JP5205627B2 - How to observe plant growth using teaching materials - Google Patents

How to observe plant growth using teaching materials Download PDF

Info

Publication number
JP5205627B2
JP5205627B2 JP2008088425A JP2008088425A JP5205627B2 JP 5205627 B2 JP5205627 B2 JP 5205627B2 JP 2008088425 A JP2008088425 A JP 2008088425A JP 2008088425 A JP2008088425 A JP 2008088425A JP 5205627 B2 JP5205627 B2 JP 5205627B2
Authority
JP
Japan
Prior art keywords
water
plant
gel
growth
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008088425A
Other languages
Japanese (ja)
Other versions
JP2009207471A5 (en
JP2009207471A (en
Inventor
良一 福井
栗山  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Enterprises Japan Inc
Original Assignee
International Enterprises Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Enterprises Japan Inc filed Critical International Enterprises Japan Inc
Priority to JP2008088425A priority Critical patent/JP5205627B2/en
Publication of JP2009207471A publication Critical patent/JP2009207471A/en
Publication of JP2009207471A5 publication Critical patent/JP2009207471A5/ja
Application granted granted Critical
Publication of JP5205627B2 publication Critical patent/JP5205627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Cultivation Of Plants (AREA)

Description

本発明は、教材を用いて植物生長観察する方法に関する。さらに詳しくは植物の発芽生長する根を観察することができる教材を用いて植物生長観察する方法に関する.The present invention relates to a method for observing plant growth using teaching materials. More specifically, the present invention relates to a method for observing plant growth using a teaching material capable of observing the roots in which plants germinate and grow.

従来、学校や保育園などで植物の生長を観察する教材用のシステムとしては、植木鉢などの栽培容器に用土をいれ、その中で播種し発芽、生長させ、苗を移植して植物の生長を観察する方法がとられている。このような教材としては折りたたみ式の育苗ポットや茎や蔓のからみをよくする植木鉢が提供されている(たとえば、特許文献1,2)。
特開平11−239421号公報 特開2002−223642号公報
Traditionally, as a teaching material system for observing plant growth in schools and nurseries, we put soil in a cultivation container such as a flower pot, seeded in it, germinated and grown, transplanted seedlings and observed plant growth The way to do it is taken. As such teaching materials, folding seedling pots and flower pots that improve the entanglement of stems and vines are provided (for example, Patent Documents 1 and 2).
JP 11-239421 A JP 2002-223642 A

しかしながら、これらの教材を用いても用士を用いているため、土の中が全く見えず根の伸張状況を観察することはできなかった。  However, even though these teaching materials were used, a doctor was used, so the inside of the soil could not be seen at all, and the extension of the roots could not be observed.

本発明の目的は、植物の根の伸張状況を観察することができる教材を用いて植物生長観察する方法を提供することである。An object of the present invention is to provide a method for observing a plant growth using materials that can be observed an expansion condition of the roots of the plant.

本発明者は、上記の課題に鑑み、鋭意研究の結果、植物の発芽生長に必要な用土を用いず特定の吸水性樹脂を用いて発芽生長させれば、植物の根の伸張状況が観察できることに着目し、本発明を完成するに至った。  As a result of earnest research, the present inventor has been able to observe the elongation of plant roots by sprouting and growing using a specific water-absorbent resin without using the soil necessary for plant sprouting and growth. The present invention was completed by paying attention to the above.

すなわち、本発明は、透明な育苗ポット、下記吸水性樹脂粉末と水からなりゲル内が目視できる透過率が70〜95%の透明性を有する水系ゲル、および植物の種子もしくは球根もしくは苗をセットとする教材を用いて、該水系ゲルを育苗ポット内に保持するステップ、該水系ゲルに植物の種子もしくは球根もしくは苗を入れるステップ、および該水系ゲル内で植物が発芽し生長するに伴うゲル内の植物の根の伸張状況を根を抜かずに容器の側面から目視で観察するステップからなることを特徴とする教材を用いて植物生長観察する方法である
吸水性樹脂: 吸水性樹脂1重量部を25℃のイオン交換水100重量部に吸水させた時の吸水体の電気伝導率が0〜2.0mS/cmであり、且つ25℃のイオン交換水の吸水倍率が80〜1000倍である。
That is, the present invention sets a transparent seedling pot, a water-based gel composed of the following water-absorbent resin powder and water and having a transparency of 70 to 95% , and the seeds or bulbs or seedlings of the plant. using the materials to the step of holding the aqueous gel into seedling pots in the step of placing the seeds or bulbs or seedlings of the plant in the water-based gel, and the gel with the plants had emerged growth in water-based gel It is a method for observing plant growth using a teaching material characterized by comprising the step of visually observing the extension of the root of the plant from the side of the container without removing the root.
Water-absorbing resin: When 1 part by weight of the water-absorbing resin is absorbed by 100 parts by weight of ion-exchanged water at 25 ° C., the electric conductivity of the water-absorbing body is 0 to 2.0 mS / cm, and ion-exchanged water at 25 ° C. The water absorption magnification is 80 to 1000 times.

さらに、前記発芽し生長する植物をさらに用土の入った植物栽培容器に移植するステップ、および該植物がさらに生長するに伴う茎葉の生長状況を観察するステップからなることを特徴とする。
さらに前記育苗ポットの容器が透明であり、ゲル内の植物の根の伸張状況を容器の側面から観察することを特徴とする。
さらに水系ゲルが肥料、植物生長ホルモン、抗菌剤、微量要素および防カビ剤からなる薬液から選ばれる1種以上の成分を含有することを特徴とする。
また、前記の教材用の植物生長観察システムに用いる、育苗ポット、下記吸水性樹脂粉末、および植物の種子もしくは球根もしくは苗をセットとする教材である。
吸水性樹脂: 吸水性樹脂1重量部を25℃のイオン交換水100重量部に吸水させ た時の吸水体の電気伝導率が0〜2.0mS/cmであり、且つ25℃のイオン交換水の吸水倍率が80〜1000倍である。
さらに植物栽培容器、および用土を加えて一つのセットとすることを特徴とする。
Furthermore, the method comprises a step of transplanting the plant that germinates and grows into a plant cultivation container containing a soil, and a step of observing the growth situation of foliage as the plant further grows.
Furthermore, the container of the seedling pot is transparent, and the extension state of plant roots in the gel is observed from the side of the container.
Further, the aqueous gel contains one or more components selected from a chemical solution comprising a fertilizer, a plant growth hormone, an antibacterial agent, a trace element, and an antifungal agent.
Further, the teaching material includes a seedling pot, the following water-absorbent resin powder, and plant seeds or bulbs or seedlings, which are used in the plant growth observation system for the teaching materials.
Water-absorbing resin: When 1 part by weight of the water-absorbing resin is absorbed by 100 parts by weight of ion-exchanged water at 25 ° C., the electric conductivity of the water-absorbing body is 0 to 2.0 mS / cm, and ion-exchanged water at 25 ° C. The water absorption magnification is 80 to 1000 times.
Furthermore, a plant cultivation container and soil are added to form one set.

本発明の教材を用いて植物生長観察する方法は下記の効果を奏する。
1.本発明の吸水性樹脂は植物の生育を阻害することがなく、植物に対して充分な水を供給することができるので、用土の代わりに該吸水性樹脂の水系ゲルを用いれば植物の生長の培地として好適である。また吸水性樹脂の水系ゲルは透明感を持たせることができるので、植物の根の伸張状況を上から観察することができる。また育苗ポットの容器が透明であれば、容器の側面からでも植物の根の伸張状況を観察することができる。今まで根の伸張状況は水耕栽培や水中に茎などを入れて見ることはできたが、ほんの一部の植物にしか適用できなかったし、教材としてはほとんど用いられていなかった。本発明の方法はほとんどすべての植物に適用でき、植物生長観察用の教材として画期的な方法である。生徒の植物への興味または自然科学への興味を大いに引くことができるという顕著な効果を奏する。
2.育苗ポットから別の栽培容器に生長した植物を移植する際にしても、水系ゲルが根に付着しても、植物の生長が阻害されることがない。
3.育苗ポットには土を入れる必要がなく、教材として準備するのに軽量化、効率化ができる。
4.また、播種して発芽する確率は用土の場合よりも高くなるので、教材用に準備する種の数も減らすことができ植物の種のコストが少なくてすむ。
Method of observing the plant growth using the materials of the present invention the following effects.
1. Since the water-absorbent resin of the present invention does not inhibit plant growth and can supply sufficient water to the plant, the use of an aqueous gel of the water-absorbent resin instead of soil will increase plant growth. Suitable as a medium. Moreover, since the water-based gel of the water-absorbent resin can have a transparent feeling, it is possible to observe the extension state of the plant roots from above. If the container of the seedling pot is transparent, it is possible to observe the extension of the plant roots even from the side of the container. Up until now, we have been able to see the growth of roots by hydroponics and by putting stems in water, but it was applicable to only a few plants and was hardly used as a teaching material. The method of the present invention can be applied to almost all plants, and is an epoch-making method as a teaching material for plant growth observation. It has a remarkable effect that it can greatly attract students' interest in plants or natural science.
2. Even when transplanting a plant grown from a seedling pot to another cultivation container, even if an aqueous gel adheres to the root, the growth of the plant is not inhibited.
3. There is no need to put soil in the seedling pot, and it can be made lighter and more efficient to prepare as a teaching material.
4). In addition, the probability of seeding and germination is higher than in the case of soil, so the number of seeds prepared for teaching materials can be reduced and the cost of plant seeds can be reduced.

