JP5205830B2 - Method for producing polyester resin composition - Google Patents

Method for producing polyester resin composition Download PDF

Info

Publication number
JP5205830B2
JP5205830B2 JP2007160142A JP2007160142A JP5205830B2 JP 5205830 B2 JP5205830 B2 JP 5205830B2 JP 2007160142 A JP2007160142 A JP 2007160142A JP 2007160142 A JP2007160142 A JP 2007160142A JP 5205830 B2 JP5205830 B2 JP 5205830B2
Authority
JP
Japan
Prior art keywords
polyester resin
resin composition
group
acid
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007160142A
Other languages
Japanese (ja)
Other versions
JP2008308641A (en
Inventor
祥子 伊勢
有三 清水
仁 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007160142A priority Critical patent/JP5205830B2/en
Publication of JP2008308641A publication Critical patent/JP2008308641A/en
Application granted granted Critical
Publication of JP5205830B2 publication Critical patent/JP5205830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱性および色調に優れた脂環族成分含有ポリエステル樹脂組成物の製造方法に関するものである。さらに詳しくは、特定のリン化合物を添加した後に、脂環族ジオールを添加することで、脂環族ジオールの分解を抑制し、耐熱性および色調に優れた脂環族成分を含有するポリエステル樹脂組成物を経済的に有意な方法で製造する方法に関する。   The present invention relates to a method for producing an alicyclic component-containing polyester resin composition excellent in heat resistance and color tone. More specifically, a polyester resin composition containing an alicyclic component excellent in heat resistance and color tone is suppressed by adding an alicyclic diol after adding a specific phosphorus compound, thereby suppressing decomposition of the alicyclic diol. The present invention relates to a method for manufacturing an object in an economically significant way.

脂環族成分を含有するポリエステルは、ポリエチレンテレフタレート(以下PET)などの芳香族ポリエステルとは異なった光学特性、結晶化特性、機械特性を有しており、該ポリエステル単独で、または芳香族ポリエステルと組み合わせて使用される。   Polyester containing an alicyclic component has optical properties, crystallization properties, and mechanical properties different from those of aromatic polyesters such as polyethylene terephthalate (hereinafter referred to as PET). Used in combination.

工業的な利用としてはたとえば、屈折率の異なるポリマーを交互に積層したフィルムは、特定の波長の光を効率良く反射させることができるため、光フィルターや反射体として利用されている。また光学等方性に優れたフィルムは、液晶ディスプレイ等において位相差フィルムなどとして利用されている。   As an industrial application, for example, a film in which polymers having different refractive indexes are alternately laminated can efficiently reflect light having a specific wavelength, and thus is used as an optical filter or a reflector. A film excellent in optical isotropy is used as a retardation film or the like in a liquid crystal display or the like.

しかしながら、脂環族成分のひとつである脂環族ジオールは、酸や水分に晒されると分解するため、ジカルボン酸とジオールを出発物質とする直接エステル化法で得られた脂環族成分含有ポリエステルは、ジカルボン酸ジエステルとジオールとを出発物質とするエステル交換法によって得られた脂環族成分含有ポリエステルと比較して、耐熱性が劣るという問題があった。直接エステル化法は、エステル交換法と比較して原料が安価であり、経済的に優位な方法であるため、脂環族成分を含有するポリエステルにおいても、エステル化法による製造方法の確立が切望されていた。   However, alicyclic diols, which are one of the alicyclic components, decompose when exposed to acids and moisture, so alicyclic component-containing polyesters obtained by direct esterification using dicarboxylic acid and diol as starting materials. Has a problem that the heat resistance is inferior to that of an alicyclic component-containing polyester obtained by a transesterification method using a dicarboxylic acid diester and a diol as starting materials. The direct esterification method is an economically advantageous method because the raw materials are cheaper than the transesterification method, and therefore it is eager to establish a production method by an esterification method even for polyesters containing alicyclic components. It had been.

これに対し、特許文献1および2では、ジカルボン酸およびジオールのエステル化反応、重縮合反応によって特定値以下の酸価のエステルを得たのちに、脂環族ジオールを添加し、重縮合する方法が開示されている。しかし、酸価を特定値まで低下させるにはエステル化反応、重縮合反応に長時間を有するため、得られるポリエステル樹脂の耐熱性および色調が十分でなかった。
特開2006−225621号公報 特開2005−314643号公報
On the other hand, in Patent Documents 1 and 2, after obtaining an ester having an acid value of a specific value or less by esterification reaction or polycondensation reaction of dicarboxylic acid and diol, an alicyclic diol is added and polycondensation is performed. Is disclosed. However, since the esterification reaction and polycondensation reaction take a long time to reduce the acid value to a specific value, the resulting polyester resin has insufficient heat resistance and color tone.
JP 2006-225621 A JP-A-2005-314643

本発明の目的は、上記した従来の課題を解決し、経済的な方法で、耐熱性に優れ、色調のよい脂環族成分含有ポリエステル樹脂組成物を提供することである。   An object of the present invention is to solve the above-described conventional problems and provide an alicyclic component-containing polyester resin composition having excellent heat resistance and good color tone by an economical method.

少なくとも脂環族ジカルボン酸成分を、全ジカルボン酸成分中5〜80モル%含有し、スピログリコールを、全ジオール成分中5〜80モル%含む下記式(1)、(2)を満足するポリエステルを製造するに際して、ジカルボン酸と脂肪族ジオールのエステル化反応から得られた酸価が210〜350μ当量/gのエステル低重合体中に、3価のリン化合物をリン元素として、ポリエステル樹脂組成物に対し40〜315ppmを添加し、次いでスピログリコールを添加し、エステル化反応、引き続き重縮合触媒の存在下で重縮合反応を行うことを特徴とするポリエステル樹脂組成物の製造方法によって達成される。 A polyester satisfying the following formulas (1) and (2) containing at least 5 to 80 mol% of an alicyclic dicarboxylic acid component and 5 to 80 mol% of spiroglycol in all diol components. In the production , a polyester resin composition comprising a trivalent phosphorus compound as a phosphorus element in an ester low polymer having an acid value of 210 to 350 μequivalent / g obtained from an esterification reaction of a dicarboxylic acid and an aliphatic diol . to the addition of 40~315Ppm, then added spiro glycol, esterification reaction, is achieved by the method for producing a polyester resin composition continue and performing polycondensation reaction in the presence of a polycondensation catalyst.

65℃≦示差走査熱量測定によるガラス転移点温度≦86℃・・・(1)
1.500≦ナトリウムD線での屈折率≦1.570・・・(2)
65 ° C. ≦ Glass transition temperature by differential scanning calorimetry ≦ 86 ° C. (1)
1.500 ≦ refractive index at sodium D line ≦ 1.570 (2)

本発明によれば、ジカルボン酸と脂肪族ジオールのエステル化反応から得られた酸価が100〜500μ当量/gのエステル低重合体中に、3価のリン化合物、次いで脂環族ジオールを添加し、エステル化反応、引き続き重縮合触媒の存在下で重縮合反応を行うことで、脂環族ジオールの酸による開裂を抑制し、耐熱性および色調に優れた脂環族成分含有ポリエステル樹脂を経済的な方法で製造することができる。   According to the present invention, a trivalent phosphorus compound and then an alicyclic diol are added to an ester low polymer having an acid value of 100 to 500 μeq / g obtained from the esterification reaction of a dicarboxylic acid and an aliphatic diol. By conducting an esterification reaction, followed by a polycondensation reaction in the presence of a polycondensation catalyst, the acid-based cleavage of the alicyclic diol is suppressed, and an alicyclic component-containing polyester resin excellent in heat resistance and color tone is economical. Can be manufactured in a conventional manner.

本発明によるポリエステル樹脂の製造方法は、液晶ディスプレイに好適な低光弾性係数を有したポリエステル樹脂組成物を得ることができ、また光反射性に優れた積層ポリエステルフィルムを得ることができる。   According to the method for producing a polyester resin according to the present invention, a polyester resin composition having a low photoelastic coefficient suitable for a liquid crystal display can be obtained, and a laminated polyester film excellent in light reflectivity can be obtained.

本発明のポリエステル樹脂組成物の製造方法は、少なくとも脂環族ジカルボン酸成分および脂環族ジオール成分な下記式(1)、(2)を満足するポリエステルを製造するに際して、ジカルボン酸と脂肪族ジオールのエステル化反応から得られた酸価が100〜500μ当量/gのエステル低重合体中に、3価のリン化合物、次いで脂環族ジオールを添加し、エステル化反応、引き続き重縮合触媒の存在下で重縮合反応を行うことを特徴とするポリエステル樹脂組成物の製造方法である。   The method for producing a polyester resin composition of the present invention comprises producing a polyester satisfying the following formulas (1) and (2) which are at least an alicyclic dicarboxylic acid component and an alicyclic diol component. A trivalent phosphorus compound and then an alicyclic diol are added to an ester low polymer having an acid value of 100 to 500 µequivalent / g obtained from the esterification reaction of the esterification reaction, followed by the presence of a polycondensation catalyst. A polycondensation reaction is performed under the polyester resin composition.

65℃≦示差走査熱量測定によるガラス転移点温度≦86℃・・・(1)
1.500≦ナトリウムD線での屈折率≦1.570・・・(2)
本発明の製造方法によって得られるポリエステル樹脂組成物は、ガラス転移点温度(以下Tg)が65℃から86℃の範囲にあることが必要である。
65 ° C. ≦ Glass transition temperature by differential scanning calorimetry ≦ 86 ° C. (1)
1.500 ≦ refractive index at sodium D line ≦ 1.570 (2)
The polyester resin composition obtained by the production method of the present invention needs to have a glass transition temperature (hereinafter referred to as Tg) in the range of 65 ° C to 86 ° C.

Tgが65℃未満の場合、耐熱性が不足するために光学特性が経時変化しやすく、またPET等と積層製膜する際には積層樹脂間のTg差が大きくなるために積層ムラ等発生し、製膜安定性が損なわれる。積層フィルムとする場合、本発明のポリエステル樹脂組成物のTgを積層ポリマーのTgと合致させることが好ましく、積層ポリマーのTg(Tg1)と本発明のポリエステル樹脂のTg(Tg2)の差(|Tg1−Tg2|)が10℃以内、さらには5℃以内であることが好ましい。   When Tg is less than 65 ° C, the optical characteristics are likely to change with time due to insufficient heat resistance, and when the film is laminated with PET or the like, the Tg difference between the laminated resins becomes large, resulting in lamination unevenness. , Film formation stability is impaired. In the case of a laminated film, it is preferable to match the Tg of the polyester resin composition of the present invention with the Tg of the laminated polymer, and the difference between the Tg (Tg1) of the laminated polymer and the Tg (Tg2) of the polyester resin of the present invention (| Tg1 -Tg2 |) is preferably within 10 ° C, more preferably within 5 ° C.

Tgが90℃を超える場合には、PET等を積層する際にTg差が大きくなりすぎるために、上記同様、積層ムラ等発生し、製膜安定性が損なわれ、またポリエステル樹脂組成物の屈折率を低くすることが困難になってくる。よって本発明のポリエステル樹脂組成物のTgは、70〜86℃の範囲が好ましく、さらには75〜85℃の範囲が好ましい。 When the Tg exceeds 90 ° C., the Tg difference becomes too large when laminating PET and the like, and as described above, laminating unevenness and the like occur, film formation stability is impaired, and the refraction of the polyester resin composition It becomes difficult to lower the rate. Therefore, Tg of the polyester resin composition of the present invention is preferably in the range of 70 to 86 ° C, more preferably in the range of 75 to 85 ° C.

本発明の製造方法によって得られるポリエステル樹脂組成物の屈折率については,
1.500〜1.570の範囲にある必要がある。1.500未満とすることはポリエステル樹脂では困難であり、1.570を超える場合には、積層ポリマーとの屈折率差が小さくなるため、得られた積層フィルムの光反射性が小さくなる。なお、本発明における屈折率は、23℃の条件にてナトリウムD線を用いて測定した屈折率を指し、1.510〜1.560の範囲であることが好ましい。
Regarding the refractive index of the polyester resin composition obtained by the production method of the present invention,
It needs to be in the range of 1.500 to 1.570. It is difficult for the polyester resin to be less than 1.500, and when it exceeds 1.570, the difference in refractive index from the laminated polymer becomes small, so the light reflectivity of the obtained laminated film becomes small. In addition, the refractive index in this invention points out the refractive index measured using the sodium D line | wire on the conditions of 23 degreeC, and it is preferable that it is the range of 1.510-1.560.

前記した特性を与えるためには、ポリエステル樹脂組成物は少なくとも脂環族ジカルボン酸成分および脂環族ジオール成分を含むことが必要である。ポリエステル樹脂組成物に含まれる芳香環はTgを高める効果があるが、同時に屈折率を高め、光弾性係数を高める効果がある。光弾性係数が大きい場合、フィルムに応力が作用した際に位相差が大きく変化するため、液晶ディスプレイ用途のフィルムには不適当である。   In order to give the above-described properties, the polyester resin composition needs to contain at least an alicyclic dicarboxylic acid component and an alicyclic diol component. The aromatic ring contained in the polyester resin composition has the effect of increasing Tg, but at the same time has the effect of increasing the refractive index and increasing the photoelastic coefficient. When the photoelastic coefficient is large, the phase difference changes greatly when a stress is applied to the film, so that it is not suitable for a film for use in a liquid crystal display.

そこで、本発明のポリエステル樹脂組成物は、この芳香環成分を脂環族ジカルボン酸成分や脂環族ジオールで置換することにより、屈折率や光弾性係数を低減させている。本発明における脂環族ジカルボン酸成分としては、シクロヘキサンジカルボン酸成分やデカリンジカルボン酸成分等を挙げることができる。特に入手の容易性や重合反応性の観点からはシクロヘキサンジカルボン酸成分が好ましい。シクロヘキサンジカルボン酸成分は、シクロヘキサンジカルボン酸やそのエステルを原料として用いることができる。   Therefore, in the polyester resin composition of the present invention, the refractive index and the photoelastic coefficient are reduced by substituting this aromatic ring component with an alicyclic dicarboxylic acid component or an alicyclic diol. Examples of the alicyclic dicarboxylic acid component in the present invention include a cyclohexane dicarboxylic acid component and a decalin dicarboxylic acid component. In particular, a cyclohexanedicarboxylic acid component is preferable from the viewpoint of availability and polymerization reactivity. As the cyclohexanedicarboxylic acid component, cyclohexanedicarboxylic acid or an ester thereof can be used as a raw material.

なお、シクロヘキサンジカルボン酸成分など脂環族成分には立体異性体として、シス体、トランス体が存在するが、本発明ではトランス体比率が40%以下であることが好ましい。トランス体比率が高いと光弾性係数が大きくなるため劣る傾向にある。また、トランス体は、シス体に比べ、融点が高いため、トランス体比率が高くなると、室温程度で保管、または、輸送中等に、容易に凝固し、沈降してしまい、不均一となり反応性が悪くなるだけでなく、取り扱い上においても作業性が悪くなる。よって、トランス体比率は、好ましくは、35%以下、より好ましくは、30%以下である。   The alicyclic component such as the cyclohexanedicarboxylic acid component includes a cis isomer and a trans isomer as stereoisomers. In the present invention, the trans isomer ratio is preferably 40% or less. If the ratio of the transformer body is high, the photoelastic coefficient tends to be large, so that it tends to be poor. In addition, since the trans isomer has a higher melting point than the cis isomer, if the trans isomer ratio is high, it easily coagulates and settles during storage at room temperature or during transportation, resulting in heterogeneity and reactivity. Not only is it worse, but workability is also worse in handling. Therefore, the trans isomer ratio is preferably 35% or less, and more preferably 30% or less.

本発明における脂環族ジオールとしては、スピログリコール成分やイソソルビド成分が好ましく、特に得られるポリエステルの色調の観点からスピログリコール成分が好ましい。ここでスピログリコールとは3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンを指す。   As an alicyclic diol in this invention, a spiroglycol component and an isosorbide component are preferable, and a spiroglycol component is preferable from a viewpoint of the color tone of the polyester obtained especially. Here, spiroglycol refers to 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane.

本発明において、例えばPETの場合、テレフタル酸成分(芳香環成分)をシクロヘキサンジカルボン酸等で置換するとTgが低下する。そこでスピログリコール成分やイソソルビド成分など脂環族ジオール成分をエチレングリコール成分に置換することでTgが上昇し、結果として本発明の積層するPETと同程度のTgに調整することができる。Tgを上昇させる効果はスピログリコール成分やイソソルビド成分において顕著である。   In the present invention, for example, in the case of PET, Tg decreases when the terephthalic acid component (aromatic ring component) is substituted with cyclohexanedicarboxylic acid or the like. Then, Tg rises by substituting alicyclic diol components, such as a spiroglycol component and an isosorbide component, with an ethylene glycol component, and as a result, it can adjust to Tg comparable to PET which laminates | stacks this invention. The effect of increasing Tg is significant in spiroglycol components and isosorbide components.

本発明のポリエステル樹脂組成物は、屈折率や光弾性係数を低下させるために、ポリエステル樹脂組成物1kg中に含有される芳香環モル数を4.8モル以下とすることが好ましい。4.8モルを超える場合には屈折率や光弾性係数が増大する傾向にあるため好ましくない。なお、本発明における芳香環モル数とはベンゼン環モル数を基本単位としている。本発明における定義をPETとポリエチレンナフタレート(以下、PEN)を例にして説明する。   In the polyester resin composition of the present invention, the number of moles of aromatic rings contained in 1 kg of the polyester resin composition is preferably 4.8 mol or less in order to reduce the refractive index and the photoelastic coefficient. When it exceeds 4.8 mol, the refractive index and the photoelastic coefficient tend to increase, which is not preferable. The number of moles of aromatic rings in the present invention is based on the number of moles of benzene rings. The definition in the present invention will be described using PET and polyethylene naphthalate (hereinafter, PEN) as examples.

PETの場合、基本繰り返し単位の分子量は192であるため、ポリマー1kg当たりの基本繰り返し単位数は5.2となる。基本繰り返し単位中にテレフタル酸成分(ベンゼン環1個相当)は1モル含まれるため、PETの芳香環モル数は5.2と計算される。一方、PENの場合、基本繰り返し単位の分子量は242であり、ポリマー1kg当たりの基本繰り返し単位数は4.1である。基本繰り返し単位中にナフタレンジカルボン酸成分は1モル含まれるが、ナフタレン環はベンゼン環2個に相当するため、PENの芳香環モル数は8.2モルと計算する。   In the case of PET, since the molecular weight of the basic repeating unit is 192, the number of basic repeating units per kg of the polymer is 5.2. Since 1 mol of the terephthalic acid component (corresponding to one benzene ring) is contained in the basic repeating unit, the number of moles of aromatic ring of PET is calculated to be 5.2. On the other hand, in the case of PEN, the molecular weight of the basic repeating unit is 242 and the number of basic repeating units per kg of the polymer is 4.1. Although 1 mole of naphthalene dicarboxylic acid component is contained in the basic repeating unit, since the naphthalene ring corresponds to 2 benzene rings, the number of moles of aromatic ring of PEN is calculated as 8.2 moles.

本発明のポリエステル樹脂組成物は、少なくとも脂環族ジカルボン酸成分および脂環族ジオール成分を含むが、その他ジカルボン酸成分としては、2,6−ナフタレンジカルボン酸成分、テレフタル酸成分、イソフタル酸成分から選択される少なくとも一種のジカルボン酸成分を全ジカルボン酸成分に対して20〜95モル%含有することが好ましい。また脂肪族ジオール成分については、エチレングリコール成分をジオール成分として20〜95モル%含有することが好ましい。前記した芳香族ジカルボン酸成分が20モル%未満の場合、Tgを65℃以上にすることが難しくなり、例えばPETやPENと積層する際にはこれらの樹脂との層間接着性が悪化してくる。同様にエチレングリコール成分が20モル%未満の場合、PETやPENと積層した際、これらの樹脂との層間接着性が悪化してくる。一方、芳香族ジカルボン酸成分が95モル%を超える場合、屈折率や光弾性係数を低減することが難しくなり、エチレングリコール成分が95モル%を超える場合にはTgを65℃以上にすることが難しくなる。   The polyester resin composition of the present invention contains at least an alicyclic dicarboxylic acid component and an alicyclic diol component, and other dicarboxylic acid components include 2,6-naphthalenedicarboxylic acid component, terephthalic acid component, and isophthalic acid component. It is preferable to contain at least one selected dicarboxylic acid component in an amount of 20 to 95 mol% based on the total dicarboxylic acid component. Moreover, about an aliphatic diol component, it is preferable to contain 20-95 mol% of ethylene glycol components as a diol component. When the above-mentioned aromatic dicarboxylic acid component is less than 20 mol%, it becomes difficult to make the Tg 65 ° C. or more, and for example, when laminating with PET or PEN, the interlayer adhesion with these resins deteriorates. . Similarly, when the ethylene glycol component is less than 20 mol%, interlayer adhesion with these resins deteriorates when laminated with PET or PEN. On the other hand, when the aromatic dicarboxylic acid component exceeds 95 mol%, it is difficult to reduce the refractive index and the photoelastic coefficient. When the ethylene glycol component exceeds 95 mol%, the Tg may be 65 ° C. or higher. It becomes difficult.

本発明のポリエステル樹脂組成物において、脂環族ジカルボン酸成分、脂環族ジオールの含有量は、前記記載よりそれぞれ5〜80モル%の範囲が好ましく、さらに8〜50モル%が好ましい。   In the polyester resin composition of the present invention, the content of the alicyclic dicarboxylic acid component and the alicyclic diol is preferably in the range of 5 to 80 mol%, more preferably 8 to 50 mol% from the above description.

本発明のポリエステル樹脂組成物に含有される芳香族ジカルボン酸成分は、前記した種類から少なくとも選択されるが、屈折率や光弾性係数の観点からテレフタル酸成分やイソフタル酸成分が好ましく、これらは同時に使用してもかまわない。特にテレフタル酸成分はその他ポリエステル樹脂組成物との接着性等の観点から主に使用することが好ましい。その他ジカルボン酸成分としては、特性の許す限り従来公知のものを共重合しても構わなく、グリコール成分についても同様である。このような成分としては、例えばアジピン酸、セバシン酸等の脂肪族ジカルボン酸やそのエステル、4,4’−ビスフェニレンジカルボン酸、5−ソジウムスルホイソフタル酸、ジフェン酸等の芳香族ジカルボン酸やそのエステル、ジエチレングリコール、ブタンジオール、プロパンジオール、ポリエチレングリコール、ポリテトラメチレングリコール等のグリコール成分を挙げることができる。   The aromatic dicarboxylic acid component contained in the polyester resin composition of the present invention is at least selected from the types described above, but from the viewpoint of refractive index and photoelastic coefficient, a terephthalic acid component and an isophthalic acid component are preferable, and these are simultaneously You can use it. In particular, the terephthalic acid component is preferably used mainly from the viewpoint of adhesion to other polyester resin compositions. As the other dicarboxylic acid component, a conventionally known component may be copolymerized as long as the characteristics allow, and the same applies to the glycol component. Examples of such components include aliphatic dicarboxylic acids such as adipic acid and sebacic acid and esters thereof, aromatic dicarboxylic acids such as 4,4′-bisphenylenedicarboxylic acid, 5-sodiumsulfoisophthalic acid, diphenic acid, and the like. Examples thereof include glycol components such as esters, diethylene glycol, butanediol, propanediol, polyethylene glycol, and polytetramethylene glycol.

本発明のポリエステル樹脂組成物の製造方法におけるジカルボン酸と脂肪族ジオールのエステル化反応は、従来のジカルボン酸とジオールを原料とするポリエステル樹脂の製造方法におけるエステル化反応条件を採用することができる。例えば、原料ジカルボン酸に対するジオールの仕込み比(モル比)を1.01〜10として反応缶に仕込む。モル比は、ジオールの脱水反応などの副反応を抑制する点で、1.1〜5.0が好ましく、さらに好ましくは1.15〜2である。エステル化反応の温度は特に限定されないが、100〜270℃、より好ましくは120〜260℃、更に好ましくは150〜250℃である。エステル化反応の圧力は特に限定されないが50kPa〜300kPaが好ましい。エステル化反応は、得られる樹脂組成物の透明性、熱安定性、色調の面から無触媒で行うことが好ましいが、触媒を用いても良い。   The esterification reaction of a dicarboxylic acid and an aliphatic diol in the method for producing a polyester resin composition of the present invention can employ the esterification reaction conditions in a conventional method for producing a polyester resin using a dicarboxylic acid and a diol as raw materials. For example, the charging ratio (molar ratio) of the diol to the raw material dicarboxylic acid is set to 1.01 to 10 and charged into the reaction can. The molar ratio is preferably 1.1 to 5.0, more preferably 1.15 to 2, in terms of suppressing side reactions such as dehydration reaction of diol. Although the temperature of esterification reaction is not specifically limited, It is 100-270 degreeC, More preferably, it is 120-260 degreeC, More preferably, it is 150-250 degreeC. The pressure for the esterification reaction is not particularly limited, but is preferably 50 kPa to 300 kPa. The esterification reaction is preferably performed without a catalyst from the viewpoint of the transparency, thermal stability, and color tone of the resin composition to be obtained, but a catalyst may be used.

本発明のポリエステル樹脂組成物の製造方法では、ジカルボン酸と脂肪族ジオールのエステル化反応によって得られた酸価が210〜350μ当量/gであるエステル低重合体中に、3価のリン化合物、次いで脂環族ジオールを添加する必要がある。 In the method for producing a polyester resin composition of the present invention, a trivalent phosphorus compound is contained in an ester low polymer having an acid value of 210 to 350 μeq / g obtained by an esterification reaction of a dicarboxylic acid and an aliphatic diol. Then, it is necessary to add an alicyclic diol.

エステル低重合体の酸価が100μ当量/g未満の場合は、エステル化工程に長時間を要するため、得られるポリエステル樹脂組成物が着色する。500μ当量/gを超える場合は次に添加する脂環属ジオールが酸によって分解され、得られるポリエステル樹脂の耐熱性が低下する。得られるポリエステル樹脂組成物の耐熱性と色調の点から、好ましくは200〜300μ当量/gである。 When the acid value of the ester low polymer is less than 100 μequivalent / g, the esterification process takes a long time, and the resulting polyester resin composition is colored. When it exceeds 500 μeq / g, the alicyclic diol to be added next is decomposed by an acid, and the heat resistance of the resulting polyester resin is lowered. From the viewpoint of heat resistance and color tone of the polyester resin composition obtained, good Mashiku is 200~300μ eq / g.

本発明における3価のリン化合物としては、例えば亜リン酸エステル、ジアリール亜ホスフィン酸アルキル、ジアリール亜ホスフィン酸アリール、アリール亜ホスホン酸ジアルキル、アリール亜ホスホン酸ジアリールを挙げることができ、具体的にはトリフェニルホスファイト、トリス(4−モノノニルフェニル)ホスファイト、トリ(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、モノデシルジフェニルホスファイト、ビス[2,4−(ビス1,1−ジメチルエチル)−6−メチルフェニル]エチルホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)4,4’−ビフェニレンジホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、3,9―ビス(2,4−ジクミルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、フェニル−ネオペンチレングリコール−ホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(2,4―ジクミルフェニル)ペンタエリスリトールジフォスファイト、テトラ(C12〜C15アルキル)−4,4’−イソプロピリデンジフェニルジホスファイト等を挙げることができるがこれに限定されるものではない。これらの中で脂環族ジオールの分解抑制の点から、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイトが好ましく、さらに好ましくはビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトである。   Examples of the trivalent phosphorus compound in the present invention include phosphites, alkyl diarylphosphinites, aryl diarylphosphites, dialkyl arylphosphonites, and diaryl arylphosphonites. Specifically, Triphenyl phosphite, tris (4-monononylphenyl) phosphite, tri (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl diphenyl phosphite, mono Decyl diphenyl phosphite, bis [2,4- (bis 1,1-dimethylethyl) -6-methylphenyl] ethyl phosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylenedi Phosphite, Tris (2,4 Di-tert-butylphenyl) phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol -Di-phosphite, 3,9-bis (2,4-dicumylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, phenyl-neopentylene glycol- Phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, tetra (C12-C15 alkyl) -4, 4'-isopropylidenediphenyl diphosphite and the like can be mentioned. Not intended to be. Of these, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, bis (2,4-di-tert- Butylphenyl) pentaerythritol-di-phosphite is preferred, and bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite is more preferred.

本発明の製造方法では、3価のリン化合物は、脂環族ジオールを添加する前までに反応系に添加する必要がある。3価のリン化合物によって、酸による脂環族ジオールの分解を抑制し、得られるポリエステル組成物の耐熱性を向上することができる。   In the production method of the present invention, it is necessary to add the trivalent phosphorus compound to the reaction system before adding the alicyclic diol. By the trivalent phosphorus compound, the decomposition of the alicyclic diol by the acid can be suppressed, and the heat resistance of the resulting polyester composition can be improved.

3価のリン化合物の添加量は、特に限定されないが、リン元素として70〜300ppmが好ましい。3価のリン化合物をリン元素として70〜300ppm添加することで、酸による脂環族ジオールの分解を抑制することができ、得られるポリエステル樹脂組成物の耐熱性、色調が向上する。3価のリン化合物の添加量がリン元素として70ppm未満の場合、脂環族ジオールの分解抑制が不十分で、得られるポリエステル樹脂組成物の熱安定性が不足し、色調が悪化する場合がある。一方、3価のリン化合物の添加量が、リン元素として300ppmを超えると、重縮合反応の進行が遅延する場合がある。   Although the addition amount of a trivalent phosphorus compound is not specifically limited, 70-300 ppm is preferable as a phosphorus element. By adding 70 to 300 ppm of a trivalent phosphorus compound as a phosphorus element, decomposition of the alicyclic diol by an acid can be suppressed, and the heat resistance and color tone of the resulting polyester resin composition are improved. When the addition amount of the trivalent phosphorus compound is less than 70 ppm as the phosphorus element, the decomposition suppression of the alicyclic diol is insufficient, the thermal stability of the resulting polyester resin composition is insufficient, and the color tone may deteriorate. . On the other hand, when the addition amount of the trivalent phosphorus compound exceeds 300 ppm as the phosphorus element, the progress of the polycondensation reaction may be delayed.

脂環族ジオールを添加する際の温度は特に限定されないが、脂環族ジオールの分解抑制の点から260℃以下で添加することが好ましく、特に好ましくは240℃以下である。   Although the temperature at the time of adding alicyclic diol is not specifically limited, It is preferable to add at 260 degrees C or less from the point of the decomposition | disassembly suppression of alicyclic diol, Especially preferably, it is 240 degrees C or less.

本発明の製造方法では、式(3)に示される5価のリン化合物をジカルボン酸と脂肪族ジオールのエステル化反応開始から重縮合反応終了までの任意の段階で添加することが得られるポリエステル樹脂組成物の熱安定性の点から好ましい。   In the production method of the present invention, a polyester resin obtained by adding the pentavalent phosphorus compound represented by formula (3) at any stage from the start of esterification reaction of dicarboxylic acid and aliphatic diol to the end of polycondensation reaction. It is preferable from the viewpoint of the thermal stability of the composition.

Figure 0005205830
Figure 0005205830

(但し、式中、R、Rは炭素数1以上の炭化水素基であり、Rは水素または炭素数
1以上の炭化水素基を示し、R、R、Rは同じであってもよく、異なっていてもよい。Xは、カルボニル基、エステル基のいずれかを示す。nは0または1である。)
式(3)で示されるリン化合物としては、例えばトリメチルホスホノフォメート、トリエチルホスホノフォメート、トリメチルホスホノアセテート、メチルジエチルホスホノアセテート、エチルジメチルホスホノアセテート、エチルジエチルホスホノアセテート、トリエチル―3−ホスホノプロピオネート、トリエチル−2−ホスホノプロピオネート、トリエチル−2−ホスホノブチレート、ジイソプロピル(エトキシカルボニルメチル)ホスホネート、tert−ブチルジエチルホスホノアセテート、ジエチルホルホノ酢酸、トリエチル−4−ホスホノクロトネート、アリールジエチルホルホノアセテート、ジメチル(2−オキソプロピル)ホスホネート、ジエチル(2−オキソ−2−フェニルエチル)ホスホネート、ジエチル(ヒドロキシメチル)ホスホノアセテート等を挙げることができるがこれに限定されるものではなく、これらのリン化合物は、二種以上を併用してもよい。
(However, in the formula, R 1 and R 2 are hydrocarbon groups having 1 or more carbon atoms, R 3 represents hydrogen or a hydrocarbon group having 1 or more carbon atoms, and R 1 , R 2 , and R 3 are the same. And X may be a carbonyl group or an ester group, and n is 0 or 1.)
Examples of the phosphorus compound represented by the formula (3) include trimethylphosphonofomate, triethylphosphonomate, trimethylphosphonoacetate, methyldiethylphosphonoacetate, ethyldimethylphosphonoacetate, ethyldiethylphosphonoacetate, triethyl-3- Phosphonopropionate, triethyl-2-phosphonopropionate, triethyl-2-phosphonobutyrate, diisopropyl (ethoxycarbonylmethyl) phosphonate, tert-butyldiethylphosphonoacetate, diethylmorphonoacetic acid, triethyl-4-phosphono Crotonate, aryl diethyl phosphonoacetate, dimethyl (2-oxopropyl) phosphonate, diethyl (2-oxo-2-phenylethyl) phosphonate, diethyl (hydroxy) Not that there may be mentioned methyl) phosphonoacetate or the like is not limited to this, these phosphorus compounds may be used in combination of two or more.

本発明では、5価のリン化合物の添加量は特に限定されないが、得られるポリエステル樹脂組成物の耐熱性や色調の点から、リン元素換算で得られるポリエステル樹脂組成物に対して5〜150ppmとすることが好ましい。5価のリン化合物の添加量がリン元素換算で5ppm未満である場合、ポリエステル樹脂組成物の耐熱性に劣る場合がある。一方、5価のリン化合物の含有量がリン元素換算で150ppmを超えると、重縮合反応の進行が遅延する場合がある。5価のリン化合物の添加方法は、そのまま添加してもよいし、脂肪族ジオールなどの溶液もしくはスラリーとして添加してもよい。   In the present invention, the addition amount of the pentavalent phosphorus compound is not particularly limited, but from the viewpoint of heat resistance and color tone of the obtained polyester resin composition, it is 5 to 150 ppm with respect to the polyester resin composition obtained in terms of phosphorus element. It is preferable to do. When the addition amount of the pentavalent phosphorus compound is less than 5 ppm in terms of phosphorus element, the heat resistance of the polyester resin composition may be inferior. On the other hand, when the content of the pentavalent phosphorus compound exceeds 150 ppm in terms of phosphorus element, the progress of the polycondensation reaction may be delayed. The pentavalent phosphorus compound may be added as it is, or as a solution or slurry of an aliphatic diol or the like.

本発明の製造方法では、ジカルボン酸と脂肪族ジオールのエステル化反応開始から重縮合反応終了までの任意の段階でアルカリ金属化合物、アルカリ土類金属化合物から選ばれる少なくとも一種を添加することが好ましい。アルカリ金属化合物、アルカリ土類金属化合物から選ばれる少なくとも一種を添加することによって、酸による脂環族ジオールの分解を抑制することができ、さらにはフィルム成形する際の静電印加性が向上する。アルカリ金属化合物もしくはアルカリ土類金属化合物の添加時期は特に限定されないが、得られるポリエステル樹脂組成物の耐熱性の点から、脂環族ジオールを添加する前が好ましい。アルカリ金属化合物としては、ナトリウム、カリウムの炭酸塩、水酸化物などが挙げられ、アルカリ土類金属化合物としては、マグネシウム、カルシウムの炭酸塩、水酸化物、およびカルボン酸などが挙げられる。なかでも得られるポリエステル樹脂組成物の色調の点からアルカリ金属化合物が好ましく、特に好ましくは酢酸カリウム、プロピオン酸カリウム、水酸化カリウムである。アルカリ金属化合物もしくはアルカリ土類金属化合物の添加量は、得られるポリエステル樹脂組成物の耐熱性や透明性の点から、アルカリ金属元素もしくはアルカリ土類金属元素として1〜50ppmが好ましく、より好ましくは1〜20ppmである。アルカリ金属化合物もしくはアルカリ土類金属化合物の添加方法は、化合物をそのまま添加してもよいし、脂肪族ジオールなどの溶液もしくはスラリーとして添加してもよい。   In the production method of the present invention, it is preferable to add at least one selected from an alkali metal compound and an alkaline earth metal compound at any stage from the start of the esterification reaction of the dicarboxylic acid and the aliphatic diol to the end of the polycondensation reaction. By adding at least one selected from an alkali metal compound and an alkaline earth metal compound, decomposition of the alicyclic diol by an acid can be suppressed, and further, electrostatic applicability at the time of film formation is improved. The addition time of the alkali metal compound or alkaline earth metal compound is not particularly limited, but is preferably before the addition of the alicyclic diol from the viewpoint of the heat resistance of the resulting polyester resin composition. Examples of the alkali metal compound include sodium and potassium carbonates and hydroxides, and examples of the alkaline earth metal compound include magnesium and calcium carbonates, hydroxides and carboxylic acids. Among these, alkali metal compounds are preferable from the viewpoint of the color tone of the obtained polyester resin composition, and potassium acetate, potassium propionate, and potassium hydroxide are particularly preferable. The addition amount of the alkali metal compound or alkaline earth metal compound is preferably 1 to 50 ppm as an alkali metal element or alkaline earth metal element, more preferably 1 from the viewpoint of heat resistance and transparency of the obtained polyester resin composition. ~ 20 ppm. As a method for adding the alkali metal compound or alkaline earth metal compound, the compound may be added as it is, or as a solution or slurry of an aliphatic diol or the like.

本発明の製造方法においては、酸価が210〜350μ当量/gのエステル低重合体に脂環族ジオールを添加した後、エステル化反応、引き続き重縮合触媒存在下で重縮合反応を実施する。エステル低重合体と脂環族ジオールのエステル化反応は、前述したジカルボン酸と脂肪族ジオールのエステル化反応と同様に、従来のジカルボン酸とジオールを原料とするポリエステル樹脂の製造方法におけるエステル化反応を採用することができる。 In the production method of the present invention, an alicyclic diol is added to an ester low polymer having an acid value of 210 to 350 μequivalent / g, and then an esterification reaction is carried out, followed by a polycondensation reaction in the presence of a polycondensation catalyst. . The esterification reaction between the ester low polymer and the alicyclic diol is similar to the esterification reaction between the dicarboxylic acid and the aliphatic diol described above, and the esterification reaction in the conventional polyester resin production method using the dicarboxylic acid and the diol as raw materials. Can be adopted.

重縮合反応で用いる重縮合触媒は特に限定されないが、チタン化合物、ゲルマニウム化合物、アンチモン化合物から選ばれる少なくとも1種を用いることが好ましい。なかでも、得られるポリエステル樹脂組成物の耐熱性の観点から、反応活性が高く少量で重縮合反応できるチタン化合物が好ましい。重縮合触媒の添加量は特に限定されないが、例えばチタン化合物の場合は、チタン元素として0.5〜50ppm添加することが好ましい。50ppmを超えると、含有する金属量が増えることから耐熱性が低下したり、色調b値が高くなる場合がある。また、0.5ppm未満の場合は、重合活性が十分でない場合がある。   The polycondensation catalyst used in the polycondensation reaction is not particularly limited, but it is preferable to use at least one selected from a titanium compound, a germanium compound, and an antimony compound. Among these, from the viewpoint of heat resistance of the resulting polyester resin composition, a titanium compound that has a high reaction activity and can be polycondensed in a small amount is preferable. Although the addition amount of a polycondensation catalyst is not specifically limited, For example, in the case of a titanium compound, it is preferable to add 0.5-50 ppm as a titanium element. If it exceeds 50 ppm, the amount of metal to be contained increases, so that the heat resistance may decrease or the color tone b value may increase. Moreover, when it is less than 0.5 ppm, the polymerization activity may not be sufficient.

本発明で重縮合触媒として用いる具体的なチタン化合物としては、チタン原子の置換基がアルコキシ基、フェノキシ基、アシレート基、アミノ基、水酸基の少なくとも1種であるチタン化合物が好ましく用いられる。なかでも、チタン化合物がアルコキシ基を有するものが好ましく、チタン化合物のアルコキシ基が、β−ジケトン系官能基、ヒドロキシカルボン酸系官能基、ケトエステル系官能基からなる群から選ばれる少なくとも一種の官能基であることが、反応活性と得られるポリエステル樹脂組成物の色調の点から特に好ましい。具体的なアルコキシ基には、テトラエトキシド、テトラプロポキシド、テトライソプロポキシド、テトラブトキシド、テトラ−2−エチルヘキソキシド等のチタンテトラアルコキシド、アセチルアセトン等のβ−ジケトン系官能基、乳酸、リンゴ酸、酒石酸、サリチル酸、クエン酸等のヒドロキシ多価カルボン酸系官能基、アセト酢酸メチル、アセト酢酸エチル等のケトエステル系官能基が挙げられ、特に脂肪族アルコキシ基が好ましい。また、フェノキシ基には、フェノキシ、クレシレイト等が挙げられる。また、アシレート基には、ラクテート、ステアレート等のテトラアシレート基、フタル酸、トリメリット酸、トリメシン酸、ヘミメリット酸、ピロメリット酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、シクロヘキサンジカルボン酸またはそれらの無水物等の多価カルボン酸系官能基、エチレンジアミン四酢酸、ニトリロ三プロピオン酸、カルボキシイミノ二酢酸、カルボキシメチルイミノ二プロピオン酸、ジエチレントリアミノ五酢酸、トリエチレンテトラミノ六酢酸、イミノ二酢酸、イミノ二プロピオン酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシエチルイミノ二プロピオン酸、メトキシエチルイミノ二酢酸等の含窒素多価カルボン酸系官能基が挙げられ、特に脂肪族アシレート基が好ましい。また、アミノ基には、アニリン、フェニルアミン、ジフェニルアミン等が挙げられる。また、これらの置換基を2種含んでなるジイソプロポキシビスアセチルアセトンやトリエタノールアミネートイソプロポキシド等が挙げられる。   As a specific titanium compound used as a polycondensation catalyst in the present invention, a titanium compound in which the substituent of the titanium atom is at least one of an alkoxy group, a phenoxy group, an acylate group, an amino group, and a hydroxyl group is preferably used. Among them, the titanium compound preferably has an alkoxy group, and the alkoxy group of the titanium compound is at least one functional group selected from the group consisting of a β-diketone functional group, a hydroxycarboxylic acid functional group, and a ketoester functional group. It is particularly preferable from the viewpoint of reaction activity and the color tone of the resulting polyester resin composition. Specific alkoxy groups include tetraethoxide, tetrapropoxide, tetraisopropoxide, tetrabutoxide, titanium tetraalkoxide such as tetra-2-ethylhexoxide, β-diketone functional groups such as acetylacetone, lactic acid, Examples include hydroxy polyvalent carboxylic acid functional groups such as malic acid, tartaric acid, salicylic acid, citric acid, and ketoester functional groups such as methyl acetoacetate and ethyl acetoacetate, with aliphatic alkoxy groups being particularly preferred. Examples of the phenoxy group include phenoxy and cresylate. The acylate groups include tetraacylate groups such as lactate and stearate, phthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid , Functional groups of polycarboxylic acids such as sebacic acid, maleic acid, fumaric acid, cyclohexanedicarboxylic acid or their anhydrides, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethyliminodipropionic acid, diethylenetria Nitrogenous polyvalent carboxylic acid functional groups such as minopentaacetic acid, triethylenetetraminohexaacetic acid, iminodiacetic acid, iminodipropionic acid, hydroxyethyliminodiacetic acid, hydroxyethyliminodipropionic acid, methoxyethyliminodiacetic acid Especially aliphatic asylum Group is preferred. Examples of the amino group include aniline, phenylamine, diphenylamine and the like. Further, diisopropoxybisacetylacetone and triethanolaminate isopropoxide containing two kinds of these substituents can be mentioned.

本発明の製造方法において、重縮合触媒の添加時期は、重合反応器内の減圧を始める前に反応系へ添加させればよく、特に限定されないが、エステル低重合体と脂環族ジオールのエステル化反応においては、チタン触媒は存在させない方が好ましい。エステル低重合体と脂環族ジオールのエステル化反応終了前にチタン触媒を添加した場合、チタン触媒に起因した微細粒子が発生し、得られたポリエステル樹脂に濁りが発生する場合がある。   In the production method of the present invention, the addition timing of the polycondensation catalyst may be added to the reaction system before starting the pressure reduction in the polymerization reactor, and is not particularly limited. However, the ester of the ester low polymer and the alicyclic diol is not limited. In the conversion reaction, it is preferable that no titanium catalyst is present. When the titanium catalyst is added before the esterification reaction of the ester low polymer and the alicyclic diol is completed, fine particles resulting from the titanium catalyst may be generated, and turbidity may be generated in the obtained polyester resin.

本発明のポリエステル樹脂組成物の製造方法としては、ポリエステル樹脂組成物のゲル化抑制の観点から重縮合温度を260〜280℃の出来るだけ低温で実施することが好ましい。重縮合温度とは、通常、230〜240℃から徐々に温度を上げていき、ある目標の温度に到達した後は一定の温度で重縮合するため、その最終の一定温度のことである。280℃より高い場合は、重合は促進されるものの、同様に高温下でゲル化も促進され、また、260℃より低い場合は、重合活性が落ち、重合時間が遅延することで同様にゲル化が促進されるため好ましくない。従って、重縮合温度は、好ましくは、265〜275℃、より好ましくは268〜272℃である。   As a manufacturing method of the polyester resin composition of this invention, it is preferable to implement polycondensation temperature at the lowest possible temperature of 260-280 degreeC from a viewpoint of gelatinization suppression of a polyester resin composition. The polycondensation temperature is usually the final constant temperature because the temperature is gradually raised from 230 to 240 ° C., and after reaching a certain target temperature, polycondensation is performed at a constant temperature. When the temperature is higher than 280 ° C, the polymerization is promoted, but also gelation is promoted at a high temperature. When the temperature is lower than 260 ° C, the polymerization activity is lowered, and the polymerization time is delayed, so that the gelation is similarly performed. Is not preferable because it is promoted. Therefore, the polycondensation temperature is preferably 265 to 275 ° C, more preferably 268 to 272 ° C.

本発明のポリエステル樹脂組成物は、固有粘度が0.65〜1.0の範囲であることが好ましい。固有粘度が0.65未満の場合、ポリエステル樹脂組成物が脆くなるために好ましくなく、固有粘度が1.0を超える場合にはその溶融粘度が高くなるため、精度の良い積層フィルムを得ることが困難になる。   The polyester resin composition of the present invention preferably has an intrinsic viscosity in the range of 0.65 to 1.0. When the intrinsic viscosity is less than 0.65, the polyester resin composition is not preferable because it becomes brittle. When the intrinsic viscosity exceeds 1.0, the melt viscosity becomes high, so that a highly accurate laminated film can be obtained. It becomes difficult.

次に、本発明のポリエステル樹脂組成物の製造方法について詳しく説明する。   Next, the manufacturing method of the polyester resin composition of this invention is demonstrated in detail.

テレフタル酸、シクロヘキサンジカルボン酸とエチレングリコールとを反応装置へ仕込み、常圧下温度を250℃付近までゆっくり昇温しながら水を留出させ、得られるエステル低重合体の酸価が100〜500μ当量/gとなるまで水を反応系外へ留出させながらエステル化反応を進行させる。   Terephthalic acid, cyclohexanedicarboxylic acid and ethylene glycol are charged into a reactor, and water is distilled while slowly raising the temperature under normal pressure to around 250 ° C., and the acid value of the resulting ester low polymer is 100 to 500 μequivalent / The esterification reaction is allowed to proceed while distilling water out of the reaction system until it reaches g.

得られた酸価が100〜500μ当量/gのエステル低重合体に、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、エチルジエチルホスホノアセテート、水酸化カリウムを添加し、次いでスピログリコールを添加する。スピログリコールとエステル低重合体とのエステル化反応を実施し、所定量の水が留出した後、重縮合反応缶へ投入する。さらに、重縮合触媒としてチタン化合物を添加する。重縮合反応は、装置内温度をゆっくり280℃まで昇温しながら装置内圧力を常圧から133Pa以下まで減圧する。重合反応の進行に従って反応物の粘度が上昇する。反応物の攪拌トルクが重合終了目標となったら缶内の圧力を常圧に復帰し、ポリエステル樹脂組成物を得る。   The resulting ester low polymer having an acid value of 100 to 500 μeq / g was added to bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, ethyl diethylphosphonoacetate, Potassium hydroxide is added followed by spiroglycol. An esterification reaction between spiroglycol and a low ester polymer is carried out, and after a predetermined amount of water is distilled off, it is put into a polycondensation reaction can. Further, a titanium compound is added as a polycondensation catalyst. In the polycondensation reaction, the internal pressure of the apparatus is reduced from normal pressure to 133 Pa or lower while the internal temperature is slowly raised to 280 ° C. As the polymerization reaction proceeds, the viscosity of the reaction product increases. When the stirring torque of the reaction product becomes the target for completion of polymerization, the pressure in the can is returned to normal pressure to obtain a polyester resin composition.

このようにしてポリエステル樹脂組成物を得ることができるが、上記は一例であって、ジカルボン酸、ジオールや触媒および重合条件はこれに限定されるわけではない。   In this way, a polyester resin composition can be obtained, but the above is an example, and the dicarboxylic acid, diol, catalyst, and polymerization conditions are not limited thereto.

このようにして得られたポリエステル樹脂組成物は、光弾性係数が低く、液晶ディスプレイとして好適である。また、PET等を交互に積層したフィルムは光反射性に優れ、反射材用途に好適である。   The polyester resin composition thus obtained has a low photoelastic coefficient and is suitable as a liquid crystal display. Moreover, the film which laminated | stacked PET etc. alternately is excellent in light reflectivity, and is suitable for a reflector use.

以下に実施例を挙げて、本発明をさらに具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

なお、物性の測定方法、効果の評価方法は次の方法に従って行った。
(1)ポリエステルの熱特性(ガラス転移点)
測定するサンプルを約10mg秤量し、アルミニウム製パン、パンカバーを用いて封入し、示差走査熱量計(パーキンエルマー社製 DSC7型)によって測定した。測定においては窒素雰囲気中で20℃から285℃まで16℃/分の速度で昇温した後液体窒素を用いて急冷し、再び窒素雰囲気中で20℃から285℃まで16℃/分の速度で昇温する。この2度目の昇温過程でガラス転移点を測定した。
(2)ポリエステルの屈折率
ポリエステル樹脂組成物を溶融押し出しすることで厚さ100μmの未延伸シートを得る。ついで光源としてナトリウムD線を用い23℃の温度条件にて株式会社アタゴ製 「アッベ式屈折率計 NAR−4T」で屈折率を測定した。
(3)エステル低重合体の酸価
(i)N/25エタノール性水酸化ナトリウム溶液の力価
スルファミン酸0.08gを純水70mlに溶解したスルファミン酸水溶液を用いて滴定し、力価を求める。
In addition, the measuring method of a physical property and the evaluation method of an effect were performed in accordance with the following method.
(1) Thermal properties of polyester (glass transition point)
About 10 mg of the sample to be measured was weighed, sealed with an aluminum pan and pan cover, and measured with a differential scanning calorimeter (DSC7 model, manufactured by Perkin Elmer). In the measurement, the temperature was raised from 20 ° C. to 285 ° C. at a rate of 16 ° C./min in a nitrogen atmosphere, then rapidly cooled with liquid nitrogen, and again from 20 ° C. to 285 ° C. at a rate of 16 ° C./min. Raise the temperature. The glass transition point was measured in the second temperature raising process.
(2) Refractive index of polyester An unstretched sheet having a thickness of 100 μm is obtained by melt-extruding the polyester resin composition. Subsequently, the refractive index was measured with an “Abbe refractometer NAR-4T” manufactured by Atago Co., Ltd. under a temperature condition of 23 ° C. using sodium D line as a light source.
(3) Acid value of low ester ester polymer (i) Potency of N / 25 ethanolic sodium hydroxide solution Titrate with 0.08 g of sulfamic acid dissolved in 70 ml of pure water to determine the titer. .

(ii)エステル低重合体の酸価
エステル低重合体約0.2gを計量し、o−クレゾール/クロロホルム(3:2)溶液を50ml加え、90℃で1時間溶融した後、30分間放冷した。その後、クロロホルムを30ml加え、さらに13%塩化リチウムメタノール溶液を5ml加え、N/25エタノール性水酸化ナトリウム溶液で平沼社製COM−450を用いて滴定した。滴定結果から、酸価(μ当量/g)を下記式(5)により算出した。
(Ii) Acid value of the ester low polymer About 0.2 g of the ester low polymer was weighed, 50 ml of o-cresol / chloroform (3: 2) solution was added, and the mixture was melted at 90 ° C. for 1 hour, and then allowed to cool for 30 minutes. did. Thereafter, 30 ml of chloroform was added, 5 ml of a 13% lithium chloride methanol solution was further added, and titration was performed with N / 25 ethanolic sodium hydroxide solution using COM-450 manufactured by Hiranuma. From the titration result, the acid value (μ equivalent / g) was calculated by the following formula (5).

酸価(μ当量/g)=A×f×10×(1/25)/w・・・(5)
但し、A:試料滴定数(ml)
f:N/25エタノール性水酸化ナトリウム溶液の力価
w:エステル低重合体採取量
(4)固有粘度(dl/g)
固有粘度はオルトクロロフェノールを溶媒とし、25℃で測定した。
(5)耐熱性(ゲル化率)
ポリエステル樹脂組成物1gを凍結粉砕して直径300μm以下の粉体状とし真空乾燥する。この試料を、オーブン中で、大気下、300℃で2.5時間熱処理する。これを、50mlのオルトクロロフェノール(OCP)中、80〜150℃の温度で0.5時間溶解させる。続いて、ブフナー型ガラス濾過器(最大細孔の大きさ20〜30μm)で濾過し、洗浄・真空乾燥する。濾過前後の濾過器の重量の増分より、フィルターに残留したOCP不溶物の重量を算出し、OCP不溶物のポリエステル樹脂組成物重量(1g)に対する重量分率を求め、ゲル化率(%)とした。
(6)ポリエステル樹脂組成物の色調
重合完了後のポリエステルチップを色差計(スガ試験機社製、SMカラーコンピュータ型式SM−T45)を用いて、ハンター値(L、b値)として測定した。
(7)ポリエステル樹脂組成物のリン元素含有量
堀場製作所製蛍光X線装置(型番MESA−500W)を用い、ポリマの蛍光X線の強度を測定した。この値を含有量既知のサンプルで予め作成した検量線を用い、金属含有量に換算した。
(8)シクロヘキサンジカルボン酸のシス、トランス体比率
試料をメタノールで5〜6倍に希釈し、その希釈溶液を0.4μlを液体クロマトグラフィーで下記条件にて測定した。
装置:島津製LC−10ADvp
カラム:キャピラリーカラム Agilent Technologies社製DB−17(長さ30m、内径0.32mm、膜厚0.25μm)
昇温条件:初期温度110℃、初期時間25分、昇温速度6℃/min、最終温度200℃
(9)光弾性係数(×10−12Pa−1
短辺1cm長辺7cmのサンプルを切り出した。このサンプルの厚みをd(μm)とする。このサンプルを(株)島津製作所社製TRANSDUCER U3C1−5Kを用いて、上下1cmずつをチェックに挟み長辺方向に1kg/mm(9.81×10Pa)の張力(F)をかけた。この状態で、ニコン(株)社製偏光顕微鏡5892を用いて位相差R(nm)を測定した。光源としてはナトリウムD線(589nm)を用いた。これらの数値を光弾性係数=R/(d×F)にあてはめて光弾性係数を計算した。
Acid value (μ equivalent / g) = A × f × 10 3 × (1/25) / w (5)
However, A: Sample drop constant (ml)
f: titer of N / 25 ethanolic sodium hydroxide solution
w: Amount of ester low polymer collected (4) Intrinsic viscosity (dl / g)
Intrinsic viscosity was measured at 25 ° C. using orthochlorophenol as a solvent.
(5) Heat resistance (gelation rate)
1 g of the polyester resin composition is freeze-pulverized to form a powder having a diameter of 300 μm or less and vacuum-dried. The sample is heat treated in an oven at 300 ° C. for 2.5 hours in the atmosphere. This is dissolved in 50 ml of orthochlorophenol (OCP) at a temperature of 80-150 ° C. for 0.5 hour. Subsequently, it is filtered through a Buchner type glass filter (maximum pore size 20-30 μm), washed and vacuum dried. The weight of the OCP insoluble matter remaining on the filter is calculated from the increase in the weight of the filter before and after the filtration, and the weight fraction of the OCP insoluble matter with respect to the polyester resin composition weight (1 g) is obtained. did.
(6) Color Tone of Polyester Resin Composition The polyester chip after polymerization was measured as a Hunter value (L, b value) using a color difference meter (SM color computer model SM-T45 manufactured by Suga Test Instruments Co., Ltd.).
(7) Phosphorus element content of polyester resin composition Using a fluorescent X-ray apparatus (model number MESA-500W) manufactured by Horiba, the intensity of the fluorescent X-ray of the polymer was measured. This value was converted to metal content using a calibration curve prepared in advance with a sample with known content.
(8) Cysane and trans isomer ratio of cyclohexanedicarboxylic acid A sample was diluted 5 to 6 times with methanol, and 0.4 μl of the diluted solution was measured by liquid chromatography under the following conditions.
Device: Shimadzu LC-10ADvp
Column: Capillary column DB-17 manufactured by Agilent Technologies (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm)
Temperature rising conditions: initial temperature 110 ° C., initial time 25 minutes, temperature rising rate 6 ° C./min, final temperature 200 ° C.
(9) Photoelastic coefficient (× 10 −12 Pa −1 )
A sample having a short side of 1 cm and a long side of 7 cm was cut out. The thickness of this sample is d (μm). Using this sample, TRANSDUCER U3C1-5K manufactured by Shimadzu Corporation, the checker was placed 1 cm above and below, and a tension (F) of 1 kg / mm 2 (9.81 × 10 6 Pa) was applied in the long side direction. . In this state, the phase difference R (nm) was measured using a polarizing microscope 5892 manufactured by Nikon Corporation. Sodium D line (589 nm) was used as a light source. These numerical values were applied to photoelastic coefficient = R / (d × F) to calculate the photoelastic coefficient.

光弾性係数が100未満の場合を合格とした。
(10)反射率
日立製作所製 分光光度計(U−3410 Spectrophotometer)にφ60積分球130−0632((株)日立製作所)および10°傾斜スペーサーを取り付け反射率のピーク値を測定した。なお、バンドパラメーターは2/servoとし、ゲインは3と設定し、187nm〜2600nmの範囲を120nm/min.の検出速度で測定した。また、反射率を基準化するため、標準反射板として付属のBaSO板を用いた。なお、本評価法では相対反射率となるため、反射率は100%以上となる場合もある。
(11)剥離性
JIS K5600(2002年)に従って試験を行った。なお、フィルムを硬い素地とみなし、2mm間隔で25個の格子状パターンを切り込んだ。また、約75mmの長さに切ったテープを格子の部分に接着し、テープを60°に近い角度で0.5〜1.0秒の時間で引き剥がした。ここで、テープにはセキスイ製セロテープ(登録商標)No.252(幅18mm)を用いた。評価結果は、格子1つ分が完全に剥離した格子の数で表した。また、試験フィルムの厚みが100μmより薄い場合には、厚さ100μmの二軸延伸PETフィルム(東レ製“ルミラー”T60)に試験フィルムを接着剤で強固に貼りあわせしたサンプルを剥離試験に用いた。この際には、試験サンプルを貫通しないように試験サンプルの面に格子を切り込んでテストを実施した。剥離個数が4個以下を合格とした。
The case where the photoelastic coefficient was less than 100 was regarded as acceptable.
(10) Reflectivity A spectrophotometer (U-3410 Spectrophotometer) manufactured by Hitachi, Ltd. was fitted with a φ60 integrating sphere 130-0632 (Hitachi Ltd.) and a 10 ° inclined spacer, and the peak value of reflectivity was measured. The band parameter was set to 2 / servo, the gain was set to 3, and the range from 187 nm to 2600 nm was set to 120 nm / min. Measured at a detection speed of. In order to standardize the reflectance, an attached BaSO 4 plate was used as a standard reflecting plate. In this evaluation method, since the relative reflectance is obtained, the reflectance may be 100% or more.
(11) Peelability The test was conducted according to JIS K5600 (2002). The film was regarded as a hard substrate, and 25 lattice patterns were cut at intervals of 2 mm. Further, a tape cut to a length of about 75 mm was adhered to the lattice portion, and the tape was peeled off at an angle close to 60 ° in a time of 0.5 to 1.0 seconds. Here, Sekisui's cello tape (registered trademark) no. 252 (width 18 mm) was used. The evaluation result was expressed by the number of lattices in which one lattice was completely separated. When the thickness of the test film was less than 100 μm, a sample in which the test film was firmly bonded to the biaxially stretched PET film (Toray “Lumirror” T60) having a thickness of 100 μm with an adhesive was used for the peel test. . At this time, a test was performed by cutting a grid in the surface of the test sample so as not to penetrate the test sample. The number of peeling was 4 or less.

なお、以下に触媒の合成方法を記す。   The method for synthesizing the catalyst is described below.

参考例1(触媒A.クエン酸キレートチタン化合物の合成方法)
撹拌機、凝縮器及び温度計を備えた3Lのフラスコ中に温水(371g)にクエン酸・一水和物(532g、2.52モル)を溶解させた。この撹拌されている溶液に滴下漏斗からチタンテトライソプロポキシド(288g、1.00モル)をゆっくり加えた。この混合物を1時間加熱、還流させて曇った溶液を生成させ、これよりイソプロパノール/水混合物を真空下で蒸留した。その生成物を70℃より低い温度まで冷却し、そしてその撹拌されている溶液にNaOH(380g、3.04モル)の32重量/重量%水溶液を滴下漏斗によりゆっくり加えた。得られた生成物をろ過し、次いでエチレングリコール(504g、80モル)と混合し、そして真空下で加熱してイソプロパノール/水を除去し、わずかに曇った淡黄色の生成物(Ti含有量3.85重量%)を得た。
Reference Example 1 (Catalyst A. Method for Synthesizing Citric Acid Chelate Titanium Compound)
Citric acid monohydrate (532 g, 2.52 mol) was dissolved in warm water (371 g) in a 3 L flask equipped with a stirrer, condenser and thermometer. To this stirred solution was slowly added titanium tetraisopropoxide (288 g, 1.00 mol) from the addition funnel. The mixture was heated to reflux for 1 hour to produce a cloudy solution from which the isopropanol / water mixture was distilled under vacuum. The product was cooled to a temperature below 70 ° C., and a 32 wt / wt% aqueous solution of NaOH (380 g, 3.04 mol) was slowly added via a dropping funnel to the stirred solution. The resulting product was filtered and then mixed with ethylene glycol (504 g, 80 mol) and heated under vacuum to remove isopropanol / water and a slightly cloudy light yellow product (Ti content 3 .85% by weight).

実施例1
(ポリエステルの合成)
テレフタル酸を57.7重量部、シス/トランス体比率が75/25である1,4−シクロヘキサンジカルボン酸を14.8重量部、エチレングリコールを54.0重量部をエステル反応装置に仕込んだ。攪拌しながら反応内容物の温度を235℃になるまでゆっくり昇温しながら水を留出させた。所定量の水を留出させた後、得られたエステル低重合体の酸価を測定したところ、210μ当量/gであった。その後、エステル低重合体に旭電化工業(株)製ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト)0.15重量部、エチルジエチルホスホノアセテートを0.02重量部、水酸化カリウム0.001重量部を添加した。次いで、スピログリコール20.0重量部を添加し、スピログリコールとエステル低重合体とのエステル化反応を実施した。
Example 1
(Synthesis of polyester)
The ester reactor was charged with 57.7 parts by weight of terephthalic acid, 14.8 parts by weight of 1,4-cyclohexanedicarboxylic acid having a cis / trans ratio of 75/25, and 54.0 parts by weight of ethylene glycol. While stirring, water was distilled while slowly raising the temperature of the reaction contents to 235 ° C. After distilling a predetermined amount of water, the acid value of the obtained ester low polymer was measured and found to be 210 μeq / g. Thereafter, 0.15 parts by weight of bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite) manufactured by Asahi Denka Kogyo Co., Ltd., ethyl diethylphosphonoacetate was added to the ester low polymer. 0.02 part by weight and 0.001 part by weight of potassium hydroxide were added. Subsequently, 20.0 parts by weight of spiroglycol was added to carry out an esterification reaction between spiroglycol and an ester low polymer.

引き続き、反応物を重合装置へ移行し、重縮合触媒としてチタン触媒Aをチタン原子換算で20ppmとなるように添加した。   Subsequently, the reaction product was transferred to a polymerization apparatus, and titanium catalyst A was added as a polycondensation catalyst so as to be 20 ppm in terms of titanium atoms.

重合装置内容物を撹拌しながら減圧および昇温し、エチレングリコールを留出させながら重合をおこなった。なお、減圧は90分かけて常圧から133Pa以下に減圧し、昇温は90分かけて235℃から270℃まで昇温した。   While stirring the contents of the polymerization apparatus, the pressure was reduced and the temperature was raised, and polymerization was carried out while distilling ethylene glycol. The reduced pressure was reduced from normal pressure to 133 Pa or lower over 90 minutes, and the temperature was raised from 235 ° C. to 270 ° C. over 90 minutes.

重合装置の撹拌トルクが所定の値に達したら重合装置内を窒素ガスにて常圧へ戻し、重合装置下部のバルブを開けてガット状のポリマーを水槽へ吐出した。水槽で冷却されたポリエステルガットはカッターにてカッティングし、チップとした。   When the stirring torque of the polymerization apparatus reached a predetermined value, the inside of the polymerization apparatus was returned to normal pressure with nitrogen gas, the valve at the bottom of the polymerization apparatus was opened, and a gut-shaped polymer was discharged into the water tank. The polyester gut cooled in the water tank was cut with a cutter to obtain chips.

このようにしてポリエステルAを得た。結果を表1、2に示す。得られたポリエステルAの固有粘度は0.72、ゲル化率は1.0%、色調b値は10でいずれも良好であった。   In this way, polyester A was obtained. The results are shown in Tables 1 and 2. Polyester A obtained had an intrinsic viscosity of 0.72, a gelation rate of 1.0%, a color tone b value of 10, and all were good.

同様にテレフタル酸ジメチルを100重量部、エチレングリコールを64重量部用いる以外は前記と同様にしてPET樹脂を重合した。得られたPET樹脂の固有粘度は0.65でありTgは80℃であった。   Similarly, a PET resin was polymerized in the same manner as described above except that 100 parts by weight of dimethyl terephthalate and 64 parts by weight of ethylene glycol were used. The obtained PET resin had an intrinsic viscosity of 0.65 and a Tg of 80 ° C.

(単層2軸延伸フィルムの製膜)
ポリエステルチップを真空乾燥したが、一部に塊状物が見られたため、これを崩してから、押出機に供給した。押出機に供給されたポリエステルは280℃で溶融されて金属不織布フィルターによって濾過されたのち、Tダイから溶融シートとして押し出した。溶融シートは静電印加法(電極は直径0.15ミリのタングステンワイヤーを使用)によって表面温度が25℃に制御された鏡面ドラム上で冷却固化され、未延伸シートとなった。該未延伸シートを用いて光弾性係数を測定した。
(Formation of single-layer biaxially stretched film)
Although the polyester chip was vacuum-dried, a lump was seen in a part thereof, which was broken and then supplied to the extruder. The polyester supplied to the extruder was melted at 280 ° C., filtered through a metal nonwoven fabric filter, and then extruded from a T die as a molten sheet. The molten sheet was cooled and solidified on a specular drum whose surface temperature was controlled at 25 ° C. by an electrostatic application method (electrodes used a tungsten wire having a diameter of 0.15 mm) to form an unstretched sheet. The photoelastic coefficient was measured using the unstretched sheet.

光弾性係数は85×10−12Pa−1であった。 The photoelastic coefficient was 85 × 10 −12 Pa −1 .

(積層ポリエステルフィルムの製膜)
前記ポリエステルAおよびPET樹脂をそれぞれ真空乾燥した後、2台の押出機にそれぞれ供給した。
(Formation of laminated polyester film)
The polyester A and the PET resin were each vacuum dried and then supplied to two extruders.

ポリエステルAおよびPET樹脂は、それぞれ、押出機にて280℃の溶融状態とし、ギヤポンプおよびフィルタを介した後、101層のフィードブロックにて合流させた。このとき、積層フィルムの両表層がPET樹脂層となるようにし、積層厚みはポリエステルA層/PET樹脂層が1/2となるように交互に積層した。すなわちポリエステルA層は50層、PET層は51層となるように交互に積層した。   Polyester A and PET resin were each melted at 280 ° C. with an extruder, passed through a gear pump and a filter, and then merged in a 101-layer feed block. At this time, both surface layers of the laminated film were made to be PET resin layers, and the laminated thickness was alternately laminated so that the polyester A layer / PET resin layer was ½. That is, the polyester A layer was laminated alternately so that 50 layers and the PET layer were 51 layers.

このようにして得られた101層からなる積層体を、ダイに供給し、シート状に押し出し、静電印加(直流電圧8kV)にて表面温度25℃に保たれたキャスティングドラム上で急冷固化した。   The 101-layer laminate thus obtained was supplied to a die, extruded into a sheet, and rapidly cooled and solidified on a casting drum maintained at a surface temperature of 25 ° C. by electrostatic application (DC voltage 8 kV). .

得られたキャストフィルムは、ロール式縦延伸機に導き、90℃に加熱されたロール群によって加熱し、周速の異なるロール間で長手方向に3倍に延伸した。縦方向に延伸が終了したフィルムは、次いでテンター式横延伸機に導いた。フィルムはテンター内で100℃の熱風で予熱し、横方向に3.3倍に延伸した。延伸されたフィルムはそのままテンター内で200℃の熱風にて熱処理した。このようにして厚さ50μmのフィルムを得ることができた。得られたフィルムの特性を表3に示す。本発明のポリエステル樹脂組成物を使用して得られたフィルムは光弾性係数が100×10−12Pa−1未満であり、屈折率も低いために積層フィルムとした際には優れた光反射性を有していた。 The obtained cast film was led to a roll type longitudinal stretching machine, heated by a group of rolls heated to 90 ° C., and stretched 3 times in the longitudinal direction between rolls having different peripheral speeds. The film that had been stretched in the machine direction was then led to a tenter-type transverse stretcher. The film was preheated with hot air at 100 ° C. in a tenter and stretched 3.3 times in the transverse direction. The stretched film was directly heat treated with hot air at 200 ° C. in a tenter. In this way, a film having a thickness of 50 μm could be obtained. The properties of the obtained film are shown in Table 3. The film obtained by using the polyester resin composition of the present invention has a photoelastic coefficient of less than 100 × 10 −12 Pa −1 and a low refractive index. Had.

実施例2
エステル化反応時間を短縮し、エステル低重合体の酸価が350μ当量/gであった以外は、実施例1と同様に行った。さらに実施例1で重合したPET樹脂を用い、実施例1と同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1に比べ、ゲル化率、色調b値が若干悪化したものの、品質として満足する特性を示した。
Example 2
The same procedure as in Example 1 was performed except that the esterification reaction time was shortened and the acid value of the ester low polymer was 350 μeq / g. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions as in Example 1. The results are shown in Tables 1-3. Compared to Example 1, the gelation rate and the color tone b value were slightly deteriorated, but satisfactory characteristics were exhibited.

実施例3、4
重縮合触媒をテトラ−n−ブチルチタネートもしくは三酸化アンチモンに変更した以外は、実施例1と同様にしてポリエステルを重合した。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1に比べ、ゲル化率、色調b値が若干悪化したものの、品質として満足する特性を示した。
Examples 3 and 4
A polyester was polymerized in the same manner as in Example 1 except that the polycondensation catalyst was changed to tetra-n-butyl titanate or antimony trioxide. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. Compared to Example 1, the gelation rate and the color tone b value were slightly deteriorated, but satisfactory characteristics were exhibited.

実施例5,6
テレフタル酸、1,4−シクロヘキサンジカルボン酸、エチレングリコール、スピログリコールの量比を変更する以外は実施例1と同様にしてポリエステルを重合した。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。
Examples 5 and 6
A polyester was polymerized in the same manner as in Example 1 except that the amount ratio of terephthalic acid, 1,4-cyclohexanedicarboxylic acid, ethylene glycol, and spiroglycol was changed. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions.

結果を表1〜3に示す。実施例5も満足すべき特性を示したが、芳香環モル数が大きいために光弾性率が若干増加した。また実施例6は屈折率が十分低いために優れた光反射性を示したが、共重合成分量が増加したためにPETとの相溶性が低下し、層間剥離性が弱くなった。   The results are shown in Tables 1-3. Example 5 also showed satisfactory characteristics, but the photoelastic modulus slightly increased due to the large number of moles of aromatic rings. In addition, Example 6 showed excellent light reflectivity because the refractive index was sufficiently low, but since the amount of copolymerization component was increased, compatibility with PET was lowered and delamination was weakened.

実施例7
5価のリン化合物であるエチルジエチルホスホノアセテートを添加しない以外は、実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1に比べ、ゲル化率、色調b値が若干悪化したものの、品質として満足する特性を示した。
Example 7
A polyester resin composition was obtained in the same manner as in Example 1 except that ethyl diethylphosphonoacetate, which is a pentavalent phosphorus compound, was not added. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. Compared to Example 1, the gelation rate and the color tone b value were slightly deteriorated, but satisfactory characteristics were exhibited.

実施例8
水酸化カリウムを添加せず、チタン触媒Aの添加量を減らした以外は実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1に比べ、ゲル化率が若干悪化したものの、品質として満足する特性を示した。
Example 8
A polyester resin composition was obtained in the same manner as in Example 1 except that potassium hydroxide was not added and the addition amount of the titanium catalyst A was reduced. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. Compared to Example 1, the gelation rate was slightly deteriorated, but the quality was satisfactory.

実施例9
水酸化カリウムの変わりに酢酸マンガンを添加し、3価のリン化合物である旭電化工業(株)製ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトの添加量を変更した以外は、実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1に比べ、ゲル化率、色調b値が若干悪化したものの、品質として満足する特性を示した。
Example 9
Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite manufactured by Asahi Denka Kogyo Co., Ltd., which is a trivalent phosphorus compound by adding manganese acetate instead of potassium hydroxide A polyester resin composition was obtained in the same manner as in Example 1 except that the addition amount of was changed. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. Compared to Example 1, the gelation rate and the color tone b value were slightly deteriorated, but satisfactory characteristics were exhibited.

実施例10
水酸化カリウムを添加せず、酢酸カリウムを0.003重量部添加した以外は、実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1と同様にゲル化率、色調b値は良好であり、品質として満足する特性を示した。
Example 10
A polyester resin composition was obtained in the same manner as in Example 1 except that potassium hydroxide was not added and 0.003 parts by weight of potassium acetate was added. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. As in Example 1, the gelation rate and the color tone b value were good and satisfactory quality was exhibited.

実施例11
エチルジエチルホスホノアセテートを添加せず、リン酸トリメチルを0.012重量部添加した以外は、実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1から3に示す。実施例1に比べ、ゲル化率、色調b値が若干悪化したものの、品質として満足する特性を示した。
Example 11
A polyester resin composition was obtained in the same manner as in Example 1 except that 0.012 parts by weight of trimethyl phosphate was added without adding ethyl diethylphosphonoacetate. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1 to 3. Compared to Example 1, the gelation rate and the color tone b value were slightly deteriorated, but satisfactory characteristics were exhibited.

実施例12
エチルジエチルホスホノアセテートの量を変更する以外は、実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1と比較すると色調b値が若干悪化したものの、ゲル化率、色調b値は良好であり、品質として満足する特性を示した。
Example 12
A polyester resin composition was obtained in the same manner as in Example 1 except that the amount of ethyl diethylphosphonoacetate was changed. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. Although the color tone b value was slightly deteriorated as compared with Example 1, the gelation rate and the color tone b value were good, and the quality was satisfactory.

実施例13
3価のリン化合物である旭電化工業(株)製ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトの添加量を変更した以外は、実施例1と同様にしてポリエステル樹脂組成物を得た。さらに実施例1で重合したPET樹脂を用い、同様の条件で積層フィルムを得た。結果を表1〜3に示す。実施例1に比べ、重縮合反応が遅延し、色調b値が若干悪化したものの、品質として満足する特性を示した。
Example 13
Example 1 except that the amount of bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite manufactured by Asahi Denka Kogyo Co., Ltd., which is a trivalent phosphorus compound, was changed. In the same manner, a polyester resin composition was obtained. Furthermore, using the PET resin polymerized in Example 1, a laminated film was obtained under the same conditions. The results are shown in Tables 1-3. Compared with Example 1, the polycondensation reaction was delayed and the color tone b value was slightly deteriorated, but the quality satisfactory characteristics were exhibited.

実施例14
1,4−シクロヘキサンジカルボン酸のシス/トランス比率が60/40である以外は実施例1と同様にしてポリエステルフィルムを得た。結果を表1〜3に示す。重合時にトランス体の析出により配管等が若干つまり気味になり、得られたフィルムもトランス体が多いことから光弾性係数が高くなった。
Example 14
A polyester film was obtained in the same manner as in Example 1 except that the cis / trans ratio of 1,4-cyclohexanedicarboxylic acid was 60/40. The results are shown in Tables 1-3. Due to precipitation of the trans isomer at the time of polymerization, the pipes and the like were slightly clogged, and the resulting film also had a high photoelastic coefficient due to the large amount of trans isomer.

実施例15
1,4−シクロヘキサンジカルボン酸の代わりにデカリン酸25mol%を添加する以外は、実施例1と同様にしてポリエステル樹脂組成物、積層フィルムを得た。結果を表1〜3に示す。品質は満足したものの、実施例1と比較して剥離性が低下した。
Example 15
A polyester resin composition and a laminated film were obtained in the same manner as in Example 1 except that 25 mol% of decalic acid was added instead of 1,4-cyclohexanedicarboxylic acid. The results are shown in Tables 1-3. Although the quality was satisfactory, the peelability was reduced as compared with Example 1.

参考例16
スピログリコールの代わりにイソソルビド10mol%を添加する以外は、実施例1と同様にしてポリエステル樹脂組成物、積層フィルムを得た。結果を表1〜3に示す。実施例1と比較して色調がやや悪化し、フィルムの光弾性係数も高かった。
Reference Example 16
A polyester resin composition and a laminated film were obtained in the same manner as in Example 1 except that 10 mol% of isosorbide was added instead of spiroglycol. The results are shown in Tables 1-3. Compared to Example 1, the color tone was slightly deteriorated, and the photoelastic coefficient of the film was also high.

比較例1
実施例1と同様にしてエステル低重合体を得て、さらに反応缶内を13.3kPaで3時間反応を行い、酸価が30μ当量/gのエステル低重合体を得た。そこに、旭電化工業(株)製ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、エチルジエチルホスホノアセテート、水酸化カリウム、スピログリコールを添加した以外は、実施例1と同様にポリエステル樹脂組成物、ポリエステル積層フィルムを得た。実施例1と比較してポリエステル樹脂組成物の色調が悪化した。
Comparative Example 1
An ester low polymer was obtained in the same manner as in Example 1, and the reaction was further carried out at 13.3 kPa for 3 hours to obtain an ester low polymer having an acid value of 30 μeq / g. Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, ethyl diethylphosphonoacetate, potassium hydroxide, spiroglycol made by Asahi Denka Kogyo Co., Ltd. was added thereto. Except for the above, a polyester resin composition and a polyester laminated film were obtained in the same manner as in Example 1. Compared with Example 1, the color tone of the polyester resin composition deteriorated.

比較例2
酸価が700μ当量/gのエステル低重合体にスピログリコールを添加した以外は、実施例1と同様にポリエステル樹脂組成物、ポリエステル積層フィルムを得た。実施例1に比べて、ゲル化率、色調ともに悪化した。
Comparative Example 2
A polyester resin composition and a polyester laminated film were obtained in the same manner as in Example 1 except that spiroglycol was added to an ester low polymer having an acid value of 700 μeq / g. Compared to Example 1, both the gelation rate and the color tone deteriorated.

比較例3
実施例1のポリエステル樹脂の重合において、シクロヘキサンジカルボン酸成分の代わりにイソフタル酸を15mol共重合し、スピログリコールは共重合しない以外は同様にしてポリエステルを重合し、積層フィルムを得た。結果を表1〜3に示すが、脂環族ジカルボン酸成分、脂環族ジオール成分のいずれも含有しないために屈折率、光弾性係数が大きく、積層フィルムの反射率も小さいものであった。
Comparative Example 3
In the polymerization of the polyester resin of Example 1, 15 mol of isophthalic acid was copolymerized in place of the cyclohexanedicarboxylic acid component, and the polyester was polymerized in the same manner except that the spiroglycol was not copolymerized to obtain a laminated film. Although a result is shown to Tables 1-3, since neither an alicyclic dicarboxylic acid component nor an alicyclic diol component is contained, the refractive index and the photoelastic coefficient were large, and the reflectance of the laminated film was also small.

比較例4
実施例1のポリエステル樹脂の重合において、シクロヘキサンジカルボン酸成分は共重合せず、スピログリコール成分の代わりにシクロヘキサンジメタノール成分を30mol共重合する以外は同様にしてポリエステルを重合し、積層フィルムを得た。結果を表1〜3に示すが、若干光弾性係数が大きく、積層フィルムの反射率も若干劣るものであった。
Comparative Example 4
In the polymerization of the polyester resin of Example 1, the cyclohexanedicarboxylic acid component was not copolymerized, and the polyester was polymerized in the same manner except that 30 mol of the cyclohexanedimethanol component was copolymerized instead of the spiroglycol component to obtain a laminated film. . The results are shown in Tables 1 to 3, but the photoelastic coefficient was slightly large and the reflectance of the laminated film was slightly inferior.

比較例5
実施例1のポリエステル樹脂の重合において、シクロヘキサンジカルボン酸成分は共重合せず、スピログリコール成分を45mol共重合する以外は同様にしてポリエステルを重合し、積層フィルムを得た。結果を表1〜3に示すが、Tg、ゲル化率が非常に高く、積層フィルムの剥離性も劣るものであった。また、重縮合中に低分子量物の飛沫が多く、真空回路を少し閉塞し、真空度不良が発生した。
Comparative Example 5
In the polymerization of the polyester resin in Example 1, the cyclohexanedicarboxylic acid component was not copolymerized, and the polyester was polymerized in the same manner except that 45 mol of the spiroglycol component was copolymerized to obtain a laminated film. Although a result is shown to Tables 1-3, Tg and the gelatinization rate were very high, and the peelability of a laminated | multilayer film was also inferior. Further, during the polycondensation, many low molecular weight droplets were splashed and the vacuum circuit was slightly blocked, resulting in poor vacuum.

比較例6
実施例1のポリエステル樹脂の重合において、シクロヘキサンジカルボン酸成分を25mol共重合し、スピログリコールは共重合しない以外は同様にしてポリエステルを重合し、積層フィルムを得た。結果を表1〜3に示すが、屈折率は目標範囲内であるが、Tgが下がり、積層フィルムの剥離性に劣り、反射率も小さいものであった。また、重縮合中に低分子量物の飛沫が多く、真空回路を少し閉塞し、真空度不良が発生した。
Comparative Example 6
In the polymerization of the polyester resin of Example 1, 25 mol of the cyclohexanedicarboxylic acid component was copolymerized and the polyester was polymerized in the same manner except that the spiroglycol was not copolymerized to obtain a laminated film. Although a result is shown to Tables 1-3, although a refractive index is in a target range, Tg fell, it was inferior to the peelability of a laminated | multilayer film, and the reflectance was also small. Further, during the polycondensation, many low molecular weight droplets were splashed and the vacuum circuit was slightly blocked, resulting in poor vacuum.

比較例7
旭電化工業(株)製ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトを添加しない以外は実施例1と同様にしてポリエステル樹脂組成物、ポリエステルフィルムを得た。結果を表1〜3に示すが、得られたポリエステル樹脂組成物のゲル化率は高く、色調b値も非常に高くなった。
Comparative Example 7
Asahi Denka Kogyo Co., Ltd. polyester resin composition and polyester film in the same manner as in Example 1 except that bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol di-phosphite is not added. Got. Although a result is shown to Tables 1-3, the gelation rate of the obtained polyester resin composition was high, and the color tone b value also became very high.

Figure 0005205830
Figure 0005205830

Figure 0005205830
Figure 0005205830

Figure 0005205830
Figure 0005205830

Claims (8)

少なくとも脂環族ジカルボン酸成分を、全ジカルボン酸成分中5〜80モル%含有し、スピログリコールを、全ジオール成分中5〜80モル%含む下記式(1)、(2)を満足するポリエステルを製造するに際して、ジカルボン酸と脂肪族ジオールのエステル化反応から得られた酸価が210〜350μ当量/gのエステル低重合体中に、3価のリン化合物をリン元素として、ポリエステル樹脂組成物に対し40〜315ppmを添加し、次いでスピログリコールを添加し、エステル化反応、引き続き重縮合触媒の存在下で重縮合反応を行うことを特徴とするポリエステル樹脂組成物の製造方法。
65℃≦示差走査熱量測定によるガラス転移点温度≦86℃・・・(1)
1.500≦ナトリウムD線での屈折率≦1.570・・・(2)
A polyester satisfying the following formulas (1) and (2) containing at least 5 to 80 mol% of an alicyclic dicarboxylic acid component and 5 to 80 mol% of spiroglycol in all diol components. In the production , a polyester resin composition comprising a trivalent phosphorus compound as a phosphorus element in an ester low polymer having an acid value of 210 to 350 μequivalent / g obtained from an esterification reaction of a dicarboxylic acid and an aliphatic diol . method of manufacturing added 40~315Ppm, then added spiro glycol, esterification reaction, continuing the polyester resin composition which is characterized in that the polycondensation reaction in the presence of a polycondensation catalyst to.
65 ° C. ≦ Glass transition temperature by differential scanning calorimetry ≦ 86 ° C. (1)
1.500 ≦ refractive index at sodium D line ≦ 1.570 (2)
ジカルボン酸と脂肪族ジオールのエステル化反応開始から重縮合反応終了までの任意の段階で下記式(3)で表される5価のリン化合物を添加することを特徴とする請求項1に記載のポリエステル樹脂組成物の製造方法。
Figure 0005205830
(但し、式中、R、Rは炭素数1以上の炭化水素基であり、Rは水素または炭素数
1以上の炭化水素基を示し、R、R、Rは同じであってもよく、異なっていてもよい。Xは、カルボニル基、エステル基のいずれかを示す。nは0または1である。)
The pentavalent phosphorus compound represented by the following formula (3) is added at any stage from the esterification reaction start of the dicarboxylic acid and the aliphatic diol to the end of the polycondensation reaction. A method for producing a polyester resin composition.
Figure 0005205830
(However, in the formula, R 1 and R 2 are hydrocarbon groups having 1 or more carbon atoms, R 3 represents hydrogen or a hydrocarbon group having 1 or more carbon atoms, and R 1 , R 2 , and R 3 are the same. And X may be a carbonyl group or an ester group, and n is 0 or 1.)
ジカルボン酸と脂肪族ジオールのエステル化反応開始から重縮合反応終了までの任意の段階で、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる少なくとも一種を添加することを特徴とする請求項1または2に記載のポリエステル樹脂組成物の製造方法。 3. At least one selected from an alkali metal compound and an alkaline earth metal compound is added at any stage from the start of esterification reaction of dicarboxylic acid and aliphatic diol to the end of polycondensation reaction. The manufacturing method of the polyester resin composition of description. 重縮合触媒としてチタン化合物、ゲルマニウム化合物、アンチモン化合物から選ばれる少なくとも一種を用いることを特徴とする請求項1から3のいずれか1項に記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to any one of claims 1 to 3, wherein at least one selected from a titanium compound, a germanium compound, and an antimony compound is used as the polycondensation catalyst. 重縮合触媒としてアルコキシ基、フェノキシ基、アシレート基、アミノ基および水酸基からなる群から選ばれる少なくとも一種の置換基を有しているチタン化合物を用いることを特徴とする請求項1から4のいずれか1項に記載のポリエステル樹脂組成物の製造方法。 The titanium compound having at least one substituent selected from the group consisting of an alkoxy group, a phenoxy group, an acylate group, an amino group and a hydroxyl group is used as the polycondensation catalyst. A method for producing a polyester resin composition according to item 1. 重縮合触媒のチタン化合物がアルコキシ基を有し、アルコキシ基がβ−ジケトン系官能基、ヒドロキシカルボン酸系官能基およびケトエステル系官能基からなる群から選ばれる少なくとも一種の官能基であることを特徴とする請求項1から5のいずれか1項に記載のポリエステル樹脂組成物の製造方法。 The titanium compound of the polycondensation catalyst has an alkoxy group, and the alkoxy group is at least one functional group selected from the group consisting of a β-diketone functional group, a hydroxycarboxylic acid functional group, and a ketoester functional group The manufacturing method of the polyester resin composition of any one of Claim 1 to 5. 脂環族ジカルボン酸成分がシクロヘキサンジカルボン酸成分であることを特徴とする請求項1から6のいずれか1項記載のポリエステル樹脂組成物の製造方法。 Process for producing a polyester resin composition according to any one of claims 1 6, wherein the alicyclic dicarboxylic acid component is cyclohexane dicarboxylic acid component. ポリエステル繰り返し単位に含まれる芳香環モル数がポリエステル樹脂1kg当たりに換算して4.8モル以下である請求項1からのいずれか1項記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to any one of claims 1 to 7 , wherein the molar number of aromatic rings contained in the polyester repeating unit is 4.8 mol or less in terms of 1 kg of the polyester resin.
JP2007160142A 2007-06-18 2007-06-18 Method for producing polyester resin composition Expired - Fee Related JP5205830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160142A JP5205830B2 (en) 2007-06-18 2007-06-18 Method for producing polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160142A JP5205830B2 (en) 2007-06-18 2007-06-18 Method for producing polyester resin composition

Publications (2)

Publication Number Publication Date
JP2008308641A JP2008308641A (en) 2008-12-25
JP5205830B2 true JP5205830B2 (en) 2013-06-05

Family

ID=40236523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160142A Expired - Fee Related JP5205830B2 (en) 2007-06-18 2007-06-18 Method for producing polyester resin composition

Country Status (1)

Country Link
JP (1) JP5205830B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135488A (en) 2008-12-03 2010-06-17 Toshiba Corp Light-emitting device, and method of manufacturing the same
JP5575671B2 (en) 2010-01-18 2014-08-20 富士フイルム株式会社 Polyester resin polymerization method, polyester resin composition and polyester film
JP5581999B2 (en) * 2010-11-30 2014-09-03 東レ株式会社 Polyester manufacturing method
US10696816B2 (en) 2014-03-31 2020-06-30 Mitsui Chemicals, Inc. Polyester resin composition for reflective material, and reflective material comprising same
JP6904297B2 (en) * 2018-03-28 2021-07-14 住友ベークライト株式会社 Release film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192473A (en) * 2000-01-11 2001-07-17 Teijin Ltd Polyester film for laminating to metal plate and molding the laminate
JP4003043B2 (en) * 2001-12-21 2007-11-07 三菱瓦斯化学株式会社 Hollow container
JP2004067830A (en) * 2002-08-05 2004-03-04 Mitsubishi Gas Chem Co Inc Polyester resin composition
JP4670235B2 (en) * 2002-12-02 2011-04-13 東レ株式会社 Polyester resin composition and polyester film
WO2007053549A1 (en) * 2005-10-28 2007-05-10 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
JP5233085B2 (en) * 2005-06-28 2013-07-10 東レ株式会社 Optical polyester film for liquid crystal display containing optical polyester resin

Also Published As

Publication number Publication date
JP2008308641A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2008029842A1 (en) Polyester resin composition, process for production thereof, and laminated polyester film
JP5140968B2 (en) Polyester resin composition and film using the same
JP5286644B2 (en) Polyester resin and polyester film containing the same
JP6500440B2 (en) Copolyester resin
JP5135909B2 (en) Polyester production method and film using the same
JP5205830B2 (en) Method for producing polyester resin composition
JP2010121080A (en) Method for producing polyester and film using the same
JP5223243B2 (en) Polyester production method and film using the same
JP2008231399A (en) Polyester composition and method for production of the same
JP5018268B2 (en) Polyester manufacturing method
JP2013249364A (en) Method for production of polyester, and film using the same
TWI487727B (en) Method for producing polyester resin
JP2011052190A (en) Method for producing polyester and film using the same
JP5194565B2 (en) Method for producing polyester resin composition
JP5115215B2 (en) Method for producing polyester resin composition
JP5186745B2 (en) Polyester composition and film using the same
JP5186775B2 (en) Method for producing polyester resin composition
JP6256106B2 (en) Polyester composition and method for producing the same
JP5205832B2 (en) Method for producing polyester resin for laminated film
JP6236946B2 (en) Polyester manufacturing method
JP5581999B2 (en) Polyester manufacturing method
JP7400499B2 (en) polyester resin composition
JP2010111815A (en) Method for producing optical polyester resin
JP4155846B2 (en) 2,6-polytrimethylene naphthalate composition, process for producing the same, and film using the same
JP2023091962A (en) Polyester resin composition and film composed of the same and method for producing polyester resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5205830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees