the same as that shown in FIG. 1, and images are taken under three types of conditions at the time of imaging, the phase is obtained using the above phase function, and the distance is obtained from the phase. Since the irradiation pattern modulated in a sine wave is averaged and detected under the modulation condition of two types of sine waves with different phases and the condition without modulation, imaging is simple because it is a simple modulation pattern. it can.

第1の実施の形態の第4の変形例である形状測定装置では、第1の実施の形態に加え、照射と撮像の変調周波数をnω(nは自然数)とし、n=1の位相φ1から形状の概要を求める。n=2、3、・・と順次増やして得られた位相φnから、L=L2−Lo(φn−2mπ+nφo)/(2πn)により、未定の整数mを推定しながら詳細な距離Lを求めることを特徴とする。
変調周波数を2ωとすると、距離L1・・L2の間で2周期の変調波が存在することになり、L1・・L2に対応する位相範囲は0・・4πとなる。撮像手段の位相誤差をΔφとすると、第1の実施の形態のような1周期の変調波の場合は、相対位相誤差はΔφ/(2π)であるのに対して、相対位相誤差がΔφ/(4π)と1周期の場合の1/2になる。
同じく変調周波数をnωにすると、相対位相誤差がΔφ/(2nπ)と1/nになる。位相範囲がn倍になるため初期位相φoはn倍になることを考慮し、距離L1・・L2に対して位相が2nπになるので、0・・2nπの範囲に拡張された位相φ〜{n}から距離を求める関係は、次式の通りになる。
L=L2−Lo(φ〜{n}−nφo)/(2πn)
相対位相誤差が1/nに減少すれば、これに連動して相対距離誤差も1/nに減少し、高精度に位置を検知できる。例えば2ωの条件で検知すれば、距離精度は2倍改善される。
このとき問題になるのは、0から2nπまで変化するφ〜{n}を直接検知はできず、検知できるのはφ〜{n}を0・・2πに畳み込んだφ{n}だということである。m{n}を0・・n−1の範囲の整数とすると、φ{n}は次式で表される。
φ〜{n}=φ{n}+2m{n}π
φ{n}が分っても整数m{n}が分らないため、φ〜{n}が一意に求まらない。この問題を解決する現実的な解としては、測定物体2の上の或る点の位相を与え、その点の周辺の位相が連続することを仮定して撮像領域全域で位相を特定する方法が知られている。
In the shape measuring apparatus which is the fourth modification of the first embodiment, in addition to the first embodiment, the modulation frequency of irradiation and imaging is nω (n is a natural number), and the phase φ1 of n = 1 is used. Find an outline of the shape. From the phase φn obtained by sequentially increasing n = 2, 3,..., L = L2−Lo (φn−2mπ + nφo) / (2πn) to obtain a detailed distance L while estimating an undetermined integer m. It is characterized by.
When the modulation frequency is 2ω, there are two periods of modulated waves between the distances L1 ·· L2, and the phase range corresponding to L1 ·· L2 is 0 ·· 4π. If the phase error of the imaging means is Δφ, the relative phase error is Δφ / (2π) in the case of a modulated wave of one cycle as in the first embodiment, while the relative phase error is Δφ / (4π) and 1/2 of one cycle.
Similarly, when the modulation frequency is nω, the relative phase error becomes Δφ / (2nπ) and 1 / n. Considering that the initial phase φo is n times because the phase range is n times, the phase becomes 2nπ with respect to the distance L1 ·· L2, and therefore the phase φ˜ { The relationship for obtaining the distance from n} is as follows.
L = L2−Lo (φ˜ {n} −nφo) / (2πn)
If the relative phase error is reduced to 1 / n, the relative distance error is also reduced to 1 / n in conjunction with this, and the position can be detected with high accuracy. For example, if the detection is performed under the condition of 2ω, the distance accuracy is improved twice.
The problem here is that φ to {n} that changes from 0 to 2nπ cannot be detected directly, and that that can be detected is φ {n} obtained by convolving φ to {n} into 0 ·· 2π. That is. When m {n} is an integer in the range of 0 ·· n−1, φ {n} is expressed by the following equation.
φ˜ {n} = φ {n} + 2m {n} π
Even if φ {n} is known, since the integer m {n} is not known, φ˜ {n} cannot be obtained uniquely. As a practical solution to solve this problem, there is a method in which the phase of a certain point on the measurement object 2 is given and the phase is specified over the entire imaging region on the assumption that the phase around the point is continuous. Are known.

また、nの値が1の場合は曖昧さなく位相φ、距離Lを決定できるので、これを概算値として未定の整数m{n}を推定しながら、nを増やしつつ距離精度を向上させる方法を採ってもよい。以下に具体例を示す。
変調周波数をpωにした場合のφ{p}、m{p}が分っている場合、その距離L{p}は次の通り。
L{p}=L2−Lo(φ{p}+2m{p}π−pφo)/(2pπ)
qωにした場合のφ{q}が分っている場合、m{q}を未定の整数として、その距離L{q}は次の通り。
L{q}=L2−Lo(φ{q}+2m{q}π−qφo)/(2qπ)
L{p}はL{q}の近似値とみなせるので、L{q}−L{p}=0を満たすm{q}をm{q}の推定値とする。
m{q}=(q/p)(φ{p}+2m{p}π−pφo)/(2π)−(φ{q}−qφo)/(2π)−q(L{q}−L{p})/Lo
n=1の場合は第1の実施の形態の場合に相当するので、φ{1}=φ、m{1}=0、L{1}=Lである。これを基にφ{2}、m{2}、L{2}、φ{3}、m{3}、L{3}、・・・と順に精度を上げて距離L{n}を求めてゆく。
具体的な実施の形態は図1と同じ構成で、撮像時に変調周波数を変えながら撮像し、上記の位相の連続性の仮定や、順次周波数を増やす方法から未定整数を求め、位相関数で位相を求め、位相から距離を求める。
照射と撮像の変調周波数を順次増やして得られた位相から、より詳細な距離を求めることで、照射パターンの位相検知精度をn倍向上しているので、距離分解能を高めることができる。
Loを30[m]、変調周波数5[MHz]として位相誤差を1%とすると、n=1では300[mm]の距離誤差を生じるが、まずn=1で概要を計測し、n=2、4、8、16(変調周波数10、20、40、80[MHz])と増やせば、位相の曖昧さを生じずに同じ30[m]の計測範囲でも約19[mm]の距離誤差まで改善できる。
In addition, when the value of n is 1, the phase φ and the distance L can be determined without ambiguity, so that the uncertain integer m {n} is estimated using this as an approximate value, and the distance accuracy is improved while increasing n. May be taken. Specific examples are shown below.
When φ {p} and m {p} are known when the modulation frequency is pω, the distance L {p} is as follows.
L {p} = L2−Lo (φ {p} + 2m {p} π−pφo) / (2pπ)
When φ {q} is known when qω, m {q} is set as an undetermined integer, and the distance L {q} is as follows.
L {q} = L2-Lo (φ {q} + 2m {q} π−qφo) / (2qπ)
Since L {p} can be regarded as an approximate value of L {q}, m {q} satisfying L {q} −L {p} = 0 is set as an estimated value of m {q}.
m {q} = (q / p) (φ {p} + 2m {p} π−pφo) / (2π) − (φ {q} −qφo) / (2π) −q (L {q} −L { p}) / Lo
Since n = 1 corresponds to the case of the first embodiment, φ {1} = φ, m {1} = 0, and L {1} = L. Based on this, φ {2}, m {2}, L {2}, φ {3}, m {3}, L {3},... Go.
The specific embodiment has the same configuration as that shown in FIG. 1, and images are taken while changing the modulation frequency at the time of imaging. An undetermined integer is obtained from the above assumption of continuity of the phase and the method of increasing the frequency sequentially, and the phase is calculated by the phase function. Find the distance from the phase.
By obtaining a more detailed distance from the phase obtained by sequentially increasing the modulation frequency of irradiation and imaging, the phase detection accuracy of the irradiation pattern is improved by n times, so that the distance resolution can be increased.
If Lo is 30 [m] and the modulation frequency is 5 [MHz] and the phase error is 1%, a distance error of 300 [mm] occurs when n = 1, but first, the outline is measured when n = 1, and n = 2 If it is increased to 4, 8, 16 (modulation frequency 10, 20, 40, 80 [MHz]), the distance error of about 19 [mm] can be achieved even in the same 30 [m] measurement range without causing phase ambiguity. Can improve.

第1の実施の形態の第5の変形例である形状測定装置では、第1の実施の形態に加え、照射手段3はレーザダイオードや発光ダイオードなどの半導体光源であり、撮像手段4、5、6は光シャッタ4付きのCCD素子、またはCMOS素子であることを特徴とする。
照射手段3や撮像手段4、5、6は、なるべく入手し易く低コストの部品で作れることが望ましい。照射手段3を、レーザダイオードや発光ダイオードなどの半導体光源、撮像手段4、5、6を、光シャッタ4付きのCCD素子、またはCMOS素子とすれば、容易にこの第5の変形例を構成することができる。
光シャッタとしてはPLZT光シャッタやカー効果を用いたカーセルなどを用いることができる。とくにレーザダイオードは直線変調を生成することが容易なので、偏光型の光シャッタでの光損失が少なくできる利点がある。
照射手段3を半導体光源、撮像手段を光シャッタ4付きのCCD素子、またはCMOS素子とすることで、入手し易い素子で装置を構成できるので、システムコストを低減できる。
In the shape measuring apparatus which is the fifth modification of the first embodiment, in addition to the first embodiment, the irradiation means 3 is a semiconductor light source such as a laser diode or a light emitting diode, and the imaging means 4, 5, Reference numeral 6 denotes a CCD element with a light shutter 4 or a CMOS element.
It is desirable that the irradiation unit 3 and the imaging units 4, 5, and 6 are made as easily as possible and can be made with low-cost parts. If the irradiation means 3 is a semiconductor light source such as a laser diode or a light emitting diode, and the imaging means 4, 5, 6 are CCD elements or CMOS elements with an optical shutter 4, this fifth modification can be easily configured. be able to.
As the optical shutter, a PLZT optical shutter, a car cell using the Kerr effect, or the like can be used. In particular, since a laser diode can easily generate linear modulation, there is an advantage that light loss in a polarization type optical shutter can be reduced.
Since the irradiation unit 3 is a semiconductor light source and the imaging unit is a CCD element or a CMOS element with an optical shutter 4, the device can be configured with easily available elements, so that the system cost can be reduced.

図2は本発明による形状測定装置の第2の実施の形態を示す概略図である。この形状測定装置では、第1の実施の形態に加え、照射手段3の前方の距離Lrに反射板を設け、この反射板から戻る反射光の位相φrとして、φo=φr−2π(L2−Lr)/Loからφoを求めることを特徴とする。
具体的には、図2のように、レンズ5の光学中心からLrの距離に距離の参照面となる反射板(参照ミラー)8を設けておく。このとき検知された位相をφrとすると、Lr=L2−Lo(φr−φo)/(2π)の関係から、φo=φr −2π(L2−Lr)/Loが得られる。
距離の分かった半透明の反射板(参照ミラー)8を設け、この反射板8から戻る反射光の戻り時間から撮像に対する照射の位相ずれを計測することで、照射と撮像の位相ずれを補正しているので、距離測定の誤差を低減できる。
図3は本発明による形状測定装置の第3の実施の形態を示す概略図である。この形状測定装置では、第1の実施の形態に加え、照射手段3はレーザダイオードや発光ダイオードなどの半導体光源であり、撮像手段6は光利得を変調できるCCD素子、またはCMOS素子であることを特徴とする。
計測時には反射板(参照ミラー)8を外し、反射板8の代りに測定物体2を置いて測定すればよい。第1の実施の形態の第5の変形例の光シャッタ4や第3の実施の形態の利得変調回路の位相応答に面内バラツキがある場合は、撮像手段内の受光素子アレイ6の素子ごとにφoを求めてもよい。
最近のロジックLSIは数GHzを越すクロックでも動作するので、撮像時の変調機能をCCDまたはCMOS基板に内蔵させることができる。撮像時に入手光を変調するのは、受光素子の利得を変調するのと同じことなので、個々のフォトダイオードに印加する電圧を変調するなどにより利得を変調させる回路を設けておく。
図3に示すように、外付けの光シャッタを用意することなく、1つのチップの利得変調受光素子アレイ6aで変調と受光を行えるため、量産時には製造コストを下げることができる。
すなわち、照射手段を半導体光源3、撮像手段を光利得の変調可能なCCD素子、またはCMOS素子とすることで、入手し易い素子で装置を構成できるので、システムコストを低減できる。
FIG. 2 is a schematic view showing a second embodiment of the shape measuring apparatus according to the present invention. In this shape measuring apparatus, in addition to the first embodiment, a reflecting plate is provided at a distance Lr in front of the irradiating means 3, and the phase φr of reflected light returning from the reflecting plate is φo = φr−2π (L2−Lr). ) / Lo to obtain φo.
Specifically, as shown in FIG. 2, a reflecting plate (reference mirror) 8 serving as a reference surface is provided at a distance of Lr from the optical center of the lens 5. Assuming that the detected phase is φr, φo = φr−2π (L2−Lr) / Lo is obtained from the relationship Lr = L2−Lo (φr−φo) / (2π).
A translucent reflecting plate (reference mirror) 8 with a known distance is provided, and the phase shift of irradiation with respect to imaging is measured from the return time of reflected light returning from the reflecting plate 8, thereby correcting the phase shift between irradiation and imaging. Therefore, the distance measurement error can be reduced.
FIG. 3 is a schematic view showing a third embodiment of the shape measuring apparatus according to the present invention. In this shape measuring apparatus, in addition to the first embodiment, the irradiation means 3 is a semiconductor light source such as a laser diode or a light emitting diode, and the imaging means 6 is a CCD element or a CMOS element capable of modulating the optical gain. Features.
During measurement, the reflector (reference mirror) 8 may be removed and the measurement object 2 may be placed in place of the reflector 8 for measurement. When there is in-plane variation in the phase response of the optical shutter 4 of the fifth modification of the first embodiment and the gain modulation circuit of the third embodiment, for each element of the light receiving element array 6 in the imaging means Alternatively, φo may be obtained.
Since recent logic LSIs operate with a clock exceeding several GHz, a modulation function at the time of imaging can be built in a CCD or CMOS substrate. Modulating the acquired light at the time of imaging is the same as modulating the gain of the light receiving element, and therefore a circuit for modulating the gain by modulating the voltage applied to each photodiode is provided.
As shown in FIG. 3, since the modulation and light reception can be performed by the gain modulation light receiving element array 6a of one chip without preparing an external optical shutter, the manufacturing cost can be reduced at the time of mass production.
That is, by using the semiconductor light source 3 as the irradiating means and the CCD element or the CMOS element capable of modulating the optical gain as the irradiating means, the apparatus can be configured with easily available elements, so that the system cost can be reduced.

図4は本発明による形状測定装置の第4の実施の形態を示す概略図である。この形状測定装置では、第1の実施の形態に加え、照射手段の光源を赤外光源3aとし、撮像手段4、5、6に可視光を除去する光フィルタ(赤外フィルタ)9を設けることを特徴とする。
図4に示すように、光源として赤外レーザダイオード3aを用い、光シャッタ4に赤外線を透過する赤外線フィルタ9を設けることで、ノイズになる外部からレンズ5に入射する可視光を除去し、光強度計測の誤差を低減できる。
照射手段の光源を赤外光源3aとし、撮像手段に可視光を除去する光フィルタ9を設けることで、外乱光を除去できるので、光量誤差に起因する距離誤差を低減できる。
図5は本発明による形状測定装置の第5の実施の形態を示す概略図である。第4の実施の形態に加え、照射手段の光源を赤外光源(赤外レーザダイオード)3aとし、撮像手段4、5、6に赤外光と可視光を分離するミラーを設け、分離した赤外光から形状を測定し、可視光から形状に貼り付けるテキスチャデータを得ることを特徴とする。
第5の実施の形態の光フィルタとして、第2のハーフミラー10を新たに設け、この第2のハーフミラー10は可視光を反射するようにする。反射した可視光は第2のレンズ11で第2の受光素子アレイ12に結像され、可視のテキスチャ画像として撮像する。
赤外レーザダイオード3aとレンズ5と光シャッタ4と受光素子アレイ6により形状計測を行う点は、第4の実施の形態と同じである。レンズ5と第2のレンズ11の光学中心は、ミラーで折り曲げられているだけで、光学的に同じ位置にある。
このため、第1および第2受光素子アレイ(6および12)の画素ごとにテキスチャ画像と距離画像の対応を付けることができる。例えば、第1の実施の形態の第3の変形例のPfは変調なしで反射光量の時間平均を検知しているので、テキスチャデータとして使うこともできる。
赤外光・可視光の分離ミラーを利用して赤外光から形状を測定し、可視光から形状に貼り付けるテキスチャデータを得る。これによって、形状測定とテキスチャ画像取得を異なる波長の光で行うので、形状測定とテキスチャ画像取得を同時に行える。
FIG. 4 is a schematic view showing a fourth embodiment of the shape measuring apparatus according to the present invention. In this shape measuring apparatus, in addition to the first embodiment, the light source of the irradiating means is an infrared light source 3a, and the imaging means 4, 5, 6 are provided with an optical filter (infrared filter) 9 for removing visible light. It is characterized by.
As shown in FIG. 4, by using an infrared laser diode 3a as a light source and providing an infrared filter 9 that transmits infrared rays to the optical shutter 4, visible light incident on the lens 5 from the outside, which becomes noise, is removed, and light is emitted. Intensity measurement errors can be reduced.
By using the infrared light source 3a as the light source of the irradiating means and providing the image pickup means with the optical filter 9 that removes visible light, disturbance light can be removed, so that a distance error due to a light quantity error can be reduced.
FIG. 5 is a schematic view showing a fifth embodiment of the shape measuring apparatus according to the present invention. In addition to the fourth embodiment, the light source of the irradiating means is an infrared light source (infrared laser diode) 3a, and mirrors for separating infrared light and visible light are provided in the imaging means 4, 5 and 6, and the separated red The shape is measured from outside light, and texture data to be pasted on the shape from visible light is obtained.
As the optical filter of the fifth embodiment, a second half mirror 10 is newly provided, and the second half mirror 10 reflects visible light. The reflected visible light is imaged on the second light receiving element array 12 by the second lens 11 and picked up as a visible texture image.
The point that shape measurement is performed by the infrared laser diode 3a, the lens 5, the optical shutter 4, and the light receiving element array 6 is the same as in the fourth embodiment. The optical centers of the lens 5 and the second lens 11 are merely bent by a mirror and are at the same optical position.
For this reason, a texture image and a distance image can be associated with each pixel of the first and second light receiving element arrays (6 and 12). For example, since Pf of the third modification of the first embodiment detects the time average of the reflected light amount without modulation, it can also be used as texture data.
Using infrared and visible light separation mirrors, the shape is measured from the infrared light, and texture data to be attached to the shape from the visible light is obtained. Thereby, since shape measurement and texture image acquisition are performed with light of different wavelengths, shape measurement and texture image acquisition can be performed simultaneously.

本発明による形状測定装置の第1の実施の形態を示す概略図である。It is the schematic which shows 1st Embodiment of the shape measuring apparatus by this invention. 本発明による形状測定装置の第2の実施の形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the shape measuring apparatus by this invention. 本発明による形状測定装置の第3の実施の形態を示す概略図である。It is the schematic which shows 3rd Embodiment of the shape measuring apparatus by this invention. 本発明による形状測定装置の第4の実施の形態を示す概略図である。It is the schematic which shows 4th Embodiment of the shape measuring apparatus by this invention. 本発明による形状測定装置の第5の実施の形態を示す概略図である。It is the schematic which shows 5th Embodiment of the shape measuring apparatus by this invention. 従来の測定装置を説明するブロック図である。It is a block diagram explaining the conventional measuring apparatus. 従来の他の測定装置を説明するブロック図である。It is a block diagram explaining the other conventional measuring apparatus. 距離精度を左右する直線状に変調された光強度を示す図である。It is a figure which shows the light intensity modulated in the linear form which influences distance accuracy. 距離精度を左右する直線状に変調された光強度を示す他の図である。It is another figure which shows the light intensity modulated in the linear form which influences distance accuracy.

符号の説明Explanation of symbols

1 形状測定装置
2 測定物体
3 照射手段(レーザダイオード)
3a 照射手段(赤外レーザダイオード)
4 撮像手段(光シャッタ)
5 撮像手段(レンズ)
6 撮像手段(受光素子、受光素子アレイ)
6a 撮像手段(利得変調受光素子アレイ)
7 ハーフミラー
8 反射板(参照ミラー)
9 赤外線フィルタ
10 第2のハーフミラー
11 第2のレンズ
12 第2の撮像手段(受光素子、受光素子アレイ)
1 Shape measuring device
2 Measurement object 3 Irradiation means (laser diode)
3a Irradiation means (infrared laser diode)
4 Imaging means (optical shutter)
5 Imaging means (lens)
6 Imaging means (light receiving element, light receiving element array)
6a Imaging means (gain modulation light receiving element array)
7 Half mirror 8 Reflector (reference mirror)
9 Infrared filter 10 Second half mirror 11 Second lens 12 Second imaging means (light receiving element, light receiving element array)

Claims (10)

測定物体に光パターンである照射パターンを照射する照射手段と、前記測定物体表面で反射された光パターンである撮像パターンを得る前記照射手段と光学的に同じ位置にある撮像手段とを備え、前記撮像パターンから前記測定物体の表面形状を計算する形状測定装置において、前記測定物体は前記照射手段から所定距離の範囲に存在し、前記照射手段は角周波数ωで変調した所定強度の照射パターンを前記測定物体に照射し、前記撮像手段は、前記測定物体表面で反射され照射と同じ経路を逆にたどって前記撮像手段に戻る反射光を、角周波数ω、位相φdで変調を行った後に光量の時間平均を検知し、検知した時間平均により前記測定物体の距離Lを、複数の変調条件で得られた光量に基づいて求めることを特徴とする形状測定装置。   Irradiation means for irradiating a measurement object with an irradiation pattern that is a light pattern, and an imaging means that is optically in the same position as the irradiation means for obtaining an imaging pattern that is a light pattern reflected by the surface of the measurement object, In the shape measuring apparatus for calculating the surface shape of the measurement object from the imaging pattern, the measurement object exists within a predetermined distance from the irradiation unit, and the irradiation unit displays the irradiation pattern with a predetermined intensity modulated at an angular frequency ω. Irradiating the measurement object, the imaging means modulates the reflected light reflected on the surface of the measurement object and returning to the imaging means by following the same path as the irradiation in the reverse direction with the angular frequency ω and the phase φd. A shape measuring apparatus that detects a time average and obtains a distance L of the measurement object based on the detected light average based on a light amount obtained under a plurality of modulation conditions. 前記位相φdが0、π/2、π、3π/2である4種類の前記変調条件に対して得られた撮像パターンの光量分布をPpc、Pns、Pnc、Ppsとすると、位相関数Sがφ=atan((Pns−Pps)/(Ppc−Pnc))であることを特徴とする請求項1の形状測定装置。   When the light quantity distribution of the imaging pattern obtained for the four types of modulation conditions with the phase φd being 0, π / 2, π, and 3π / 2 is Ppc, Pns, Pnc, and Pps, the phase function S is φ The shape measuring apparatus according to claim 1, wherein: = atan ((Pns−Pps) / (Ppc−Pnc)). 前記位相φdが0、π、3π/2である3種類の前記変調条件に対して得られた撮像パターンの光量分布をPpc、Pnc、Ppsとすると、位相関数Sがφ=atan((Pnc−Pps)/(Ppc−Pps))+π/4であることを特徴とする請求項1の形状測定装置。   When the light quantity distribution of the imaging pattern obtained for the three types of modulation conditions with the phase φd being 0, π, 3π / 2 is Ppc, Pnc, Pps, the phase function S is φ = atan ((Pnc− 2. The shape measuring apparatus according to claim 1, wherein Pps) / (Ppc−Pps)) + π / 4. 前記位相φdが0、π/2である2種類の前記変調条件に対して得られた撮像パターンの光量分布を、Ppc、Pns、D=0である変調条件に対して得られた撮像パターンの光量分布をPfとすると、位相関数Sがφ=atan((Pns−Pf)/(Ppc−Pf))であることを特徴とする請求項1の形状測定装置。   The light quantity distributions of the imaging patterns obtained for the two types of modulation conditions where the phase φd is 0 and π / 2 are obtained from the imaging patterns obtained for the modulation conditions where Ppc, Pns and D = 0. The shape measuring apparatus according to claim 1, wherein the phase function S is φ = atan ((Pns−Pf) / (Ppc−Pf)) where the light quantity distribution is Pf. 照射と撮像の変調周波数をnω(nは自然数)とし、n=1の位相φ1から形状の概要を求め、該nを順次増やして得られた位相φnから、L=L2−Lo(φn−2mπ+nφo)/(2πn)により、未定の整数mを推定しながら前記距離Lを詳細に求めることを特徴とする請求項1の形状測定装置。   The modulation frequency of irradiation and imaging is nω (n is a natural number), the outline of the shape is obtained from the phase φ1 of n = 1, and from the phase φn obtained by sequentially increasing n, L = L2−Lo (φn−2mπ + nφo ) / (2πn) to obtain the distance L in detail while estimating an undetermined integer m. 前記照射手段の前方の距離Lrに反射板を設け(L1≦Lr≦L2)、この反射板から戻る反射光の位相φrとして、φo=φr−2π(L2−Lr)/Loからφoを求めることを特徴とする請求項1の形状測定装置。   A reflector is provided at a distance Lr in front of the irradiating means (L1 ≦ Lr ≦ L2), and φo is obtained from φo = φr−2π (L2−Lr) / Lo as the phase φr of the reflected light returning from the reflector. The shape measuring apparatus according to claim 1. 前記照射手段は半導体光源であり、前記撮像手段は光シャッタ付きのCCD素子、またはCMOS素子であることを特徴とする請求項1の形状測定装置。   2. The shape measuring apparatus according to claim 1, wherein the irradiating means is a semiconductor light source, and the imaging means is a CCD element with a light shutter or a CMOS element. 前記照射手段はレーザダイオードや発光ダイオードなどの半導体光源であり、前記撮像手段は光利得を変調できるCCD素子、またはCMOS素子であることを特徴とする請求項1の形状測定装置。   2. The shape measuring apparatus according to claim 1, wherein the irradiating means is a semiconductor light source such as a laser diode or a light emitting diode, and the imaging means is a CCD element or a CMOS element capable of modulating optical gain. 前記照射手段の光源を赤外光源とし、前記撮像手段に可視光を除去する光フィルタを設けることを特徴とする請求項1の形状測定装置。   2. The shape measuring apparatus according to claim 1, wherein the light source of the irradiating unit is an infrared light source, and an optical filter for removing visible light is provided in the imaging unit. 前記照射手段の光源を赤外光源とし、前記撮像手段に赤外光と可視光を分離するミラーを設け、分離した赤外光から形状を測定し、可視光から形状に貼り付けるテキスチャデータを得ることを特徴とする請求項9の形状測定装置。   An infrared light source is used as the light source of the irradiating means, and a mirror for separating infrared light and visible light is provided on the imaging means, the shape is measured from the separated infrared light, and texture data to be attached to the shape from the visible light is obtained. The shape measuring apparatus according to claim 9.
JP2005013130A 2005-01-20 2005-01-20 Shape measuring apparatus Pending JP2006201037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013130A JP2006201037A (en) 2005-01-20 2005-01-20 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013130A JP2006201037A (en) 2005-01-20 2005-01-20 Shape measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006201037A true JP2006201037A (en) 2006-08-03

Family

ID=36959169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013130A Pending JP2006201037A (en) 2005-01-20 2005-01-20 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP2006201037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973913B2 (en) 2008-10-15 2011-07-05 Fujifilm Corporation Distance measurement apparatus and method
KR20110085785A (en) * 2010-01-21 2011-07-27 삼성전자주식회사 Method of extractig depth information and optical apparatus employing the method
WO2020084851A1 (en) * 2018-10-25 2020-04-30 ソニーセミコンダクタソリューションズ株式会社 Computational processing device, range finding device, and computational processing method
WO2020090558A1 (en) * 2018-11-01 2020-05-07 京セラ株式会社 Electromagnetic wave detecting device, and information acquiring system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110381A (en) * 1993-10-07 1995-04-25 Wacom Co Ltd Distance camera device
JPH07181261A (en) * 1993-12-22 1995-07-21 Canon Inc Optical radar
JPH08313215A (en) * 1995-05-23 1996-11-29 Olympus Optical Co Ltd Two-dimensional distance sensor
JP2000146543A (en) * 1998-11-17 2000-05-26 Nec Corp Three dimensional shape measuring device, method and record medium
JP2001311612A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Shape input device
JP2002277225A (en) * 2001-03-21 2002-09-25 Ricoh Co Ltd Lighting system for optical shape measuring instrument
JP2003004425A (en) * 2001-03-21 2003-01-08 Ricoh Co Ltd Optical shape-measuring apparatus
JP2004045266A (en) * 2002-07-12 2004-02-12 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection method and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110381A (en) * 1993-10-07 1995-04-25 Wacom Co Ltd Distance camera device
JPH07181261A (en) * 1993-12-22 1995-07-21 Canon Inc Optical radar
JPH08313215A (en) * 1995-05-23 1996-11-29 Olympus Optical Co Ltd Two-dimensional distance sensor
JP2000146543A (en) * 1998-11-17 2000-05-26 Nec Corp Three dimensional shape measuring device, method and record medium
JP2001311612A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Shape input device
JP2002277225A (en) * 2001-03-21 2002-09-25 Ricoh Co Ltd Lighting system for optical shape measuring instrument
JP2003004425A (en) * 2001-03-21 2003-01-08 Ricoh Co Ltd Optical shape-measuring apparatus
JP2004045266A (en) * 2002-07-12 2004-02-12 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973913B2 (en) 2008-10-15 2011-07-05 Fujifilm Corporation Distance measurement apparatus and method
KR20110085785A (en) * 2010-01-21 2011-07-27 삼성전자주식회사 Method of extractig depth information and optical apparatus employing the method
JP2011149942A (en) * 2010-01-21 2011-08-04 Samsung Electronics Co Ltd Method of extracting distance information, and optical device employing the method
KR101675112B1 (en) 2010-01-21 2016-11-22 삼성전자주식회사 Method of extractig depth information and optical apparatus employing the method
WO2020084851A1 (en) * 2018-10-25 2020-04-30 ソニーセミコンダクタソリューションズ株式会社 Computational processing device, range finding device, and computational processing method
CN112771409A (en) * 2018-10-25 2021-05-07 索尼半导体解决方案公司 Arithmetic processing device, distance measuring device, and arithmetic processing method
WO2020090558A1 (en) * 2018-11-01 2020-05-07 京セラ株式会社 Electromagnetic wave detecting device, and information acquiring system

Similar Documents

Publication Publication Date Title
CN111025317B (en) Adjustable depth measuring device and measuring method
CN110596721B (en) Flight time distance measuring system and method of double-shared TDC circuit
JP6246131B2 (en) Improvements in or relating to processing of time-of-flight signals
AU2007251977B2 (en) Distance measuring method and distance measuring element for detecting the spatial dimension of a target
US11099259B2 (en) Polarization detection improved sensing
EP2378310A1 (en) Time of flight camera unit and optical surveillance system
JP6261681B2 (en) Improvements in or relating to processing of time-of-flight signals
US20160112696A1 (en) Imaging apparatuses and a time of flight imaging method
JP2008533478A (en) 3-D imaging system
US9267790B2 (en) Measuring device of measurement object, calculating device, measurement method, and method for producing item
JP2010504509A (en) Method and system for capturing a 3D image of a scene
US11269065B2 (en) Muilti-detector with interleaved photodetector arrays and analog readout circuits for lidar receiver
WO2003074967A1 (en) Polarization bearing detection type two-dimensional light reception timing detecting device and surface shape measuring device using it
CN110658529A (en) Integrated beam splitting scanning unit and manufacturing method thereof
JP2006337286A (en) Shape-measuring device
US20220252730A1 (en) Time-of-flight imaging apparatus and time-of-flight imaging method
JP2006201037A (en) Shape measuring apparatus
CN110716189A (en) Transmitter and distance measurement system
JP4673674B2 (en) Shape measuring device
JP2011185837A (en) Foreign matter detector
US20220334236A1 (en) Dispersion compensation for a frequency-modulated continuous-wave (fmcw) lidar system
JP5215547B2 (en) Spatial information detection device
JP6693757B2 (en) Distance image generating apparatus and method
JP2010286240A (en) Light wave range finder
Grootjans et al. Analysis of non-ideal behavior of CAPD based time-of-flight pixels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726