以下、本発明の実施の形態につき説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。  Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

下記吸水性樹脂粉末と水からなる水系ゲルを育苗ポット内に保持するステップについては、吸水性樹脂粉末と水からなる水系ゲルを作成してから育苗ポットに入れてもよいが、育苗ポット内で水系ゲルを作成してもよい。また、最初に少量の水系ゲルを作成しそれを育苗ポットに入れさらに水を入れて水系ゲルとしてもよい。簡便性、保形性の面から後者の二つが好ましい。水系ゲルは水と吸水性樹脂を攪拌混合していけば得られる。吸水性樹脂に水を加えながら攪拌して混合していってもよいが、水を攪拌しながら吸水性樹脂を投入していくのがより透明感のある水系ゲルが得られやすい。水系ゲル内での気泡の存在をできるだけ少なくすると透明感が増すので、後者の方が好ましい。膨潤した吸水性樹脂同士の接触度が高くなるほど透明感が高くなると推定される。透明度は好ましくは光線透過率20%以上、より好ましくは50%以上、特に好ましくは80%以上である。光線透過率は可視光の透過率の測定装置で測定できる。  Regarding the step of holding the water-based gel composed of the following water-absorbent resin powder and water in the seedling pot, the water-based gel composed of the water-absorbent resin powder and water may be created and then placed in the seedling pot, An aqueous gel may be made. Alternatively, a small amount of water-based gel may be prepared first, put in a seedling pot, and water may be further added to form a water-based gel. The latter two are preferred from the viewpoint of simplicity and shape retention. An aqueous gel can be obtained by stirring and mixing water and a water-absorbent resin. The water-absorbent resin may be mixed with stirring while adding water. However, when the water-absorbing resin is added while stirring water, a more transparent water-based gel is easily obtained. The latter is preferred because the presence of bubbles in the water-based gel is minimized to increase the transparency. It is estimated that the higher the degree of contact between the swollen water absorbent resins, the higher the transparency. The transparency is preferably a light transmittance of 20% or more, more preferably 50% or more, and particularly preferably 80% or more. The light transmittance can be measured with a visible light transmittance measuring device.

吸水性樹脂と水の割合は、吸水性樹脂の吸水倍率、植物の種類により異なるが、重量比で好ましくは1:10〜1:1000であり、より好ましくは1:20〜1:500である。
水系ゲルは土の場合のように毎日給水する必要はないが、植物が大きくなるに従って水分が減少するので、その場合には給水するのが好ましい。
The ratio of the water-absorbent resin to water varies depending on the water-absorption capacity of the water-absorbent resin and the type of plant, but is preferably 1:10 to 1: 1000, more preferably 1:20 to 1: 500 by weight ratio. .
The water-based gel does not have to be supplied every day as in the case of soil, but the water decreases as the plant grows, so in that case it is preferable to supply water.

水系ゲルに種子を入れた場合には、1週間〜数週間で発芽するが、土に播種した場合に比較して、後述するように発芽率が高くなる傾向がある。水系ゲルが植物の生長を阻害せずに必要な水を補給するからであり、発芽する場合にも同様であり、土の場合より水の補給が十分となるからと推定される。  When seeds are put in an aqueous gel, they germinate in one week to several weeks, but the germination rate tends to be higher as will be described later than when seeded in soil. This is because the water-based gel replenishes the necessary water without inhibiting the growth of the plant, and the same applies to germination, and it is presumed that the water replenishment will be more sufficient than in the case of soil.

次のステップは、上記のようにして得られた水系ゲルの表面または水系ゲル内に種子もしくは球根もしくは苗を入れるステップである。入れる深さは植物の種類により異なり適宜選択すればよい。このようにして室内または室外において1週間〜数週間たてば種子は発芽し、球根は根が出、苗は生長が始まる。本発明で用いる吸水性樹脂は植物の生長を阻害しないので、生長することができる。  The next step is to place seeds, bulbs or seedlings on the surface of the aqueous gel obtained as described above or in the aqueous gel. The depth of insertion varies depending on the type of plant and may be appropriately selected. In this way, seeds germinate after one week to several weeks indoors or outdoors, the roots of bulbs come out, and the seedlings begin to grow. Since the water-absorbent resin used in the present invention does not inhibit the growth of plants, it can grow.

さらに次のステップは、該水系ゲル内で植物が発芽し生長するに伴うゲル内の植物の根の伸張状況を観察するステップである。茎葉の生長を観察できるのはもちろんのこと、水系ゲルは透明感があるようにできるので、育苗ポットの上から根の伸張状況を観察することができる。育苗ポットの容器に透明感があれば、育苗ポットの側面からも根の伸張状況が観察できる。  The next step is a step of observing the state of root growth of the plant in the gel as the plant germinates and grows in the aqueous gel. Needless to say that the growth of the foliage can be observed, the water-based gel can be made transparent, so that the extension of the roots can be observed from the seedling pot. If the container of the seedling pot is transparent, the state of root growth can be observed from the side of the seedling pot.

本発明に用いられる吸水性樹脂は、根の生長を阻害しない吸水性樹脂であり、吸水性樹脂1重量部を25℃のイオン交換水100重量部に吸水させた時の吸水体の電気伝導率が0〜2.0mS/cmであり、且つ25℃のイオン交換水の吸水倍率が80〜1000倍であれば特に限定はない。この吸水性樹脂には、水系ゲルの作成前には電気伝導率がこの範囲にない吸水性樹脂であっても水系ゲルにするときに電気伝導率調整剤を入れて水系ゲルの電気伝導率が上記範囲内にあるようにしたものも含むものとする。この場合にも水系ゲルを作成した場合と実質的に同じになるからである。しかし、均一な性質を持つ水系ゲルを得るには電気伝導率の調整剤を加えなくても上記範囲内にあるものが好ましい。  The water-absorbent resin used in the present invention is a water-absorbent resin that does not inhibit the growth of roots, and the electrical conductivity of the water-absorbing body when 1 part by weight of the water-absorbent resin is absorbed by 100 parts by weight of ion-exchanged water at 25 ° C. Is 0 to 2.0 mS / cm, and there is no particular limitation as long as the absorption rate of ion-exchanged water at 25 ° C. is 80 to 1000 times. Even if the water-absorbent resin has an electrical conductivity that is not within this range before making the water-based gel, the water-absorbent resin has an electric conductivity adjusting agent added to the water-based gel so that the electric conductivity of the water-based gel is reduced. Including those that fall within the above range. This is because also in this case, it is substantially the same as the case where the aqueous gel is prepared. However, in order to obtain a water-based gel having uniform properties, a gel in the above range is preferable without adding an electrical conductivity regulator.

吸水性樹脂の電気伝導率としては、通常0〜2.0mS/cm、好ましくは、0〜1.8mS/cmであり、より好ましくは0〜1.6mS/cmである。電気伝導率が2.0mS/cmを超えると根の生長が不良となる。
電気伝導率は下記の方法で測定した。
The electric conductivity of the water absorbent resin is usually 0 to 2.0 mS / cm, preferably 0 to 1.8 mS / cm, more preferably 0 to 1.6 mS / cm. If the electric conductivity exceeds 2.0 mS / cm, the root growth becomes poor.
Electrical conductivity was measured by the following method.

〔電気伝導率の測定法〕
25℃のイオン交換水100重量部に吸水性樹脂1重量部を入れ、25℃で8時間、恒温槽中で放置して、前記吸水性樹脂を膨潤させ吸水体を作成する。吸水体の温度が25℃であることを温度計で確認し、比伝導度測定装置の電極を吸水体に差し込み値を読み取る。なお、吸水性樹脂の吸水倍率が小さい場合には、高吸水性樹脂の吸水体とイオン交換水が分離して二相になるので、撹拌して均一にした後、比伝導度測定装置の電極を差し込み値を測定する。撹拌・均一化してもすぐに二相に再び分離する場合は、撹拌下に比伝導度測定装置の電極を差し込み値を測定する。
[Measurement method of electrical conductivity]
1 part by weight of a water-absorbing resin is added to 100 parts by weight of ion-exchanged water at 25 ° C., and left in a thermostatic bath at 25 ° C. for 8 hours to swell the water-absorbing resin to prepare a water-absorbing body. It is confirmed with a thermometer that the temperature of the water absorbent body is 25 ° C., and the electrode of the specific conductivity measuring device is inserted into the water absorbent body to read the value. When the water absorption capacity of the water absorbent resin is small, the water absorbent body of the high water absorbent resin and the ion exchange water are separated into two phases. Measure the insertion value. If the two phases are separated again immediately after stirring and homogenization, the electrode of the specific conductivity measuring device is inserted under stirring and the value is measured.

吸水性樹脂の25℃イオン交換水に対する吸水倍率は、通常80〜1000倍、好ましくは100〜1000倍であり、より好ましくは120〜1000倍である。吸水倍率が80倍未満であると種子などの発芽、生長の培地としての保水能力が低くなり、多量に使用する必要が生じ、コストアップとなるし、水の補給が頻繁に必要になる。吸水倍率は大きい方が、少量の使用で済むので好ましいが、吸水倍率が1000倍を超える吸水性樹脂は、その製造工程において重合後の含水ゲルの密着性が高くなりすぎ、製造装置内の取り扱いやその後の乾燥が非常に困難であり、製造上の問題点があり現実的でない。
吸水倍率は下記の方法で測定した。
The water absorption ratio of the water absorbent resin to 25 ° C. ion-exchanged water is usually 80 to 1000 times, preferably 100 to 1000 times, and more preferably 120 to 1000 times. If the water absorption ratio is less than 80 times, the water retention capacity as a medium for germination and growth of seeds and the like is lowered, and it is necessary to use a large amount, resulting in an increase in cost and frequent replenishment of water. A larger water absorption ratio is preferable because a small amount of use is sufficient, but a water-absorbent resin having a water absorption ratio exceeding 1000 times has an excessively high adhesiveness to the water-containing gel after polymerization in the production process, and is handled in the production apparatus. And subsequent drying is very difficult, has manufacturing problems, and is not realistic.
The water absorption magnification was measured by the following method.

[イオン交換水中の吸水倍率の測定法]
ナイロン製の網袋(250メッシュ)に吸水性樹脂の試料L(g)を入れ、これを袋ごと過剰のイオン交換水に浸した。浸漬60分後に袋ごと空中に引き上げ、静置して15分間水切りした後、質量M(g)を測定して下式より吸水倍率を求めた。
なお網袋のみを用いて上記と同様の操作を行い、この分の質量N(g)をブランクとして差し引いた。イオン交換水の吸水倍率=(M−N)/L
[Measurement of water absorption ratio in ion-exchanged water]
A sample L (g) of the water-absorbent resin was placed in a nylon net bag (250 mesh), and the bag was immersed in excess ion-exchanged water together with the bag. After 60 minutes of immersion, the whole bag was pulled up in the air, allowed to stand and drained for 15 minutes, and then the mass M (g) was measured to determine the water absorption capacity from the following formula.
In addition, operation similar to the above was performed using only a net bag, and this mass N (g) was subtracted as a blank. Absorption capacity of ion exchange water = (MN) / L

本発明の吸水性樹脂は、ノニオン性水溶性エチレン性不飽和単量体(A)単独からなる重合体(X)、アニオン性水溶性エチレン性不飽和単量体(C)単独からなる重合体(Y)、およびノニオン性水溶性エチレン性不飽和単量体(A)とアニオン性水溶性エチレン性不飽和単量体(B)を構成単位とする共重合体(Z)からなる。(X)、(Y)、(Z)のみで使用することも可能であり、(X)、(Y)、(Z)を2種類以上混合して使用することも可能である。これらの内、(Y)または(Z)のアニオン性の重合体からなる吸水性樹脂が植物の発芽生長を特に阻害しないので好ましい。  The water-absorbing resin of the present invention includes a polymer (X) composed solely of a nonionic water-soluble ethylenically unsaturated monomer (A), and a polymer composed solely of an anionic water-soluble ethylenically unsaturated monomer (C). (Y) and a copolymer (Z) having a nonionic water-soluble ethylenically unsaturated monomer (A) and an anionic water-soluble ethylenically unsaturated monomer (B) as constituent units. It is possible to use only (X), (Y), (Z), and it is also possible to use a mixture of two or more of (X), (Y), (Z). Among these, a water-absorbing resin comprising an anionic polymer (Y) or (Z) is preferable because it does not particularly inhibit the germination of plants.

本発明において、重合体(X)の構成単位であるノニオン性水溶性エチレン性不飽和単量体(A)としては、水酸基含有ラジカル重合性水溶性単量体(アルキル基の炭素数が2〜3個のヒドロキシアルキルモノ(メタ)アクリレートなど)、アミド基含有ラジカル重合性水溶性単量体((メタ)アクリルアミドな、N−ビニルアセトアミドなど)、3級アミノ基含有ラジカル重合性水溶性単量体(ジメチルアミノエチル(メタ)アクリレートなど)、エポキシ基含有ラジカル重合性水溶性単量体(グリシジル(メタ)アクリレートなど)、およびその他ラジカル重合性水溶性単量体(4−ビニルピリジン、ビニルイミダゾールなど)が挙げられる。これらの内、好ましいものとしては、重合性が良好である(メタ)アクリルアミド及び/又はアルキル基の炭素数が2〜3のヒドロキシアルキルモノ(メタ)アクリレートである。  In the present invention, the nonionic water-soluble ethylenically unsaturated monomer (A) that is a constituent unit of the polymer (X) is a hydroxyl group-containing radically polymerizable water-soluble monomer (the alkyl group has 2 to 2 carbon atoms). 3 hydroxyalkyl mono (meth) acrylates), amide group-containing radical polymerizable water-soluble monomers ((meth) acrylamide, N-vinylacetamide, etc.), tertiary amino group-containing radical polymerizable water-soluble monomers (Dimethylaminoethyl (meth) acrylate, etc.), epoxy group-containing radically polymerizable water-soluble monomers (glycidyl (meth) acrylate, etc.), and other radically polymerizable water-soluble monomers (4-vinylpyridine, vinylimidazole) Etc.). Of these, preferred are (meth) acrylamide and / or hydroxyalkyl mono (meth) acrylates having 2 to 3 carbon atoms in the alkyl group.

本発明に使用するアニオン性水溶性エチレン性不飽和単量体(B)としては、カルボキシル基、スルホン酸基、リン酸基を有するラジカル重合性水溶性単量体((メタ)アクリル酸、ビニルスルホン酸など)及び/又はそれらを加水分解することにより水溶性となる単量体(酢酸ビニルなど);またはその塩が挙げられる。特に好ましくはアクリル酸およびその塩である。  Examples of the anionic water-soluble ethylenically unsaturated monomer (B) used in the present invention include radical polymerizable water-soluble monomers having a carboxyl group, a sulfonic acid group, and a phosphoric acid group ((meth) acrylic acid, vinyl Sulfonic acid and the like) and / or a monomer that becomes water-soluble by hydrolyzing them (such as vinyl acetate); or a salt thereof. Particularly preferred are acrylic acid and its salts.

塩としては、上記カルボキシル基、スルホン酸基、リン酸基を含有する水溶性単量体の塩[例えばアルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩等)、アミン塩もしくはアンモニウム塩等]等が挙げられる。これらの内、好ましいものとしては、重合性が良好である(メタ)アクリル酸(塩)を挙げることができる。  Examples of the salt include salts of water-soluble monomers containing the carboxyl group, sulfonic acid group, and phosphoric acid group [for example, alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt). Etc.), amine salts or ammonium salts, etc.]. Among these, preferable examples include (meth) acrylic acid (salt) having good polymerizability.

本発明において、アニオン性水溶性エチレン性不飽和単量体(B)が(メタ)アクリル酸(塩)である時、カルボキシル基の中和時に必要なイオンとしては、アルカリ金属イオン、周期律表第2族又は13族に属する多価金属イオン及びアンモニウムイオンが挙げられる。アルカリ金属イオンとしては、Na、Kが好ましく、周期律表第2族又は13族に属する多価金属イオンとしては、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、B3+、Al3+等が好ましい。In the present invention, when the anionic water-soluble ethylenically unsaturated monomer (B) is (meth) acrylic acid (salt), the ions necessary for neutralizing the carboxyl group include alkali metal ions and periodic table. Examples include polyvalent metal ions and ammonium ions belonging to Group 2 or Group 13. As the alkali metal ions, Na + and K + are preferable, and as the polyvalent metal ions belonging to Group 2 or Group 13 of the periodic table, Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , B 3+ , Al 3+ and the like are preferable.

重合体(Y)(Z)中のカルボキシル基の中和時に必要なイオンとしては、アルカリ金属イオン、周期律表第2族又は13族に属する多価金属イオン及びアンモニウムイオンが挙げられる。アルカリ金属イオンとしては、Na、Kが好ましく、周期律表2族又は13族に属する多価金属イオンとしては、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、B3+、Al3+等が好ましい。Examples of ions necessary for neutralization of the carboxyl group in the polymers (Y) and (Z) include alkali metal ions, polyvalent metal ions belonging to Group 2 or 13 of the periodic table, and ammonium ions. As the alkali metal ions, Na + and K + are preferable, and as the polyvalent metal ions belonging to Group 2 or Group 13 of the periodic table, Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , B 3+ , Al 3+ and the like are preferable.

ここでアルカリ金属イオン及びアンモニウムイオンの合計による中和度が10当量%未満では、教材用観察培地としての保水能力が低くなり、多量に使用する必要が生じ、50当量%を超えると電気伝導率が2.0mS/cmを超えるため発芽や植生が不良になる傾向となる。周期律表第2族又は13族に属する多価金属イオンによる中和度は、好ましくは、0〜50当量%であり、さらに好ましくは、10〜40当量%である。ここで、第2族又は13族に属する多価金属イオンによる中和度が50当量%を超えると吸水性樹脂の架橋度が高くなりすぎるため製造しにくくなる。  Here, if the neutralization degree based on the sum of alkali metal ions and ammonium ions is less than 10 equivalent%, the water retention capacity as an observation medium for teaching materials will be low, and it will be necessary to use a large amount. Since it exceeds 2.0 mS / cm, germination and vegetation tend to be poor. The degree of neutralization with polyvalent metal ions belonging to Group 2 or Group 13 of the Periodic Table is preferably 0 to 50 equivalent%, more preferably 10 to 40 equivalent%. Here, when the degree of neutralization by the polyvalent metal ions belonging to Group 2 or Group 13 exceeds 50 equivalent%, the degree of crosslinking of the water-absorbent resin becomes too high, making it difficult to produce.

本発明において、該吸水性樹脂は実質的にノニオン性、アニオン性であり、この性質を阻害しない範囲内でカチオン性重合性単量体(C)(アクリル酸トリメチルアンモニウムエチル・クロライドなど)や他のモノエチレン性不飽和単量体(D)(たとえば、スチレン、アクリル酸n−ブチルなど)を、たとえば(A)と(B)の合計質量に対して10モル%を超えない範囲で共重合してもよい。  In the present invention, the water-absorbing resin is substantially nonionic or anionic, and the cationic polymerizable monomer (C) (trimethylammonium acrylate / ethyl chloride, etc.) The monoethylenically unsaturated monomer (D) (for example, styrene, n-butyl acrylate, etc.) is copolymerized within a range not exceeding 10 mol% with respect to the total mass of (A) and (B), for example. May be.

本発明における高吸水性樹脂の製造方法は、公知の吸水性樹脂の製造法で製造できる。重合体(X)、(Y)、(Z)については、たとえば、特開平8−266895公報、特開平10−191777公報、特開2007−319029号公報に記載されている方法が適用できる。  The production method of the highly water-absorbent resin in the present invention can be produced by a known method for producing a water-absorbent resin. For the polymers (X), (Y), and (Z), for example, methods described in JP-A-8-266895, JP-A-10-191777, and JP-A-2007-319029 can be applied.

本発明において、吸水前の状態での、吸水性樹脂粒子の平均粒径は、粒状物であれば、特に限定するものではないが、通常100μm〜5mm、好ましくは150μm〜3.5mm程度である。平均粒径があまりに小さすぎると、吸水時にママコ(継粉)を形成しやすくなるため十分吸水いにくくなる傾向になる。一方、平均粒径が大きすぎると、吸水速度が遅くなり、粒子中心部まで完全に水が浸透しにくくなるため均質な水系ゲルを作成しにくくなる傾向になる。吸水前の乾燥状態での、吸水性樹脂の平均粒径は、「レーザー回折散乱法」(例えば、具体的には、日機装社製、商品名:マイクロトラックFRA粒度分析計を使用)で測定する。  In the present invention, the average particle diameter of the water-absorbent resin particles in the state before water absorption is not particularly limited as long as it is a granular material, but is usually about 100 μm to 5 mm, preferably about 150 μm to 3.5 mm. . When the average particle size is too small, it becomes easy to form mamako (spatter) at the time of water absorption, so that it tends to be difficult to absorb water sufficiently. On the other hand, if the average particle size is too large, the water absorption rate becomes slow, and it becomes difficult for water to penetrate completely to the center of the particle, making it difficult to produce a homogeneous aqueous gel. The average particle diameter of the water-absorbent resin in a dry state before water absorption is measured by a “laser diffraction scattering method” (for example, specifically, Nikkiso Co., Ltd., trade name: Microtrac FRA particle size analyzer). .

本発明に用いられる植物の種子もしくは球根もしくは苗は教材として用いられる植物のものであれば特に限定はない。種子としては、たとえば、ひまわりなどの花類、トマトなどの野菜類、ハーブ類等の種子が挙げられる。
通常、播種から開花に至るまで数箇月以上を要する植物が多いが、生長観察用の教材の素材として使用する植物の種子は、生育が速く播種後短期間に開花に至るものが好ましい。たとえば、播種から開花までに要する日数が最適栽培条件(例:22〜26℃、100〜150μmol・m−2・s−1)下で1〜3週間の植物の種子を用いれば、結果を出すまでの期間が短いので、学習計画等をたて易い。
The seeds or bulbs or seedlings of the plant used in the present invention are not particularly limited as long as they are plants used as teaching materials. Examples of seeds include seeds such as flowers such as sunflowers, vegetables such as tomatoes, and herbs.
Usually, there are many plants that require several months or more from sowing to flowering, but it is preferable that the seeds of plants used as teaching materials for observation of growth grow fast and reach flowering in a short time after sowing. For example, if the number of days required from sowing to flowering is optimally cultivated (eg 22-26 ° C., 100-150 μmol · m −2 · s −1 ), using seeds of plants for 1 to 3 weeks will give results. Because the period until is short, it is easy to make a learning plan.

このような条件に合致する短期間の生活環の植物としては、たとえば種子の発芽から植物体の成長、開花と結実に至る生活環が55日以内の短期間であるアブラナ科植物の種子が挙げられる。このようなアブラナ科植物の種子は、学習教材植物として使用するのに好適である。
また、種子に替えて球根や苗であってもよい。球根は教材として使用できるものであれば、限定はなく、チューリップやヒヤシンスの大きなものであっても、水系ゲル中で根の伸張状況が観察できる。生長して大きくなれば、用土に移植して観察すればよい。
苗も限定はなく、球根の場合と全く同様であり、限定はなく、苗の土をある程度落として移植すれば、根の観察ができる。
Short-term life cycle plants that meet these conditions include, for example, the seeds of cruciferous plants whose life cycle from seed germination to plant growth, flowering and fruiting is short within 55 days. It is done. Such seeds of cruciferous plants are suitable for use as learning material plants.
Further, bulbs or seedlings may be used instead of seeds. The bulbs are not limited as long as they can be used as teaching materials, and even when tulips or hyacinths are large, the extension of the roots can be observed in the aqueous gel. If it grows and grows, it can be transplanted to the soil and observed.
The seedlings are not limited and are exactly the same as in the case of bulbs. There is no limitation, and if the seedling soil is dropped to some extent and transplanted, the roots can be observed.

本発明に用いられる育苗ポットとしては、水系ゲルを入れて種や球根の発芽生長や苗の比較的初期の段階の植物の生長を保持できるものであれば限定はなく、そのための防水性を有するのが好ましい。防水性は、水系ゲルの保持や水やりを行うことに耐え、植物の発芽生長に支障を来たさない程度の防水性であればよい。防水加工の施された紙、各種合成樹脂材、防水加工の施された木材、ガラス、陶器などを用いることができる。防水加工の施された紙としては、例えば、いわゆる紙コップや牛乳パックに使用される素材や耐水加工の施されたダンボール等を用いることができる。紙は、印刷を施すことが容易なので、この点でも好ましい。合成樹脂材としては、ポリオレフィンその他の合成樹脂を用いることができる。素材は、水系ゲルを入れ、植物を栽培するのに耐え得る保形性を備えたものであればよく、その厚さ等は特に限定されない。この育苗ポット中で植物が発芽生長すれば水系ゲルが透明感を有するので上から根の伸張状況を観察することができる。  The seedling pot used in the present invention is not limited as long as it can retain the germination growth of seeds and bulbs and the growth of plants at a relatively early stage of seedling by adding an aqueous gel, and has a waterproof property therefor. Is preferred. The waterproof property may be waterproof to such an extent that it can withstand the holding or watering of the aqueous gel and does not hinder the germination of plants. Waterproof paper, various synthetic resin materials, waterproof wood, glass, ceramics, etc. can be used. As the paper subjected to waterproof processing, for example, a material used for so-called paper cups and milk cartons, cardboard subjected to water resistance processing, and the like can be used. Paper is also preferred in this respect because it is easy to print. As the synthetic resin material, polyolefin or other synthetic resins can be used. The material is not particularly limited as long as it has a shape-retaining property that can withstand the cultivation of plants by putting an aqueous gel. If a plant germinates and grows in this seedling pot, the water-based gel has a transparent feeling, so that the state of root elongation can be observed from above.

育苗ポットの容器が透明であれば、ゲル内の植物の根の伸張状況をさらに容器の側面から観察することができるので、本発明の方法や教材にさらに好適である。ここで透明性とは肉眼で内部が観察できる程度であればよく完全に透明である必要はなく半透明であってもよい。可視光の光線透過率が高い程内部がよく観察できるが、たとえば通常の透過率測定装置において600nmの波長において50%以上であればよい。If the container of the seedling pot is transparent, the extension state of the plant roots in the gel can be further observed from the side of the container, which is more suitable for the method and teaching material of the present invention. Here, the transparency need only be such that the inside can be observed with the naked eye, and need not be completely transparent, and may be translucent. The higher the visible light transmittance, the better the inside can be observed. For example, in an ordinary transmittance measuring device, it may be 50% or more at a wavelength of 600 nm.

本発明の教材を用いて植物生長観察する方法は上記方法に加えて、さらに前記発芽し生長する植物を用土の入った植物栽培容器に移植するステップ、および該植物がさらに生長するに伴う茎葉の生長状況を観察するステップからなる教材を用いて植物生長観察する方法である。
さらに前記発芽生長した植物を用土の入った植物栽培容器に移植すれば、従来のような用土中での植物の生長を観察することができる。上記の吸水性樹脂の水系ゲルは、寒天のような一体ゲルとならずに、粒子状ゲルの集合体となるため、根からの水系ゲルの除去が容易である。従って、水系ゲルを除去する間に根を傷めることが少なく、かつ、完全に除去するのに労力を必要としない。また、天然の水系ゲルと異なり、腐敗しにくいため、水系ゲル中で生育した植物を土壌へ移植・馴化する際にも、水系ゲルの腐敗から誘発される根の腐敗による収率低下が起こりにくいので、本発明の方法に用いるのが好適である。また根に水系ゲルが付着しても以後の植物の生長を阻害しないので安心して移植することができる。
In addition to the above method , the method for observing plant growth using the teaching material of the present invention further includes the step of transplanting the sprouting and growing plant into a plant cultivation container containing soil, and the stems and leaves associated with the further growth of the plant. it is a method to observe the plant growth using materials which comprises the step of observing the growth conditions.
Further, if the germinated and grown plant is transplanted into a plant cultivation container containing a soil, the growth of the plant in the soil can be observed. The aqueous gel of the above water-absorbent resin does not become an integral gel like agar but becomes an aggregate of particulate gels, so that it is easy to remove the aqueous gel from the roots. Accordingly, the root is hardly damaged during the removal of the water-based gel, and no effort is required for complete removal. In addition, unlike natural water-based gels, it is hard to rot, so even when plants grown in water-based gels are transplanted and acclimatized to the soil, the yield reduction due to root rot induced by water-based gel rot is unlikely to occur. Therefore, it is suitable for use in the method of the present invention. In addition, even if water-based gel adheres to the roots, it does not inhibit the subsequent growth of the plant, so that it can be transplanted with confidence.

用土としては、植物が栽培できれば限定はないが、培養土などの人工培土であるのが好ましい。人工培土とは、畑や田圃の土等の土壌(天然培土)ではなく、天然の土壌を構成する成分又はその成分と類似した性質を持つ天然あるいは人工の素材を、単独で又は数種類混合する等して人為的に調製した培土をいう。土壌を用いず人工培土を用いることにより、教材用として室内栽培においてクリーンな環境を維持しながら育成・栽培することができる。  The soil is not limited as long as plants can be cultivated, but artificial soil such as culture soil is preferable. Artificial soil is not soil (natural soil) such as field or field soil, but natural or artificial materials having properties similar to those components constituting natural soil or a mixture of them alone or in several types. And artificially prepared soil. By using artificial soil without using soil, it can be grown and cultivated while maintaining a clean environment in indoor cultivation for teaching materials.

学習教材に用いられる植物、園芸療法に用いられる植物等の育成においては、植物栽培の場を身近な室内とすることが好ましい。したがって、このような目的の室内における植物の栽培においては、土壌に代わる清浄な培土の使用が望ましい。清浄な人工培土の使用によって、土壌からの植物病原菌の持ち込みを防ぐこともでき、健全な植物の発芽育成が可能である。  For the cultivation of plants used for learning materials, plants used for horticultural therapy, etc., it is preferable that the plant cultivation site be a familiar room. Therefore, in the cultivation of plants in such a room, it is desirable to use clean soil instead of soil. By using clean artificial soil, it is possible to prevent the introduction of phytopathogenic bacteria from the soil, and it is possible to germinate and grow healthy plants.

人工培土としては、たとえば、生活環の短期間なアブラナ科の植物としたとき、ピートモスとバーミキュライトとの等量混合物(例:商品名「ジフィーミックス」Jiffy社製)、あるいは焼成培養土(例:商品名「クレハ培養土」クレハ化学社製)か、バーミキュライトの単独使用等が好ましい。  As an artificial soil, for example, when a cruciferous plant having a short life cycle is used, an equal mixture of peat moss and vermiculite (eg, trade name “Jiffy Mix” manufactured by Jiffy), or a calcined cultured soil (eg: The product name “Kureha Cultured Earth” manufactured by Kureha Chemical Co., Ltd.) or vermiculite alone is preferred.

上記の他に、多透孔質の焼成物、中でもクリストバライトの微粉末を各種の粒径にして焼成して作成したもの(日鉄鉱業社製、商品名クリスライト)が好適である。その他、クリストバライトの焼成物や同様の性質を有するゼオライト、ケイソウ土、発泡煉石等、さらには、園芸用として使用されている素焼き鉢の廃棄品等を成形した培土等、産業廃棄物を利用することもできる。また、これら人工培土の混合物の使用や、さらに植物成長に必要な肥料を添加した人工培土混合物を使用してもよい。肥料を混合してもよい。人工培土の粒子の粒径は、通常1〜5mm程度であるが、使用する植物種子の形状と大きさ等に応じて、最も適当な粒径のものを用いることができる。
ここで用いられる用土としては、これにより用土の選定に悩むことなく専門的知識がなくてもすぐに栽培に着手することができ、極めて便利である。用土は、通常、プラスチック袋等に入れて収容する。
In addition to the above, a multi-porous fired product, in particular, a product prepared by firing a fine powder of cristobalite with various particle diameters (manufactured by Nippon Steel Mining Co., Ltd., trade name Krislite) is suitable. In addition, use of industrial waste such as burned cristobalite, zeolites with similar properties, diatomaceous earth, foamed bricks, etc., as well as cultivated soil formed from unglazed pot wastes used for horticulture You can also. Moreover, you may use the mixture of these artificial soil, and the artificial soil mixture which added the fertilizer required for plant growth further. Fertilizers may be mixed. The particle size of the artificial soil particles is usually about 1 to 5 mm, but the most appropriate particle size can be used according to the shape and size of the plant seeds used.
As the soil used here, it is possible to start cultivation immediately without worrying about selection of the soil, and it is very convenient. The soil is usually stored in a plastic bag or the like.

栽培容器としては、育苗ポットとは異なる別の容器であって、育苗ポットで生長した植物をさらに成長させるためであるので育苗ポットよりサイズが大きいものが好ましい。材質としては育苗ポットと同じであっても異なっていてもよい。通常使用される植木鉢が好ましい。栽培容器に用土を要れ、育苗ポットで成長した植物を移植すれば引き続いて植物の生長を観察することができる。用土を用いれば用土中の根の観察ができないが、その場合には植木鉢に水系ゲルを入れて同様に栽培すればよい。  As a cultivation container, it is another container different from a seedling pot, and since it is for growing the plant grown in the seedling pot further, the thing larger than a seedling pot is preferable. The material may be the same as or different from the seedling pot. Usually used flowerpots are preferred. If you need soil for the cultivation container and transplant the plant grown in the seedling pot, you can continue to observe the growth of the plant. If the soil is used, the roots in the soil cannot be observed, but in that case, the water-based gel may be put in a flower pot and cultivated in the same manner.

植物栽培容器は生分解性材料からなるものが好ましい。例えば、紙、木材の他、生分解性プラスチックのシート材等が挙げられる。これらの素材を用いることにより、廃棄処分が容易で環境上も好ましいものとなる。生分解性プラスチックのシート材としては、微生物生産樹脂系、天然物由来系、化学合成系等の中から適宜選択し得る。  The plant cultivation container is preferably made of a biodegradable material. For example, a sheet material of biodegradable plastic other than paper and wood can be used. By using these materials, disposal is easy and environmentally preferable. The sheet material of the biodegradable plastic can be appropriately selected from microbial production resin systems, natural product-derived systems, chemical synthesis systems, and the like.

さらに本発明のシステムおよび教材においては、水系ゲルが肥料、植物生長ホルモン、抗菌剤、微量要素および防カビ剤からなる薬液から選ばれる1種以上の成分を含有することが好ましい。また用土に加えてもよい。  Furthermore, in the system and teaching material of the present invention, it is preferable that the aqueous gel contains one or more components selected from a chemical solution comprising a fertilizer, a plant growth hormone, an antibacterial agent, a trace element and an antifungal agent. It may also be added to the soil.

肥料としては、窒素質肥料、リン酸質肥料、カリ質肥料、有機質肥料、複合肥料、石灰質肥料、ケイ酸質肥料、苦土肥料、マンガン質肥料、ホウ素質肥料、微量要素複合肥料等の普通肥料と、その他の特殊肥料(緩効性肥料等)を挙げることができる。これらの肥料成分は液状又は粉末などの固体状であり、吸水性樹脂に添加することによって、或いは吸水性樹脂に注入する水に含有させることによって、水系ゲルに存在させることができる。肥料の添加量は、植物の種類等を考慮して任意に決めることができる。  As fertilizers, nitrogenous fertilizer, phosphate fertilizer, potash fertilizer, organic fertilizer, compound fertilizer, calcareous fertilizer, siliceous fertilizer, clay soil fertilizer, manganese fertilizer, boron fertilizer, trace element compound fertilizer, etc. A fertilizer and other special fertilizers (slow release fertilizer etc.) can be mentioned. These fertilizer components are in a liquid form or a solid form such as a powder, and can be present in the water-based gel by being added to the water-absorbent resin or by being contained in water injected into the water-absorbent resin. The amount of fertilizer added can be arbitrarily determined in consideration of the type of plant.

成長ホルモン剤としては、2,4−D(2,4−ジクロロフェノキシ酢酸)等のオーキシン類、カイネチン等のサイトカイニン類、ジベレリン等が挙げられ、2種以上併用してもよい。成長ホルモン剤の添加量は、植物の種類等を考慮して任意に決めることができる。  Examples of the growth hormone agent include auxins such as 2,4-D (2,4-dichlorophenoxyacetic acid), cytokinins such as kinetin, gibberellins and the like, and two or more kinds may be used in combination. The addition amount of the growth hormone agent can be arbitrarily determined in consideration of the type of plant.

抗菌剤としては、TPN(テトラクロロイソフタロニトリル)、キャブタン、ピンクロゾリン剤、ブラシミドン剤、ベンチアゾール剤、第4級アンモニウム塩、フェノール化合物、第4ピリジニウム塩、過酸、ホルムアルデヒド、抗生物質(ペニシリン、ストレプトマイシン、クロラムフェニルアルコール等)、N−クロルスクシンイミド、石灰、硫黄、有機硫黄剤(ジネブ、マンネブ、チオジアジン剤、チウラム剤等)、モノ及びジチオカルバベート、チオジアジン、スルホンアミド、フタルイミド、石油エーテル、ナフトキノン、ベンゾキノン、ジスルフィド、第2水銀化合物、テトラヒドロフタルイミド、ヒドロキシイソキサゾール、アルセネート、第二銅塩、有機銅剤(8−オキシキノリン銅等)、グアニジン塩、トリアジン、グリオキサリジン塩、キノリウム塩、フェニルクロトネート等を挙げられ、2種以上併用してもよい。抗菌剤の添加量は、植物の種類、使用する肥料の種類等を考慮して任意に決めることができる。  Antibacterial agents include TPN (tetrachloroisophthalonitrile), cabtan, pinclozoline, brassimidone, benchazole, quaternary ammonium salt, phenolic compound, quaternary pyridinium salt, peracid, formaldehyde, antibiotics (penicillin, Streptomycin, chloramphenyl alcohol, etc.), N-chlorosuccinimide, lime, sulfur, organic sulfur agents (dineb, mannebu, thiodiazine, thiuram, etc.), mono and dithiocarbabates, thiodiazine, sulfonamide, phthalimide, petroleum ether, Naphthoquinone, benzoquinone, disulfide, mercuric compound, tetrahydrophthalimide, hydroxyisoxazole, arsenate, cupric salt, organic copper agent (8-oxyquinoline copper, etc.), guanidine salt, triazine, glycine Kisarijin salts, quinolinium salts, include phenyl crotonate, etc., may be used in combination of two or more. The addition amount of the antibacterial agent can be arbitrarily determined in consideration of the type of plant, the type of fertilizer to be used, and the like.

さらに、培地の腐敗防止の目的で微量要素としては、ゼオライト、麦飯石等の無機多孔質材料を加えてもよい。微量要素の種類及び添加量は、植物の種類、使用する肥料の種類等を考慮して任意に決めることができる。  Furthermore, inorganic porous materials such as zeolite and barley stone may be added as a trace element for the purpose of preventing spoilage of the medium. The type and amount of the trace element can be arbitrarily determined in consideration of the type of plant, the type of fertilizer to be used, and the like.

防カビ剤としては、ハロゲン供給剤、特に塩素系供給剤、例えばクロロ−シアヌル酸類又はその塩、特に、ジクロロイソシアヌル酸モノ−ナトリウムまたはカリウム;ヒドロキシキノン類、亜硫酸塩;および銀または銅塩等を挙げられ、2種以上を併用してもよい。  Antifungal agents include halogen-supplied agents, in particular chlorine-based agents, such as chloro-cyanuric acids or salts thereof, in particular mono-sodium or potassium dichloroisocyanurate; hydroxyquinones, sulfites; and silver or copper salts. 2 or more may be used in combination.

防カビ剤の添加量は、植物の種類、使用する肥料の種類等を考慮して任意に決めることができる。
以下においてさらに本発明を詳細に説明するが、限定しない。
The amount of fungicide added can be arbitrarily determined in consideration of the type of plant, the type of fertilizer to be used, and the like.
The invention is further described in detail below, but is not limited.

製造例1(吸水性樹脂の製造)
1Lのビーカーに、単量体(C)に該当するアクリル酸230.4g(3.2mol)、架橋剤としてペンタエリスリトールトリアリルエーテル1.0g、及び水636gを添加し10℃に冷却した。この溶液を、断熱重合槽に入れ、窒素を通じて溶液の溶存酸素を0.1ppm(オリエント電気社製、商品名溶存酸素計DO220PBで測定)とした後、重合開始剤として、35%の過酸化水素水0.023g、L−アスコルビン酸0.00575g、および過硫酸カリウム0.23gを添加した。約30分後、重合反応が開始し、約2時間後に最高温度72℃に到達した。更に、この温度で5時間熟成させて重合を完結させた。得られた重合体(重合体(Y)に該当)は、含水ゲル状を有していた。この重合体をニーダー(入江商会社製、商品名BENCH KNEADER PNV−1;回転数70rpm)で約2時間撹拌して細断し、更に50%の水酸化カルシウム分散液61.6g、48%の水酸化ナトリウム水溶液64.0gを配合し、ニーダーで約2時間撹拌して混合した。その後、バンド乾燥機(透気乾燥機、井上金属株式会社製)を用いて110℃で加熱乾燥し、粉砕して平均粒径370μm(日機装社製、商品名:マイクロトラックFRA粒度分析計で測定)の吸水性樹脂(1)を得た。
Production Example 1 (Production of water absorbent resin)
To a 1 L beaker, 230.4 g (3.2 mol) of acrylic acid corresponding to the monomer (C), 1.0 g of pentaerythritol triallyl ether as a crosslinking agent, and 636 g of water were added and cooled to 10 ° C. This solution was put into an adiabatic polymerization tank, and dissolved oxygen of the solution was adjusted to 0.1 ppm through nitrogen (measured with a trade name dissolved oxygen meter DO220PB, manufactured by Orient Electric Co.), and then 35% hydrogen peroxide as a polymerization initiator. 0.023 g of water, 0.00575 g of L-ascorbic acid, and 0.23 g of potassium persulfate were added. After about 30 minutes, the polymerization reaction started, and after about 2 hours, the maximum temperature reached 72 ° C. Further, the polymerization was completed by aging at this temperature for 5 hours. The obtained polymer (corresponding to the polymer (Y)) had a hydrogel form. The polymer was stirred for about 2 hours with a kneader (trade name BENCH KNEEADER PNV-1; manufactured by Irie Trading Co., Ltd .; rotation speed: 70 rpm), and further chopped with 50% calcium hydroxide dispersion 61.6 g, 48% Sodium hydroxide aqueous solution 64.0g was mix | blended and it stirred and mixed by the kneader for about 2 hours. Then, it was heated and dried at 110 ° C. using a band dryer (air-permeable dryer, manufactured by Inoue Metal Co., Ltd.), pulverized and measured with an average particle size of 370 μm (trade name: Microtrac FRA particle size analyzer manufactured by Nikkiso Co., Ltd.). ) Was obtained.

製造例2(吸水性樹脂の製造)
1Lのビーカーに単量体(B)に該当するアクリル酸43.2g(0.6mol)、48%の水酸化ナトリウム水溶液50.0g、50%アクリルアミド(単量体(A)に該当)水溶液369.2g(2.6mol)、水443.2gを添加し、5℃に冷却した。この溶液を、断熱重合槽に入れ、窒素を通じて溶液の溶存酸素量を0.1ppmとした後、重合開始剤として、35%の過酸化水素水0.00016g、L−アスコルビン酸0.00008g及び4,4’−アゾビス(4−シアノバレリックアシッド)0.04gを添加した。約30分後重合が開始し、約5時間後に最高到達温度約75℃に到達して重合が完結して、含水ゲル状の重合物(共重合体(Z)に該当)が得られた。
Production Example 2 (Production of water absorbent resin)
In a 1 L beaker, 43.2 g (0.6 mol) of acrylic acid corresponding to monomer (B), 50.0 g of 48% aqueous sodium hydroxide solution, 50% acrylamide (corresponding to monomer (A)) aqueous solution 369 0.2 g (2.6 mol) and 443.2 g of water were added and cooled to 5 ° C. This solution was put into an adiabatic polymerization tank, and the dissolved oxygen amount of the solution was adjusted to 0.1 ppm through nitrogen. Then, 0.00016 g of 35% hydrogen peroxide, 0.00008 g of L-ascorbic acid and 4% were used as polymerization initiators. , 4′-Azobis (4-cyanovaleric acid) 0.04 g was added. After about 30 minutes, the polymerization started, and after about 5 hours, the maximum reached temperature of about 75 ° C. was reached and the polymerization was completed, and a hydrogel polymer (corresponding to copolymer (Z)) was obtained.

このゲルを、ニーダーで約2時間撹拌して細断した後、バンド乾燥機を用いて120℃で1時間乾燥し、粉砕して平均粒径500μmの未架橋の乾燥粉末を得た。この未架橋の乾燥粉末100gをステンレスのバットに3mmの厚みで入れ、160℃の循風乾燥機で120分加熱して熱架橋させて平均粒径1500μmの高吸水性樹脂(2)を得た。  The gel was chopped by stirring for about 2 hours with a kneader, dried at 120 ° C. for 1 hour using a band dryer, and pulverized to obtain an uncrosslinked dry powder having an average particle size of 500 μm. 100 g of this uncrosslinked dry powder was placed in a stainless steel vat with a thickness of 3 mm, and heated and cross-linked for 120 minutes with a circulating dryer at 160 ° C. to obtain a superabsorbent resin (2) having an average particle diameter of 1500 μm. .

製造例3(吸水性樹脂の製造)
1Lのビーカーに単量体(B)に該当するアクリル酸115.2g(1.6mol)、50%アクリルアミド(単量体(A)に該当)水溶液227.2g(1.6mol)、水562.5gを添加し、5℃に冷却した。この溶液を、断熱重合槽に入れ、窒素を通じて溶液の溶存酸素量を0.1ppmとした後、重合開始剤として、35%の過酸化水素水0.00016g、L−アスコルビン酸0.00008g及び4,4’−アゾビス(4−シアノバレリックアシッド)0.04gを添加した。約30分後重合が開始し、約5時間後に最高到達温度約75℃に到達して重合が完結して、含水ゲル状の重合物(共重合体(Z)に該当)が得られた。この重合体をニーダーで約2時間撹拌して細断した後、更に50%の水酸化カルシウム分散液17.8g、48%の水酸化ナトリウム水溶液113.3gを配合し、ニーダーで約2時間撹拌して混合したその後、バンド乾燥機を用いて120℃で1時間乾燥し、粉砕して平均粒径500μmの未架橋の乾燥粉末を得た。この未架橋の乾燥粉末100gをステンレスのバットに3mmの厚みで入れ、160℃の循風乾燥機で120分加熱して熱架橋させて平均粒径3300μmの吸水性樹脂(3)を得た。
Production Example 3 (Production of water absorbent resin)
In a 1 L beaker, 115.2 g (1.6 mol) of acrylic acid corresponding to monomer (B), 227.2 g (1.6 mol) of aqueous solution of 50% acrylamide (corresponding to monomer (A)), water 562. 5 g was added and cooled to 5 ° C. This solution was put into an adiabatic polymerization tank, and the dissolved oxygen amount of the solution was adjusted to 0.1 ppm through nitrogen. Then, 0.00016 g of 35% hydrogen peroxide, 0.00008 g of L-ascorbic acid and 4% were used as polymerization initiators. , 4′-Azobis (4-cyanovaleric acid) 0.04 g was added. After about 30 minutes, the polymerization started, and after about 5 hours, the maximum reached temperature of about 75 ° C. was reached and the polymerization was completed, and a hydrogel polymer (corresponding to copolymer (Z)) was obtained. This polymer was stirred for about 2 hours with a kneader and then chopped, and then 17.8 g of a 50% calcium hydroxide dispersion and 113.3 g of a 48% sodium hydroxide aqueous solution were blended, and stirred for about 2 hours with a kneader. Then, it was dried at 120 ° C. for 1 hour using a band dryer and pulverized to obtain an uncrosslinked dry powder having an average particle diameter of 500 μm. 100 g of this uncrosslinked dry powder was put into a stainless steel vat with a thickness of 3 mm and heated for 120 minutes with a circulating dryer at 160 ° C. for thermal crosslinking to obtain a water absorbent resin (3) having an average particle size of 3300 μm.

製造例4(吸水性樹脂の製造)
製造例2で用いたアクリル酸43.2g、48%の水酸化ナトリウム水溶液50.0g、50%アクリルアミド水溶液369.2gに代えてそれぞれ前述のアクリル酸21.6g(0.3mol)、前述の48%の水酸化ナトリウム水溶液25.0g、前述の50%アクリルアミド水溶液411.8g(2.9mol)を用いた以外は製造例2と同様な操作を行い、平均粒径1100μmの吸水性樹脂(4)(共重合体(Z)に対応)を得た。
Production Example 4 (Production of water absorbent resin)
In place of 43.2 g of acrylic acid, 50.0 g of 48% aqueous sodium hydroxide and 369.2 g of 50% acrylamide aqueous solution used in Production Example 2, 21.6 g (0.3 mol) of acrylic acid and 48 The same procedure as in Production Example 2 was carried out except that 25.0 g of a 50% aqueous sodium hydroxide solution and 411.8 g (2.9 mol) of the aforementioned 50% aqueous acrylamide solution were used, and a water absorbent resin (4) having an average particle size of 1100 μm (Corresponding to copolymer (Z)) was obtained.

製造例5(吸水性樹脂の製造)
製造例1で用いた50%の水酸化カルシウム分散液61.6g、48%の水酸化ナトリウム水溶液64.0gに代えてそれぞれ前述の50%の水酸化カルシウム分散液94.7g、前述の48%の水酸化ナトリウム水溶液120.0gを用いた以外は製造例1と同様な操作を行い、平均粒径700μmの吸水性樹脂(5)(重合体(Z)に対応)を得た。
Production Example 5 (Production of water absorbent resin)
Instead of 61.6 g of the 50% calcium hydroxide dispersion used in Production Example 1 and 64.0 g of the 48% sodium hydroxide aqueous solution, 94.7 g of the above-mentioned 50% calcium hydroxide dispersion and 48% of the above-mentioned Except for using 120.0 g of an aqueous sodium hydroxide solution, the same operation as in Production Example 1 was carried out to obtain a water absorbent resin (5) (corresponding to polymer (Z)) having an average particle size of 700 μm.

製造例6(吸水性樹脂の製造)
製造例1で用いたペンタエリスリトールトリアリルエーテル1.0gの添加量を0.5gに代え、さらに50%の水酸化カルシウム分散液61.6gと48%の水酸化ナトリウム水溶液64.0gに代えて、前述の48%の水酸化ナトリウム水溶液192.0gを用いた以外は実施例1と同様な操作を行い、吸水倍率800g/g、電気伝導率3.0mS/cm、平均粒径160μmの吸水性樹脂(6)(重合体(Z)に対応)を得た。さらに、市販のノニオン系吸水性樹脂(株式会社興人製、商標名:サーモゲル)(共重合体(X)に対応)と吸水性樹脂(6)を24:1の重量比で混合し、平均粒径490μmの吸水性樹脂(18)(共重合体(Z)と単独重合体(X)の混合物に対応)を得た。
Production Example 6 (Production of water absorbent resin)
The amount of 1.0 g of pentaerythritol triallyl ether used in Production Example 1 was changed to 0.5 g, and further changed to 61.6 g of 50% calcium hydroxide dispersion and 64.0 g of 48% sodium hydroxide aqueous solution. The same operation as in Example 1 was performed except that 192.0 g of the 48% sodium hydroxide aqueous solution was used, and the water absorption capacity was 800 g / g, the electric conductivity was 3.0 mS / cm, and the average particle size was 160 μm. Resin (6) (corresponding to polymer (Z)) was obtained. Further, a commercially available nonionic water-absorbing resin (trade name: Thermogel manufactured by Kojin Co., Ltd.) (corresponding to copolymer (X)) and water-absorbing resin (6) were mixed at a weight ratio of 24: 1, and the average A water-absorbing resin (18) having a particle size of 490 μm (corresponding to a mixture of copolymer (Z) and homopolymer (X)) was obtained.

製造例7(吸水性樹脂の製造)
製造例1で用いた50%の水酸化カルシウム分散液61.6gと48%の水酸化ナトリウム水溶液64.0gに代えて、前述の48%の水酸化ナトリウム水溶液192.0gを用いた以外は実施例1と同様な操作を行い、吸水倍率400g/g、電気伝導率3.0mS/cm、平均粒径200μmの吸水性樹脂(7)(重合体(Y)に対応)を得た。
Production Example 7 (Production of water absorbent resin)
Implementation was carried out except that 192.0 g of the 48% sodium hydroxide aqueous solution was used instead of 61.6 g of the 50% calcium hydroxide dispersion and 64.0 g of the 48% sodium hydroxide aqueous solution used in Production Example 1. The same operation as in Example 1 was performed to obtain a water absorbent resin (7) (corresponding to the polymer (Y)) having a water absorption rate of 400 g / g, an electric conductivity of 3.0 mS / cm, and an average particle size of 200 μm.

[比較例1]
吸水性樹脂(7)を用いた。
[Comparative Example 1]
A water absorbent resin (7) was used.

[比較例2]
市販のノニオン系吸水性樹脂(株式会社興人製、商標名:サーモゲル)を用いた。
[Comparative Example 2]
A commercially available nonionic water-absorbing resin (trade name: Thermogel, manufactured by Kojin Co., Ltd.) was used.

[比較例3]
市販のノニオン系吸水性樹脂(昭和電工株式会社製、商標名:PNVA)を用いた。
[Comparative Example 3]
A commercially available nonionic water-absorbing resin (trade name: PNVA, manufactured by Showa Denko KK) was used.

実施例1〜6、比較例1〜5
300mLの透明なプラスチックでできた育苗ポット20個準備し、その各々に水200gを入れ時々攪拌しながら表1に記載のように上記の吸水性樹脂2gを少しずつ入れて育苗ポット内で水系ゲルを作成した(実施例1〜6、比較例1〜3)。この水系ゲルの透過率は70〜95%で中がよく見えた。また、同様に育苗ポットに培養土、畑の土を入れた(比較例4、5)。この水系ゲルに八重咲ひまわりの種子を各2個を深さ2cm程度のところに入れ、20℃程度の温室ハウスにおき10日後の発芽の状況(1)を調べた。育苗ポットの上からも側面からも根の状況が観察できた。またその後15日後の生育状況(2)をも観察した。根の伸張状況が同様に観察できた。また観察した後3Lの容量の素焼きの植木鉢に定植した。その際根の水系ゲルはよくとれたが残っているものもあった。また植木鉢で育った八重咲ひまわりが徐々に花の蕾をつけ1ケ月後に開花の状況(3)を観察した。
Examples 1-6, Comparative Examples 1-5
Prepare 20 seedling pots made of 300 mL of transparent plastic, add 200 g of water to each of them and add 2 g of the above water-absorbing resin little by little as shown in Table 1 with occasional stirring. (Examples 1-6, Comparative Examples 1-3). The aqueous gel had a transmittance of 70 to 95%, and the inside was clearly visible. Similarly, culture soil and field soil were placed in a seedling pot (Comparative Examples 4 and 5). Two double-flowered sunflower seeds were placed in this water-based gel at a depth of about 2 cm, placed in a greenhouse house at about 20 ° C., and the germination status (10) after 10 days was examined. The roots were observed from the top and side of the nursery pot. Further, the growth condition (2) after 15 days was also observed. The extension of the roots could be observed in the same way. After observation, the plants were planted in a 3 L capacity unglazed flower pot. At that time, the root aqueous gel was well removed, but some remained. Also, Yaesaki sunflowers grown in flowerpots gradually put on flower buds and observed the flowering situation (3) one month later.

Figure 0005205627
Figure 0005205627

上記のことから、比較例4,5のような従来の植物生長観察システムでは土に植えたものばかりであるので、根の伸張状況を観察することができないが、本発明の教材用の植物生長観察システム(実施例1〜6)では育苗ポット内の水系ゲルで植物の主旨が効率よく発芽し、その後も十分に生育する。そして、その根の伸張状況を十分に観察することができる。From the above, in the conventional plant growth observation system as in Comparative Examples 4 and 5, since only planted in the soil, it is not possible to observe the state of root growth, but the plant growth for the teaching material of the present invention In the observation system (Examples 1 to 6), the main point of the plant is efficiently germinated by the water-based gel in the seedling pot and grows sufficiently thereafter. And it is possible to fully observe the extension of the roots.

Claims (3)

透明な容器である育苗ポット、下記吸水性樹脂粉末と水からなりゲル内が目視できる透過率が70〜95%の透明性を有する水系ゲル、および植物の種子もしくは球根もしくは苗をセットとする教材を用いて、該水系ゲルを育苗ポット内に保持するステップ、該水系ゲルに植物の種子もしくは球根もしくは苗を入れるステップ、および該水系ゲル内で植物が発芽し生長するに伴うゲル内の植物の根の伸張状況を根を抜かずに容器の側面から目視で観察するステップからなることを特徴とする教材を用いて植物生長観察する方法
吸水性樹脂: 吸水性樹脂1重量部を25℃のイオン交換水100重量部に吸水させた時の吸水体の電気伝導率が0〜2.0mS/cmであり、且つ25℃のイオン交換水の吸水倍率が80〜1000倍である。
A seedling pot which is a transparent container, a water-based gel composed of the following water-absorbent resin powder and water, and a transparent gel with a transmittance of 70 to 95% that allows the inside of the gel to be visually observed, and a teaching material comprising plant seeds, bulbs or seedlings as a set using a step of holding the aqueous gel into nursery pot, the plant to the aqueous based gel seeds or step of placing the bulbs or plants, and water-based in-gel plants within the gel due to the plants had emerged growth A method of observing plant growth using a teaching material comprising the step of visually observing the state of root elongation from the side of a container without removing the root.
Water-absorbing resin: When 1 part by weight of the water-absorbing resin is absorbed by 100 parts by weight of ion-exchanged water at 25 ° C., the electric conductivity of the water-absorbing body is 0 to 2.0 mS / cm, and ion-exchanged water at 25 ° C. The water absorption magnification is 80 to 1000 times.
さらに前記発芽し生長する植物をさらに用土の入った植物栽培容器に移植するステップ、および該植物がさらに生長するに伴う茎葉の生長状況を観察するステップからなることを特徴とする請求項1記載の教材を用いて植物生長観察する方法。 2. The method according to claim 1, further comprising the steps of transplanting the germinated and growing plant to a plant cultivation container further containing soil, and observing the growth status of the foliage as the plant further grows. A method of observing plant growth using teaching materials . さらに水系ゲルが肥料、植物生長ホルモン、抗菌剤、微量要素および防カビ剤からなる薬液から選ばれる1種以上の成分を含有することを特徴とする請求項1または2記載の教材を用いて植物生長観察する方法Further aqueous gel fertilizers, plant growth hormones, antibacterial agents, by using the materials according to claim 1 or 2, wherein the containing one or more components selected from the chemical consisting of trace elements and antifungal agents plants How to observe growth.
JP2008088425A 2008-02-29 2008-02-29 How to observe plant growth using teaching materials Expired - Fee Related JP5205627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088425A JP5205627B2 (en) 2008-02-29 2008-02-29 How to observe plant growth using teaching materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088425A JP5205627B2 (en) 2008-02-29 2008-02-29 How to observe plant growth using teaching materials

Publications (3)

Publication Number Publication Date
JP2009207471A JP2009207471A (en) 2009-09-17
JP2009207471A5 JP2009207471A5 (en) 2011-05-12
JP5205627B2 true JP5205627B2 (en) 2013-06-05

Family

ID=41181243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088425A Expired - Fee Related JP5205627B2 (en) 2008-02-29 2008-02-29 How to observe plant growth using teaching materials

Country Status (1)

Country Link
JP (1) JP5205627B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180726A (en) * 2021-12-22 2022-03-15 水生藻安生物科技(武汉)有限公司 Submerged plant biomass composite base material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291331A (en) * 1995-09-05 2002-10-08 Mukoyama Ranen:Kk Container for raising plant, carrier for raising plant and method for raising plant
JPH09201128A (en) * 1996-01-24 1997-08-05 Yazaki Corp Grafting method
JPH11113387A (en) * 1997-10-16 1999-04-27 Showa Denko Kk Water absorbing resin for plant culture and plant culturing method using the same
JP2000354423A (en) * 1999-06-16 2000-12-26 Mino Nendo Kk Plant ornamental or hydroponic set
JP2002223642A (en) * 2001-02-01 2002-08-13 Kobayashi Hardware Kk Plant cultivation vessel and plant cultivation kit
JP2002330628A (en) * 2001-05-09 2002-11-19 North Flower:Kk Gel-like artificial medium and potted plant using the medium
JP5037860B2 (en) * 2006-05-30 2012-10-03 有限会社三鶴園芸 Horticultural water retention agent

Also Published As

Publication number Publication date
JP2009207471A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
KR100478742B1 (en) water-holding carrier for plants
JP5037860B2 (en) Horticultural water retention agent
Ahmad et al. Growth and flowering of gerbera as influenced by various horticultural substrates
WO2017135236A1 (en) Method for growing salt-resistant seedling and method for hydroponic cultivation of plant
Kumar et al. Performance of a new superabsorbent polymer on seedling and post planting growth and water use pattern of chrysanthemum grown under controlled environment
JP5205627B2 (en) How to observe plant growth using teaching materials
Keever et al. Effect of hydrophylic polymer amendment on growth of container grown landscape plants
CN115989784A (en) Method for improving germination rate and seedling survival rate of lonicera macranthoides seeds
JP2019180255A (en) Soil cover material for raising seedling
JP6120202B2 (en) Culture medium for seedlings for hydroponics
JP2007222111A (en) Cultivation soil for cell-formed seedling, and method for producing cell-formed seedling
Lopatkina et al. The use of polymer super absorbent in the adaptation of revitalized grape plants to non-sterile conditions
JPH08256592A (en) Artificial culture soil
JP3645001B2 (en) Slow release fertilizer
CN1084693A (en) A kind of method of water surface soilless flower cultivating
CN112753509B (en) Seedling cultivation method suitable for potato water culture test
JPH0349525B2 (en)
JP2002223632A (en) Method for promoting rooting of cutting
JP3486651B2 (en) Cultivation soil for connected plastic tray
JPS5959119A (en) Hardness enhancer of seedling growing soil for transplantat-ion
JPS6098910A (en) Base material for culturing plant
JP2023117878A (en) Method for producing cuttings of plants of genus larix
JP2022157476A (en) Method of evaluating rooting of cutting
JPS62236416A (en) Preparation of seedling growing medium
JP2001346438A (en) Culture soil for raising seedling

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190301

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5205627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees